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”Remember to breathe and then
take one step at a time.”

— Unknown

”The greatest moments are
those when you see the result
pop up in a graph or in your
statistics analysis - that moment
you realise you know something
no one else does and you get the
pleasure of thinking about how
to tell them.”

— Emily Oster
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Abstract

Using data from electronic health records this thesis aims to model and anal-
yse health care services provided to adult patients with chronic conditions.
Two aspects of health care services, with unique aims, have been examined.

The first aspect is related to the aim of investigating factors affecting the
patients’ self experienced quality of the health care encounters with regards
to satisfaction, personalized help and general information received. Signifi-
cant factors were determined by odds ratios resulting from either logistic or
multinomial regression, combined with generalized boosted regression.
The main findings included: Better self perceived health, increased age,
the absence of long lasting illness and not having experienced debasing, ac-
counted positively for the odds of being satisfied. Factors implying a sicker
patient increased the odds of receiving help and information; though higher
age reduced the odds. Specifically regarding receiving personal help, higher
level of education showed an increase in the odds. There were also indications
that satisfaction could be negatively correlated with the amount of help and
information received.

The second task has been to construct discrete-time patient trajecto-
ries, consisting of unique states or events that describe health service usage.
Using such patient trajectories this aspect’s aim is to model and describe
changes and stability in health service usage, and predict future health care
events using discrete-time Markov chain and hidden Markov models. Estima-
tion was performed by maximum likelihood and trained by the Baum-Welch
algorithm. Both Markov models were justified to describe certain perspec-
tives of health care utilization. Prediction of future health events was only
theoretically adequate using hidden Markov models, but its accuracy was
unsatisfactory. Also the hidden states of the hidden Markov model, with un-
known physical interpretation in a patient trajectory setting, can be induced
to represent complex health levels or indices for patients.
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Chapter 1

Introduction

1.1 Background

Ensuring that as many patients as possible receive the best health care ser-
vice and assistance they require is important. One possible way to improve
the health care provided, is by using health or medical data from registers.
It is therefore unfortunate that large amounts of data about patients from
electronic patient journals, or electronic health records (Tang and McDonald,
2006), are not used efficiently enough with all their potential to improve the
health services provided (Jensen et al., 2012). Electronic patient journals, if
allowed to be collected across different services, can provide medical infor-
mation about every patient that has been treated.
Most electronic health record systems (Tang and McDonald, 2006), that vi-
sualize information in electronic patient journals, do not offer advanced yet
easily interpretable information that could support clinical tasks (Rind et al.,
2013). There exists earlier attempts using different techniques trying to im-
prove health services through the use of electronic health record data. One
example is using natural language processing (Chowdhury, 2003) to classify
clinical text notes (Perlis et al., 2012), and another is identifying types of
clinical note sections in written notes by using hidden Markov models (Li
et al., 2010). Jensen et al. (2012) describe more general examples in addition
to providing visualizations and mentioning data management considerations,
with regards to the underused source of medical information.
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CHAPTER 1. INTRODUCTION

1.2 Overview of PAsTAs’ data

The analyses in this thesis will be using and analyzing data that describes how
adult patients with chronic diseases interact with the health care system. The
data is part of and have been borrowed from a project named PAsTAs (Pa-
tient Trajectories). See ’https://www.ntnu.no/wiki/display/pastas/HOME’
for the project’s home page with more details. The data includes visits to
somatic health care services among all inhabitants in a geographical area
from 2012 to 2013, and is collected from electronic patient journals or pa-
tient administrative systems.
PAsTAs’ data include three fully detailed datasets with information across
different services, and one aggregated dataset created from the detailed
datasets. We do also have a set of data from a questionnaire (questionnaire
included in section 10.2.2), which a subset of patients were selected to an-
swer. The questionnaire data combined with the aggregated data provide
qualitative and quantitative frequency information about health care utilisa-
tion.
The three detailed sets of data contain information from three separate
sources that complement each other in terms of explaining the health service
usage. One of the sets contains records of somatic patients that received
care at or were admitted to the St. Olavs hospital during 2012 and 2013.
The dataset is named after the hospital. Another set of data, named Kuhr
dataset, contains the information about patients’ use of general practitioners
and other health care specialists outside of hospital care. The last of the
three sets, named PLO (i.e. ”pleie og omsorg”) dataset, have information
about patients that received services from the municipalities, for example re-
ceiving extra help at home or being admitted to a nursing home. The three
sets of detailed patient data will be referred to as: detailed dataset, fully
detailed data or equivalently. The datasets contain more than nine million
entries in total, and the only common factor is the unique anonymized iden-
tification number constructed for each patient. This identification number is
important as it is used to select and extract the chronic patients’ events to
be used from these sets of data.
In addition to the detailed datasets, PAsTAs include other smaller sets of
data, but these have been used to a lesser degree and only to manage and
restructure the larger datasets.

2



1.3. AIMS AND MOTIVATIONS OF THE THESIS

1.3 Aims and motivations of the thesis

Based on the large amount of data across different health services from PAs-
TAs, our main objective is to analyze and model health service data as a
case study, illustrating and using statistical techniques that are assisted by
machine learning approaches. The main objective includes different tasks:

• A central task is to evaluate significant factors or covariates associated
with three different measures of experienced quality from the health
care services the patients have received. The qualities measured are
with respect to the experienced satisfaction and the experienced degree
of personalized and general information help received. Personalized
and general information help can together be thought of as a collective
measure of guidance received, but we will often treat them separately.

• Another task is to model, describe and present what we will refer to as
patient trajectories, which illustrate patients’ health care utilization.
Based on the trajectory models we also want to figure out if these can
be used to predict future health care events or states at least one step
ahead.

Knowing which significant factors that are affecting experienced quality,
health care personnel could then with the help from administration be able
to improve interpersonal contact and the treatment of patients. Similarly, if
realistic trajectory models can be created, then it would be possible to inte-
grate trajectory models into a clinical decision support or risk identification
systems. Such a decision support or risk identification system should then
again provide better support to clinical and medical administrative tasks. It
is reasonable to expect an improvement since the use of health information
technology has shown to improve certain aspects of medical care (Himmel-
stein et al., 2010), though a successful implementation may heavily rely on
human factors or elements (Buntin et al., 2011).

1.4 Patient trajectories and an illustration

From a conceptual and theoretical point of view, any individual will have dif-
ferent trajectories that describe certain aspects of their life per time. What
data trajectories from a population can explain, is only bounded to what is
measurable from the individuals. In other words, the term trajectories could
be interpreted differently depending on previous experiences. Let’s introduce

3



CHAPTER 1. INTRODUCTION

1 1 2 1

4 3 4 2

Figure 1.1: Example: One way to visualize two individuals’ discrete-time
patient trajectory or sequence.

how the trajectories in this thesis are structured and how these can be un-
derstood.
We will specifically look at patient trajectories in the health care services.
Our patient trajectories will be created with information from electronic pa-
tient journals, since they contain health care events registered to a patient.
These trajectories will then be explaining and visualizing what kinds of health
services that a patient has received at different times. We will limit these
times to be discrete-time events for certain modelling purposes. In other
words we will not use continuous time and the trajectories can be thought
of as discrete sequences or vectors of events per patient. The length and
precision of those sequences are only limited to the amount of patient data
available to us. As we have access to two years worth of data, we can for
instance create trajectories that are 24 months long. Larger sets of data will
allow extra flexible trajectories or sequences to be created for even more op-
timal and finely tuned models. Every detail regarding the states or events
and how the patient trajectories are to be constructed will be provided later
in chapter 5.
Now consider an example of discrete-time patient trajectories. Suppose that
we have four unique disjoint events of health care that a patient can receive,
numbered 1, 2, 3 and 4. Assume also for simplicity that we have observations
corresponding to three time units from the past. Then the patient trajecto-
ries, of discrete time, can be visualized as beads of events (Figure 1.1) on a
line representing the transition to the right per time unit. A matrix or a two
dimensional line plot can also be used to visualize the trajectories for one or
many trajectories.

1.5 Outline of the thesis

This thesis has many aims, and several and different statistical methods were
required to perform the analyses. Chapter 2 to 4 will present all the neces-
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1.5. OUTLINE OF THE THESIS

sary baseline theory used later, chapter 5 contains an intermediate prepro-
cessing chapter presenting preliminary considerations and constructs before
the analyses. Including both regressions and Markov models the analyses
with results, conclusions and interpretations are presented in chapter 6 to
8. Discussion of the results and interpretations are given in chapter 9 and
the appendix is in chapter 10. The specific outline is as:

Chapter 2 describes the logistic regression model to be used within gen-
eralized linear models and within the generalized boosting regression model
framework. Inferential measures, for example Akaike information criterion
and odds ratios, that are to be used to perform inference about the regression
are also defined here.

Chapter 3 describes the multinomial regression model. The multino-
mial regression will be presented within two different frameworks, namely
integrated nested Laplace approximations and neural networks. Additional
inference measures used with Bayesian statistics will also be included.

Chapter 4 is the last chapter with theory and describes two differ-
ent Markov models, namely discrete-time Markov chain models and hidden
Markov models. Theory about how to estimate or train models, and how to
handle and predict states from these models will be presented such that the
analyses in chapter 8 can be executed.

Chapter 5 focuses on the data itself, its properties and how it has been
modified or transformed to fit into the models presented in earlier chapters.
This chapter can be thought of as a preliminary analysis before chapter 6, 7
and 8. There will also be presented an overview of all the core elements, i.e.
predictors and states, that are used in the analyses later on. New variables
constructed based on the data will also be explained in detail this chapter.

Chapter 6 applies the methods from chapter 2 in an analysis of the
first quality measure. In this analysis we will try to find significant effects
relatively to whether the patients were above averagely satisfied or not. We
will mainly use generalized linear models and then try to validate or debunk
these results by using boosting as an extra verification measure.

Chapter 7 puts the methods from chapter 3 into practice in two analyses
of the second and third quality measure. Here we look at how much help
each patient received from the health care and then try to find significant
effects in the multinomial regression setting. Instead of using boosting to

5



CHAPTER 1. INTRODUCTION

validate or debunk the results, we will in this chapter use boosting to find
the most significant predictors to the multinomial regression models.

Chapter 8 bases its analyses on the theory from chapter 4 to provide de-
tailed descriptions or models of the patient trajectories. Both Markov models
will here be estimated or trained and then interpreted. The capabilities of
the models will also be assessed. If a model is deemed theoretically appro-
priate, the model will be used to try and predict the future states one step
ahead in time.

Chapter 9 discusses the most important indications, conclusions and
effects from the earlier analyses in chapter 6, 7 and 8. After the discussion
of the key points at the end, a section about possible future work based on
the results and discussion in this thesis is also included.
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Part I

Theory and methods
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Chapter 2

Logistic regression using GLM
and boosting

The methods presented in this chapter are used to perform logistic regres-
sion and provide inference for the resulting logistic regression models. The
two different main frameworks used to perform regression is generalized lin-
ear models from a classical statistical setting, and boosting or generalized
boosted regression models that is a machine learning technique (Murphy,
2012). Two frameworks are presented, because we want to use them both to
find an optimal model.

2.1 Generalized linear models (GLM)

Generalized linear models (Nelder and Wedderburn, 1972) is a framework
used to perform linear regression over a broader range of distributions. The
main idea is to link observations to a linear predictor using a transformation.
Mathematically the generalized linear model can be expressed as:

E(Yi) = µi = g−1

(
m∑
j=1

xijβj

)
, i = 1, . . . , n (2.1)

where g−1(·) is the transformation that is used on the linear predictor. µi
represents the value an individual or observation, i, is expected to have given
measured covariates, xij, and estimated model parameters, βj. m is defined
to be the number of unique covariates included. n is here the number of
observations. Yi is the random response that has yet to realise a value yi.

Generalized linear models can be thought of as being a regression method
that is more general than ordinary least squares linear regression. To apply

9



CHAPTER 2. LOGISTIC REGRESSION USING GLM AND BOOSTING

these models there are three main criteria that have to be fulfilled by the
problem or data one is working with. They have to be satisfied in order
to utilize the generalized linear models properly from a theoretical point of
view. The three criteria are as follows:

1. The first criterion is that the distribution of the response, Y , can be
written in a general fashion, namely as a member of the exponential
family. This implies that the density of the response and parameters
(for instance the mean and standard deviation in the Gaussian distri-
bution) is defined as follows:

f(y; θ) = c(y)d(θ)ea(y)b(θ), (2.2)

where and θ is one parameter. Also the θ terms can be of higher dimen-
sion depending on the actual distribution. The c(y), d(θ), a(y) and b(θ)
are functions of either the response or the model parameters, not both.
Examples of common distributions that belong to the exponential fam-
ily are the Gaussian, binomial, Poisson and gamma distributions.

2. The second criterion is related to the linear predictor. The linear pre-
dictor is typically on the form:

ηi =
m∑
j=1

xijβj, (2.3)

where xij is the j’th measured predictor variable for the i’th individual
and the βj, j = 1, . . . ,m are the unknown model parameters to be
estimated through for example weighted least squares.

3. The third criterion requires the presence of a link function. The link
function is a transformation that relates the linear predictor to the
mean of the response Y , E(Y ) = µ. The link function is often denoted
as g(·), defined by,

g(µi) = ηi. (2.4)

Alternatively, the expectation is expressed by,

µi = g−1(ηi). (2.5)

There are a variety of different link functions to be used for various sit-
uations and distributions. For example the identity link has the prop-
erty that the generalized linear model becomes the specialized case of

10



2.1. GENERALIZED LINEAR MODELS (GLM)

ordinary least squares regression. For each distribution in the general-
ized linear model framework there exists a link function that has been
named a canonical link. It is named canonical if the linear predictor,
ηi = θi in (2.2). For example we have that the logit link function is
the canonical link function for a binomial distribution and the identity
link is canonical for the Gaussian distribution.

2.1.1 Model selection: An automated generalized
linear model procedure

In the regression analysis we wish to select covariates to be included in the
generalized linear model, and since we are in the case of having a lot of
different covariates we need automated procedures. There exists automated
procedures that attempts to fit an optimal generalized linear model with re-
gards to a criterion; for instance the Akaike information criterion (Venables
and Ripley, 2002).

The Akaike information criterion (AIC) is a measurement of the loss of
information using a fitted versus the true model and is used to compare dif-
ferent regression models. Intuitively one looks for the models with relatively
small or the smallest AIC value, to minimize the loss of information. The
AIC is defined as

AIC = −2 log(L) + k ·mp, (2.6)

and can be thought of as a measurement of the trade-off between goodness-
of-fit and model complexity. The likelihood is represented as L, while the
number of parameters in the model is mp. The positive constant k in (2.6) is
usually set equal to 2, and it could be considered a penalizing constant. In
R, the generalized linear model regression fit utilizes k = 2.

Automated model selection procedures are handy when there are a lot of
different combinations of predictors or covariates that could be included in
the model. An automated procedure will thus help save a lot of time fitting
different models, instead of doing it manually. Specifically, in R there is a
function named step (R Core Team, 2016), that given an outset or base model
formula, a (saturated) scope model formula and a direction, will attempt to
find the best model by minimizing the Akaike information criterion. At
each step it evaluates how the addition or removal of a predictor will affect

11



CHAPTER 2. LOGISTIC REGRESSION USING GLM AND BOOSTING

the criterion in question. Thus when the AIC is sufficiently minimized the
procedure will stop and return the supposedly optimal model.

2.1.2 The logistic regression case

Logistic regression is a special case of the generalized linear model in which
the response variable only takes two different values, often described as suc-
cess versus failure.
Suppose that Yi is the response of one Bernoulli trial in a binomial distribu-
tion. We can then define the probability of a success and a failure as:

p = P (Yi = 1), and 1− p = P (Yi = 0), (2.7)

where p is defined as the probability of a success happening. Based on the
Bernoulli trials then

∑n
i=1 Yi is binomially distributed when the response

variables Y1, . . . , Yn are independent. The binomial distribution belongs to
the exponential family and the second criterion is satisfied since we can use
the logit link function, among other link functions,

g(p) = log

(
p

1− p

)
. (2.8)

The linear predictor can then be constructed and we have a special case
within the generalized linear model framework. Setting equation (2.8) equal
to η (or replace g(p) with η) and taking the inverse of it we end up with the
logistic function used to calculate the probability of success, given the linear
predictor,

p =
1

1 + e−η
. (2.9)

The logistic function will ensure that the estimated probability for success,
p, is no greater than one or less than zero, making the estimate viable.

2.1.3 Odds ratio

A common way to interpret results from logistic regression is in terms of odds
ratios. The odds of an event is defined as:

odds =
P (Yi = 1)

P (Yi = 0)
=

p

1− p
. (2.10)

Having defined the odds, we can define odds ratio (OR) as:

12



2.1. GENERALIZED LINEAR MODELS (GLM)

OR =
odds1

odds2

=
p1/(1− p1)

p2/(1− p2)
. (2.11)

The subscript notation with odds1 and odds2 is used to illustrate the ratio
between two distinct odds of events occurring. The logit link relationship,

η = log

(
p

1− p

)
, (2.12)

makes convenient use of the odds ratio by exponentiating it,

eη =
p

1− p
. (2.13)

Then finally,

p1/(1− p1)

p2/(1− p2)
= eη1/eη2 = eβj ·(x1j−x2j). (2.14)

The difference x1j−x2j comes from the difference between the two linear pre-
dictors where we have made a practical assumption. Let us say for example
that we have two linear predictors that are defined as

ηq =
m∑
j=1

βj · xqj, with q = 1, 2, (2.15)

and we assume that x1j 6= x2j for the j’th covariate we want to examine. The
expression for the odds ratio in (2.14) thus makes it simple to calculate the
effect of each unique covariate in the model relative to some change in units
or category ∆xj = x1j − x2j. When comparing two unique categories the
expression becomes even more simplified, as the norm is to use a reference
category as x2j = 0 while the other category is x1j = 1, implying:

eβj ·(x1j−x2j) = eβj ·∆xj = eβj . (2.16)

Specifically, this gives the following three interpretations of the odds ratio:

• OR = 1⇒ No effect on the outcome occuring.

• OR > 1⇒ Higher odds of the outcome occuring.

• OR < 1⇒ Lower odds of the outcome occuring.
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2.1.4 Wald test

An important step in fitting a logistic regression model to a dataset is to
identify significant covariates. One approach to evaluate the statistical sig-
nificance of a model parameter is by performing a Wald test. The null hy-
pothesis is defined to be:

H0 : βj = 0, (2.17)

while the alternative hypothesis is defined as.

H1 : βj 6= 0. (2.18)

Using the obtained estimates from an iterative weighted least squares pro-
cedure (Charnes et al., 1976) for the coefficients, β̂j, and the corresponding
standard deviations, ŝβj , it is then possible to calculate the Gaussian Wald
Z-statistics,

Zj =
β̂j
ŝβj

, (2.19)

or the equivalent two-sided confidence intervals,

[β̂j − zα/2ŝβj , β̂j + zα/2ŝβj ]. (2.20)

Here zα/2 is defined as the Gaussian quantile at a significance level deter-
mined by α. Regardless of which approach is used, the conclusion about the
significance of each coefficient is the same.

The H0 can be discarded if the calculated p-values are lower than the
significance level α; selected by the researcher or typically set to α = 0.05.
Lower p-values are associated with smaller chances of discarding a correct
null hypothesis. A p-value is calculated based on the absolute value of Zj
compared to the Gaussian quantiles. If we use the 1− α confidence interval
instead, we can discard H0 if zero isn’t included in the interval.

2.1.5 Multicollinearity

An important aspect related to model selection is to check for multicollinear-
ity. It affects a test’s ability to accurately determine the p-value correspond-
ing to a covariate. Multicollinearity can be explained as the dependence be-
tween covariates. It can occur either between individual covariates or from
more complicated effects such as large groups of covariates in a model. Fur-
ther, the degree of multicollinearity can be subtle as well as easily noticeable.
Presence of multicollinearity can, for example among other methods, be de-
tected by fitting two models that differ only by a single covariate and then
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check if any p-values have been sufficiently changed by the absence or pres-
ence of a covariate. If we want to be cautious of the possible multicollinearity
in our models, we have to be especially careful to mindlessly accept the mod-
els provided by automatic procedures. Especially, the automatic generalized
linear model procedure does not take this multicollinearity into account.

2.2 Boosting

We will now consider a different approach to perform or assist logistic re-
gression, referred to as boosting. Boosting or more specifically for this the-
sis’ use, generalized boosted regression models (GBM) is a machine-learning
technique for instance used to perform logistic regression on binomial data.

Our motivation to use boosting in a regression setting arose from the
uncertainty or question which goes as follows: How can we be more certain
that the researcher or the automated model selection algorithm do find the
optimal or best predictors and the number of covariates in a given model
from the data? Sure, there exist established factors and guidelines which
are followed within different fields of science, but they leave little room for
innovation if followed to a fault. This makes it more difficult to discover,
select and use other perhaps experimental predictors. In other words it is of
great interest to explore and utilize GBM as a tool to perform and help with
and hopefully improve the procedure of an analysis. Within medicine, we
have examples of established lifestyle risk factors being smoking, inactivity
and alcohol consumption (Schuit et al., 2002). The first way GBM could
help improve an analysis is to check if the analysis done and the final conclu-
sions reached, are reasonable. The analysis in question could for example be
with regards to regression performed with generalized linear models, as will
be done later. The second way is by using GBM itself to select predictors.
Put shortly, GBM could be used to datamine predictors for other regres-
sion frameworks; like the generalized linear model framework; since boosting
tends to have more credible inferences about models than strictly linear ap-
proaches (Schonlau et al., 2005). This should reduce the amount of model
combinations required to fit with respect to multicollinearity and relevant
covariates, and speed up the analysis as a consequence. How GBM can help
improve regression analyses is presented more precisely in section 2.2.1 and
2.2.3.

The main idea or underlying foundation to boosting is the use of learners,
weak or strong. A weak learner can be any type of simple model or function
that says something about the problem at hand which we want to know
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more about. To be more specific a weak learner could be, as is relevant
to the logistic regression, a regression fit related to a distribution. When
adding together many weak learners the result should be a strong learner.
The strong learner is then assumed to be better than each of the weak learners
by themselves. The idea behind boosting may be comparable to the concept
of indirect democracy where many different people with limited or less than
optimal knowledge come together to agree upon a single more precise decision
as a group. The representatives that have better arguments will naturally
have more influence, as is with the weak learners within boosting. Thus in
our case the representatives will be logistic model fits.

There are many different methods or algorithms to perform boosting and
one of them is GBM. Variations of boosting algorithms share the similar
concept by adding together many weak learners, even though certain parts
between the algorithms do differ. This similarity should be apparent when
looking at the general mathematical formulations. Section 2.2.1 together
with section 2.2.2 provides two algorithms which are not exactly similar,
that will shed some light on possible differences.

Assume now that we have a regression setting with observed covariates
xi = {xi1, . . . , xim}, i = 1, . . . , n and a response yi for each individual. Ideally
we want to find the relationship which maps the covariates to the response
with the least amount of error. This relationship can be represented as
y = F (x), but the problem is that we do not know F (·). Generally speaking,
boosting will help us to find an approximation, F ∗(·), through some iterative
and additive scheme of weighted weak learners. Specifically, according to
Friedman (2002), gradient boosting (complete algorithm in section 2.2.2) is
trying to minimize the expectation of a loss function Ψ(y, F (x)) with respect
to F (x) over the joint distribution of both y and x. This can mathematically
be expressed as:

F ∗(x) = arg minF (x)Ey,x(Ψ(y, F (x))). (2.21)

The loss function Ψ(y, F (x)) could for example be the sum of squares:

Ψ(y, F (x)) =
∑
i

(yi − F (xi))
2. (2.22)

In order to better understand how the weak learners, defined as h(x;am),
affect the minimization routine in (2.21), it is necessary to look at how they
relate to the strong learner, F (x). The effect the weak learners have on F (x)
is:
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F (x) =
M∑
m=0

βmh(x;am). (2.23)

According to Friedman (2002) the βm are called expansion coefficients and the
am are parameters. The am could, if thinking in the context of generalized
linear models, be the coefficients of a linear predictor. Equation (2.23) can
then be interpreted as the main idea, i.e. that a strong learner, F (x), is a
sum of many weak learners. We could also drop the summation notation in
(2.23) and end up with an equivalent recursive expression,

Fm(x) = Fm−1 + βmh(x;am), (2.24)

which is to be used to update the approximation in an iterative algorithm.
In order to update the strong learner, values of am and βm need to be

determined. They can in general be determined by another minimization
routine:

(βm,am) = arg minβ,a

N∑
i−1

Ψ(yi, Fm−1(xi) + βh(xi,a)). (2.25)

To initialize the boosting algorithm, the equation (2.25) require an initial
guess or value of F (·), F0(·). This initial guess has to be either constructed
or specified.

2.2.1 Generalized boosted regression models (GBM)

Similarly to generalized linear models, if one is boosting the exponential fam-
ily regression models it relies on and requires almost all the same underlying
assumptions (Ridgeway, 1999). For instance, the underlying distribution
must belong to the exponential family and utilizing a link function to ac-
commodate different distributions. Note that boosting does not necessarily
contain a linear predictor ηi as in the generalized linear model case, but there
is a function that is rather similar. Instead boosting have the summation of
every weak learner that eventually becomes a strong learner, F (xi). Thus
rather than using (2.4) the following relationship is required instead:

g(µi) = F (xi), (2.26)

which is a relaxation of the linear assumption (Ridgeway, 1999). The re-
laxation implies that GBMs may be considered to be more general than
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generalized linear models and even generalized additive models, depending
on the construction of the strong learner. Though the complexity of a gen-
eralized additive model will exceed our use and what is illustrated here. The
following algorithm from Ridgeway (1999), slightly rewritten to match the
notation of section 2.2, shows a boosting algorithm for the exponential family
regression models by using Fisher scoring:

Algorithm: Boosting by fisher scoring

1 Initialize F0(x) = g(ȳ) ∀x

2 For m in 1, . . . ,M do

3 Compute the current ”m’th” working response zi,
zi = (yi − µi)g′(µi),
where µi = g−1(Fm−1(xi)) using (2.26) since Fm−1(xi) is known.

4 Fit a regression model, h(x), predicting zi using xi with weights
wi = 1

g′(µi)2V (µi)
, where V (µi) is the variance function.

5 Update the boosted regressor as
Fm(x) = Fm−1(x) + h(x)

6 End loop

In this specific algorithm, the parameters am is absorbed into the h(x) ex-
pression, while the expansion coefficients βm are set to equal one. GBMs
have as generalized linear models, many distributions (for instance Gaus-
sian, binomial, Laplace and Poisson) which opens up a wide span of different
boosting regressions to be performed. Since there is a plethora of different
options within GBM, it is referred to the manual regarding the exact specifics
behind the GBM function in the R package gbm (Ridgeway et al., 2015). In
the code’s documentation it is stated that the implementation of GBM ”(...)
closely follows Friedman’s Gradient Boosting Machine (Friedman, 2001).”
Therefore it is absolutely necessary that we take a closer look at Friedman’s
Gradient Boost algorithm that GBM is built upon.

2.2.2 Gradient boosting algorithm

This section will present an example of an algorithm that can be used to
perform gradient boosting, and there will also be introduced two key param-
eters or inputs that are present in GBM. These two parameters are rather
important and they can affect the result heavily depending on how they are

18



2.2. BOOSTING

chosen. Knowing how these two parameters should be chosen is a necessity to
use GBM properly and to have some control over the boosting. The gradient
boosting algorithm chosen to presented here is Friedman’s Gradient Boost
algorithm (Ridgeway, 1999), and the algorithm is similar to ”Algorithm 1”
in Friedman (2001). This algorithm will be rewritten slightly such that the
notation match with the previous notation used with boosting.

Algorithm: Friedman’s Gradient Boost algorithm

1 Initialize F0(x) = arg minγ
∑N

i=1 Ψ(yi, γ).

2 For m in 1, . . . ,M do

3 Compute the negative gradient as the working response
zi = − ∂

∂F (xi)
Ψ(yi, F (xi)) |F (xi)=Fm−1(xi)

4 Fit a regression model, h(x), predicting zi from the covariates xi.

5 Choose a gradient descent step size as
βm = arg minβ

∑N
i=1 Ψ(yi, Fm−1(xi) + β · h(xi))

6 Update the estimate of F (x) as
Fm(x) = Fm−1(x) + βm · h(x)

7 End loop

As is apparent, this algorithm is more general and more complicated than the
Fisher scoring algorithm. A picture of how the algorithm in gbm functions
will now be completed by discussing two key parameters.

The first parameter to look at is often called the learning rate or ”shrink-
age”, with range 0 < ν ≤ 1. The learning rate comes into effect within
boosting algorithms when the procedure is to update the strong learner with
another weak learner. In the Friedman’s Gradient Boost algorithm this will
result in some changes to step 6 in the above algorithm, which is replaced
by:

Fm(x) = Fm−1(x) + ν · βm · h(x). (2.27)

This implies that ν controls the rate of how much a new weak learner should
affect the strong learner Fm(x) when updated. How should the value of ν
be chosen then? Choosing ν too small results in a really slow learning rate,
while too large values would mean giving every weak learner a lot of impor-
tance or influence. From a strictly empirical standpoint it has been found
(Friedman, 2002) that quite small values are the ones which yield the best
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accuracies. It is suggested that ν ≤ 0.1 to minimize error. By decreasing ν,
one should then achieve greater accuracy, but reducing the learning rate too
much will come at the cost of more time spent finalizing the boosting.

The second parameter to look at is called bag fraction and may be defined
as

Bag Fraction =
Ñ

N
, (2.28)

where Ñ ≤ N . N is the total number of observations, while Ñ is the size
of a random subsample of the total sample, N . Bag fraction can introduce
randomness into the boosting if one choose to bag (or use) less than a 100%
of the total observations. A bag fraction set equal to one will thus remove
the randomness introduced by the bag fraction. In the Friedman’s Gradient
Boost algorithm, the randomness introduced will take place between step 2
and 3, creating a new step in the algorithm. What the new step does is exe-
cuting a resampling without replacement from indices and then using these
indices to select the corresponding parts of the covariates x and the responses
y.
A natural question to ask now is why one would even consider to use less
than the total sample size without having to do so. A very direct and per-
haps obvious consequence of using less observations is that computation will
be performed faster. On the other hand and more interestingly, there are
empiric evidence (Friedman, 2002) suggesting that using a bag fraction less
than one may actually reduce error to a relative best measurement and in-
crease accuracy. This reduction in error depends on the unique problem one
is dealing with. Thus it is not guaranteed to be the same reduction in error
per bag fraction value. Without knowing how this randomness can affect the
problem at hand it might be reasonable to keep the bag fraction relatively
large since there is also evidence of too small bag fraction values generating
worse precision than the case containing no randomness at all.

2.2.3 Model selection: Automated GBM procedure

The GBM, like the generalized linear model, does also have an automated
procedure, but it does not function exactly like the automated model selec-
tion in generalized linear model framework. The function that performs this
procedure in R is named ”gbm.step” and is from the dismo package (Hijmans
et al., 2016). The dismo package builds further upon the gbm package which
performs the actual GBM fitting.
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In general the automated procedure tries to find the optimal number of
boosting trees using k-fold cross validation (section 10.1.1) to minimize the
loss of information; see Hijmans et al. (2016) for details. When the optimal
number of boosting trees have been found it then fits the resulting GBM
with its model information.

A particularly interesting part of information that is gained from this
fit is the measurement of relative influence (Friedman, 2001) each predictor
has in the final model calculated by the automated GBM procedure. Thus,
even though you initially specify that you want to fit the whole model with
all possible predictors you would end up with a measurement of importance
of each predictor in that setting. Predictors that have little influence or
importance won’t affect the final model so it would be as if one would fit
only the important parts. This information about influence is what makes
us able to interpret which predictors that could have a great impact in the
model as a whole. The measurements of relative influence for each predictor
is what will be used to check the appropriateness of the final conclusion or
to mine predictors.

21



CHAPTER 2. LOGISTIC REGRESSION USING GLM AND BOOSTING

22



Chapter 3

Multinomial regression using
INLA and neural network

In questionnaires there are often questions that have more than two categories
as answers. Using a logistic regression model would then result in a loss of
perhaps vital information. To prevent this loss of information the logistic
model can be extended, such that it becomes a multinomial regression model
instead. This chapter contains theory about two frameworks that can be
used to perform multinomial regression and inference about the multinomial
models fitted. The main framework to be applied is integrated nested Laplace
approximations (Rue et al., 2009, 2017). The second method used is neural
networks (Murphy, 2012). The idea is to use the neural networks method to
serve as a double check of the other experimental method that is implemented
by myself from looking at a specific example.

3.1 Multinomial regression

Multinomial regression can be used to model any response that consists of
three or more nominal factors, categories, types or species. The conceptual
relationship between the multinomial regression and logistic regression is sim-
ple. The logistic regression is just a special case of the multinomial regression,
where the response is binary. Alternatively, the multinomial regression can
be said to be a general case of the logistic regression.

Let us say that the number of different factors or categories in a multino-
mial response-variable is defined as K. Then pick one of the categories to be
a reference category to all the remaining K − 1 categories, for example cat-
egory 0. Then for each category k = 0, 1, . . . , K − 1, including the reference
category, we can define a linear predictor,
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hk(xi) = αk +
m∑
j=1

βkjxij (3.1)

relative to the reference category. Unique for the reference category, using
k = 0, is that the linear predictor is h0(xi) = 0. Here m is defined as the
number of unique covariates. αk and βkj are the model parameters that are
calculated relative to the pivot around the reference category. A change of the
reference category will therefore most likely result in entirely new parameter
estimates.

According to Ripley (1996) the Softmax function, defined as

P (Yi = k | xi) =
exp(fk(xi))∑K
j=1 exp(fj(xi))

, (3.2)

is appropriate if it is desirable to group each observation into one of the K
different, already specified, groups. This is because the Softmax function
(3.2) is a more general logistic function that makes sure that the probability
calculated is restricted between zero and one. The components, fj(xi), can
be non-linear or they can be linear. We can therefore set the components,
fj(xi) = hj(xi). Replacing the components will then yield the following
function that can be used to calculate the probability of a category k, given
the covariates:

P (Yi = k | xi) =
exp(hk(xi))

1 +
∑K−1

j=1 exp(hj(xi))
. (3.3)

3.1.1 Odds and odds ratio in multinomial regression

Since logistic regression is a special case of the multinomial regression, a
measure closely related to odds and odds ratios can be used to infer about
the models. The following expression is a general formulation of the odds in
the multinomial setting:

P (Yi = k | xi)
P (Yi = 0 | xi)

= exp(hk(xi)). (3.4)

Similarly as before we can use the odds measure to create an odds ratio in
the multinomial setting:

OR =
exp(hk(xi))

exp(hk(xj))
, xi 6= xj. (3.5)
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The measure may be referred to as an odds ratio, but we will use the name
relative odds ratio instead to differentiate it from the odds ratio measure in
the logistic setting. These K different responses will in turn yield a mini-
mum of K−1 relative odds ratio estimates, calulated relative to the reference
category. Remembering this part regarding the reference category is impor-
tant, since it constitutes the interpretational difference from simple logistic
regression. If it is desirable to see every relative odds ratio relative to each
category, then it is simply required to change the reference category and fit
more models. Though checking many models with different reference cate-
gory will result in many relative odds ratios, which may not be that useful
and messy if strict notation isn’t applied.

The reference category can be chosen based on convenience, practicality
or theoretical consideration. Careful selection of the reference category may
yield easier interpretations of the relative odds ratios. Finally, each relative
odds ratio estimate in a multinomial regression can be interpreted similarly
to the other odds ratios, as in section 2.1.3. The similarity regarding in-
terpretation is because we can change the values of xi and xj in (3.5) to
investigate the effects of each estimated coefficient by themselves.

3.2 Integrated nested Laplace

approximation (INLA)

INLA is a computational method used to perform Bayesian inference for a
large class of regression models, referred to as latent Gaussian models. To
gain a general understanding regarding what happens when using INLA,
we will cover latent Gaussian models (section 3.2.1) and Gaussian Markov
random fields (section 3.2.2). The main motivation behind using INLA is, be-
sides being able to perform multinomial regression, the possibility to extend
analyses beyond the regression models with only fixed effects and add ran-
dom effects. Another reason to use a Bayesian framework is that the model
fits come with the marginal distributions to each coefficient. This makes the
inference about the model coefficients intuitive and straightforward by using
credible intervals (section 3.2.5).

3.2.1 Latent Gaussian models (LGM)

The class of latent Gaussian models includes a vast variety of models, which
suggest a great amount of flexibility in fitting models to a given dataset. For
example, LGM includes: Generalized additive and mixed models, time series
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and spatial models. A generalized linear model (GLM) is actually a simple
special case of the latent Gaussian models. The predictor g(µi) = ηi of the
LGMs is defined as:

g(µi) = ηi = α +

mβ∑
j=1

βjzji +

mf∑
l=1

fl(cli) + εi, i = 1, . . . , n (3.6)

and it is called a structured additive predictor (Rue et al., 2009). This
predictor takes into account linear (βj) and non-linear (fk(·)) effects of the
covariates zji and cki while εi is the error representing an iid effect. Within
the R-INLA program (Rue et al., 2009) (’http://www.r-inla.org’), the linear
effects are referred to as fixed effects while the non-linear effects are referred
to as random effects. The LGMs utilizes this structured additive predictor
to create a latent field x = {α,β, {fk(·)},η}, which is done by collecting all
the terms in (3.6).
The latent field is part of a three-stage hierarchical model formulation that
is used as a computational framework to analyse LGMs in a unified way.
This hierarchical formulation bases itself first on the observations y, second
the latent field x and lastly the hyperparameters θ. The hyperparameters
control the latent field and the likelihood for the data. They are also used
as precision parameters for the Gaussian priors that will be assigned to the
latent field.
There are three assumptions (Rue et al., 2017) related to this formulation
which are highly advantageous computationally when satisfied:

1. The first one is that the observations, y, are mutually conditionally
independent given a set of latent field and the hyperparameters, θ1,

y|x,θ1 ∼
n∏
i=1

π(yi|xi,θ1). (3.7)

2. The second assumption is that the distribution of the latent field, x|θ,
is assumed to be Gaussian and that the field needs to be a Gaussian
Markov Random Field (GMRF). When this is the case, then the di-
mension of the field can be large, for example 104 to 105.

3. The third assumption is that the dimension of the hyperparameters is
small, preferably less than a two digit number, typically two to five.
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3.2.2 Gaussian Markov random fields (GMRF)

What really distinguishes a Gaussian vector from a GMRF is a simple addi-
tion of conditional independence properties. The latent field x needs to be
structured such that some xi and xj, for i 6= j, are conditionally independent,
given every other x−ij.

The benefits of having such a field is that we gain a lot of computational
time in factorization due to sparsity. For instance the precision matrix, Q
(inverse of covariance matrix), for the latent field x would be simplified and
only changes in the hyperparameters would require us to recalculate it. The
simplification manifests itself in the precision matrix such that for each xi
and xj satisfying the conditional independence property, the precision matrix
then takes the value Qij = 0, where the Qij corresponds to an element the
precision matrix, Q.

3.2.3 Multinomial to Poisson transformation

Performing multinomial regression using INLA is not completely straightfor-
ward. The multinomial regression is in fact not supported directly by INLA.
The workaround to make multinomial regression possible requires a trans-
formation of the data matrix and a very specific formula. The transform is
named multinomial-Poisson, and transforms the data, both predictors and
response, which is on a multinomial form to data which is applicable with the
Poisson regression. Mathematically the transformation can be represented
as (Baker, 1994), from the multinomial likelihood

LM(β) =
n∏
i=1

K−1∏
k=0

(
exp(hk(xi,βk))∑K−1
j=0 exp(hj(xi,βj))

)yik

, (3.8)

to the Poisson likelihood

LP (φ,β) =
n∏
i=1

K−1∏
k=0

(
(exp(hk(xi,βk)) · exp(φi))

yik

exp(exp(hk(xi,βk)) · exp(φi))

)
. (3.9)

The notation is slightly changed to take into account each individual, i,
and such that an emphasis is put on the parameters to be optimized, here
β = {β0, . . . ,βK−1} and βk = {αk, βk1, . . . , βkm}. Here yik is either valued
one or zero depending on which category that was observed for the corre-
sponding individual, so

∑
k yik = 1. φ = {φ1, . . . , φn} is introduced during

the transformation, see Baker (1994) for further details. Thus it is possible
to perform multinomial regression through the use of Poisson regression. The
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ID Response: Value of predictor:
1 A 15
2 B 20
3 C 78

Table 3.1: Simple multinomial example. K = 3

ID Response: Value: ResponseShift: Observed: ValueB: ValueC:
1 A 15 A 1 0 0
2 B 20 B 1 20 0
3 C 78 C 1 0 78
1 A 15 B 0 15 0
2 B 20 C 0 0 20
3 C 78 A 0 0 0
1 A 15 C 0 0 15
2 B 20 A 0 0 0
3 C 78 B 0 78 0

Table 3.2: Multinomial to poisson transformed example data.

transform is intuitive when considering the two distributions: Multinomial
and Poisson.

To illustrate this, consider a simple example (Table 3.1) with K = 3
categories for the response, with only one predictor of some kind. In order to
perform multinomial regression in a Poisson distributed setting the data is
extended or transformed, as shown in Table 3.2. Here, the number of rows
were extended or duplicated K − 1 times. Then a new variable was created
based on the multinomial response variable, to create a shift in categories.
In the example we have shifted A→ B, B → C and C → A, K − 1 times.

The next step is to create the variable that keep track of which observa-
tions that were actually observed in the original data. In the example the
variable is named ”Observed” and it is equal to one if the data is observed,
while it is equal to zero otherwise. This is the new variable that is to be
used as the response in the Poisson regression. It makes sense, because the
Poisson distributions can only deal with count observations as a response.

The next thing to do is to create K−1 dummy variables which should be
equal to the true value only if the shifted response contains the same category
as the dummy, otherwise it is set to be zero or as having no contributions.
There are only K − 1 dummy variables since one of them is to be used
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as a reference (here we used the first category A) in order to be able to
derive meaningful interpretations of the final model. These kinds of dummy
variables would have to be created for each new predictor that one would
want to use in the multinomial regression, so the greater the K and the more
predictors to be used the larger the data-matrix will become post transform.
For the multinomial regression to be performed in R-INLA there are a few
more specifications that need to be done, but this sums up the multinomial
to Poisson transformation in itself.

3.2.4 Deviance information criterion (DIC)

The deviance information criterion (Spiegelhalter et al., 2002) is the Bayesian
equivalent to AIC. It is used to compare different models and a smaller value
in a relative setting would indicate a better model, similar to AIC. The core
differences are how DIC is computed and that DIC is used in a Bayesian
setting. DIC is defined as

DIC = D(θ̄) + 2pD (3.10)

or equivalently as
DIC = D̄ + pD. (3.11)

Here D̄ is defined as the posterior expectation of the deviance. The parameter
pD is defined as the effective number of parameters. D(θ̄) is defined as the
deviance evaluated at the posterior mean, that is desired to be as small as
possible. Finally the relationship between the two equivalent definitions, in
equation (3.10) and (3.11), is pD = D̄ − D(θ̄). The definition in equation
(3.10) is rather similar to the definition of the AIC, and it is not surprising
why DIC is the Bayesian equivalent to AIC.

3.2.5 Credible intervals

A credible interval is the Bayesian equivalent to a confidence interval in fre-
quentist statistics. The credible intervals are calculated from the posterior
distribution. Creating the credible interval can thus be done by taking the
quantiles of the posterior distribution corresponding to a coefficient. There
are different ways to create credible intervals, including highest posterior den-
sity (HPD) interval and equal-tailed intervals. When using credible intervals
with R-INLA it is possible to request and use the marginal distributions of
each coefficient. Then by using these marginals it is possible to create a
function which will measure the significance at any level or the same levels
GLM would provide; i.e. α = (5%, 1%, 0.1%). The criterion for significance
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can be implemented as: If the product of the upper and lower α/2 quantile
is positive, then the coefficient is significant at a α level. If the marginal
distribution at hand is non-skewed and unimodal, then this will basically be
a HPD interval.

3.3 Neural network

Neural network is a method that originally was heavily inspired by biology
(McCulloch and Pitts, 1943). The method can be seen as an attempt to
mimic how a brain would process information, for instance how signals travel
between neurons in the brain to process meaningful information. Today
most neural networks are artificial and have no direct correspondence with
biology. As with boosting there is a vast amount of different ways to use
neural networks to solve problems. Neural networks can for instance be
used to perform pattern recognition, regression and classification. It is the
regression aspect that is of interest to me in this context.

3.3.1 Basic neural network structure elements

The most generic and simple neural networks are those that only feed infor-
mation forward, or is feedforward. Intuitively, this would mean that the input
information is only pushed towards the direction of the output. Figure 3.1
illustrates the flow in a linear feed forward neural network. Mathematically
this is described by a linear combination,

x
(l)
j =

∑
i

wij · x(l−1)
i , (3.12)

where x
(l)
j is a neuron or node in the network and the superscript (l) is to

be interpreted as such that the node x
(l)
j is in the l’th layer. The subscript

j is referring to the j’th node in the layer while wij is the weight creating a
connection between the two nodes. A non-linear and more general version of
(3.12) can be specified as

x
(l)
j = fj

(∑
i

wij · x(l−1)
i

)
, (3.13)

where fj(·) is an activation or transfer function (Murphy, 2012). Setting the
transfer function equal to the identity function would yield the special case
in (3.12). Equation (3.13) can be interpreted such that the node in the next
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Figure 3.1: Illustration of a simple feedforward neural network, with a
single hidden layer and no skip-layer connections.

layer is a function of a linear combination based on the nodes from the pre-
vious layer or previous layers if skip-layer connections are present.
Hidden layers are sets of intermediate nodes between the two layers contain-
ing the input and the output nodes. An increase in the number of hidden
layers will increase the network’s ability to perform more complex computa-
tions. Though having more than necessary layers could possibly slow down
the computation, compared to if less layers could be used. Adding many
hidden layers will result in the neural network to transition over to become
a deep neural network.
The number of nodes at each layer do seem to be problem specific. By layer
it is referred to the input layer, output layer and hidden layers. For example
having only one node at each of the layers except the input layer and as-
suming one hidden layer, the neural network could easily solve a problem of
the form y = g(f(x)). Where f(·) is the function from layer one to two and
g(·) is the function from layer two to the final output layer. This example
illustrates just how trivial and simple the neural networks can be understood
and thought of, even though the example by itself probably could do without
a neural network.
Skip-layer connections are as the name itself implies connections that skip
certain layers and go directly to another node further ahead. They may
be used to preserve some information, for example measures of linearity,
through a neural network were the standard feed forward path would lose
that information through the transformations between the layers.
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3.3.2 Multinomial regression with neural network

Performing multinomial regression in R can also be done through the use of
neural networks and this can be achieved by using the package nnet (Venables
and Ripley, 2002). In this package there is a function named ”multinom”,
which is a lot easier to use compared to in R-INLA with the data transfor-
mation that had to be done. The level of complexity to use this package for
multinomial regression is comparable to the level of difficulty that comes with
performing logistic regression within GLM in R. To name a few examples as
to why it is easy to use: The model is specified through a standard simple
formula and the resulting model returns the AIC and the deviance, which
ease the task of performing inference. Thus, this an ideal package to help
double check the estimates received by using R-INLA. In the manual to the
package there are descriptions suggesting that this implementation utilizes
feedforward neural networks, a single hidden layer and skip-layer connections.

The exact amount of nodes at each layer and the number of skip-layers
is not directly or readily available in the documentation. Though it could be
possible that if we use the Softmax function (3.2) in the non-linear flow func-
tion (3.13) with calculated linear predictors (3.1) as inputs, neural networks
should without a doubt be able to perform multinomial regression.
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Chapter 4

Two discrete-time Markov
models

Using different Markov models we will try to model, describe, present and
predict patient trajectories. In general, Markov models appear to be theo-
retically suitable to complete these objectives. The two well known Markov
models to be described in this chapter have been thoroughly described in
the literature. A large part of the theory in this chapter will therefore be
based on Ross (2010) and Murphy (2012). This chapter will start out by
introducing discrete-time Markov chains in section 4.1, while section 4.2 will
present the closely related, but more advanced hidden Markov model.

4.1 Discrete-time Markov chains

Let a finite sequence of random variable be defined as {Xn}Nn=1. We assume
that {Xn}Nn=1 is a stochastic process defined on a finite, discrete sample space.
Specifically, Xn = j can be interpreted as that the process or patient is in
state j at time n.

The Markov property is a core part of what defines a discrete-time Markov
chain. A mathematical formulation of the Markov property is

P{Xn+1 = k | Xn = j, . . . , X1 = j1} = P{Xn+1 = k | Xn = j} (4.1)

and its interpretation is straightforward. The Markov property tells us that
the probability to enter the next state in a process only depends on the
current state the process is inhibiting.

If the Markov property (4.1) is not fulfilled by the situation at hand
and there is a n-step dependence (where n > 1), it is possible to work
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around the lack of one-step dependence. This can be done by defining a
single state as a sequence of the original single states. The approach will
of course increase the number of states since any permutation and ordering
of the individual states will be included in the new transition matrix which
will comply better with the Markov property. Consider for example a three
by three transition matrix. If we assume that there is a two-step depen-
dence, then instead of the three states {1, 2, 3}, there will be a state space
as {11, 12, 13, 21, 22, 23, 31, 32, 33}, with nine states.

As we are interested in modelling possible transitions within and between
all the states in a process at any time, we need to define a probability of
transitioning, denoted as Ajk. The transition probability,

Ajk = P{Xn+1 = k | Xn = j}, (4.2)

can be read as the probability of moving from state j to state k. A figure
illustrating the transition probabilities between three states can be found in
Figure 4.1. There are two conditions that are required to make the transition
probabilities valid. First we have that Ajk ≥ 0 ∀j, k. Also,

∑Q
k=1Ajk = 1,

where Q = Number of unique states.

1 2

3

A12

A13

A11 A21

A23

A22

A32

A31

A33

Figure 4.1: Illustration of a discrete-time Markov process with the
transition probabilities between all three states.

4.1.1 Transition matrix and stationarity

Let AQ×Q define a transition matrix. Q is still referring to the number of
unique states. To follow Figure 4.1 and to illustrate a transition matrix take
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a look at the three by three transition matrix, which has three unique states
with corresponding transition probabilities:

A3×3 =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (4.3)

The transition matrix (4.3) is to be interpreted such that, at each row j
(j = 1, 2 or 3) there will on the column k (k = 1, 2 or 3) be the probability
of going from state j to state k. Thus for this transition matrix to be valid,
Aj1 +Aj2 +Aj3 = 1 has to be the case. This follows directly from the defined
transition probabilities in (4.2).

A useful property with Markov chain processes is that they can be sta-
tionary. For a Markov chain to be stationary and have existing limiting
probabilities, the process is required to be irreducible and ergodic (Ross,
2010). If the process is stationary a stationary convergence will happen fast
or slow depending on the transition matrix. A general three by three transi-
tion matrix that converges, can be calculated and formulated as:

Alim = lim
n→∞

An
3×3 =

π1 π2 π3

π1 π2 π3

π1 π2 π3

 . (4.4)

Here πj is defined as a limiting probability of going to state j, taking no
consideration about the current state. The πj can explain the proportion
of time that will be spent in state j in the long run, depending on how
fast it converges. Similarly as with the transition probabilities, the limiting
probabilities have to follow this relationship:

Q=3∑
j=1

πj = π1 + π2 + π3 = 1.

4.1.2 Estimation for a Markov chain

In real data examples, the transition matrix usually needs to be estimated.
First of all it is desirable to transform the data to portray the transitions per
discrete time unit. When the data is on the desired form it is then reasonable
to use the maximum likelihood (ML) estimator

Âjk =
Njk∑
kNjk

(4.5)

35



CHAPTER 4. TWO DISCRETE-TIME MARKOV MODELS

for each possible transition, j → k, to estimate the transition matrix (Mur-
phy, 2012). Njk is defined as the total number of observed transitions from
state j to state k.

The initial distribution can be estimated by the maximum likelihood es-
timator

π̂1
j =

N1
j∑

j N
1
j

(4.6)

where N1
j represents the number of chains in state j at the first possible time

in the data (Murphy, 2012).
If the stationary distribution exists, it can be estimated from the transi-

tion matrix as described in section 4.1.1. Also, if the Markov chain is rapidly
converging, compared to the length of the time dimension in the data, it can
also be approximated from another maximum likelihood estimator similar to
the initial distribution estimator (4.6). The estimator

π̂j =
Nj∑
j Nj

(4.7)

provides the second way of calculating the stationary distribution. Nj is
defined as the number of times state j is entered from any of the other
states.

4.2 Hidden Markov Model

A hidden Markov model can be thought of as an extension of the discrete
time Markov chain in section 4.1. Suppose we still have the sequence of
random variables, {Xn}Nn=1, exactly as defined in section 4.1, then the new
addition is that at each time, n, each state will have a probability to emit a
signal denoted as Sn. The different unique signals or observations, Sn, the
states can emit have to be from a finite set of signals. Therefore a hidden
Markov model basically consist of an underlying Markov chain that emits
observable signals. Figure 4.2 illustrates how such a process could be visu-
alized for a single individual or patient. Implicitly, the Markov property as
described and the transition matrix (section 4.1.1) with its properties are
present as part of the underlying Markov chain or hidden process.

As the states can emit signals, we need a formulation that dictates and
describes which signal that is to be emitted by a state. Such a formulation
is

36



4.2. HIDDEN MARKOV MODEL

Xn Xn+1 Xn+2 Xn+3. . . . . .

Sn Sn+1 Sn+2 Sn+3. . . . . .

Figure 4.2: Illustration of a hidden Markov model for one individual.

Bsj = P (Sn = s | Xn = j) (4.8)

where Bsj is the emission probability. It should be interpreted as the proba-
bility of a state j, to emit a signal s, at any time n. In addition the emitted
signal at time n, only depends on the current hidden state, Xn, and no other
previous values from either the observed signals or the hidden Markov chain
states. The property can be formulated, similarly to the Markov property,
as:

P (Sn = s | Xn = j,Xn−1, Sn−1, . . . , S1) = P (Sn = s | Xn = j). (4.9)

These emission probabilities can be represented as a matrix. For the sake of
an example, consider three unique hidden states and two possible emissions
per state, in which the emission probability matrix is,

B2×3 =

(
B11 B12 B13

B21 B22 B23

)
. (4.10)

For the emission probability matrix to be valid it is required to fulfil these
two criteria. First that Bsj ≥ 0. Also that

∑Qs
s=1Bsj = 1, where Qs =

Number of signals or symbols.

4.2.1 Estimating or training the model

Depending on the relevant application, it may be necessary to estimate or
train the model. We distinguish between two different types of scenarios,
where the main difference is whether the underlying Markov chain is known
or hidden. To be specific, the underlying process would be known if we have
data that could be used to estimate the transition matrix. One would think
that the name of the model implied that the Markov chain had to be hidden,
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but that is not always the case. In both of these cases the signals or patient
trajectories are directly observable to the researcher. We will therefore distin-
guish between a full-information scenario and a partial-information scenario.

The full-information scenario uses maximum likelihood to estimate the
model completely. The complete model is represented by the initial distribu-
tion, the estimated transition matrix and the emission matrix. The estimator
used to estimate the transition matrix should already be known from equa-
tion (4.5), which was also used with the discrete-time Markov chain model.
The second maximum likelihood estimator required for the hidden Markov
models is the one that estimates the emission probability matrix. It is defined
by Murphy (2012) as:

B̂sj =
Nsj

Nj

. (4.11)

Intuitively, the estimator counts how many times a state, j, and a symbol,
s, has been observed at the same time, Nsj, and then divides by the total
number of times the process is in a state, Nj. Nsj and Nj are not to be
confused with the definition of the estimator (4.5). These estimators assume
that the underlying distribution is multinomial. There are also other distri-
butions that could be used instead, for instance the Gaussian distribution.

The partial-information scenario is slightly more complicated. The sce-
nario becomes more complex since it does not use estimators directly and it
is required to train a model based on observations. One known and estab-
lished training algorithm is the Baum-Welch algorithm (Baum et al., 1970),
which in essence is a specialization of the Expectation Maximization algo-
rithm (Dempster et al., 1977). Here is a pseudo-algorithm describing the
Baum-Welch algorithm that train hidden Markov models based on available
observed sequences :

Pseudo-algorithm: Baum-Welch algorithm

1 Provide initial estimates to π1, AQ×Q and BQs×Q.

2 Until convergence or termination by iteration or convergence, do and re-
peat 3 then 4:

3 Use the most recent estimates of π1, AQ×Q and BQs×Q with observed
sequences to calculate the expected number of times each relevant combi-
nation of events are happening.
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4 Re-estimate π1, AQ×Q and BQs×Q using the calculated expectation values
and set these as the most recent log-likelihood maximizing estimates.

The Expectation Maximization algorithm within the Baum-Welch algorithm
can be used to optimize the model since the hidden Markov model contains
latent, hidden or missing data. Consequently, problems that are related to
optimization will follow. A central issue is finding the global maxima due to
some initialization. If we have information or an idea about how the best
model could look like, then we can initialize with that information. Though,
that information about where to start may not be available to us. Then
the best option would be to utilize the random start technique enough times
and choose the desired model based on a criterion. Due to the two matrices
that need to be initialized it makes the process to find a good initialization
difficult. As if this level of difficulty wasn’t enough we also have to specify
the number of hidden Markov chain states within the model. Here, again,
information about the current problem at hand is a must and an expert
opinion is to be desired when choosing the number of states. Especially since
an increase in the number of hidden states affect the initialization as well as
the computational cost required to train the model. If an expert opinion is
not available, then there exist workarounds to choose the number of hidden
states (Murphy, 2012).

4.2.2 Assessing the probability of hidden states

After a model has been determined it can be necessary to find a proba-
ble sequence of hidden states. This is especially important in the partial-
information scenario, since we have no exact data that can specify the hidden
sequences. A posterior distribution defined as

Posterior probability = P (Xn = j | SN), (4.12)

will help us determine the probability of a hidden state, j, given the whole
sequence of observed signals. SN = (S1, . . . , SN) is defined as the random
sequence of the observed signals of length N . To obtain the probability for
all discrete times, go through all the time values, n = 1, . . . , N . Likewise, if
we want the posterior distribution for each unique hidden state we just go
through all the values corresponding to a state, j = 1, . . . , Q. This posterior
distribution do offer itself as a tool to create an estimate similar to the
Viterbi algorithm (see section 10.1.5), i.e. an estimate of the overall most
probable sequence of hidden states given the observations. To receive this
similar estimate, we can just take the maximum of each posterior probability
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at a state, j, at each time, n. How to find this most probable hidden state
sequence estimate is formulated as:

For each ”n” do: arg maxjP (Xn = j | SN). (4.13)

Although do note that the core difference between equation (4.13) and the
Viterbi algorithm is that the estimate based on the posterior only uses one
state, while the Viterbi algorithm uses the whole sequence of hidden states.

The forward and backward algorithms are two probability measures that
can simplify calculations within the hidden Markov model setting. By them-
selves they have meaningful interpretations, but they can also help calculate
the posterior probability (4.12). If we define the forward algorithm as

F (j, n) = P (Xn = j,Sn), (4.14)

and the backward algorithms as

B(j, n) = P (Sn+1:N | Xn = j), Sn+1:N = (Sn+1, . . . , SN), (4.15)

then we can calculate the posterior probability by:

P (Xn = j | SN) =
F (j, n)B(j, n)∑
k F (k, n)B(k, n)

. (4.16)

4.2.3 Prediction of the next signal

The hidden Markov models can also be used to predict future signals. At
first glance it may be reasonable to suggest that we could use the property
in equation (4.9), but that would only give the correct answer if we know
for sure what value the next hidden state in the process will take. In the
partial-information scenario it is unlikely to know the last hidden state with
a 100% certainty. This section will show how to perform one-step prediction
using the hidden Markov model and its properties in the partial-information
scenario.

Assume that we have realizations of the observed sequence, SN , where
N is the last event. We want to the calculate the probability of
P (SN+1 = s | SN) and predict SN+1. By using the definition of the condi-
tional probability the hidden Markov model properties in equation (4.1) and
(4.9) imply that
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P (XN+1 = i | XN = j) =
P (XN+1 = i,XN = j)

P (XN = j)
, (4.17)

and

P (SN = s | XN = j) =
P (SN = s,XN = j)

P (XN = j)
. (4.18)

The left-hand side in equation (4.17) and (4.18) is known to us from matrices
in the trained or estimated model. It is therefore necessary to rewrite both
(4.17) and (4.18) by multiplying with P (XN = j), and then condition on
the complete observed sequence, SN , which is known. Do note that the
hidden Markov model properties still hold and will simplify the conditioning.
Equation (4.17) will then become:

P (XN+1 = i,XN = j | SN) =

P (XN = j | SN) · P (XN+1 = i | XN = j).
(4.19)

Equation (4.18) will have a similar reconstruction as (4.17), but we also have
to change or increment the time notation such that it can find the probability
of SN+1. The rewritten equation (4.18) will thus become:

P (SN+1 = s,XN+1 = i | SN) =

P (SN+1 = s | XN+1 = i) · P (XN+1 = i | SN).
(4.20)

The right-hand side of equation (4.19) now contains only known measure-
ments, namely the posterior probability, P (XN = j | SN), and the transi-
tion probability, P (XN+1 = i | XN = j). In equation (4.20) we only know
the emission probability, P (SN+1 | XN+1), given a state.The unknown part
in equation (4.20) is simply a marginalization of equation (4.19) over XN .
In fact both (4.19) and (4.20) need only to be marginalized to finish the
proof to find the probability of the next signal given the observed sequence.
Marginalizing equation (4.19) over XN will then result in

P (XN+1 = i | SN) =
∑
k

P (XN+1 = i,XN = k | SN), (4.21)

which can be put directly into equation (4.20). After this we marginalize
(4.20) over XN+1 to get

P (SN+1 = s | SN) =
∑
k

P (SN+1 = s,XN+1 = k | SN), (4.22)
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which gives us the probability of the next signal being s, given all the known
signals. To finally predict a single signal a selection criterion is necessary,
and it should be constructed or chosen depending on the context to get the
most optimal results. A simple example of such a selection criterion could
be the maximum of the calculated probabilities. Though before the selection
criterion can be applied, every possible s for P (SN+1 = s | SN) has to be
calculated.
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Analyses, results, discussion
and future work
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Chapter 5

Preprocessing the datasets to
be analysed

This chapter describes the sets of data with its variables and how they have
been transformed or modified to be used in the analyses. The transformation
and modification can be thought of as preliminary changes or analyses that
will serve as a common ground for the analyses in chapter 6, 7 and 8. Thus,
the purpose of this chapter is to provide means to replicate the analyses
and deliver enough information to interpret the results. Since we have two
distinct types of data, aggregated and questionnaire versus fully detailed,
this chapter will be sectioned into two parts.

5.1 Preprocessing the aggregated and

questionnaire data used in regression

model analyses

Before the aggregated data could be used in any type of analytical setting,
several preprocessing steps were required. For instance, missing values in the
form of NA (not available) had to be taken care of. Missing values of variables
with a logical zero was set to zero, while the other missing values would have
the respective patient to be removed from the data to be analysed. The
selection of participants to answer the questionnaire is our source that the
data should be representative; it will still be assumed even though patients
or data entries are removed due to missing values.

Removing the whole row (or patient) in the dataset given one missing
value in any of the categorical variables is the same kind of procedure the
GLM-function does in R. It should be sufficiently valid to remove them, espe-
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cially considering that we have no means of constructing with 100% accuracy
the missing values available; though intelligent guesses are a possibility if we
wanted to settle for it. The action of removing missing values will also make
sure that the AIC or DIC estimates will be correct in a relative setting, with
a constant number of observations. In order to prevent removal of too much
data, as it is desirable to have data close to the original data and the sam-
ple size as large as possible, relevance of variables was checked with regards
to their properties (section 5.1.3). Properties here refer to their correlation
between covariates, skewness or possible outliers. The variables, or possi-
ble predictors checked were chosen based on whether they were assumed or
guessed to have influence. If there is any doubt about a covariate, it is to
be included if it can potentially explain anything new or uncorrelated; either
from a theoretical or empirical perspective.

5.1.1 Properties of the aggregated data

As time is involved in the data collected, one should always consider the
fact that the data gathered directly from the hospital has taken place before
the data from the questionnaire was gathered. The point is that there is
a causality which needs to be taken into consideration when using any of
the variables from the questionnaire to predict a response contained in the
hospital data. Using data from the questionnaire as a response should not
breach this causality.

In general the data collected range over a span of two years, but there is
no actual time axis in this aggregated data which can be used to determine
further relationships in time; as it was lost in the aggregation process of the
detailed sets of data. Therefore the only time dependency in this aggre-
gated data is the distinction between the aggregated hospital data and the
questionnaire data. Consequently, a potential weakness of the aggregated
data is that it is not possible to look at a specific time a patient received a
diagnosis or when an event occurred. As such some relationships between
the covariates may be hidden and overlooked. In order to distinguish the
two types of covariates we will index (later in Table 5.1, 5.3 and 5.4) the
health care predictor-covariates with an H and the questionnaire predictor-
covariates with a Q. Covariates or variables that do not fit into either of these
two categories will be indexed G; for general.

5.1.2 Constructing the two main response-variables

In order to perform both logistic and multinomial regression we require cat-
egorical response-variables with at least two unique categories, K ≥ 2. One
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unique response for each of the analyses is also necessary. In order to not
breach the causality we have chosen two questions or covariates from the
questionnaire as a basis for our response-variables.

The first response-variable to be analysed is a variable containing eight
subquestions that measures the quality ratings from a patient regarding the
satisfaction of self-perceived healthcare services received: The variable is
named S7 and its original formulation can be found under question 7 in
the questionnaire, section 10.2.2. The variable represents 8 questions, each
having integer-values within the range from one to five. We can define the
simplified S7 as:

yi = (yi1, . . . yi8), yij ∈ {1, 2, 3, 4, 5}, j = 1, . . . , 8, i = 1, . . . , N.

A higher value of yij means being more satisfied with the j’th health ser-
vice aspect. Before the simplification removing the irrelevant answer and
performing correction of negative or contradictive phrasing this was not nec-
essarily the case. For it to be used in the logistic analysis, a mean is first
applied

yi =
1

8

8∑
j=1

yij,

resulting in the response-variable named MeanSpm7. Then the resulting
response-variable, MeanSpm7, is dichotomized around its empirical mean,
y = 1

N

∑N
i=1 yi:

y
(d)
i = 1{yi≥y} (5.1)

Creating a dichotomized or binary response-variable, y
(d)
i , that represents

those who are above averagely satisfied, with y
(d)
i = 1, versus those who are

less than averagely satisfied with the care they have received, with y
(d)
i = 0.

The second response-variable to be analysed is a variable with ten sub-
questions that has to be transformed somehow in order for it to be used
properly with multinomial regression. The response-variable in question is
named S10; and its original phrasings can be found under question ten in
the questionnaire, section 10.2.2. The variable represents 10 questions, each
having integer values ranging from zero to one. It can be illustrated as:

yi = (yi1, . . . , yi10), yij ∈ {0, 1}, j = 1, . . . , 10, i = 1, . . . , N.
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Each subquestion, represented by yij, describes whether or not a patient have
experienced that the health service helped them with an unique challenge.
If help is received yij = 1 and if it is not received then yij = 0. The choice
of transformation was decided to be a sum score of the subquestions. Thus
depending on different groupings (which is specified later in chapter 7), it
will be a response-variable containing more than two categories up to a max-
imum of eleven categories, when including zero. For instance if three of the
subquestions are used (K = 4) to create a sum-score response-variable, y

(s)
i ,

we will have:

y
(s)
i =

K−1=3∑
k=1

yik, y
(s)
i ∈ {0, 1, 2, 3} ∀i.

5.1.3 Processing and preliminary selection of
predictor variables

The aggregated dataset with the questionnaire covariates, contains a total
of 101 variables which are possible to include as predictors in a regression
analysis. Naturally, all of these predictors are not relevant and a variable-
selection procedure was needed. The predictors in Table 5.1 were chosen as
an outset for our preliminary analysis here and for the regression analyses
(in chapter 6 and 7) from the whole aggregated data. When further selecting
the predictor-variables, measures and tests play a central part.

First the predictor-variables were checked with a histogram to see if any
variables were too skewed. In other words we want to check if covariates have
too few observations for certain values, making the corresponding covari-
ate less viable; since the effects of certain values will be poorly represented
compared to the other values. Using a histogram, the predictor-variables
Occupation and HasSupport were omitted from further examination in the
analyses. Since they were both bi-valued and one of their categories had too
few observations, resulting in almost homogeneous covariates.

Secondly, the range of the different variables were checked, i.e. the min-
imum and maximum values. This was an important part in figuring out
whether to prefer to use DiagnosesICD or DiagnosesICPC since they essen-
tially describe the same property with a patient, namely the number of di-
agnoses that patient has. DiagnosesICPC has a slightly wider range, which
makes it more preferred in a possible final model. The same logic can be
applied to the number of diagnose chapter and diagnose category variables
relating to the diagnoses, thus making these less preferable. The number of
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Variable name: Explanation: Type:
Age Integer age G
Gender Gender of a patient G
Services Number of contacts with hospital services H
TimeInHospital Length of hospital stays H
TypeServices Number of different types of hospital services H
Readmissions Number of readmissions to hospital H
Departments Number of departments visited H
Wards Number of wards visited H
Procedures Number of procedures undergone H

DiagnosesICD Number of ICD diagnoses(1) H

CategoriesICD Number of ICD categories(1) H

ChaptersICD Number of ICD chapters(1) H

DiagnosesICPC Number of ICPC diagnoses(1) H

ChaptersICPC Number of ICPC chapters(1) H
SelfRateHealth Self perceived or rated health Q
NoLongTermSick Absence of long term or lasting illness Q
Education Level of education Q
Occupation Occupation - Employed, student, etc Q
LightExercise Degree of light exercise Q
ToughExercise Degree of tough exercise Q
Smoking Degree of smoking Q
Alcohol Degree of alcohol consumption Q
NoDebased Never experienced debasing Q
HasSupport Relationships with others that can assist Q
Income Household income Q
(1) ICD and ICPC (or ICD-10 and ICPC-2) are different systems that pro-

vide diagnose codes to conditions on different levels. There is no strict
one-to-one correspondence between the two systems.

Table 5.1: Overview of the predictors initially chosen from the data to be
examined further.
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wards is then also to prefer above the number of departments a patient has
been through, as these two are also dependent on each other.

Cramer’s V (see section 10.1.4) was used to find a measure of the corre-
lation between the categorical predictor-variables in the questionnaire. No
notably correlation was found, but naturally this does not imply that there
is no correlation or dependencies at all between the variables.

In order to find more information regarding the adequacy of hospital or
health care covariates, Welch two sample t-tests (see section 10.1.2) were

utilized. This could be done since the logistic response (y
(d)
i ∈ {0, 1}) makes

for a reasonable grouping of the values registered per patient into two sam-
ples. This test assumes that the data or covariate values are approximately
normally distributed. Since the sample size is rather large (over 1000 ob-
servations in each) the assumption should be ok, but is not infallible. The
other assumption demands that the variance within the two groups are dif-
ferent, which they were confirmed to be empirically. Theoretically one can
also argue that the assumption about different variances holds since we do
not know the proportion of patients having different degree of severity with
regards to sickness that are in the two groups. Table 5.2 shows the p-values
for the grouped health care covariates.

Variables ”0− 1” grouped: p-value:
Services 0.19
TimeInHospital 0.051
TypeServices 0.019
Readmissions 0.036
Departments 0.0013
Wards 0.000412
Procedures 0.032
DiagnosesICD 0.0008984
CategoriesICD 0.0005366
ChaptersICD 0.0001015
DiagnosesICPC 2 · 10−15

ChaptersICPC 6 · 10−12

Table 5.2: P-values from the Welch two sample t-tests.

A p-value less than 0.05 should indicate that there is a significant differ-
ence between the two groups within the respective variables. The significance
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level here may indicate that the variables will be more significant in a logistic
regression setting; which also happened to be the case in chapter 6. With
this in mind it could be even more reasonable to believe (based on Table 5.2)
that DiagnosesICPC should have some higher degree of significance than the
rest. Based on these results combined with the measures of range, the diag-
nose chapter and categories are omitted from further analysis.

5.1.4 Simplification of interesting predictor-variables

Since the models to be used in the analyses are only logistic or multinomial,
it is desirable to transform some of the variables in order to simplify the
interpretation of the models fit. That is because the interpretation of these
models relies on the measures of odds ratio. Having poly-categorical predic-
tors present is not impossible, but could yield a large amount of unnecessary
coefficients. Also, similar multi-categorical answers would make the interpre-
tation of the different odds ratios more challenging if they aren’t sufficiently
distinct from a theoretical perspective. The simplification, or transforma-
tion used was dichotomization and it was applied on every multi-categorical
variable that was found to be of any interest. Another reason as to why
dichotomization was applied is that subgroups of categorical variables be-
came too small and skewed. Thus splitting the poly-categorical groupings
into two groups would absorb the smaller groups, such that new variables
could explain somewhat more distinctively with fewer outliers. The categor-
ical variables were already grouped such that not a lot of information would
be lost by doing the dichotomization. Thus these dichotomized predictors
will be used instead of their poly-categorical counterparts. The overview of
the new variables resulting from the transformation are in Table 5.3, while
the details are as follows:

• The variable concerning the level of education, Education, was split
into two parts and the new dichotomized variable is named HigherE-
ducation. HigherEducation is constructed such that if a patient had
any higher education from university it would equal to one. On the
other side, a zero would indicate that a patient had no education from
a university or of equivalent degree.

• LightExercise, describing the amount of light exercise a patient per-
forms was also dichotomized. The new variable is named ActiveLight.
If its value is a one it is defined to represent above three hours of
activity per week, while if it is zero less than three hours per week
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is measured. The natural interpretation is that less than three hours
could be interpreted as inactive, while the other as active.

• ToughExercise, describing tough exercise has been dichotomized in the
same manner as LightExercise, since they were similarly structured.
The key difference lies in the interpretation which should be slightly
different as ToughExercise explains more intense workout or exercise
than LightExercise. The new variable is named ActiveTough.

• Smoking is also dichotomized and the new variable SmokedOnce is cre-
ated. SmokedOnce could be interpreted such that if the patient has ever
smoked, this will be represented by a one. While a zero will represent
that the patient never has smoked.

• Alcohol was dichotomized into the covariate NoAlcoholBinge. The di-
chotomization was done as such that a one would represent no excessive
intake of alcohol, while a zero would represent the opposite.

• Income, describing the household income, was split such that a one
would represent above the mean income (around 500.000 NOK accord-
ing to Statistisk Sentralbyr̊a (2017), and assuming that the patient
lives alone) while a zero would represent an income that is below the
average. The new variable is named HighIncome.

Variable name: Explanation, if equal to one: Type:
HigherEducation Patient has higher education Q
ActiveLight Patient is physically active (light) Q
ActiveTough Patient is physically active (tough) Q
SmokedOnce Patient has smoked at least once Q
NoAlcoholBinge Patient has no excessive alcohol usage Q
HighIncome Patient has income above mean Q

Table 5.3: Overview of the additional and simplified dichotomized
predictor-variables created from the interesting variables.

A final overview of possible predictors of interest in the regression analyses
are presented in Table 5.4. Their simplifications are in Table 5.3. The exact
values and interpretation of all variables are found in section 10.2.

52



5.1. PREPROCESSING THE AGGREGATED AND QUESTIONNAIRE
DATA USED IN REGRESSION MODEL ANALYSES

Variable name: Explanation: Type:
Age Integer age G
Gender Gender of patient G
Services Number of contacts with hospital service H
TimeInHospital Length of hospital stays H
TypeServices Number of different types of hospital services H
Readmissions Number of readmissions to hospital H
Wards Number of wards visited H
Procedures Number of procedures undergone H
DiagnosesICD Number of ICD diagnoses H
DiagnosesICPC Number of ICPC diagnoses H
SelfRateHealth Self perceived health Q
NoLongTermSick Absence of long term or lasting illness Q
Education Level of education Q
LightExercise Degree of light exercise Q
ToughExercise Degree of tough exercise Q
Smoking Degree of smoking Q
Alcohol Degree of alcohol consumption Q
NoDebased Never experienced debasing Q
Income Income of household Q

Table 5.4: Overview of the predictors determined to be fit to use in the
regression analyses.
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5.2 Preprocessing the fully detailed dataset

used for trajectory analysis

As the fully detailed sets of data were not inherently intended or fit to use
directly with any kinds of Markov models, preprocessing was necessary in
order to utilise the data with a Markov models. These fully detailed datasets
contain timestamps for each event which makes it possible to use different
types of Markov models, compared to the aggregated data which did not
have a time axis. The time span is the same as with the aggregated data
and it will therefore be possible to utilise events from the beginning of 2012
to the end of 2013. Patient events starting or ending outside of this time
interval were included, but were censored or cut off at both sides to conform
with the remaining observations.

As already established we are interested in modelling and analysing pa-
tient trajectories with discrete-time models, therefore a time resolution has
to be specified. The time resolution was set to be at a monthly level to better
satisfy the assumptions of the models to be used and to reduce a possible is-
sue with increased discrete dimensionality per amount of data and increased
computational cost. A monthly time resolution will result in a maximum
length of 24 months per patient trajectory.

5.2.1 The case of simultaneous events per month

One problem with a monthly time resolution is to code events happening
within the same month. This problem has to be solved. As the discrete-time
Markov models and hidden Markov models require one unique state at each
time, it was thought to be sufficient to use the urgency or severity degree
ordering to decide which events were allowed to overwrite other events in
the trajectory vector. The more expensive or urgent types of care are also
of greater importance to bring forth in a model. See an illustration of the
severity, cost or urgency ordering principle in equation (5.2) and Table 5.5.

NO < GP < OP < IP (5.2)

Thus we have that at each time unit a NO event is not allowed to write
over any state at all. A GP event is only allowed to overwrite the NO event.
The OP event can overwrite both the NO and GP event, while the IP event
can overwrite all the other events. With this kind of ordering the patient
trajectories created can be considered and interpreted to be a minimalistic
measure of the most severe or costly state per month.
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Symbol: Description: Urgency/cost priority:
IP Inpatient First
OP Outpatient Second
GP General practitioner Third
NO None of the others Fourth

Table 5.5: Overview of the four constructed states with description and
urgency.

5.2.2 Training and test set

The patients that were used to create the patient trajectories, as described in
section 5.2.3 for those with special interest, are a large group of adult patients
with chronic conditions. A group of 12714 patients that had been invited to
partake in the questionnaire was used as a training set, while another group
of 67210 patients was used as a testing set. Using these patients opens up the
possibility to compare any result with the questionnaire since about 3000 of
the about 12714 patients in the training set that were invited had answered
the questionnaire.

5.2.3 Details in constructing patient trajectories

The four unique events NO, GP, OP and IP are not directly present in the
data as they are simplifications of other more detailed events that the pa-
tients have undergone. In other words, they are defined by values from other
variables in the detailed sets of data. Specifically, these four events can be
described as follows.

1. The IP or inpatient event is based on a variable named StdCareCat and
a state is IP if this variable is equal to one for a patient at a certain
time. The StdCareCat variable is found in the St. Olav dataset. This
event or state is equivalent to receiving inpatient care at a hospital.

2. The OP or outpatient event is also based on the StdCareCat variable,
but in this case it has to equal two instead of one. Also, the OP event
is based on values from a variable named
PRAKSIS REFUSJONSGRUNNLAG, found in the Kuhr dataset. See
Table 5.7 for an overview of the exact values or events included. This
state is equivalent to receiving some outpatient care or treatment at a
hospital.
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3. The GP or general practitioner event is only based on the values from
the PRAKSIS REFUSJONSGRUNNLAG variable from Kuhr data, and
the details regarding the values can be found in Table 5.6. GP thus
represents care at a general practitioner level or equivalently.

4. The NO event is special since it is set to be the default value when
creating the trajectories. This means that if none of the other events
happen, the patients’ state is NO for this particular month. In other
words, this event is the complementary empty set of every other health
care events.

A design flaw with these patient trajectories is that if the health care services
aren’t sufficiently mapped to one of the four events, then the NO event will
contain these services by default in the patient trajectories. For example
services related to receiving help at home or being admitted to a nursing home
will fall into the NO event, as they haven’t been taken into consideration.
This will be a source of error and creating inaccuracies.

Value:
”Fastlege”
”Fastlønnet”
”Turnuslege fastlønnet”
”Legevakt”
”Legevakt kommunal”

Table 5.6: Overview of values in the variable
PRAKSIS REFUSJONSGRUNNLAG from Kuhr data that has been used

as a basis for GP.
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Value:
”Spesialist”
”Spesialist anestesiologi
”Spesialist barnesykdommer”
”Spesialist fysikalsk medisin og rehabilitering”
”Spesialist gynekologi”
”Spesialist hudlege”
”Spesialist indremedisin”
”Spesialist kirurgi”
”Spesialist nevrologi”
”Spesialist revmatologi”
”Spesialist øre-nese-hals”
”Spesialist øyelege”

Table 5.7: Overview of values in the variable
PRAKSIS REFUSJONSGRUNNLAG from Kuhr data that has been used

as a basis for OP.
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Chapter 6

Logistic analysis:
Factors affecting satisfaction
with health care

In this chapter the analysis, results, interpretation and conclusion from the
logistic regression analysis will be presented. The main aim of this analysis
is to figure out what affects how satisfied the patients are with the health-
care they have received. This is to be achieved by logistic regression. It is
thus desirable to find predictors that have significant influence, which could
explain which elements in the hospital or personal sphere that have the great-
est impact on the satisfaction levels. The second aim of this analysis is to
try to find empiric evidence or indications of whether boosting can provide
assistance in deciding the relevant predictors or not.

A description of how the results were found will be provided in section
6.1. Section 6.2 present the results gained from the procedures described,
and finally interpretations and comments based on the results.

6.1 Procedure of the logistic analysis

During this chapter the response, in any model mentioned, is the dichotomized
response y

(d)
i in (5.1) which describes whether a patient was above averagely

satisfied with the health care received. Based on the basic investigation per-
formed in section 5.1.3 on the properties of the covariates, many different
small models with one to four or five predictors from Table 5.4, were fit.
This was done in order to figure out if there were any obvious confounding
effects or multicollinearity in the logistic models. A large amount of such
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logistic models were fit in GLM. Therefore, the sheer amount of models fit
could bring about random errors and difficulty figuring out which predictors
are consistently significant. To correct for such possible errors it was decided
to use an automated predictor selection procedure (see section 6.1.1). From
the heap of models fit it was found that some predictors were more interest-
ing and significant than others. For instance many of the hospital covariates
were insignificant at a 5% level, except for DiagnosesICPC. Many of the
questionnaire covariates were significant at a 5% level or lower in different
models, though not in all of the models. One exception was Alcohol, which
was the least significant of the covariates over all the models fit. This manual
check of about 150 models thus only resulted in reasons to omit Alcohol and
NoAlcoholBinge in further analysis.

6.1.1 Using the automated GLM procedure

Since the manual check only provided enough information to exclude one
predictor, it is therefore reasonable to use an automated procedure in trying
to find the predictors that are the most consistently significant. The auto-
mated procedure mentioned in section 2.1.1 was then used, where direction
input was set to be both. This option was seen to yield the most accurate
and finely tuned results, as it allows the algorithm to both remove and add
predictor-covariates to the model.

Table 6.1 shows an overview of the two different scopes constructed. A
scope contains the covariates to be tried included by the automatic model
selection procedure. SelfRateHealth was included in the second scope in or-
der to see if it changes the automatic procedure significantly. This was done
since SelfRateHealth was found to be consistently significant, at a 0.1% level,
when checking the manually fit models. SelfRateHealth is assumed to possi-
bly have a great deal of influence in the logistic model.

In order to receive some reliable findings whether any of the predictors
were consistently significant, the data was split into different groups. Eight
different data groupings were constructed, to be used to fit nine different
models using the automated GLM procedure based on either one or both
of the scopes in Table 6.1. The data groups and the corresponding models
became as follows:

• Two models utilized the whole sample, except there were no entries with
missing data. Then only changing between the two different scopes, this
resulted in two different models fit.
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Scope without SelfRateHealth: Scope with SelfRateHealth:
Gender Gender
Age Age
Services Services
TimeInHospital TimeInHospital
TypeServices TypeServices
Readmissions Readmissions
Wards Wards
Procedures Procedures
DiagnosesICPC DiagnosesICPC
DiagnosesICD DiagnosesICD
NoLongTermSick NoLongTermSick
HigherEducation HigherEducation
ActiveLight ActiveLight
ActiveTough ActiveTough
SmokedOnce SmokedOnce
NoDebased NoDebased
HighIncome HighIncome

SelfRateHealth

Table 6.1: Overview of the two scopes constructed to use with the
automatic GLM selection procedure.

• The last seven groups were based strictly upon how the covariate Self-
RateHealth could be split. Thus only using the scope without SelfRate-
Health in the GLM procedure, since SelfRateHealth was implicitly used
when partitioning the data.

– Five of the seven data-groups were created based on the respective
five subcategories of SelfRateHealth. Thus resulting in five new
models fit.

– The two remaining models fit were based upon the data where
the empirical mean of SelfRateHealth was used to split the whole
sample into two samples.

Using the last seven groups and models, the idea was that if a unique covari-
ate ended up being consistently significant within many of these automated
model fits then they could and should be regarded as actually significant for
our final logistic model in question. The previously stated can be thought of
as a comparison routine. The two first models within the first groups were
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only created to determine once and for all whether SelfRateHealth truly is
consistently significant.

It could be argued that the subgroups should have been randomly split or
divided. Though since SelfRateHealth showed undeniably consistent signifi-
cance through the models fit before the automated procedures, it was thought
that the groupings of values in this covariate could hide information. This is
the main reason behind the segmentations of the data done.

6.1.2 Using the automated GBM procedure

After a handful of consistently significant predictors have been chosen by this
comparison routine (described in section 6.1.1), GBM is used to validate or
debunk whether the covariates are as significant as they have been found to
be. We can do this since the logistic regression is built into its automated
selection procedure (described in section 2.2.3). If the measures of relative
influence yielded from GBM are similar to what was gained through the
means in section 6.1.1, then it could be argued that the predictors are indeed
significant.

6.2 Results and models

First of all the two different scopes yielded different logistic models when run
on the undivided sample. The main difference is that SelfRateHealth was
included by the automated procedure when it had the opportunity to do so.
Thus SelfRateHealth can be said to have influence and notable significance.

6.2.1 Results of comparison routine

In the remaining seven models to be used in the comparison routine (de-
scribed in section 6.1.1), many predictors were found to be necessary in at
least one of the seven, but only a few ended up being significant in four or
more models selected by the automatic GLM procedure.

The predictors that were significant in more than half of the models are
listed in Table 6.2. The predictors in Table 6.2 are the ones which could
be said to be consistently significant. There are some evidence of two other
predictors which may be regarded as consistently significant. These two pre-
dictors are Gender and DiagnosesICPC. Potentially final models that have
significant predictors, relatively low AIC and as few predictors as possible
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Name of predictor xj: Proportion of models significant in:
NoLongTermSick 4/7
NoDebased 5/7
Age 4/7

Table 6.2: Summary of the comparison routine.

may then be the logistic models presented in Table 6.3, 6.4 and 6.5.

Name of predictor xj: Estimate of coefficients βj: P-value:
Intercept −0.458 0.039
Age 0.015 3.75 · 10−10

SelfRateHealth.2 −0.296 0.107
SelfRateHealth.3 −0.824 6.05 · 10−6

SelfRateHealth.4 −1.194 4.09 · 10−9

SelfRateHealth.5 −1.856 3.75 · 10−13

NoLongTermSick 0.489 9.12 · 10−7

NoDebased 0.479 3.26 · 10−7

Table 6.3: Logistic model #1 with its coefficient - Only the most significant
predictors included.
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Name of predictor xj: Estimate of coefficients βj: P-value:
Intercept −0.313 0.177
Age 0.015 2.34 · 10−10

SelfRateHealth.2 −0.276 0.133
SelfRateHealth.3 −0.785 1.82 · 10−5

SelfRateHealth.4 −1.133 3.24 · 10−8

SelfRateHealth.5 −1.783 4.57 · 10−12

NoLongTermSick 0.471 2.38 · 10−6

NoDebased 0.456 1.39 · 10−6

DiagnosesICPC −0.025 0.022

Table 6.4: Logistic model #2 with its coefficients, including DiagnosesICPC
as predictor.

Name of predictor xj: Estimate of coefficients βj: P-value:
Intercept −0.493 0.027
Age 0.014 3.81 · 10−9

SelfRateHealth.2 −0.286 0.119
SelfRateHealth.3 −0.823 6.24 · 10−6

SelfRateHealth.4 −1.188 5.04 · 10−9

SelfRateHealth.5 −1.843 5.70 · 10−13

NoLongTermSick 0.475 1.94 · 10−6

NoDebased 0.460 1.04 · 10−6

Gender 0.222 0.010

Table 6.5: Logistic model #3 with its coefficients, including Gender as
predictor.
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Odds ratio may be the most intuitive and reasonable method to interpret
logistic models. Due to low confounding when adding Gender and the number
of diagnoses (DiagnosesICPC) into the model, one single table containing the
odds ratios (Table 6.6) from the different predictors should be sufficient to
explain how the covariates affect the response in these three models; i.e. affect
the odds of being satisfied or not. See section 6.2.3 for an interpretation.

Name of predictor xj: Corresponding OR:
Age 1.015
SelfRateHealth.2 0.743
SelfRateHealth.3 0.438
SelfRateHealth.4 0.303
SelfRateHealth.5 0.156
NoLongTermSick 1.631
NoDebased 1.615
DiagnosesICPC 0.974
Gender 1.248

Table 6.6: Odds ratio per unit/category increase, i.e. from xj to xj + 1.
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6.2.2 Results of GBM procedure

Now that possible final core models (Table 6.3, 6.4 and 6.5) are decided upon
it is desirable to double check with results from generalized boosted regression
models whether we have actually found the most significant predictors. The
information, in Table 6.7, about variables and relative influence was gained
from running a summary of the object returned from the automated GBM
procedure (section 2.2.3). When running the procedure the learning rate
was set to equal 10−4 and the bag fraction was set equal to one in order to
minimize the random elements. A sufficient number of maximum trees was
also set such that the procedure did not reach this maximum.

Predictor xj: Relative influence:
NoLongTermSick 41.107
SelfRateHealth 36.652
Age 15.374
NoDebased 6.810
Gender 0.053
Services 0.000
TypeServices 0.000
Readmissions 0.000
TimeInHospital 0.000
Wards 0.000
DiagnosesICD 0.000
Procedures 0.000
DiagnosesICPC 0.000

Table 6.7: Summary from the automatic boosting procedure of the logistic
regression.

6.2.3 Interpretation of the odds ratios

Based upon the results and the calculated odds ratios (in Table 6.6) it would
now be reasonable to infer the following about the predictors:

• The higher the Age a patient has will increase the odds of being satisfied
with the health care. The increase in odds is not by much per unit
increase in age, but when a larger age gap is present the odds will be
increased even further.
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• Regarding self perceived health, SelfRateHealth, the notation of its odds
ratio is different since it is grouped into five different categories and
all the ratios presented in the table are relative to if the patient per-
ceives its own health as excellent. Thus all corresponding ratios from
SelfRateHealth.2 to SelfRateHealth.5 will indicate a decrease in self-
perceived health or feeling worse than excellent. Keeping this ordering
in mind, we can now clearly state that the worse a patient perceives its
own health the lesser the odds of being satisfied with the health care
received.

• Now NoLongTermSick, here the odds of being satisfied with the health
care will increase if the patient haven’t experienced long lasting illness.

• The same interpretation or conclusion made about NoLongTermSick
can be applied to NoDebased as well since they have such a similar
odds ratio value and are both only two categories. Thus not having
experienced debasing will increase the odds of being satisfied with the
health care received.

• When looking at the odds ratio for DiagnosesICPC it is clear that a
unit increase in the number of diagnoses will result in a decrease in the
odds of being satisfied. As with age, a greater increase in number of
diagnoses per patient will cause a more noticeable effect on the odds of
being satisfied.

• Based on how Gender was defined then being a man will increase the
odds of being satisfied with the health care.

6.2.4 Comparing the GLM results with the GBM
results

As one can see from the measurements of relative influence (Table 6.7) only
NoLongTermSick, SelfRateHealth, Age and NoDebased do clearly have some
influence on a logistic model with the dichotimized MeanSpm7 (y

(d)
i ) as re-

sponse. Gender has some slight influence, but not to the same extent as the
other influential predictors. This predictor should therefore only be consid-
ered under doubt. The results from the automatic boosting procedure did
end up with about the same conclusion as from when running multiple auto-
matic procedures within the generalized linear models framework and using
the comparison routine. This suggests that generalized boosted regression
models could be used as an assisting tool to select or mine predictors.
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With boosting backing up the decision and logic from the GLM analysis
it would be rather reasonable to say that NoLongTermSick, SelfRateHealth,
Age and NoDebased are consistently significant. These predictors, with their
corresponding interpretation, will be the elements which explains any change
in satisfaction levels.
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Chapter 7

Multinomial analyses:
Factors affecting help received
from health care

In this chapter the response-variables, analyses, results, interpretation and
conclusion from the multinomial regression analyses on the sum-score re-
sponses will be presented. The main aim of this chapter is similar to the
main aim in chapter 6. In this chapter though, the goal is specifically to
determine which predictors or effects that affect the odds of receiving med-
ical related help from the healthcare services. It is also of interest to note
throughout this analysis if the two types of responses based on question 7 and
10 in the questionnaire, introduced in section 5.1.2, could explain the same
elements or not. Lastly, again, it is of interest to find evidence or indications
that boosting could assist in the selection of predictors.

The response-variables to be used, is completely specified in section 7.1.
The procedure of the analyses and results with interpretations are presented
in section 7.2 and 7.3, respectively. Finally, section 7.4 contains comments
regarding the results.

7.1 Specifying the response-variables in

detail

The multinomial response y
(s)
i , that is to be used throughout this chapter,

was defined in section 5.1.2 to be a sum score to summarize up to 10 sub-
questions. In each sub-question the patients could answer with either yes
or no whether they had received help in an aspect from the health care.
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Due to these sub-questions the sum-score response can range from zero to a
maximum of ten. The maximum depends on what kind of groupings of the
sub-questions we decide to look at. There are two groupings of S10’s sub-
questions that are of interest to use with multinomial regression. The two
unique groupings are presented in Table 7.1. These groups end up leaving
out sub-question seven, nine and ten from both responses. The groups,
personalized help (TPH) and general information help (GIH), are constructed
purely on how the questions about help in S10 were categorised (Table 7.2)
and interpreted by myself. The responses as sum-scores of these groups would
thus essentially represent how many different challenges a patient did receive
help with. Mathematical formulations of the sum-score responses based on
the groupings are:

TPH response: y
(s)
i =

K−1=3∑
k=1

yik, y
(s)
i ∈ {0, 1, 2, 3} ∀i,

and

GIH response: y
(s)
i =

K−1=4∑
k=1

yik, y
(s)
i ∈ {0, 1, 2, 3, 4} ∀i,

while still yik ∈ {0, 1} for every k.
Since the response variables are constructed as such they can neither be

classified as strictly nominal or ordinal. It would be more correct to classify
them as something between nominal and ordinal. As such a multinomial
regression model should be sufficiently appropriate, though an ordinal re-
gression model could be equally adequate.

Personalized help (TPH) Information help (GIH)
S10 2 S10 1
S10 5 S10 3
S10 8 S10 4

S10 6

Table 7.1: Overview of the multinomial sum score responses.

7.2 Procedure of the multinomial analyses

In order to avoid checking many different models as done in the logistic anal-
ysis, we will attempt to utilize the generalized boosting regression models to
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Name: Question: Did you receive help with the following challenges (. . . )
S10 2 listen to you what matters the most regarding your health problems.
S10 5 your priorities are taken into account when creating plans.
S10 8 develope a diet and/or exercise plan.
S10 1 help you understand your health condition.
S10 3 be able to explain complications from your medication usage.
S10 4 inform you of your future healthcare plans.
S10 6 advice on how you can pursue and persevere a healthy life.

Table 7.2: Description of the subquestions used in Table 7.1. Translated to
english by the author of this thesis.

pick predictors for the analysis. This should be possible by using the infor-
mation about relative influence to make a decision about which predictors
or covariates that definitely need to be examined further. The results and
conclusion from the logistic regression analysis (section 6.2.4) do also suggest
that this may be an alternative way to find significant predictors. Metaphor-
ically speaking it is our intention to use GBM as a guidebook to ensure that
the most interesting attractions are visited. There is one problem regarding
this approach though, and that is that the automatic GBM procedure does
not support the multinomial distribution. To solve this problem, we now
propose a way to avoid the issue while also using the GBM framework as it
is.

7.2.1 Solving a limitation with GBM using several
logistic submodels

As mentioned in chapter 3, the multinomial regression is a generalization of
the logistic regression using K > 2 categories. This opens up a possibility,
since the multinomial regression has only one reference category in regards
to measuring the coefficients the same way the logistic regression does. If
considering these elements and the fact that GBM does support the logistic
regression then it is reasonable enough to simply choose a global reference
category, for example category zero, and then divide the multinomial problem
into K − 1 logistic subproblems that can be run in the GBM framework.

The logistic subproblems will then be the cases when one is always com-
paring and treating category zero as a reference category against the other
remaining K − 1 values that will be treated as a one. The logistic subprob-
lems are then supposed to act as an approximation to the main multinomial
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problem.
In the GBM algorithm I will again set bag fraction equal to one in order to

minimize the random effects and ensuring near replicability without a seed.
The learning rate will be set to 10−4, to make sure that accuracy won’t be
a problem and it will not take too long. The maximum number of trees are
set to twenty thousand and if any sub problem exceed this limit it could be
necessary to increase it, unless it is deemed sufficient for our purpose. The
responses used are the sum scores of the groupings in Table 7.1, while the
initial predictors the boosting can choose from are the ones in Table 5.4.

7.2.2 Procedure using GBM to find predictors

Based on the K−1 logistic subproblems to be run in GBM it is reasonable to
use the same logic as in the comparison routine (section 6.1.1). In this case it
would translate to looking at how many times the GBM finds any predictor
to be of relatively high influence across the different K − 1 subproblems. If
it is desirable to be cautious of being too strict in the selection, one could
look at how many times the predictors are included and that the relative
influence differ from zero. The idea and method should transfer well to this
case since we are dealing with subgroups of a group as before.

After gaining knowledge of how influential each predictor is relative to
each response, different multinomial models are to be fitted and examined
with diagnostic tools. The diagnostics will include the use of credible intervals
to check significance level, since we have access to them from the Bayesian
framework, and DIC to measure the loss of information. To make sure my
approach to the multinomial distribution through INLA using a Bayesian
framework is correct, we will control the results with another method of
choice that can fit multinomial regression to validate the model. That other
method utilizes neural networks (section 3.3) to perform multinomial regres-
sion. Thus any noticeable differences will be remarked.

7.3 Results, models and interpretations

As we have two unique sum-score responses to perform multinomial regres-
sion with, this section is structured accordingly. In section 7.3.1 we use the
personalized help grouped response (TPH) as a response-variable in the mod-
els, while section 7.3.3 provides models using the general information help
grouped response (GIH) as a response-variable.

Regarding the notation in most of the tables in this section, the suffix at
the end of each variable name (variablename.k) is designed to index which
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category that is referenced against the reference category, zero. Again, since
we are working with sum-scores of the sub-questions, category k of the j’th
variable will relate to having received k of K − 1 possible types of help. In
other words, the greater the k the more help has the patient received of that
type.

Do note that, as we are interested in the predictors’ effects, the K − 1
intercepts have been omitted from the models presented in the tables. This
is done since the intercepts will cancel themselves when we are checking odds
ratios.

7.3.1 Personalized help group response

The GBM procedures yielded that the predictors in Table 7.3, had some
relative influence within the three logistic subproblems. The number of
diagnoses (DiagnosesICPC) and Age clearly have great relative influence.
NoLongTermSick is probably the strongest contender of the ones that only
appeared once, this is because this predictor had the greatest relative in-
fluence of the ones appearing once. Predictors that have influence in two
of the models have about the same relative influence when comparing the
information between the subproblems.

Name of predictor xj: Proportion of sub-models significant:
Age 3/3
DiagnosesICPC 3/3
HigherEducation 2/3
Procedures 2/3
TimeInHospital 1/3
NoLongTermSick 1/3
SelfRateHealth 1/3

Table 7.3: Summary of the three (TPH) logistic GBM subproblems.

Regarding the models fit in a multinomial setting, most of the predictor
combinations from the Table 7.3 was checked. As a security measure in order
to be certain that the boosting actually gave the desired result, the remaining
predictors with zero relative influence was fitted to check if they had some
interest at all. Most predictors with zero influence had little to no interest
at all, and if any it was only because they correlated or introduced multi-
collinearity with some of the predictors with high relative influence. Out of
all the predictors in the Table 7.3 TimeInHospital and SelfRateHealth could
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have been included by some randomness or approximation fault as they were
not even close to being satisfyingly significant. In the case when approxi-
mating the multinomial model using logistic models, the relative influence
that is measured to be below a certain threshold may not yield consistently
significant predictors.

By satisfyingly significant, we define that three out of three and at the
very least two out of three coefficients related to one predictor is significant
at a 5% level. The remaining predictors in Table 7.3 are those that would be
able to build the optimal model in this setting. Based on the models checked
there are some models that are suitable to be considered as final models
which only contains predictors that are satisfyingly significant. Table 7.4,
7.5 and 7.6 contain these final models.

Name of predictor xj: Estimate of βkj: CIL: CIU :

Age.3 −0.016*** −0.026 −0.006

Age.2 −0.022*** −0.031 −0.013

Age.1 −0.013* −0.023 −0.002

DiagnosesICPC.3 0.136*** 0.086 0.187

DiagnosesICPC.2 0.103*** 0.055 0.151

DiagnosesICPC.1 0.073** 0.019 0.127

HigherEducation.3 0.583*** 0.243 0.926

HigherEducation.2 0.626*** 0.311 0.942

HigherEducation.1 0.510** 0.150 0.871

NoLongTermSick.3 −0.959*** −1.318 −0.607

NoLongTermSick.2 −0.333* −0.671 −0.002

NoLongTermSick.1 −0.534** −0.912 −0.159

The credible intervals (CIL & CIU ) cover 95% of the distribution.
* Significant at a 0.05 level.
** Significant at a 0.01 level.
*** Significant at a 0.001 level.

Table 7.4: Model 1 (TPH) - With all predictors significant -
DIC = 12803
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Name of predictor xj: Estimate of βkj: CIL: CIU :

Age.3 −0.018*** −0.027 −0.007

Age.2 −0.022*** −0.032 −0.014

Age.1 −0.013** −0.023 −0.003

DiagnosesICPC.3 0.119*** 0.068 0.171

DiagnosesICPC.2 0.088*** 0.040 0.138

DiagnosesICPC.1 0.067* 0.012 0.122

HigherEducation.3 0.575*** 0.233 0.918

HigherEducation.2 0.620*** 0.305 0.937

HigherEducation.1 0.509** 0.149 0.870

NoLongTermSick.3 −0.912*** −1.272 −0.557
NoLongTermSick.2 −0.294 −0.634 0.038

NoLongTermSick.1 −0.518** −0.899 −0.143

Procedures.3 0.075** 0.025 0.128

Procedures.2 0.064** 0.015 0.115
Procedures.1 0.031 −0.023 0.087

The credible intervals (CIL & CIU ) cover 95% of the distribution.
* Significant at a 0.05 level.
** Significant at a 0.01 level.
*** Significant at a 0.001 level.

Table 7.5: Model 2 (TPH) - With the lowest DIC value -
DIC = 12792
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Name of predictor xj: Estimate of βkj: CIL: CIU :

Age.3 −0.016*** −0.026 −0.007

Age.2 −0.022*** −0.031 −0.0132

Age.1 −0.013* −0.0234 −0.003

DiagnosesICPC.3 0.158*** 0.109 0.209

DiagnosesICPC.2 0.110*** 0.063 0.158

DiagnosesICPC.1 0.085** 0.032 0.139

HigherEducation.3 0.457** 0.123 0.794

HigherEducation.2 0.585*** 0.274 0.898

HigherEducation.1 0.442* 0.086 0.798

The credible intervals (CIL & CIU ) cover 95% of the distribution.
* Significant at a 0.05 level.
** Significant at a 0.01 level.
*** Significant at a 0.001 level.

Table 7.6: Model 3 (TPH) - With all coefficients significant and little
confounding - DIC = 12842
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Relative odds ratios based on the model in Table 7.5 can be found in
Table 7.7. The ratios were based only on values from this model since the
coefficient estimates did not differ much between the three models.

Name of predictor xj: Relative odds ratios:
Age.3 0.982
Age.2 0.977
Age.1 0.987
DiagnosesICPC.3 1.126
DiagnosesICPC.2 1.091
DiagnosesICPC.1 1.069
HigherEducation.3 1.777
HigherEducation.2 1.858
HigherEducation.1 1.663
NoLongTermSick.3 0.401
NoLongTermSick.2 0.745
NoLongTermSick.1 0.595
Procedures.3 1.077
Procedures.2 1.066
Procedures.1 1.031

Table 7.7: (TPH) Relative odds ratios (1 unit increase) calculated from
Table 7.5.

7.3.2 Interpretation of relative odds ratios (TPH)

Based upon the relative odds ratios in Table 7.7, one could draw the following
conclusions about how the parameters affect the response:

• First the age of a patient (Age) has a significant effect. The older a
patient is relatively to another patient causes a greater decrease in odds
of receiving personalized help. The magnitude change in odds is almost
equal over all the categories.

• Second, we have that the more diagnoses a patient has (DiagnosesICPC)
the higher the odds of that patient receiving personalized help. The in-
crease in odds is steady when comparing the three different subgroups.
Thus a patient will be slightly more likely to have a 3 in help score
rather than 0, compared to a score of 1 than 0; when having many
diagnoses.
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• Third, the level of education (HigherEducation) has an effect. The
three different categories do not to agree on strictly increasing odds,
but there is still a tendency present. The tendency is that having a
higher degree of education will over all increase the odds of receiving
personalized help.

• Fourth, the absence of long lasting illness (NoLongTermSick) affect
the odds negatively with regards to receiving personalized help. The
absence of chronic illness is especially affecting the odds of receiving
”maximal” personalized help.

• Last we have indications that, as similarly with the number of diag-
noses, that the number of procedures (Procedures) performed on the
patient will affect the odds of having received personalized help posi-
tively. A patient with relatively many more procedures will thus have
higher odds of receiving help.

Personally some of these sounds like reasonable results. For instance that
patients that have more diagnoses, that is sick over a longer period of time
and that have undergone more procedures are more likely to have received
more personalized help. The education level could also be reasonable since
doctors may have an easier time communicating with patients at the same
mental level as them; or that patients have a higher ability to access, under-
stand and apply information regarding their condition in general. The age
factor could be too complex, when considering predictors, to decide whether
it is reasonable or not; without relying on other sources.

7.3.3 General information help group response

As with the other multinomial response, this response yielded the summary in
Table 7.8 from the four GBM procedures. There are two candidate predictors
indicated to have much relative influence. They are the Age of a patient and
the number of procedures (Procedures) performed on a patient.

Again the boosting has found the most significant and valuable predictors.
Though, there were some predictors that did not have any relative influence
that was significant in some of the models fit, but they had low explanation
value in terms of reducing the DIC. Correlation did also hide potentially
different predictors, but from the models fit they were less important or had
less impact.

When deciding on the possible good and final models to predict the re-
sponse the idea about predictors needing to be satisfyingly significant (from
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Name of predictor xj: Proportion of sub-models significant:
Age 4/4
Procedures 4/4
DiagnosesICD 2/4
DiagnosesICPC 1/4
Services 1/4
TimeInHospital 1/4

Table 7.8: Summary of the four (GIH) logistic GBM subproblems.

section 7.3.1) had to be relaxed from 2/3 to 2/4. This relaxation was seem-
ingly necessary since the subcoefficients to each predictor were less significant.
Another interesting element that made itself truly apparent when fitting the
different models, was that the number of procedures were highly correlated
or confounding with the other predictors found to have relative influence.
Out of every predictor that was not deemed to have relative influence by the
GBMs, only ActiveTough has a significant effect. Though a possible replace-
ment of DiagnosesICPC with ActiveTough in the third model (Table 7.11)
did not affect the DIC enough, which only makes it worth to mention for
future references. I thus propose the final multinomial models, see Table 7.9,
7.10 and 7.11.

In model one (Table 7.9) and three (Table 7.11) the subcoefficients of
the number of procedures and number of diagnoses (DiagnosesICPC) that
reference category one and two were not significant. Therefore model one
(Table 7.9) has two coefficients that is not significant while model three
(Table 7.11) has four coefficients with the same lack of significance.
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Name of predictor xj: Estimate of βkj: CIL: CIU :

Age.4 −0.019*** −0.030 −0.009

Age.3 −0.025*** −0.035 −0.014

Age.2 −0.019*** −0.030 −0.008

Age.1 −0.013* −0.026 −4 · 10−4

Procedures.4 0.119*** 0.064 0.179

Procedures.3 0.095** 0.036 0.156
Procedures.2 0.054 −0.008 0.120
Procedures.1 0.057 −0.012 0.128

The credible intervals (CIL & CIU ) cover 95% of the distribution.
* Significant at a 0.05 level.
** Significant at a 0.01 level.
*** Significant at a 0.001 level.

Table 7.9: Model 1 (GIH) - containing the two predictor with the most
relative influence - DIC = 13478

Name of predictor xj: Estimate of βkj: CIL: CIU :

Age.4 −0.022*** −0.033 −0.012

Age.3 −0.026*** −0.037 −0.015

Age.2 −0.021*** −0.032 −0.009

Age.1 −0.015* −0.027 −0.001

DiagnosesICD.4 0.129*** 0.073 0.190

DiagnosesICD.3 0.092** 0.033 0.155

DiagnosesICD.2 0.066* 0.003 0.132

DiagnosesICD.1 0.072* 0.003 0.143

The credible intervals (CIL & CIU ) cover 95% of the distribution.
* Significant at a 0.05 level.
** Significant at a 0.01 level.
*** Significant at a 0.001 level.

Table 7.10: Model 2 (GIH) - with only significant predictors -
DIC = 13475
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Name of predictor xj: Estimate of βkj: CIL: CIU :

Age.4 −0.021*** −0.031 −0.010

Age.3 −0.026*** −0.036 −0.014

Age.2 −0.020*** −0.031 −0.008

Age.1 −0.014* −0.026 −7 · 10−4

Procedures.4 0.096*** 0.040 0.156

Procedures.3 0.078** 0.019 0.141
Procedures.2 0.045 −0.018 0.111
Procedures.1 0.052 −0.018 0.124

DiagnosesICPC.4 0.094*** 0.041 0.149

DiagnosesICPC.3 0.066* 0.010 0.123
DiagnosesICPC.2 0.041 −0.019 0.101
DiagnosesICPC.1 0.019 −0.048 0.088

The credible intervals (CIL & CIU ) cover 95% of the distribution.
* Significant at a 0.05 level.
** Significant at a 0.01 level.
*** Significant at a 0.001 level.

Table 7.11: Model 3 (GIH) - with the least relatively DIC value -
DIC = 13457
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In order to illustrate possible interpretations, we will take the unique
values from the predictors first appearance in the models from one to three
and calculate relative odds ratios, Table 7.12. This can be done without
much loss since the different coefficient estimates corresponding to the same
predictor are not that different between the models.

Name of predictor xj Relative odds ratios:
Age.4 0.981
Age.3 0.975
Age.2 0.981
Age.1 0.987
Procedures.4 1.126
Procedures.3 1.099
Procedures.2 1.055
Procedures.1 1.058
DiagnosesICD.4 1.137
DiagnosesICD.3 1.096
DiagnosesICD.2 1.068
DiagnosesICD.1 1.074
DiagnosesICPC.4 1.098
DiagnosesICPC.3 1.068
DiagnosesICPC.2 1.041
DiagnosesICPC.1 1.019

Table 7.12: (GIH) Relative odds ratios (1 unit increase), based on the
top-down coefficient estimates from model one to three.

7.3.4 Interpretation of relative odds ratios (GIH)

Again, basing my reasoning on the relative odds ratios calculated in Table
7.12, one could draw the following conclusions about the parameters:

• The age of the patients (Age) reduce the odds of receiving general
information help. This applies to all the subgroups.

• The remaining predictors in this case, DiagnosesICD, DiagnosesICPC
and Procedures, all affect the odds of receiving help positively and also
in an increasing fashion.

Most of these results do sound reasonable, as they are similar to the
measures regarding the personalized help group response. Though, due to a

82



7.4. COMMENTS AND CONCLUDING REMARKS

lot of correlation it is possible to find many different models which basically
could predict almost the same values. For instance since the number of
procedures appeared to correlate strongly with the number of ICD diagnoses
the first two models may in practice be extremely similar. It is interesting
that age is significant with this response as well, which might be an indicator
that the complexity introduced by age may be common.

7.4 Comments and concluding remarks

Comparing the results from the responses including the results from the lo-
gistic analysis in section 6.2, we can try to say something about the similarity
between the two questions the three responses were constructed from. Based
on the results it should then be safer to think that the multinomial responses
and logistic response do explain something rather different; in addition to
that they were from two uniquely constructed set of questions in the ques-
tionnaire. It becomes apparent by looking at the difference in predictors
significant and the sign at the corresponding coefficients between the two
analyses. The fact that there have been used different distributions may
speak against such a conclusion, but as already established the multinomial
and logistic distribution are not that different; when considering the differ-
ences between the most common distributions.

From the results in the two multinomial cases (section 7.3.1 and 7.3.3)
boosting did without a doubt find the most valuable or significant predictors
to use in that exact setting. The simplification by using K − 1 logistic dis-
tributed boosting instead of a single multinomial distributed boosting did for
the most part yield the desired result, but may have yielded a few variables
with relative influence that only would have been relevant within the actual
subproblem. It was noted that the boosting could have missed certain pre-
dictors that could be of interest, but again the explanation (DIC) value of
those were weaker than those chosen by the boosting. Those predictors not
noticed by the boosting procedure did tend to be correlated with other pre-
dictors that had more relative influence. It could or should be possible to find
these optional predictors by either using theoretical or empirical measures of
correlation.

Thus based on the empiric evidence from the previous cases analyzed we
could assume or conclude that boosting could in fact have potential to be
used to mine significant predictors with relative high certainty. As expected
the certainty became better the lower the learning rate and the accuracy of
the distribution, for instance when using a logistic distribution when there is
a true logistic problem present and not using the logistic distribution when
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the true distribution is multinomial. Of course many more regression cases
should be explored with boosting to better and further determine its accuracy
when used to mine predictors.
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Chapter 8

Patient trajectory analysis of
health care utilization

In this chapter the main goal is to apply the Markov model framework, and
use models to investigate patient trajectories. The two types of models which
we will be using are the discrete-time Markov chain models and the hidden
Markov models introduced in chapter 4. Discrete-time Markov chain models
are used to describe any system that can be contained within the model’s
restrictions, with regards to the Markov property and having a finite number
of states. Hidden Markov models are mostly used to model systems where
we have underlying information, missing or not, that is assumed to directly
affect an observed sequence of events or values. It is for example used within
cryptanalysis (Karlof and Wagner, 2003), speech recognition (Rabiner, 1989),
finance (Hassan and Nath, 2005), medicine (Ohlsson et al., 2001) and many
other areas. As the model has inherited restrictions from the discrete-time
Markov model, its applications do sometimes require generalizations of the
model. Ideally one or both of these models should be able to explain, without
further generalizations, a trajectory for a patient or trajectories for a popu-
lation of patients and be able to predict upcoming events in the trajectories.

8.1 Deciding on the finite and observable

states

In the analyses to be done, both the discrete-time Markov chain models and
the hidden Markov models have a finite state space. The states considered
here correspond to four groups of health care services, which can be seen to
reflect illness severity, urgency or cost. These four states are, again, summa-
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rized in Table 8.1

Symbol: Description: Urgency/cost priority:
IP Inpatient First
OP Outpatient Second
GP General practitioner Third
NO None of the others Fourth

Table 8.1: Overview of the four constructed states with description and
urgency.

The most urgent event group is IP or the inpatients that represent all
the health care events that require a patient to be admitted to a hospital.
Second we have the event OP or outpatients that represent all those that
receive outpatient care, for instance at polyclinics. Third is the GP event
and it represents all those who receive consultations at a general practitioner
or medical assistance of equivalent level. Last is the NO or None of the others
event, which is the event of not being in any of the other three events.

The detailed information about the preprocessing of the data, creation
of the patient trajectories and events in this analysis have been covered in
section 5.2.

8.2 Trajectory analysis using discrete-time

Markov chain

In this section we fit the discrete-time Markov chain model with states NO,
GP, OP and IP to the data. The initial distribution and the transition
probabilities are estimated by using the estimators in (4.4) – (4.7).

8.2.1 Estimated Markov chain model

Using the training set of chronic patient trajectories (section 5.2.2) in the
estimators, a transition probability matrix,

Â4×4 =


NO GP OP IP

NO 0.662 0.243 0.084 0.011
GP 0.361 0.476 0.140 0.023
OP 0.314 0.300 0.344 0.042
IP 0.150 0.310 0.268 0.272

 (8.1)
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a transition count matrix,

ÂC,4×4 =


NO GP OP IP

NO 96521 35459 12223 1592
GP 34745 45903 13475 2234
OP 13355 12767 14639 1780
IP 1156 2399 2070 2104

 (8.2)

an initial probability distribution vector and a stationary distribution vec-
tor was calculated. See Table 8.2 for the initial- and stationary distribution
estimates.

Distribution type/state: NO GP OP IP
Initial - π̂1 0.506 0.319 0.148 0.026
Stationary (ML) - π̂ 0.499 0.330 0.145 0.026
Stationary (Limit) - π̂ 0.499 0.330 0.145 0.026

Table 8.2: Overview of the initial distribution and the stationary
distribution measures, rounded up to three digits.

Regarding the robustness of the model and estimates, there is only a
slight difference between the maximum likelihood estimate and the limit
estimate, suggesting that they are both reliable in our case. Also, looking
at the counts of the different transitions (8.2) we can see that there should
be enough transitions between each state to provide a reliable estimate of
the transition probability matrix. As a simplification we have assumed that
the Markov property is valid, when it probably is not completely valid. We
assume this because the discrete-time Markov chain model is supposed to
serve as a simple outset and pave the way for the hidden Markov model.

8.2.2 Interpretation of the Markov chain model and
conclusions

The first thing to note about this model is that the initial distribution is quite
similar to the stationary distribution. This may imply that the Markov model
is initially stationary, but on the other hand it took at least six months for
the Markov process to converge; based on estimator (4.4). The patients def-
initely had some events before the time the data was gathered, thus it may
not be that far fetched to claim that the Markov model is stationary from
the first observed state.
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By looking at the transition probability matrix, Â4×4, and assuming that
the Markov property holds for our process, we can deduce how the current
state is going to affect the probability of entering another state. A rather
general remark that is possible to draw from this is how the severity or fi-
nancial cost of the current state affect the probability of entering a more or
less severe state. For instance the more severe a current state is, then the
more probable is it that the next state is also rather severe. On the other
side the less severe the current state is, the more probable is it that the
next state is less severe. Another observation is that the diagonal, Âjj for
j = 1, 2, 3, 4, carry the maximum probability value, three out of four times,
which means that a patient in a given state most likely remains in the same
state in the next month. The one exception is if the current state is IP,
in which the probability of not being admitted to a hospital again the next
month is 72.8%.

Using the transition matrix, we can easily calculate the expected time
in months, spent in a state given that a patient already is in that state,
E(Time in state j | Xcurrent = j). Using the geometric distribution and its
expectation together with the diagonal values of the transition matrix,

Ê(Time in state j | Xcurrent = j) =
1

1− Âjj

we then get the following estimated expectations

Ê(Time in state j | Xcurrent = j) = (2.959, 1.910, 1.525, 1.374).

If we round to the closest monthly integer we can thus say that a patient
is not expected to be at the hospital the next month, if already in state IP
that month. While a patient that has no need of health care at the current
month will be expected to not need it for the next two months. Lastly those
who receive help from a general practitioner or outpatient treatment will be
expected to receive the same type of help next month.

In general the transition matrix can be used to answer many questions
regarding the trajectories, especially it can be useful to calculate the most
probable sequence of states or patient trajectories. The sequences can be of
any length, but since this is a Markov chain model it will only be interesting
to check a short amount of the N most probable states after a unique initial
state. It is desired to keep the sequences short, or not long, since the Markov
property will always play a key role when calculating the transitions. For
example if we start in state j = 1, then when the process enters another
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state j 6= 1 we can instead look at the most probable states when beginning
in that other state. Table 8.3 provides a short excerpt of the most probable
sequences of states of length four, i.e. a quarter of a year into the future.

Starting state: Probability: Sequence of states:
NO = 1 0.145 1→ 1→ 1→ 1
NO = 1 0.053 1→ 1→ 1→ 2
NO = 1 0.038 1→ 1→ 2→ 2
NO = 1 0.029 1→ 1→ 2→ 1
NO = 1 0.029 1→ 2→ 1→ 1
GP = 2 0.052 2→ 1→ 1→ 1
GP = 2 0.038 2→ 2→ 1→ 1
GP = 2 0.036 2→ 2→ 2→ 2
GP = 2 0.027 2→ 2→ 2→ 1
GP = 2 0.019 2→ 1→ 1→ 2
OP = 3 0.020 3→ 1→ 1→ 1
OP = 3 0.010 3→ 2→ 1→ 1
OP = 3 0.010 3→ 3→ 1→ 1
OP = 3 0.010 3→ 2→ 2→ 2
OP = 3 0.007 3→ 2→ 2→ 1
IP = 4 0.002 4→ 2→ 1→ 1
IP = 4 0.002 4→ 2→ 2→ 2
IP = 4 0.002 4→ 1→ 1→ 1
IP = 4 0.001 4→ 3→ 1→ 1
IP = 4 0.001 4→ 2→ 2→ 1

Table 8.3: Overview of the five most probable sequences of length four,
when starting in the different states. NO = 1, GP = 2, OP = 3, IP = 4.

The stationary distribution also offers other interpretations than the tran-
sition matrix to further enrich the explanation of the patient trajectories.
Especially, the stationary distribution can be interpreted as the proportion
of time spent in the states or the probability of being in the states in the
long run. Table 8.2 illustrates that a patient is expected to spend about 50%
of the time in state NO, 33% in state GP and slightly less than 15% in state
OP. Finally, only two to three percent of the time is spent in state IP.

Since the stationary distribution provides limiting estimates of the prob-
ability to enter a state regardless of the current state, its probabilities can be
used with the binomial and multinomial distribution. By using, for instance,
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the binomial distribution we can calculate the probability of never entering
one of the states during a period of time. Table 8.4 provide the probabilities
of never entering a certain state for twelve months.

State: NO GP OP IP
Probability: 0.00025 0.008 0.153 0.729

Table 8.4: Overview of the probability to never enter a certain state for 12
months, calculated using the binomial distribution and stationary

distribution with its probabilities.

In conclusion, the discrete-time Markov chain model can be used to model
patient trajectories. Its strengths is that it can be estimated from 100%
known and accurate data. However, we have assumed that the Markov prop-
erty is valid, an assumption which is most likely not valid. It is easy to think
of a situation that breaches this property. An example could be that we have
a reference to a specialist from a doctor where it may take more than two
months to receive the specialist health service. Due to the requirement of the
Markov property, the discrete-time Markov chain model is not fit to be used
to predict future states. Even though prediction isn’t this model’s strongest
ability, it still has a way of providing useful information through patient tra-
jectory descriptions. In this section there have been a few examples of ways
the model can describe the trajectories for both patients and whole popula-
tions, but there are still more possible measurements left to be calculated;
depending on what is required to know. As such, at a lack of better options
the discrete-time Markov chain models can definitely be used to illustrate
tendencies of health service usage. Furthermore if we approximately know
the strain and stress the health services are put through, we can assume that
it will provide incentives to delegate more funds to those services.

8.3 Trajectory analysis using hidden

Markov model

This section presents another model from the Markov model framework,
since the discrete-time Markov chain model showed some promise with its
descriptions. Here, we will be using a hidden Markov model instead, whose
model assumptions are more valid compared to the previous analysis. Our
patient trajectory analysis will be in the partial-information scenario, and
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will use the four same states (NO, GP, OP and IP) as emission or observable
states. The patient trajectories extracted from the data, will thus in this case
represent observable sequences instead of Markov chain sequences. Working
in the partial-information scenario implies that we will have a hidden state
space of some order. The order of hidden states will be set to five, and it
is assumed by a professional that this number of unique hidden states can
provide sufficient complexity to explain, describe and predict the observed
states properly.

8.3.1 Trained hidden Markov model

In this analysis a hidden Markov model will be trained by using the Baum-
Welch algorithm (section 4.2.1). The hidden Markov model will be trained
by using a training set (section 5.2.2), containing 12714 patients with all 24
months of data. It is assumed that these patients in the training data are
representative for the others in this group of chronic patients. They should
be representative in such a fashion that the distribution of chronicity are
supposed to be the same within the training and test set. The optimal hidden
Markov model trained on the data, selected based on the best log-likelihood
value, has a transition probability matrix:

Â5×5 =



HS1 HS2 HS3 HS4 HS5

HS1 0.9504 0.0340 0.0102 0.0001 0.0053
HS2 0.0266 0.9378 0.0171 0.0115 0.0070
HS3 0.0337 0.0297 0.9058 0.0110 0.0198
HS4 0.0001 0.0290 0.0069 0.9418 0.0222
HS5 0.0269 0.0415 0.1610 0.1049 0.6657

. (8.3)

An emission probability matrix:

B̂4×5 =


HS1 HS2 HS3 HS4 HS5

NO 0.849 0.499 0.231 0.093 0.019
GP 0.105 0.433 0.233 0.745 0.149
OP 0.043 0.063 0.515 0.141 0.285
IP 0.003 0.006 0.021 0.021 0.547

. (8.4)

The ”HSX” label, in the matrices (8.3) and (8.4), represent the hidden
state number ”X”, and is provided to ease interpretation of the matrices.
Lastly an estimate of the initial/stationary distribution of the hidden states
is:

π̂ = (0.310, 0.341, 0.162, 0.156, 0.032). (8.5)
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This model is trained under the assumption that the sequences con-
structed are from a process that is stationary at the first point in time the
data covers, i.e. January 2012. This can be argued for as all patients have
existed and lived before the collection of the data, since they are all adults.
Estimates from the discrete-time Markov chain model analysis (Table 8.2)
also indicate that this can be a rather feasible assumption. The definition of
chronic illnesses backs up this assumptions as well, suggesting that a chronic
condition should be relatively unchanged or stable over a larger period of
time. Though different degrees of chronic illnesses may be plausible.

8.3.2 Interpretation of the hidden Markov model

Using the transition probability matrix (8.3) in combination with the emis-
sion probability matrix (8.4) we have the opportunity to calculate similar
estimates as with the discrete-time Markov chain model. We focus now on
other aspects which we did not achieve using only the Markov model. Before
anything else it is necessary to check what this hidden Markov model actu-
ally does tell us, or else we cannot really interpret or draw conclusions from
the model at all. We do know from section 5.2.1 the severity and how to
interpret the observable signal states, but how are we going to give meaning
to the hidden states since we are in a partial-information scenario?

One possibility is to interpret the hidden states as levels of chronic com-
plexity patients inhibit. This implies that the hidden states are representing
a complexity measure that have an effect on the health services a patient is
receiving or is given at the time.

Our inductive reasoning behind this interpretation is as follows. Know-
ing that the observable states have a degree of severity, we can then reason
backwards using only the emission probability matrix (8.4) to reach the in-
ductive conclusion. From element B̂11 in column one in the emission matrix,
patients in the hidden state one (HS1) will have a 85% chance of not receiv-
ing health care. If we look at the NO row we can see that it has the highest
probability in column one. This suggests that the hidden state one (HS1)
has the least severe level of chronicity. Patients in the second hidden state
(HS2), column two, has a greater chance of receiving health care, but overall
less chance than hidden state three, four and five. Following this logic it is
then reasonable to believe the hidden state three and four (HS3 and HS4)
describe about the same level of severity, though they describe different types
of chronic situations. Patients inhibiting hidden state five (HS5) at a time
will have more than a 50% chance of requiring hospital admission, making it
the most severe hidden state. As 80% of hospital admissions are due to emer-
gency, the hidden state five may represent chronic patients not being able to
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cope with recurring and worsening symptoms. As such, an apparently valid
interpretation is that we have five different groups or levels of chronic sever-
ity within the hidden states that are supposed to explain health service usage.

A property of the trained hidden Markov model is that the hidden states
can be interpreted to be relatively permanent. This can be seen from the
diagonal in the transition matrix (8.3), which is without doubt diagonally
dominant. The only case which can be called an exception is the most crit-
ical hidden state five (HS5). This hidden state has about a 33% chance
to move away from this state in the next month. It is still expected that
a patient changes the hidden state he or she inhibits at least once every
twentieth month. This property may also result in the model being slow to
register actual changes in the hidden state sequence, and subsequently in the
observed state sequences, when it is correct to notice a change. This will
most definitely yield inaccuracies for patients that in practice have rapidly
changing hidden states.

8.3.3 Prediction accuracy results

Applying the given model, a first aim is to predict future states of a patient
trajectory. Prediction was then performed according to section 4.2.3 while
using the hidden Markov model in (8.3) – (8.5). A simple max criterion was
used to select the most probable state from the resulting vector of proba-
bilities. To verify whether the model is representable and generalizable, the
model was tested on 67210 patients not included in training the model. As
we have access to a rather large amount of prior trajectory information per
patient it was of interest to use different lengths of prior data. The three
prediction cases primarily checked had prior information of length two, six
and twelve and a summary of the success chance can be seen in Table 8.5. It
is worthwhile to note that the number of prediction cases used to calculate
the mean success depend on the amount of prior information used, since we
only have 24 months of data.

Prior information length: Mean success:
2 0.594
6 0.604

12 0.605

Table 8.5: Summary of the prediction accuracy.
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On a side note it should be mentioned that a prediction test was also
performed on the patients that were used to train the model in section 8.3.1,
but then another similar model using less training data was utilised instead.
This prediction managed at worst 56% and at best 60% success, which is
interesting compared to the results in Table 8.5 as it suggests that the training
set is representative for the testing set or vice versa.

8.3.4 Conclusions about of the results

The model trained did get on average about 60% chance of success when
trying it out on the testing set. Compared to completely random selection
of four alternatives it is a rather significant improvement from 25% to 60%.
It is not entirely unexpected that the amount of prior information had little
effect considering that the Markov property is part of the model, but on the
other hand we do have the posterior probability which is conditioned on the
whole observed sequence from a patient. Thus, it is possible that the trained
model itself do play a part and that this non-necessity of long sequences of
prior information may be a case specific property unique to this model.

The accuracy test did not measure which unique patients that was pre-
dicted successfully with different prior information. This could imply that a
shorter amount of prior information predicted a certain group of patients cor-
rectly, while a larger amount of prior information predicted the same group
incorrectly, but another group correctly. All in all this is perhaps not that
important, as we simply need to have a model that can predict correct with
the least amount of failures. Though it could be important to be aware of
this possibility in the future, and in retrospect it is something that should
have been taken into account.

Another element to the prediction that is crucial to discuss is how the hid-
den Markov model tends to underestimate or predict a lot of false negatives,
see Tables 8.6 – 8.9 for the chosen example to illustrate the unfortunate,
but recurring trend when predicting. Of course the model does not only
give us false negatives, false positives are also present, but the amount of
false negatives clearly exceeds the number of false positives, see Table 8.7.
The large quantity of these failed predictions do provide some notion of how
problematic this issue is, but if we also look at the matrix of conditional
probabilities in Table 8.9 we can see how bad it is. For instance if we look
at the second, third and fourth columns, then we have respectively 57.9%,
76% and 90.1% chance of producing false negatives. To compare with the
chance of overestimating in the first, second and third columns we have the
respective probabilities to be 14.8%, 4.7% and 1.3%. Thus it is reasonable to
say that this model is heavily biased toward the less severe observable states,
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as the example is representative for the other prediction cases.

Number of successes: Success percentage:
39486 0.587

Table 8.6: Prediction excerpt example part 1/4 - Summary of successes.
Also illustrated by summing the diagonal in Table 8.8

Number of overestimates: Number of underestimates:
6175 21549

Table 8.7: Prediction excerpt example part 2/4 - Summary of the number
of over- and underestimates. These are also referred to as false positives
and false negatives. It is also illustrated by the off-diagonal in Table 8.8

A:NO A:GP A:OP A:IP
P:NO 28699 13284 3778 555
P:GP 4223 8596 3031 605
P:OP 711 977 2031 296
P:IP 55 89 120 160

Table 8.8: Prediction excerpt example part 3/4 - A count matrix describing
the number of times a state is predicted (rows) versus the number of times

a state is actually occurring (columns)

There are a few probable reasons as to why the model used in predicting
is this biased. One of them could be that there are too many chronic patients
that are too healthy compared to a less healthy minority. Another reason
could be that the model has too few hidden states. This second reason is
based on the fact that the transition probability matrix is diagonally dom-
inant. Since a patient has a rather high probability of entering the same
state, this could imply that each of the hidden states may include more than
one degree of complexity. A degree of complexity within the hidden states
that this hidden Markov model possibly hasn’t been able to take into account
with the number of unique hidden states being set equal to five. The fault
can also lie within the selection criterion post prediction, which was set to
be the maximum criterion. The selection criterion in the prediction can be

95



CHAPTER 8. PATIENT TRAJECTORY ANALYSIS OF HEALTH
CARE UTILIZATION

A:NO A:GP A:OP A:IP
P:NO 0.852 0.579 0.422 0.343
P:GP 0.125 0.375 0.338 0.374
P:OP 0.021 0.043 0.227 0.183
P:IP 0.002 0.004 0.013 0.099

Table 8.9: Prediction excerpt example part 4/4 - A probability matrix
describing the probability of predicting a state given the true state, i.e. the

columns sum to one

imprecise, since the maximum criterion does not take into consideration any
similar probability values or other probability values that are above a certain
threshold. Other smarter criteria than the maximum could then hypotheti-
cally be very desirable to use instead, though there is no apparently better
alternative than the maximum criterion at this point.

In summary, we have now found a hidden Markov model whose base
assumptions are not violated by the data at hand, which was the case with
the discrete-time Markov chain model. At the same time we have performed
prediction that had about 60% accuracy on average, an increase from the
theoretical random selection with four alternatives. The presented hidden
Markov model is not perfect, but it is better than the discrete-time Markov
chain model since we have the hidden states as a structural backbone to the
observations. The imperfections related to this model as of now are definitely
not impossible to handle, but they would require time and computational
resources to solve. Compared to the discrete-time Markov chain model, the
hidden Markov model has achieved an additional objective other than being
able to describe the patient trajectories. That additional goal is that it can
perform predictions while the model’s assumptions are sufficiently satisfied.
Though some tuning is still required and absolutely necessary before it is put
into practical situations, since it does have an unsatisfactory amount of failed
predictions. An interesting aspect resulting from this hidden Markov model
analysis is the interpretation and information gained from the hidden states.
A suggested interpretation with an inductive proof were provided, and it
is reasonable to believe as of now that those hidden states could be able to
serve a larger purpose than only being the underlying structure in the model.
Even though our analyses have shown that hidden Markov models are better
fit at modelling patient trajectories than discrete-time Markov chain models,
it would probably be wise to check more advanced models that relaxe the
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one-step dependence. Though, at a monthly level the hidden Markov model
is sufficient to analyse patient trajectories from a theoretical point of view.
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Chapter 9

Discussions and future work

9.1 Discussion of key points in the

regression analyses

Two different regression models, supplemented by boosted regression, were
applied on the aggregated data to find significant predictors. Some predictors
found to be significant were recurring between the models, but would tend
to have different interpretations. This difference in interpretation suggests
that the questions used as response-variables (S7 and S10) in the logistic
and multinomial regression do represent and capture different aspects of the
health service that was provided to the patients.

9.1.1 Significant logistic model predictors

The predictors that were deemed to have an increasing or decreasing effect
on the odds of being satisfied with the health care received were varied,
but often intuitive. Two predictors were unclear regarding why they should
be significant, and they were representing age (Age) and gender (Gender).
Being a man increases the odds of being satisfied, likewise higher age of a pa-
tient would increase the odds as well. Apparently age is a common and well
known factor for explaining the level of satisfaction, and satisfaction typically
increases with higher age (Rahmqvist, 2001; Thi et al., 2002; Cohen, 1996). A
slightly unusual choice to our age variable is that it is continuous rather than
grouped into groups of ages, but even such a choice yielded known results.
This could imply that if enough data is present, continuous age can be prefer-
able to age intervals in groups; in terms of degree of freedom. Rahmqvist

99



CHAPTER 9. DISCUSSIONS AND FUTURE WORK

(2001) found that gender did not correlate with satisfaction, but males were
somewhat more satisfied. While another study found men to have higher
odds of being more satisfied with health care than women, though not con-
sistently (Thi et al., 2002). These findings are in correspondence with ours,
since gender was not the most consistently significant predictor compared to
the others. Any differences between gender could for instance be attributed
to other underlying factors, for example differing expectations within groups
(Hsieh and Kagle, 1991) or group specific treatment, and it might have been
coincidental that we found it to be significant. Put shortly, whether gender
truly is significant is undecided.
The remaining significant predictors to this response have effects that are
more intuitive. For instance we found that not having experienced long last-
ing illness (NoLongTermSick) will increase the odds of being satisfied and
the same applies for never having experienced being debased (NoDebased).
It is reasonable that not having a long lasting illness affects this way, because
it implies that the health care services have succeeded at their job. On the
other hand having experienced being debased, bullied or harassed over a pe-
riod of time can affect a patient’s mental health for the worse (Hinduja and
Patchin, 2010). Mental health is previously found to correlate with satisfac-
tion, especially within psychiatric health services (Rahmqvist, 2001). As our
data only contain somatic care data and not psychiatric care data, mental
health factors can then be said to affect satisfaction levels even outside of
psychiatric health care.
Somewhat reasonably, and similarly to the effect of long lasting illness, the
number of unique diagnoses (DiagnosesICPC) on a patient did account neg-
atively on the odds of being satisfied. It could therefore be inferred that
frequent contact with the health service, perhaps due to unsuccessful treat-
ments or being attached to many new diagnoses, can reduce the odds of being
satisfied.
Lastly, similarly to the number of diagnoses, the worse a patient felt regard-
ing his or her own self perceived health (SelfRateHealth) the lesser the odds
of being satisfied. It is not unheard of that self perceived health affects sat-
isfaction with the health care (Hall et al., 1993; Thi et al., 2002). Different
practices by measuring self perceived health do on the other hand create
slightly differing ways of interpreting how self perceived health is affecting
satisfaction levels. With respect to how this covariate has been measured in
our data, such measured odds regarding self perceived health is not unrea-
sonable from a logical perspective. As there would definitely be fewer reasons
for a patient in general to be dissatisfied with the care received if the patient
is feeling well after a health care encounter.
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9.1.2 Significant multinomial model predictors

When looking for significant predictors with respect to the amount of per-
sonalized help received (TPH), five unique predictors were found. The odds
to receive more personalized help increased if a patient had higher educa-
tion (HigherEducation). This effect could be explained by that the ones with
higher education are more literate and thus are able to act with greater em-
powerment when being in contact with the health care services. Literacy
is related to the term health literacy, which is used to explain how able a
patient is in finding and utilising health care information in a beneficial way
(Nutbeam, 2000). However, being able to empower oneself is no guarantee
that the individual will and using odds to describe potential action of em-
powerment can be seen as appropriate.
The number of diagnoses (DiagnosesICPC) and number of procedures (Pro-
cedures) performed on a patient had about the same positive effect on the
odds of receiving more personalized help. Increased odds of help per diag-
nose or procedure do make sense since the patient in question is more likely
to have more contact with health personnel. If we also assume that patients
contact health services when they require the help.
Compared to when age had a positive effect on the odds of being satisfied,
here higher age does represent a decrease in odds of receiving more help.
With respect to age and the number of diagnoses, it is surprising that pa-
tients that are more likely to have received more personalized help is less
likely to be satisfied with the health care.
At last, we have that the absence of long lasting illness (NoLongTermSick)
does imply reduced odds of receiving more help. Logically this predictor
could in some cases mean that the patients have less procedures or diag-
noses, since they are less ill, and this type of odds could make sense in that
case.

In the last case we were looking for significant predictors that explain the
amount of general information help (GIH) received. Higher age did again
imply a decrease in the odds of receiving help. The remaining predictors
that described the number of procedures (Procedures) and diagnoeses (Di-
agnosesICPC and DiagnosesICD) all implied an increased odds of receiving
general information help. The odds would increase more the higher a value
of these covariate. These predictors can be argued to make sense as done
in the personalized help (TPH) model, since both models’ response stems
from S10. By using this logic though, it is worth noting that the education
level (HigherEducation) was not significant for the general information help
response variable. This can suggest that the two multinomial regression anal-
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yses did model sufficiently distinct responses to yield additional information.
We could for instance interpret this such that an individual is more likely
to receive personalized help than other types of help, if he or she has higher
education.
Similarly to receiving more personalized help, patients that are more likely to
receive general information help is less likely to be satisfied with the health
care. We’ve already established that the two response-variables (S7 and S10)
are describing two different aspects of health care, but from the analyses per-
formed there are not enough evidence to conclude more about any correlation
or relationship safely. Concluding further now would be to resort to specu-
lation. As such, further research on the connection between satisfaction and
help is encouraged.

9.1.3 Other remarks regarding the regression
analyses

Overall some of the significant predictors or effects could be found in other
studies where they have been found to influence satisfaction levels to a lesser
or greater amount. A few of them were also significant in explaining degree
of help received, but had often contradicting interpretations. On the other
hand there are studies reporting factors not found significant in our study,
or not even measured in our data at all.

Rosenheck et al. (1997) conducted a study in an inpatient environment
for mental health care and found that longer length of stay was linked with
greater levels of satisfaction. This length of stay measure should be compa-
rable to our TimeInHospital covariate, which we did not find to be significant
at all.

Another study found some support that if prior expectation of the pri-
mary care they were to receive were met, it would affect the level of satisfac-
tion (Linder-Pelz, 1982). Different groups of people may even have differing
expectations toward health services (Hsieh and Kagle, 1991). This suggests,
together with the effect of never having experienced being debased (NoDe-
based), that some psychological factors can play a role. Due to when the
questionnaire was sent out, it was not possible for this study to have a reli-
able prior expectation measure.

Even though education level wasn’t significantly affecting the satisfac-
tion levels, only degree of help, a meta-analysis by Hall and Dornan (1990)
found that less education gave greater satisfaction. This does not directly
contradict our findings, but rather it builds up under an idea about the re-
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lationship between satisfaction and the help received. The relationship that
greater satisfaction could be somewhat negatively correlated by how much
information or help a patient receives. Since we already have age and number
of diagnoses providing contradictory effects to support such a relationship.
NoLongTermSick is also common between the analyses and in each separate
analysis its effect makes sense, but between the analyses the covariate does
not contradict. It does not contradict as it both makes sense to need less in-
formation and personalized help and also be satisfied with the care received,
if a patient per definition haven’t had a long lasting illness.

To sum it up, these relationships are complicated, but we can argue that
there are indications of a possible negatively correlated connection between
the two quality measures. Further research is definitely required to determine
the link between satisfaction of health care and degree of help received. We
have also found both more known and unknown significant predictors. Here
the more known predictors are most definitely age and self perceived health,
while more unknown or unexpected predictors were for example NoDebased,
explaining mental health since we aren’t strictly in a psychiatric setting.

As a final note regarding the regression analyses, we should emphasis
the following: As most of the many studies are heterogeneous with regards
to location, size, method, sample, subgroups and predictors, it makes direct
comparison between their studies and our, difficult. Therefore our focus have
been on similar or dissimilar effects as it is manageable. Taking this into con-
sideration, it is remarkable that some predictors are recurrently significant
and with similar interpretation.

9.1.4 Comments about boosting regression predictors

From the few cases of boosted regression examined, there have been positive
results. The results do provide indications that this type of boosted regres-
sion definitely has the potential to serve as an automatic predictor mining
procedure for other more known standard regression models, for instance
within the generalized linear model framework. In one of the cases, boosted
regression was used to validate logistic regression, with success. While in the
remaining cases the boosted regression was used to select the predictors for
the two multinomial regression model frameworks, also with relative success.
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9.2 Discussion of key points in the

trajectory analyses

Initially, it was unclear what types of statistical models that could efficiently
explain patient trajectories, but here we have found indications that models
in the Markov model framework does appear to be justified. In the patient
trajectory analyses we used two different models within the Markov model
framework trying to model, describe and predict these patient trajectories.

9.2.1 Remarks about the discrete-time Markov chain
model

The presented discrete-time Markov chain model is a rather naive attempt at
modelling and describing the patient trajectories, due to the Markov prop-
erty’s one-step dependence assumption. Our estimated discrete-time Markov
chain model did provide many ways of describing the trajectories, more ways
than what is reasonable to include in this thesis. As such the model can
be used to illustrate tendencies in the health service usage by patients, and
serve as a source of information to aid administrative decision making.

9.2.2 Remarks about the hidden Markov model

Since the first model was able to describe the patient trajectories well, we
decided to also use the hidden Markov model on the same data. Due to sim-
ilarities between the two models, the hidden Markov model should inherit
the discrete-time Markov chain model’s ability to describe patient trajecto-
ries. From a theoretical and logical perspective this model can be assumed
to solve the problem of the one-step dependency. That is because the hidden
states possibly can model the dependency and other unknown necessary com-
plexities present in the data. The addition of the hidden states implies that
this hidden Markov model is more flexible than the discrete-time Markov
model, and it should as a consequence therefore fit better to our data. How
to interpret the hidden states were tried explained using inductive reasoning.
The current interpretation is that the hidden states do represent an index
or levels of chronicity, or sickness complexity that explains health service us-
age. However, this interpretation remains to be tested further in exploratory
research. Though, the possibility that we may have created such a health
index is quite interesting in itself, as the application of this objective measure
given enough data could provide real time estimates of the health in a pop-
ulation. The hidden Markov model was also used to predict the events one
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step into the future of patient trajectories. In terms of accuracy, the model
made a consistent guess 60% of the time, which is decent considering that a
completely random guess would in theory only have a 25% chance of success.
Such an increase in accuracy coupled with the fact that the model used is
not guaranteed to be the optimal model and that the model assumptions do
hold, suggests that a hidden Markov model in general could be fitted and
used in practice.

9.2.3 Other remarks regarding the given Markov
models

It is not the first time hidden Markov models have been used in a medical
setting. For example it has been used to describe disease trajectories or
progression (Guihenneuc-Jouyaux et al., 2000), since such measures can also
be discretised while retaining temporal properties. One of the studies even
found states that the model can be used on various sequences or strings with
codes of treatment (Ohlsson et al., 2001), similar to as we have done with
the patient trajectories.

In summary, it is reasonable to claim that we have been able to model,
describe, predict and perform analyses on patient trajectory data. Descrip-
tions of the patient trajectories have been these models’ strongest suit and
could prove to be useful on a population level in real life applications. Even
though the models cannot be used in practice to predict on an individual or
at a population level yet, the models presented in this thesis could inspire to
further research. Research that eventually would lead to models like these
to be used in practice when sufficient model verifications are complete.

Finally it could be wise to elaborate on a possible hypothetical issue if
such predictive models one day were to be applied in practice to help make
decisions in clinical domains. If this model’s directions are followed with
no regard to nuance by health personell, which could be the case, then the
model will enforce bias from itself with respect to future models. In other
words, the model may help construct patient trajectories that are similar
to the ones the current model is built upon. This can result in suboptimal
models that fail to learn or model critical information from observed patient
trajectories affected by predictions. If the model providing clinical decision
support is very biased, as our model in this thesis is, then the inevitable
bias reinforcement should be even worse. A possible delay of the problem
could be to divide the population of patients to be predicted by a model
into two or more mutually representative groups, where each group train a
model that is used to predict another group. Though this will only introduce
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indirect bias instead of a direct effect. A concrete fix to get rid of the auto
inflicted bias could be to use a small proportion of the population to train a
model and use it to predict trajectories for the remaining majority. The cost
of such an approach is that this smaller proportion can’t receive the same
level of care as the majority without compromising the predicting model to
some degree. Another and perhaps less unfair solution could be to change
the minority for instance every second year. That way it would be possible
to gather two years worth of unaffected data to train further models. There
will be no ethically correct answers among the few workarounds suggested, as
they could present tradeoffs related to who would live or die. In other words
we would have to choose between providing suboptimal and perhaps fatal
prediction for all patients or optimal prediction for a majority of patients at
a time. The implications of these tradeoffs will be proportionally related to
how accurate, widespread and integrated such decision support systems can
become in the future.

9.3 Future work

9.3.1 Pending aspects from the regression analyses

There was one element that really caught my interest when using boosted re-
gression to help validate standard regression. It was the fact that the boosted
regression almost always found the most significant predictors in the cases
that were examined. The number of cases examined were not many, thus
what was observed may as well have been completely random. Therefore
it would be utmost intriguing to perform many case studies, comparing the
boosted regression to the standard regression with generalized linear models.
By performing additional case studies it could be possible to figure out if
boosted regression can perform better than standard regression and whether
the boosted regression can be consistently used as an automatic mining pro-
cedure to select predictors for the known regressions. With the increasing
trend with larger sets of data, boosted regression could help speed up the
time it takes to perform regression and help scientists chose unorthodox pre-
dictors.
If we look away from the boosting aspect, we did also find indications of a
relationship between the two measuresments of quality. This connection or
possible correlation should definitely be researched further. As further insight
of these two covariates can determine if patients actually are more satisfied
with more personalized or general information help. Regression models can
for instance be utilized again, or other methods could be preferred.
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9.3.2 Next possible steps regarding patient
trajectories

In the patient trajectory analysis the hidden Markov model achieved in this
medical setting and thesis so far can be considered to be a conceptual proto-
type. Since there is definitely potential in the model to be used in practice,
but not directly as the model is as of yet. The next step would be to try
and validate the Markov models further in the setting of patient trajecto-
ries. Validation could for instance be to increase the success probability in
prediction, test on other similar data or patient groups, increase the number
of hidden states and perhaps also change the type of observable states. The
reason why one should change the four states NO, GP, OP and IP, is because
they may be too simplistic in practice.
If by some chance it is not possible to raise the success rate sufficiently to
use a hidden Markov model in practice, then the obvious next step is to
look into more advanced models than the hidden Markov model within the
Markov model framework. Further, if those cannot do any better we have
other models outside of the Markov model framework.

Clustering of the patient trajectories, either the hidden or observable se-
quences, while sustaining the time dependence is another future aspect that
is definitely worth checking out. It would be easier to cluster the observable
sequences, but the clustering of hidden state sequences can possibly increase
the insight about what the hidden states do actually represent. We propose
that the clustered groups could for instance be compared to other known
factors about the patients in those clusters. Knowing more precisely or ex-
actly what the hidden states explain would be a huge step towards being able
to use the hidden state sequences, per individual, as some sort of real time
population index. The population index could for example, as the interpre-
tation is now, describe the health level of possibly groups, regions or whole
countries of patients. This all relies on whether appropriate models can be
constructed.
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Chapter 10

Appendix

10.1 Other methods

This section will contain methods that is not of core importance, but still
have been utilized or mentioned in the thesis.

10.1.1 K-fold cross validation

The k in the term k-fold cross validation refers to how many equally sized
subsamples that are to be randomly created from the original data. These
subsamples are in turn changing being the k − 1 training data samples and
the one validation data sample. This results in k different combinations of
cross validation that can be used to make more accurate decisions about the
problem at hand. For example when in a regression setting this could mean
that the k different samples are used to make k models and equally many
fitted values. The fitted values in combination with the true observed values
may then be utilized to calculate the residual deviances.

10.1.2 Welch two sample t-test

Welch two sample t-test is as the name implies a t-test, but there are some
differences. The assumption about normality is kept, but the variances of the
two samples (lets call them sample one and two) are assumed to be unequal.
The t statistic is calculated similarly (assuming equal means)

t =
X̄1 − X̄2√
s21
n1

+
s22
n2

(10.1)
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The degree of freedom is then calculated by

ν =
(s2

1/n1 + s2
2/n2)2

s4
1/(n

2
1ν1) + s4

2/(n
2
2ν2)

(10.2)

Finally now one only needs to use the t-statistic and the calculated degrees
of freedom in a t-distribution to find a p-value.

10.1.3 Pearson’s chi-squared test

Pearson’s chi-squared test is often used on categorical data to either test for
goodness of fit or for independence. It is calculated as follows

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(10.3)

In (10.3) Oi is the observed frequency while Ei is the expected frequency.
Once χ2 is calculated and one knows the degree of freedom it can be compared
with the theoretical quantile and a p-value can be found yielding a conclusion.

10.1.4 Cramer’s V

Cramer’s V is used as a measure of association between nominal variables.
It can produce values from 0 to 1 which could be interpreted in the same
fashion one interprets the Pearson’s R2. It is calculated by

V =

√
χ2/N

(min(r, k)− 1)
(10.4)

Where N is the total number of observations, while r and k is the number
of categories in each respective nominal variable. Lastly χ2 is calculated by
using the Pearson’s chi-squared test (section 10.1.3) and inputting the two
groups.

10.1.5 Viterbi algorithm

The Viterbi algorithm is a tool that can be used with hidden Markov models.
It is used to find the overall most probable sequence of hidden states of
length N , XN , given a sequence of observations of equal length, SN . Also
a complete hidden Markov model has to be specified to make the algorithm
function. The algorithm is based on dynamic programming which does not
guarantee a 100% that the most probable path is found, but it should be a
decent enough estimate to consider.
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Viterbi(SN) = arg maxXN
P (XN | SN) (10.5)

From a general perspective equation (10.5) should show how the algo-
rithm functions in concept, but the step by step recursion and iteration often
present in dynamic programming is left out.

117



CHAPTER 10. APPENDIX

10.2 Attachments

This section will contain a few of the many documents that have been a
foundation for my work. Only the most important documents are included,
i.e. those that help understand the raw interpretation of variables in the
analyses from chapter 6 and 7.

10.2.1 Variable translation table

As new variable names have been constructed to ease the interpretation of
the analyses, Table 10.1 will contain their corresponding translations. As
such, their original names with corresponding values and descriptions in the
attachments are accessible.
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Original name: New name:
PersAge2013 Age
ErMann PID korr Gender
N TOT KONT Services
LOS TOT TimeInHospital
N TYPE TypeServices
N RE Readmissions
N DEPT Departments
N WARD Wards
N PROC Procedures
N DIA DiagnosesICD
N KAT CategoriesICD
N KAP ChaptersICD
N ICPC DiagnosesICPC
N ICPC KAP ChaptersICPC
S1 SelfRateHealth
S4A NoLongTermSick
S11 Education
S12 Occupation
S14 1 LightExercise
S14 2 ToughExercise
S15 Smoking
S16 Alcohol
S17 NoDebased
S18 HasSupport
S19 1 Income

Table 10.1: Variable name translation table - For accessing information in
the enclosed documents.
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10.2.2 Part 1 of questionnaire used and available
interpretations
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Forskningsprosjekt relatert til samhandlingsreformen i helsesektoren

Evaluering av selvopplevde helsetjenester

Kode fra invitasjonsbrev:

PAsTAs http://pasient.idi.ntnu.no/Pastas-1.0/

1 of 1 18.02.2014 15:30

Spørreskjema om helsetjenester du har mottatt 
i 2012 og 2013

Fordi vi skal spørre om helsetjenester du har mottatt, får du tilsendt to ting
1)	 Et gult ark med en oversikt over dine helsetjenester i 2012-2013 (tjenester for psykisk helse ol er ikke med)
2)	 Dette spørreskjema som vi vil be deg svare på og sende tilbake i vedlagte svarkonvolutt (portoen er betalt)

Dersom du ikke har svart innen 2 uker, vil du få en påminnelse i posten.

1. Stort sett, vil du si at din helse er? 	
 
Utmerket........................................................................

Meget god......................................................................

God.................................................................................

Nokså god......................................................................

Dårlig.............................................................................

2. Hvilke utsagn passer best på din helsetilstand i dag? 	
 
Å gå (sett ett kryss)

Jeg har ingen problemer med å gå omkring................

Jeg har litt problemer med å gå omkring.....................

Jeg er sengeliggende....................................................

 
Å stelle meg selv (sett ett kryss)

Jeg har ingen problemer med personlig stell..............

Jeg har litt problemer med å vaske meg eller kle meg

Jeg er ute av stand til å vaske meg eller kle meg.........

 
Vanlige gjøremål (for eksempel arbeid, studier, husarbeid,  

familie- eller fritidsaktiviteter) (sett ett kryss)

Jeg har ingen problemer med å utføre mine  
vanlige gjøremål............................................................

Jeg har litt problemer med å utføre mine  
vanlige gjøremål............................................................

Jeg er ute av stand til å utføre mine vanlige gjøremål.

 
Smerte / ubehag (sett ett kryss)

Jeg har verken smerter eller ubehag...........................

Jeg har moderat smerte eller ubehag..........................

Jeg har sterk smerte eller ubehag...............................

 
Angst / depresjon (sett ett kryss)

Jeg er verken engstelig eller deprimert.......................

Jeg er noe engstelig eller deprimert............................

Jeg er svært engstelig eller deprimert.........................

3. Alt i alt – hvordan er din evne til å ta vare på din egen helse nå?	
 
Utmerket........................................................................

Meget god......................................................................

God.................................................................................

Nokså god......................................................................

Dårlig.............................................................................

4a. Har du noen langvarig sykdom, skade eller lidelse av fysisk 
eller psykisk art som gjør det vanskelig for deg å fungere i 
dagliglivet (Med langvarig menes at det har vart, eller vil vare i 
minst 1 år)? (sett ett kryss)
	
Ja -> Svar på spørsmål 4b og 4c...................................

Nei -> Gå til neste spørsmål (nr 5)................................

		
4b. Hvor lenge har du levd med tilstand(er) som gjør det 
vanskelig for deg å fungere i ditt daglige liv? (sett ett kryss)
	
Hele livet / siden barndommen...............................

I mer enn ett år........................................................

Mindre enn ett år.....................................................

Usikker / vet ikke.....................................................

4c. Hvordan tror du selv du vil fungere i dagliglivet  
om ett år fra nå? (sett ett kryss)

Frisk, tilbake til normal funksjon............................

Bedring av funksjon, men ikke frisk........................

Uendret funksjon.....................................................

Usikker / vet ikke.....................................................

5. Når det skal gjøres valg om den behandlingen du skal ha, 
hva foretrekker du? (sett ett kryss)
	
Foretrekker å ta beslutningen selv................................

Foretrekker at legen tar beslutningen..........................

Foretrekker at legen og jeg tar  
beslutningen sammen...................................................
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7. Tenk på alle helsetjenestene du har hatt kontakt med i 2012 og 2013. Hvor enig eller uenig er du i følgende utsagn?  

(Sett ett kryss for hver linje) 	
Helt 

uenig
Nokså 
uenig

Hverken 
eller

Nokså 
enig

Helt 
enig

Ikke 
aktuelt

Jeg er alt i alt godt fornøyd med de(n) helsetjenesten(e) jeg har 
mottatt.............................................................................................

Helsearbeiderne fra forskjellige tjenester har samarbeidet godt  
med hverandre.................................................................................

Helsearbeiderne jeg har møtt har vært opptatt av å hjelpe meg  
med det som er viktigst for meg.....................................................

Helsearbeiderne jeg har møtt har IKKE vært godt informert om  
min helse.........................................................................................

Helsearbeiderne jeg har møtt har forberedt meg godt på det  
som skulle skje videre med meg.....................................................

Helsearbeiderne jeg har møtt har IKKE kjent til mine behov og  
verdier..............................................................................................

Helsearbeiderne jeg har møtt har gitt meg motstridende råd.......

Helsearbeiderne jeg har møtt har gitt meg riktig behandling.......

6. Under står noen utsagn som folk av og til bruker når de snakker om helsen sin. Marker i hvor stor grad du er enig eller uenig med 
hvert utsagn ved å sette et kryss ved det svaret du mener passer for deg.  

Svaret ditt skal være det du mener og ikke hva du tror legen eller andre ønsker at du skal svare. Hvis utsagnet ikke gjelder for deg kan 

du krysse av for “Ikke aktuelt” (sett ett kryss for hver linje). 	
Helt 

uenig
Nokså 
uenig

Nokså 
enig

Helt 
enig

Ikke 
aktuelt

Når alt kommer til alt er jeg selv ansvarlig for å ta hånd om min egen  
helse..................................................................................................................

Det aller viktigste for min egen helse og funksjonsevne er at jeg tar aktiv  
del i behandlingen.............................................................................................

Jeg er sikker på at jeg kan gjøre det som er nødvendig for å forebygge 
 eller redusere symptomer eller problemer som skyldes min helsetilstand..

Jeg vet hvordan de forskjellige medisinene jeg har fått foreskrevet skal  
virke...................................................................................................................

Jeg vet når jeg trenger medisinsk hjelp for et helseproblem og når jeg kan  
ta hånd om det selv...........................................................................................

Jeg er trygg nok til å kunne ta opp det jeg ønsker, selv om helsepersonell  
ikke spør............................................................................................................

Jeg er sikker på at jeg kan gjennomføre den foreskrevne medisinske  
behandlingen hjemme......................................................................................

Jeg forstår både hva helseproblemene mine dreier seg om og årsaken  
til dem................................................................................................................

Jeg vet om de ulike behandlingsmuligheter for min helsetilstand..................

Jeg har opprettholdt de endringer i livsstil som jeg har gjort for helsens  
skyld...................................................................................................................

Jeg vet hvordan jeg skal forebygge forverring av min helsetilstand................

Jeg kan finne løsninger når det oppstår nye situasjoner eller problemer  
med min helsetilstand.......................................................................................
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8. Vil du si at din funksjon er ikke, litt, middels eller mye nedsatt? (sett ett kryss for hver linje).

Ikke Litt Middels Mye

Er bevegelseshemmet............................................................................

Har nedsatt syn.......................................................................................

Har nedsatt hørsel..................................................................................

Hemmet pga. kroppslig sykdom.............................................................

Hemmet pga psykiske plager.................................................................

Skriv inn bokstaven for den eller de tjenestene som best har lagt til rette for:   Skriv inn tjeneste-bokstav fra det gule arket

Eksempel på utfylling: at du skulle forstå dine helseproblem(er).............................

at du skulle forstå dine helseprobleme(er).............................................................

å lytte til hva som betyr mest for deg når det gjelder dine  
helseproblem(er)......................................................................................................

at du selv kunne fortelle om problemer eller bivirkninger av  
medisinene dine......................................................................................................

å informere deg om hva som var planlagt at skulle skje videre med dine 
helseproblem(er)......................................................................................................

å ta hensyn til hva som var viktigst for deg, når det ble bestemt hva som skulle 
gjøres videre med dine helseproblem(er)..............................................................

å gi deg råd for hvordan du kunne ta vare på din egen helse................................

å foreslå at du skulle delta på kurs eller i grupper som er relevant for helsa di..

å sette mål sammen med deg for kosthold og/eller mosjon.................................

å hjelpe dine nærmeste pårørende med problemer knyttet til dine helse- 
problem(er)...............................................................................................................

å hjelpe med å løse økonomiske følger av dine helseproblem(er)........................

CA

Se det gule arket -  DEL A Dine helsetjenester 

9. Er framstillingen av tjenester på det gule arket riktig?  
Tjenester innenfor psykisk helse og rus er ikke tatt med og mangler derfor for alle (Sett ett eller flere kryss)

Ja. Den ser riktig ut...............................................................................................................................................................

Delvis rett, men noen tjenester mangler..............................................................................................................................

Delvis rett, men noen tjenester har jeg IKKE har brukt.........................................................................................................

Nei – alt er feil.......................................................................................................................................................................

Vet ikke – husker ikke...........................................................................................................................................................

....................................................................................................................................

10. Hvilke tjenester hjalp deg med følgende utfordringer?

Hvis feil, skriv inn Tjenestebokstav for de tjenestetypene du IKKE har mottatt
 Skriv inn Tjenestebokstav fra det gule arket

In
ge

n 
av

  
tje

ne
st

en
e
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11. Hvilken utdanning er den høyeste du har fullført?  
(sett ett kryss)
	
Grunnskole, framhaldsskole,  
folkehøgskole.................................................................

Realskole, middelskole, yrkesskole..............................

Artium, økonomisk gymnas, allmennfaglig  
retning i videregående skole.........................................

Høgskole/universitet, mindre enn 4 år..........................

Høgskole/universitet, 4 år eller mer.............................

12. Hvilken av følgende er mest dekkende for din hovedaktivi-
tet? (sett ett kryss)	

Ansatt eller selvstendig næringsdrivende ...................

Alderspensjonist ...........................................................

Annen pensjon / trygd....................................................

Hjemmeværende ..........................................................

Student ..........................................................................

Arbeidssøker .................................................................

13. Hvem bor du sammen med? (sett ett eller flere kryss)	

Bor alene........................................................................

Partner eller ektefelle...................................................

Andre under 18 år .........................................................

Andre over 18 år.............................................................

14. Hvordan har din fysiske aktivitet i FRITIDEN vært det siste 
året? (Tenk deg et gjennomsnitt for året. Arbeidsvei regnes som 
fritid)

Lett aktivitet (ikke svett/andpusten)? (sett ett kryss)
 
Ingen..............................................................................

Under 1time pr uke........................................................

1–2 timer per uke..........................................................

3 timer eller mer pr uke................................................

Hard fysisk aktivitet (svett/andpusten? (sett ett kryss)

Ingen..............................................................................

Under 1t pr uke..............................................................

1–2 timer per uke..........................................................

3 timer eller mer pr uke................................................

15. Røyker du? (sett ett kryss)	

Nei, jeg har aldri røykt...................................................

Nei, jeg har sluttet å røyke............................................

Ja, sigaretter av og til (fest/ferie, ikke daglig) .............

Ja, sigarer/sigarillos/pipe av og til ...............................

Ja, sigaretter daglig ......................................................

Ja, sigarer/sigarillos/pipe daglig..................................

16. Hvor ofte drikker du 5 glass eller mer av øl, vin eller 
brennevin ved samme anledning? (sett ett kryss) 	

Daglig.............................................................................

Ukentlig..........................................................................

Månedlig........................................................................

Sjeldnere........................................................................

Aldri................................................................................

17. Har du noen gang i livet opplevd at noen over lengre tid har 
forsøkt å kue, fornedre eller ydmyke deg? (sett ett kryss)

Ja....................................................................................

Nei..................................................................................

18. Har du nok familie/ venner som kan gi deg hjelp når du 
trenger det? (sett ett kryss)	

Ja....................................................................................

Nei..................................................................................

19. Hva er husstandens samlede brutto årsinntekt? (sett ett 
kryss)	

Under 250.000,-.............................................................

250.000,- til 500.000,-....................................................

500.000,- til 750.000,-....................................................

750.000,- til 1 million.....................................................

Over 1 million.................................................................

 
Hvem fyller ut spørreskjemaet? (Sett ett kryss)

Pasienten selv................................................................

Noen andre på vegne av pasienten  
(Pårørende, verge el).....................................................
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Hoved	(første	spørreskjema)	-	DEL	1	
	
Variabelnavn	 Spørsmål	 Verdier	/	svaralternativ	
NR	 Stedskode	 	
UTFYLT	 Hvem	fyller	ut	spørreskjemaet?	 1=	Pasienten	selv	

2=	Noen	andre	på	vegne	av	
pasienten	
(Pårørende,	verge	el)	

S3	 Alt	i	alt	–	hvordan	er	din	evne	til	å	ta	vare	på	din	
egen	helse	nå?	

1=	Utmerket	
2=	Meget	god	
3=	God	
4=	Nokså	god	
5=	Dårlig	

S1	 Stort	sett,	vil	du	si	at	din	helse	er?	 1=	Utmerket	
2=	Meget	god	
3=	God	
4=	Nokså	god	
5=	Dårlig	

S2_1	 Hvilke	utsagn	passer	best	på	din	helsetilstand	i	
dag?	Å	gå	

1=	Jeg	har	ingen	problemer	
med	å	gå	omkring	
2=	Jeg	har	litt	problemer	med	
å	gå	omkring	
3=	Jeg	er	sengeliggende	

S4A	 Har	du	noen	langvarig	sykdom,	skade	eller	lidelse	
av	fysisk	eller	psykisk	art	som	gjør	det	vanskelig	
for	deg	å	fungere	i	dagliglivet	(Med	langvarig	
menes	at	det	har	vart,	eller	vil	vare	i	minst	1	år)?	

1=	Ja	->	Svar	på	spørsmål	4b	
og	4c	
2=	Nei	->	Gå	til	neste	
spørsmål	(nr	5)	

S2_2	 Hvilke	utsagn	passer	best	på	din	helsetilstand	i	
dag?	Å	stelle	meg	selv	

1=	Jeg	har	ingen	problemer	
med	personlig	stell	
2=	Jeg	har	litt	problemer	med	
å	vaske	meg	eller	kle	meg	
3=	Jeg	er	ute	av	stand	til	å	
vaske	meg	eller	kle	meg	

S4B	 Hvor	lenge	har	du	levd	med	tilstand(er)	som	gjør	
det	vanskelig	for	deg	å	fungere	i	ditt	daglige	liv?	

1=	Hele	livet	/	siden	
barndommen	
2=	I	mer	enn	ett	år	
3=	Mindre	enn	ett	år	
4=	Usikker	/	vet	ikke	

S2_3	 Hvilke	utsagn	passer	best	på	din	helsetilstand	i	
dag?	Vanlige	gjøremål	(for	eksempel	arbeid,	
studier,	husarbeid,	familie-	eller	fritidsaktiviteter)	

1=	Jeg	har	ingen	problemer	
med	å	utføre	mine	vanlige	
gjøremål	
2=	Jeg	har	litt	problemer	med	
å	utføre	mine	vanlige	
gjøremål	
3=	Jeg	er	ute	av	stand	til	å	
utføre	mine	vanlige	gjøremål	

S4C	 Hvordan	tror	du	selv	du	vil	fungere	i	dagliglivet	om	
ett	år	fra	nå?	

1=	Frisk,	tilbake	til	normal	
funksjon	
2=	Bedring	av	funksjon,	men	
ikke	frisk	



3=	Uendret	funksjon	
4=	Dårligere	funksjon	
5=	Usikker	/	vet	ikke	

S2_4	 Hvilke	utsagn	passer	best	på	din	helsetilstand	i	
dag?	Smerte	/	ubehag	

1=	Jeg	har	verken	smerter	
eller	ubehag	
2=	Jeg	har	moderat	smerte	
eller	ubehag	
3=	Jeg	har	sterk	smerte	eller	
ubehag	

S5	 Når	det	skal	gjøres	valg	om	den	behandlingen	du	
skal	ha,	hva	foretrekker	du?	

1=	Foretrekker	å	ta	
beslutningen	selv	
2=	Foretrekker	at	legen	tar	
beslutningen	
3=	Foretrekker	at	legen	og	jeg	
tar	beslutningen	sammen	

S2_5	 Hvilke	utsagn	passer	best	på	din	helsetilstand	i	
dag?	Angst	/	depresjon	

1=	Jeg	er	verken	engstelig	
eller	deprimert	
2=	Jeg	er	noe	engstelig	eller	
deprimert	
3=	Jeg	er	svært	engstelig	eller	
deprimert	

S6_1	 Når	alt	kommer	til	alt	er	jeg	selv	ansvarlig	for	å	ta	
hånd	om	min	egen	helse	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_2	 Det	aller	viktigste	for	min	egen	helse	og	
funksjonsevne	er	at	jeg	tar	aktiv	del	i	
behandlingen	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_3	 Jeg	er	sikker	på	at	jeg	kan	gjøre	det	som	er	
nødvendig	for	å	forebygge	eller	redusere	
symptomer	eller	problemer	som	skyldes	min	
helsetilstand	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_4	 Jeg	vet	hvordan	de	forskjellige	medisinene	jeg	har	
fått	foreskrevet	skal	virke	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_5	 Jeg	vet	når	jeg	trenger	medisinsk	hjelp	for	et	
helseproblem	og	når	jeg	kan	ta	hånd	om	det	selv	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_6	 Jeg	er	trygg	nok	til	å	kunne	ta	opp	det	jeg	ønsker,	
selv	om	helsepersonell	ikke	spør	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	



S6_7	 Jeg	er	sikker	på	at	jeg	kan	gjennomføre	den	
foreskrevne	medisinske	behandlingen	hjemme	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_8	 Jeg	forstår	både	hva	helseproblemene	mine	dreier	
seg	om	og	årsaken	til	dem	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_9	 Jeg	vet	om	de	ulike	behandlingsmuligheter	for	min	
helsetilstand	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_10	 Jeg	har	opprettholdt	de	endringer	i	livsstil	som	jeg	
har	gjort	for	helsens	skyld	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_11	 Jeg	vet	hvordan	jeg	skal	forebygge	forverring	av	
min	helsetilstand	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S6_12	 Jeg	kan	finne	løsninger	når	det	oppstår	nye	
situasjoner	eller	problemer	med	min	helsetilstand	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Nokså	enig	
4=	Helt	enig	
5=	Ikke	aktuelt	

S7_1	 Jeg	er	alt	i	alt	godt	fornøyd	med	de(n)	
helsetjenesten(e)	jeg	har	mottatt	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_2	 Helsearbeiderne	fra	forskjellige	tjenester	har	
samarbeidet	godt	med	hverandre	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_3	 Helsearbeiderne	jeg	har	møtt	har	vært	opptatt	av	
å	hjelpe	meg	med	det	som	er	viktigst	for	meg	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_4	 Helsearbeiderne	jeg	har	møtt	har	IKKE	vært	godt	
informert	om	min	helse	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	



4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_5	 Helsearbeiderne	jeg	har	møtt	har	forberedt	meg	
godt	på	det	som	skulle	skje	videre	med	meg	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_6	 Helsearbeiderne	jeg	har	møtt	har	IKKE	kjent	til	
mine	behov	og	verdier	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_7	 Helsearbeiderne	jeg	har	møtt	har	gitt	meg	
motstridende	råd	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S7_8	 Helsearbeiderne	jeg	har	møtt	har	gitt	meg	riktig	
behandling	

1=	Helt	uenig	
2=	Nokså	uenig	
3=	Hverken	eller	
4=	Nokså	enig	
5=	Helt	enig	
6=	Ikke	aktuelt	

S8_1	 Er	bevegelseshemmet	 1=	Ikke	
2=	Litt	
3=	Middels	
4=	Mye	

S8_2	 Har	nedsatt	syn	 1=	Ikke	
2=	Litt	
3=	Middels	
4=	Mye	

S8_3	 Har	nedsatt	hørsel	 1=	Ikke	
2=	Litt	
3=	Middels	
4=	Mye	

S8_4	 Hemmet	pga.	kroppslig	sykdom	 1=	Ikke	
2=	Litt	
3=	Middels	
4=	Mye	

S8_5	 Hemmet	pga	psykiske	plager	 1=	Ikke	
2=	Litt	
3=	Middels	
4=	Mye	

S15	 Røyker	du?	 1=	Nei,	jeg	har	aldri	røykt	
2=	Nei,	jeg	har	sluttet	å	røyke	
3=	Ja,	sigaretter	av	og	til	
(fest/ferie,	ikke	daglig)		



4=	Ja,	sigarer/sigarillos/pipe	
av	og	til		
5=	Ja,	sigaretter	daglig		
6=	Ja,	sigarer/sigarillos/pipe	
daglig	

S11	 Hvilken	utdanning	er	den	høyeste	du	har	fullført?	 1=	Grunnskole,	
framhaldsskole,	
folkehøgskole	
2=	Realskole,	middelskole,	
yrkesskole	
3=	Artium,	økonomisk	
gymnas,	allmennfaglig	retning	
i	videregående	skole	
4=	Høgskole/universitet,	
mindre	enn	4	år	
5=	Høgskole/universitet,	4	år	
eller	mer	

S16	 Hvor	ofte	drikker	du	5	glass	eller	mer	av	øl,	vin	
eller	brennevin	ved	samme	anledning?	

1=	Daglig	
2=	Ukentlig	
3=	Månedlig	
4=	Sjeldnere	
5=	Aldri	

S12	 Hvilken	av	følgende	er	mest	dekkende	for	din	
hovedaktivitet?	

1=	Ansatt	eller	selvstendig	
næringsdrivende		
2=	Alderspensjonist		
3=	Annen	pensjon	/	trygd	
4=	Hjemmeværende		
5=	Student		
6=	Arbeidssøker	

S17	 Har	du	noen	gang	i	livet	opplevd	at	noen	over	
lengre	tid	har	forsøkt	å	kue,	fornedre	eller	ydmyke	
deg?	

1=	Ja	
2=	Nei	

S13	 Hvem	bor	du	sammen	med?	 alene=	Bor	alene	
partner=		Partner	eller	
ektefelle	
under18=	Andre	under	18	
over18=	Andre	over	18	

ALENE	 Hvem	bor	du	sammen	med?	 0=	ikke	avkrysset	
1=	Bor	alene	

PARTNER	 Hvem	bor	du	sammen	med?	 0=	ikke	avkrysset	
1=	Partner	eller	ektefelle	

UNDER18	 Hvem	bor	du	sammen	med?	 0=	ikke	avkrysset	
1=	Andre	under	18	

OVER18	 Hvem	bor	du	sammen	med?	 0=	ikke	avkrysset	
1=	Andre	over	18	

S18	 Har	du	nok	familie/	venner	som	kan	gi	deg	hjelp	
når	du	trenger	det?	

1=	Ja	
2=	Nei	

S19_1	 Hva	er	husstandens	samlede	brutto	årsinntekt?	 1=	Under	250.000,-	
2=	250.000,-	til	500.000,-	
3=	500.000,-	til	750.000,-	
4=	750.000,-	til	1	million	



5=	Over	1	million	
S14_1	 Hvordan	har	din	fysiske	aktivitet	i	FRITIDEN	vært	

det	siste	året?	(Tenk	deg	et	gjennomsnitt	for	året.	
Arbeidsvei	regnes	som	fritid)	
Lett	aktivitet	(ikke	svett/andpusten)?	

1=	Ingen	
2=	Under	1time	pr	uke	
3=	1–2	timer	per	uke	
4=	3	timer	eller	mer	pr	uke	

S14_2	 Hvordan	har	din	fysiske	aktivitet	i	FRITIDEN	vært	
det	siste	året?	
Hard	fysisk	aktivitet	(svett/andpusten?	

1=	Ingen	
2=	Under	1t	pr	uke	
3=	1–2	timer	per	uke	
4=	3	timer	eller	mer	pr	uke	

	



10.2. ATTACHMENTS

10.2.3 Raw aggregated data variable descriptions
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CO
U
N
T.11	

Antall	øhj	
innleggelser	

Hastegrad=1(øhj)	O
m
sorgsnivå=1(innl),	Antall	basert	på	

telling	av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
CO

U
N
T.12	

Antall	øhj	
dagbehandling	

Hastegrad=1(øhj)	O
m
sorgsnivå=2(dag),	Antall	basert	på	

telling	av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
CO

U
N
T.13	

Antall	øhj	
poliklinikk	

Hastegrad=1(øhj)	O
m
sorgsnivå=3(pol),	Antall	basert	på	

telling	av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
CO

U
N
T.21	

Antall	elektive	
innleggelser	

Hastegrad=2(el)	O
m
sorgsnivå=1(innl),	Antall	basert	på	telling	

av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	



innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
CO

U
N
T.22	

Antall	elektiv	
dagbehandling	

Hastegrad=2(el)	O
m
sorgsnivå=2(dag),	Antall	basert	på	telling	

av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
CO

U
N
T.23	

Antall	elektiv	
poliklinikk	

Hastegrad=2(el)	O
m
sorgsnivå=3(pol),	Antall	basert	på	telling	

av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
N
_Ø

HJ_KO
N
T	

Antall	ø-
hjelpskontakter	

Sum
	hastegrad=1,	Antall	basert	på	telling	av	aggregerte	

sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
N
_EL_KO

N
T	

Antall	elektive	
kontakter	

Sum
	hastegrad=2,	Antall	basert	på	telling	av	aggregerte	

sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	



m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
N
_TO

T_KO
N
T	

Totalt	antall	
kontakter	

Sum
	alle	kontakter,	Antall	basert	på	telling	av	aggregerte	

sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	
N
_TYPE	

Antall	ulike	
kontakttyper	

Antallet	ulike	kontakttyper	(CO
U
N
T.11/CO

U
N
T.12/…

)	
registrert	per	PID.	M

aks	6	forskjellige	kontakttyper.	
Antall	basert	på	telling	av	aggregerte	sykehusopphold.	
Sykehusopphold	består	av	overlappende	episoder	hvor	
m
inst	én	av	episodene	er	en	innleggelse.	

Siden	rapporteringsform
at	for	data	baserer	seg	på	

utskrivelsesdato	i	2012/13	vil	det	telles	m
ed	noen	

innleggelser	fra	2011	som
	flyter	over	i	2012	og	m

an	m
ister	

innleggelser	fra	2013	hvor	utskrivelsesdato	var	i	2014.	Disse	
antas	å	veie	opp	for	hverandre.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	

N
_RE	

Antall	re-
innleggelser	

Ø
hj	innleggelse	innen	30	dager	etter	foregående	innleggelse.	

Fordi	data	kun	gir	inform
asjon	om

	pasienter	skrevet	ut	i	
2012/2013	vil	øhj	innleggelser	før	31.	januar	2012,	som

	ikke	
har	en	tidligere	innleggelse	m

ed	utskrivelse	i	2012	ikke	m
ed	

sikkerhet	kunne	avskrives	som
	re-innleggelser,	selv	om

	de	
ikke	blir	flagget	i	eksisterende	data.		Ø

hj	innleggelser	som
	

skulle	væ
rt	re-innleggelser	basert	på	tidligere	innleggelser	

m
ed	utskrivelsesdato	i	desem

ber	2011	blir	ikke	funnet.		

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	



F.	eks.	hvis	utskrevet	5/1-12	og	akuttinnlagt	igjen	20/1-12	
blir	det	telt	som

	reinnleggelse.	M
en	hvis	var	utskrevet	

28/12-11	og	akuttinnlagt	20/1-12	telles	det	ikke	m
ed.	Betyr	

at	antall	reinnleggelser	i	januar	2012	blir	lavere.	

Inn=IPAdm
itDateTim

e	
U
t=IPDischDateTim

e	

LO
S_SU

M
.11	

Sum
	liggetid	øhj	

innleggelser	
Liggetid	i	desim

aldøgn.	Dvs	at	4,2	døgn	=	4	døgn	og	4	tim
er	

og	48	m
inutter	(0,2x24	tim

er=	4,8	tim
er)	

Ett	døgn=86400	sekunder,	som
	er	grunnlag	for	alle	dato-

/tidsberegninger	i	datasettet.	
For	innleggelser	m

ed	startdato	i	2011	er	liggetid	telt	f.o.m
.	

01.01.2012.	
Innleggelser	m

ed	startdato	i	2013	og	sluttdato	i	2014	er	ikke	
telt	m

ed	da	disse	telles	i	2014	rapport	(basert	på	
utskrivelsesdato).	Siden	liggetid	for	innleggelser	som

	
overlapper	fra	2011	telles	fra	1/1-12	vil	det	potensielt	kunne	
væ

re	noe	underestim
ering	av	total	liggetid.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	

LO
S_SU

M
.21	

Sum
	liggetid	

elektive	
innleggelser	

Liggetid	i	desim
aldøgn.	Dvs	at	4,2	døgn	=	4	døgn	og	4	tim

er	
og	48	m

inutter	(0,2x24	tim
er=	4,8	tim

er)	
Ett	døgn=86400	sekunder,	som

	er	grunnlag	for	alle	dato-
/tidsberegninger	i	datasettet.	
For	innleggelser	m

ed	startdato	i	2011	er	liggetid	telt	f.o.m
.	

01.01.2012.	
Innleggelser	m

ed	startdato	i	2013	og	sluttdato	i	2014	er	ikke	
telt	m

ed	da	disse	telles	i	2014	rapport	(basert	på	
utskrivelsesdato).	Siden	liggetid	for	innleggelser	som

	
overlapper	fra	2011	telles	fra	1/1-12	vil	det	potensielt	kunne	
væ

re	noe	underestim
ering	av	total	liggetid.	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	

LO
S_TO

T	
Total	liggetid	
innleggelser	

Liggetid	i	desim
aldøgn.	Dvs	at	4,2	døgn	=	4	døgn	og	4	tim

er	
og	48	m

inutter	(0,2x24	tim
er=	4,8	tim

er)	
Ett	døgn=86400	sekunder,	som

	er	grunnlag	for	alle	dato-
/tidsberegninger	i	datasettet.	
For	innleggelser	m

ed	startdato	i	2011	er	liggetid	telt	f.o.m
.	

01.01.2012.	
Innleggelser	m

ed	startdato	i	2013	og	sluttdato	i	2014	er	ikke	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	



telt	m
ed	da	disse	telles	i	2014	rapport	(basert	på	

utskrivelsesdato)	Siden	liggetid	for	innleggelser	som
	

overlapper	fra	2011	telles	fra	1/1-12	vil	det	potensielt	kunne	
væ

re	noe	underestim
ering	av	total	liggetid.	

Inn=IPAdm
itDateTim

e	
U
t=IPDischDateTim

e	

N
_DS.11	

Antall	døgnskiller	
øhj	

Antall	inneliggende	døgnskiller	->	at	en	innleggelse	går	over	
kl	24.00	(kl	23.59-00.01).	
Sam

m
enlignet	m

ed	length	of	stay	kan	det	bli	noen	"rare"	
tall.	
Ti	unike	innleggelser	fra	23:59-00:01	innen	to	døgn	vil	telle	
som

	10	døgnskiller,	m
en	kun	0,14	liggedøgn.	

M
otsatt	vil	ti	unike	innleggelser	fra	00:01-23:59	sam

m
e	døgn	

telle	som
	tilnæ

rm
et	10	liggedøgn,	m

en	0	døgnskiller	
For	innleggelser	m

ed	startdato	i	2011	er	døgnskiller	telt	
f.o.m

.	01.01.2012	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	

N
_DS.21	

Antall	døgnskiller	
elektiv	

Antall	inneliggende	døgnskiller	->	at	en	innleggelse	går	over	
kl	24.00	(kl	23.59-00.01).	
Sam

m
enlignet	m

ed	length	of	stay	kan	det	bli	noen	"rare"	
tall.	
Ti	unike	innleggelser	fra	23:59-00:01	innen	to	døgn	vil	telle	
som

	10	døgnskiller,	m
en	kun	0,14	liggedøgn.	

M
otsatt	vil	ti	unike	innleggelser	fra	00:01-23:59	sam

m
e	døgn	

telle	som
	tilnæ

rm
et	10	liggedøgn,	m

en	0	døgnskiller	
For	innleggelser	m

ed	startdato	i	2011	er	døgnskiller	telt	
f.o.m

.	01.01.2012	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	

DS_TO
T	

Antall	døgnskiller	
totalt	

Antall	inneliggende	døgnskiller	->	at	en	innleggelse	går	over	
kl	24.00	(kl	23.59-00.01).	
Sam

m
enlignet	m

ed	length	of	stay	kan	det	bli	noen	"rare"	
tall.	
Ti	unike	innleggelser	fra	23:59-00:01	innen	to	døgn	vil	telle	
som

	10	døgnskiller,	m
en	kun	0,14	liggedøgn.	

M
otsatt	vil	ti	unike	innleggelser	fra	00:01-23:59	sam

m
e	døgn	

telle	som
	tilnæ

rm
et	10	liggedøgn,	m

en	0	døgnskiller	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hastegrad:	
N
prEm

ergencyLevel	
(1-3=øhj,4=elektiv)	
O
m
sorgsnivå:	

N
prCarecat	

(1=innl,	2=dagbeh.,	
2=pol)	
Inn=IPAdm

itDateTim
e	

U
t=IPDischDateTim

e	



For	innleggelser	m
ed	startdato	i	2011	er	døgnskiller	telt	

f.o.m
.	01.01.2012	

N
_DEPT	

Antall	ulike	
departm

ents/klinik
ker	

Antall	forskjellige	avdelinger	(overordnet)	pasient	har	hatt	
kontakt	m

ed.	En	avdeling	består	av	flere	enheter/units		
Values	tilsvarer	"Avd.nr."	i	St.	O

lavs	"places"	(pastasnavn)	
GYLDIGE	EN

HETER	I	PAS"	fra	St.	O
lavs	"	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

ContactDept	

N
_W

ARD	
Antall	ulike	
w
ards/avdeling/po

st	

Antall	forskjellige	enheter/units	(underordnet)	pasient	har	
hatt	kontakt	m

ed.	Dette	er	laveste	organisasjonsnivå	vi	har	i	
data.		(underordnet)	
Values	tilsvarer	enhetsnr/unitnr	i	PAsTAs	St.	O

lavs	places	og	
GYLDIGE	EN

HETER	I	PAS	fra	St.	O
lavs			

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

StdDeptId	

N
_DIA	

Antall	unike	
diagnosekoder	
(ICD-10)	

Antall	unike	ICD-10	diagnosekoder	(dvs	hvis	fått	sam
m
e	

diagnose	flere	ganger	ved	ulike	besøk	teller	det	kun	som
	en).	

Både	hoved-	og	bidiagnoser	på	fullt	form
at	(finnes	rundt	

19000	koder	i	ICD-10	kodeverket)	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hoveddiagnose:PDX	
Bidiagnoser:	SDX1-
SDX38	

N
_DIA3T	

Antall	unike	
diagnosekoder	
forkortet	til	3	tegn	
(ICD-10)	

Antall	unike	ICD-10	diagnosekoder.	
Både	hoved-	og	bidiagnoser	forkortet	til	3	tegn	
(I25.0/I25.1/…

	=>	I25)	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hoveddiagnose:PDX	
Bidiagnoser:	SDX1-
SDX38	

N
_PRO

C	
Antall	unike	
prosedyrekoder	
(N
CM

P/N
CSP)	

Antall	unike/forskjellige	prosedyrekoder	og	slått	sam
m
en	

N
CM

P	og	N
CSP,	begge	på	fullt	form

at	
SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

N
CSP:	Proc1-Proc30	

N
CM

P:	M
proc1-

M
proc10	

N
_KAP	

Antall	unike	
diagnosekapitler	
(ICD-10)	

Antall	unike	ICD-10	diagnosekapitler	pasient	har.	
Diagnosekoder	fra	totalt	22	kapitler	I-XXII	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hoveddiagnose:PDX	
Bidiagnoser:	SDX1-
SDX38	

N
_KAT	

Antall	unike	
diagnosekategorier	
(ICD-10)	

Antall	unike	ICD-10	diagnosekategorier	pasient	har.	
Diagnosekoder	fra	totalt	236	kategorier	

SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

Hoveddiagnose:PDX	
Bidiagnoser:	SDX1-
SDX38	

SU
M
_DRG_KO

RRI
GERT	

Sum
	av	DRG	

korrigert	vekt	per	
PID	for	alle	
episoder	m

ed	
utdato	2012/13	

Sum
m
ert	korrigert	DRG-vekt	for	alle	hendelser	på	sykehus	

(StO
)	uavhengig	av	hastegrad	og	om

sorgsnivå	
SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

N
irvacoW

eight	



SU
M
_DRG_GRU

N
N
VEKT	

Sum
	av	DRG	

grunnvekt	per	PID	
for	alle	episoder	
m
ed	utdato	

2012/13	

Sum
m
ert	DRG-grunnvekt	for	alle	hendelser	på	sykehus	(StO

)	
uavhengig	av	hastegrad	og	om

sorgsnivå	
SAS26jun15/stolav_i
p_op_avdopph.sas7b
dat	

N
irvacoW

eightBasic	

N
_ICPC	

Antall	unike	
diagnosekoder	
(ICPC)	

Antall	unike	ICPC	diagnosekoder.	
Prosesskoder	x30-x69	er	ekskludert,	kun	koder	på	form

at	
x00-x29	og	x70-x99	er	tatt	m

ed	i	beregningen.	

SAS26jun15/kuhr_he
lfo.sas7bdat	

Diagn_ICPC	

N
_ICPC_KAP	

Antall	unike	
diagnosekapitler	
(ICPC)	

Antall	unike	ICPC	diagnosekapitler	pasient	har	
diagnosekoder	fra.	
Prosesskoder	x30-x69	er	ekskludert,	kun	koder	på	form

at	
x00-x29	og	x70-x99	er	tatt	m

ed	i	beregningen.	
Totalt	17	kapitler	

SAS26jun15/kuhr_he
lfo.sas7bdat	

Diagn_ICPC	

N
_KU

HR_ICD	

Antall	unike	
diagnosekoder	
(ICD-10)	fra	
KU

HR/HELFO
	

(avtalespesialister)	

Antall	unike	ICD-10	diagnosekoder	på	fullform
at	fra	

KU
HR/HELFO

-data	(avtalespesialister)	
SAS26jun15/kuhr_he
lfo.sas7bdat	

Diagn_ICD	

M
eanSpm

7	
M
åler	selvopplevd	

helsetjenestekvalit
et	

M
åler	gjennom

snittlig	score	på	selvopplevd	
helsetjenestekvalitet	på	en	skala	fra	1-5	der	1=lite	fornøyd	
og	5=svæ

rt	fornøyd.	
	Variabelen	er	satt	sam

m
en	av	de	8	underspm

	til	spm
	7	i	

spørreskjem
aet:	«tenk	på	alle	helsetjenestene	du	har	hatt	

kontakt	m
ed	i	2012	og	2013.	Hvor	enig	eller	uenig	er	du	i	

følgende	utsagn?»		
	Tre	negative	underspm

	(7.4,	7.6	og	7.7)	ble	reversert	før	de	
ble	inkludert	i	skalaen.	Svaralternativet	«ikke	aktuelt»	ble	
kodet	til	sysm

iss.		
	Chronbach’s	Alpha:	0.88	

D:\SAS26jun15/	
survey_inkludert.sas
7bdat	

S7_1,	S7_2,	S7_3,	
S7_4,	S7_5,	S7_6,	
S7_7,	S7_8	



M
eanSpm

7a	
M
åler	selvopplevd	

helsetjenestekvalit
et	på	
behandling/sam

arb
eid	

M
åler	gjennom

snittlig	score	på	selvopplevd	
helsetjenestekvalitet	på	behandling/sam

arbeid	på	en	skala	
fra	1-5	der	1=lite	fornøyd	og	5=svæ

rt	fornøyd.		
	U
tledet	fra	en	faktoranalyse	(PCA)	av	alle	de	8	underspm

	til	
spm

	7.	Inkluderer	spm
	7.1,	7.2,	7.3,	7.5	og	7.8.	

svaralternativet	«ikke	aktuelt»	ble	kodet	til	sysm
iss.		

	Chronbach’s	Alpha:	0.89	

D:\SAS26jun15/	
survey_inkludert.sas
7bdat	

S7_1,	S7_2,	S7_3,	
S7_4,	S7_5,	S7_6,	
S7_7,	S7_8	

M
eanSpm

7b	
M
åler	selvopplevd	

helsetjenestekvalit
et	på	
inform

asjonsflyt	

M
åler	gjennom

snittlig	score	på	selvopplevd	
helsetjenestekvalitet	på	inform

asjonsflyt	på	en	skala	fra	1-5	
der	1=lite	fornøyd	og	5=svæ

rt	fornøyd.		
	U
tledet	fra	en	faktoranalyse	(PCA)	av	alle	de	8	underspm

	til	
spm

	7.	Inkluderer	spm
	7.4,	7.6	og	7.7.	svaralternativet	«ikke	

aktuelt»	ble	kodet	til	sysm
iss.		

	Variablene	er	reversert	for	å	ha	lik	scoring	som
	M

eanSpm
7a	

	Chronbach’s	Alpha:	0.77	

D:\SAS26jun15/	
survey_inkludert.sas
7bdat	

S7_1,	S7_2,	S7_3,	
S7_4,	S7_5,	S7_6,	
S7_7,	S7_8	
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