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Synopsis 

This paper evaluates and tests the HUGIN 1000 HUS AUV as a carrier platform for the Laser 

Optical Plankton Counter (LOPC). The LOPC was mounted outside on top of the carrier 

platform, and the tests confirm that this concept did not create turbulence and zooplankton 

avoidance. A negligible velocity difference between the flow passing through the sampling 

tube and the AUV speed was detected. The abundance recorded by the LOPC onboard 

HUGIN 1000 HUS was within the same order of magnitude compared to the zooplankton 

abundance from traditional net-based measurements. Our results showed zooplankton 

abundance in the range of 70 to 180 individuals m-3, while other, traditional net-based 

measurements have indicated 27 - 332 individuals m-3 from the same area and same depth 

layer. Note that these numbers are minimum and maximum values observed from a vast 

number of samples. The mean is approximately 200 individuals m-3. 

 

The results provide new and unique high-resolution biological data of deep-water copepod 

communities. The application of AUVs in marine ecological research introduces advanced 

methodology with potential to address new scientific questions in deep water habitats.    
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Introduction 

 

Sampling and identification of zooplankton has traditionally relied on conventional net 

sampling, like the Hydro-Bios MultiNet and MOCNESS1. These are non-synoptic devices, 

and require substantial amount of manual operation and handling of biological samples during 

the survey, as well as time consuming processing in laboratory. Limitations on sampling 

approaches have to a large degree restricted scientific advances in zooplankton dynamics and 

ecology. The increasing demand for biological and physical data of high spatial and temporal 

resolution has promoted recent development of new instruments and sophisticated platforms.  

 

During the 80s and 90s, the Laser Optical Plankton Counter (LOPC) and its predecessor, the 

Optical Plankton Counter (OPC) was developed2. This was a non-invasive, highly automated 

instrument, which automatically counted and sized particles passing through a flow-chamber, 

hence greatly reducing the need of manual handling. These devices were further successfully 

mounted on vessel-towed, undulating platforms, like the SCANFISH (MacArtney A/S, 

Denmark), providing semi-synoptic zooplankton data along transects in surface waters3. Other 

recent advances feature4 video technology, such as the Video Plankton Recorder (VPR)4, the 

ZooScan system5, and  machines capable of pattern recognition6,7,8. 

 

Autonomous Underwater Vehicles (AUVs) for scientific purposes are now more readily 

available. AUVs are small, unmanned underwater robots, often similar to small submarines, 

without any physical connection to the mother vessel. They come in a range of sizes and 

capabilities, from 1 – 6 m in length, weighing between 30 to 3000 kg and having maximum 

depth ratings from 100 to 6000 m. Endurance varies between a few hours and a few days and 

is greatly dependent on cruising speed and the sensors applied. Generally, larger AUVs have 

higher depth range and longer endurance – and they have the ability to carry both large and/or 

multiple payload sensors. For scientific users, the main reasons for employing AUVs are the 

potential of significant reduction in time and costs compared to traditional methods, but also 

the retrieval of data with a higher spatial and temporal coverage compared to previous 

methods9.  

 

Despite the rapid development of laser based instruments in plankton research and 

autonomous carrier platforms, the synergy of these two technologies has not been exploited to 

its full potential in marine science. A major proportion of plankton research is still net based, 



  4

while autonomous platforms are primarily used for physical oceanography, military purposes 

and in the oil industry. Generally, there has been a lack of appropriate data-intensive methods 

to provide the spatial and temporal resolutions required to quantify growth rates, mortality 

and advection of zooplankton communities. This paper attempts to describe how the usage of 

autonomous platforms can be extended into marine biology to improve the data insufficiency. 

 

In the early 90’s the Norwegian Defence Research Establishment (FFI) initiated research with 

respect to AUV technology, and a few years later FFI and Kongsberg Maritime (KM) joined 

forces and started the development of what has become the HUGIN family. Recognising that 

the AUV technology would have a major impact on various civilian fields in addition to the 

military applications, a dual use philosophy was adopted: By pooling the resources of the 

civilian and military AUV development communities, cost-efficient technologies were 

developed with civilian and military applications in mind10. The objective of this study is to 

evaluate and test the suitability of an AUV (HUGIN 1000 HUS as an autonomous instrument 

platform for the LOPC to measure copepod abundance and size distribution in deep waters. 

The platform is being tested on C. finmarchicus at their diapausing stage (stage IV /V), in 

their overwintering habitats in the NE North Norwegian Sea. Here it has been shown that the 

spatial variability of abundance of C. finmarchicus varies considerably and that the population 

of C. finmarchicus seems to be located in several 'hot spots' pulsing back and forth along the 

shelf break between the Barents Sea and the North Norwegian Sea11,12,13. The aggregation of 

biomass is believed to be physically controlled by subsurface mesoscale eddies. However, our 

present understanding of the zooplankton overwintering habitats in this area is entirely based 

on studies using limited quantitative conventional net samples of zooplankton and point-

samples of the hydrography14.   

 

This study addresses a novel approach in marine science, using the HUGIN 1000 HUS AUV 

as a carrier platform for the LOPC. The results provide new and unique high-resolution 

physical and biological data, addressing the biological system described above with 

unprecedented resolution. 

 

Materials and methods 
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Study area, current regime and survey conduction 

 

The study was performed on the western border of the Barents Sea, along the continental 

slope between the Norwegian mainland and the Spitsbergen Archipelago (Fig. 1). This is a 

region where the Barents Sea, a relatively shallow shelf sea with a mean depth of 

approximately 230 m, slopes down into the NE Norwegian Sea. The depth in the study area is 

in the range of 1800 - 2200 m and several small canyons intersect the shelf break forming 

channels from the continental shelf into the deep basin areas. 

 

The circulation in the western Barents Sea is influenced by the Norwegian Atlantic Current 

(NwAC) flowing northwards along the continental slope of Norway, transporting relatively 

warm and saline Atlantic water masses. When the NwAC enters the Norwegian Sea, the 

temperatures are in the range 6-9ºC, and the salinity is 35.1-35.3. Further north, the 

temperature falls below 5ºC, and the salinity is below 35.15. On the western side of 

Spitsbergen, this current changes name to the West Spitsbergen Current (WSC). For a 

synthesis and review of the physical oceanography in the Greenland, Iceland and Norwegian 

Seas (GIN Sea), see [15].  

 

The survey was conducted during a 5 day period (19th – 24th of January 2009) and consisted 

of three vertically stacked survey grids centered at 71ºN, 15ºE (Fig. 1). Each horizontal 

survey grid consisted of interconnected latitudinal and longitudinal transects, covering approx. 

780 km2. The grids were placed at depths of 600, 800 and 1000 m (Fig. 2). The location of the 

survey grids and depths were chosen based on prior knowledge of this area, and the expected 

high abundance of the standing stock of copepods11. Due to weather problems and technical 

challenges, the 600 m horizontal grid was not covered fully. Each horizontal grid was 

completed in 15-20 hours, depending on dive depth and current velocity.  

 

The Laser Optical Plankton Counter (LOPC) 

 

The details of the measurement principles of the LOPC are well documented elsewhere and 

will only briefly be repeated here2. The LOPC counts and estimates the size of particles that 

move through a laser beam inside the instrument. This produces a size spectrum where 

particles are grouped according to their Equivalent Spherical Diameter (ESD). It is also 
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possible to estimate the volume of water passing through the LOPC from the transit time of 

small particles through the instrument17. From the count data and the flow data, the abundance 

of particles in the different size ranges can be calculated. 

 Zooplankton quantification in our study area in winter has traditionally been carried out by 

MultiNet sampling, and new approaches, such as LOPC sampling, need to be introduced with 

reference to this prior approach. To compare the two sampling methods, MultiNet and LOPC 

were applied simultaneously in January 2007. The LOPC was mounted on the inside of the 

MultiNet, vertical hauls were carried out and the results compared. It can be difficult to 

separate different species in an LOPC size spectrum as the signals from similarly sized 

species may overlap. However, in the winter deep water off the coast of northern Norway, C. 

finmarchicus is by far the most abundant species ( >80%) and the low species diversity makes 

the possibility of interference of the C. finmarchicus signal insignificant. The results from the 

LOPC / MultiNet comparison in fact showed that the LOPC was well suited as a stand-alone 

tool for C. finmarchicus quantification in this area in the winter season14. In this study, we 

take advantage of these results, assume that an ESD range from 960 μm to 1260 μm 

represents C. finmarchicus, stages IV and V. 

 

The HUGIN 1000 HUS AUV System and the LOPC integration 

 

The available power, volume and weight determine the number and types of sensors any 

particular AUV can carry. Hitherto, AUVs have typically been equipped with one or more of 

the following sensors: Side scan sonars (SSS), synthetic aperture sonars (SAS), multibeam 

(MBE) and fishery echo sounders, sub-bottom profilers (SBP), CTD sensors, acoustic doppler 

current profilers (ADCPs), video and still image cameras, optical backscatter (OBS) sensors, 

chemical sniffers and magnetometers. Other, more specialized sensors (as shown later in this 

paper) have also been integrated to some AUVs. When it comes to integrating sensors, the 

main difference between an AUV and a remotely operated vehicle (ROV) is the power 

constraints an AUV has to operate under. But for some sensors the inherent stability of an 

AUV can also significantly improve the quality of the data. 

 

The first HUGIN class AUV specifically designed for military and civilian scientific 

application was delivered in 2008. HUGIN 1000 HUS, the most common member of the 

HUGIN class AUVs, is around 5 m long, has a dry weight of 600-900 kg, a nominal speed of 
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2-6 knots, depth range extending down to 3000 m and an operational time span of up to 30 

hours. This AUV is primarily intended for use in arctic and sub-arctic waters. It is not only 

designed to be equipped with a range of different, interchangeable scientific sensors, it also 

has a modular design allowing for easily interchangeable/extendable centre sections. This 

facilitates a multi-purpose philosophy where different research projects or groups can equip 

the AUV with sensor packages tailored to meet specific research objectives. This ability is 

ideal from an efficiency and resource perspective.   

 

The main concern when integrating the LOPC, was to ensure the water-flow through the 

sensor and at the same time make sure the pressure front from the vessel did not affect the 

behavior of the zooplankton (turbulence and avoidance) – whilst ensuring the safe operation 

of the vehicle. This resulted in an almost narwhal-like design (Fig. 3AB). As later shown in 

this study, the design proved successful, meeting the criterion of a minimal velocity difference 

between the flow passing through the LOPC sampling tube and the AUV speed. This was 

computed by the internal navigation system of the AUV, measuring the speed of the AUV 

propelling through the water, whilst comparing this velocity with the flow measured 

independently by the LOPC. Ideally, they would show the same velocity, indicating that the 

flow through the LOPC tube was undisturbed by the platform motion. Results from these 

measurements are shown further on. The other criterion required was the consistency between 

LOPC based measurements of zooplankton abundance and traditional net-based 

measurements. 

 

Data analysis 

 

For interpolation of the collected data, Objective Analysis (OA) was applied16. OA is a 

synonym for statistical estimation based on the Gauss-Markov theorem. The major benefit of 

OA is that the method yields an estimate at every point (x, y, z, t) which is optimal to the least 

square error. Along with the interpolated field, an errorfield is calculated. With this method, 

the correlation function can be direction specific, being especially useful in anisotropic 

physical fields. 

 

The dataset was smoothed and filtered through several steps. This was done in order to reduce 

the actual number of data points relayed into the interpolation routine, but also to remove 
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high-frequency variability. The horizontal spatial fields were blocked and averaged into 

ensemble sizes of 360 datapoints (approx. 3 minutes of sampling time, on the average 

equivalent to 350 m). This proved to be a reasonable, heuristic approach, where spatial 

structures in the dataset were clearly identified, whilst numerical artifacts from the 

interpolation were avoided. 

 

Results 

 

Each horizontal layer covered (at 600, 800 and 1000 m) is considered as an AUV mission. 

During the survey, three separate AUV missions were conducted. The 600 m mission was 

aborted due to operational difficulties, and the data from this depth is not presented. The 800 

m mission consisted of four long and three short transects, while the deepest at 1000 m had 

three long and three short (Fig. 2 and 4). At these levels, the abundance of C. finmarchicus 

ranged from 70 to 180 individuals m-3 (Fig. 4). At 800 m, the highest concentrations were 

found in the northern part of the survey grid, with two well defined hot-spots at the northern 

side of transect 2 and 4. At 1000 m depth, the situation was reversed. The highest 

concentrations were located in a longitudinal strip in the southern part of the survey grid. This 

high-abundance region stretched across the entire survey grid in a consistent and well-defined 

pattern. The corresponding 2D bird’s eye view of error fields from the OA algorithm are 

shown in Fig. 5. 

 

The AUV performed according to plan, both with respect to navigational performance and as 

a carrier platform for the LOPC. The AUV was able to conduct all pre-programmed mission 

plans. Whilst performing the different missions, in situ zooplankton size distributions were 

relayed to the survey vessel continuously, along with navigational data. When the AUV was 

retrieved after completion of each mission, the raw data, stored in the AUV computer, was 

downloaded and analyzed. 
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Discussion 

 

The HUGIN 1000 HUS AUV as an instrument platform 

 

Field operational techniques at sea generally have one basic requirement: A survey ship to 

transport and operate the sampling device, either towed or dropped vertically. Traditionally, 

there has been a tethered connection between the sampling device and the survey vessel (e.g. 

a wire), and cable drag and length have posed significant limitations with respect to 

performance. This is also the situation for ROVs. SCANFISH is another example with a 

practical dept range of 150 m. Other, more classical approaches, like the MultiNet, faces 

challenges with respect to time and synopticity. One MultiNet cast can typically take 1-2 

hours, depending on the depth; hence the number of point samples will be limited and 

restricted by the survey duration. The introduction of an AUV as instrument platform ideally 

removes the limitations posed by a direct physical link between the survey vessel and the 

sampling device. Manual operations on deck and manual processing of biological samples are 

also limited to a minimum. AUVs can penetrate down to 3000m or more, operate in fully 

autonomous mode, relay synoptic data in real time and be reprogrammed while en route. As 

pointed out by [1] “We can anticipate a development of real-time four-dimensional plankton 

sampling and concurrent environmental measurements systems, and ocean-basin scale 

sampling with autonomous vehicles”. The development and the application of HUGIN 1000 

HUS in marine science is a direct response to these predictions.  

 

Other unmanned, submerged vehicles, like the Spray glider designed by Woods Hole 

Oceanographic Institution and Webb Research Corporation, is designed to be self propelled. 

This glider harvests energy for propulsion from the differences in temperature between warm 

surface waters and colder, deeper layers of the ocean. However, battery capacity is still 

required to operate sensors onboard. The positioning of the glider is based on GPS fixes 

obtained when surfacing, and the data is relayed by satellite to ground services concurrently. 

This is contrary to the HUGIN 1000 HUS, which is able to georeference the craft at any given 

time, whilst transmitting data through an acoustic communication link. However, while the 

HUGIN 1000 HUS has to be brought on deck for battery recharge, the low power 

consumption by Spray glider allows it to stay en route for months at a time, making it 

practically independent of a survey vessel. The disadvantage of the Spray Gliders is the slow 
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speed (max 0.25 m s-1), which makes them suboptimal for surveys near strong fronts or 

coastal jets, while AUVs with higher nominal velocity can overcome the strong currents and 

provide the rapid sampling required. There is a whole suite of AUVs on the market besides 

HUGIN, e.g. the ABS/Sentry, Jaguar, Puma, Remus and SeaBed. They all have different 

advantages and disadvantages, which define their scientific scope and versatility. It is beyond 

the scope of this paper to do a comparative analysis of the whole suite of AUVs available on 

the commercial market. The major advantage of the HUGIN 1000 HUS is the modular system, 

the depth range, the en route georeferencing and two-ways acoustic communication. Few 

other systems can display these characteristics combined and the potential versatility. The 

HUGIN 1000 HUS can also operate in fully autonomous mode, i.e. without any acoustical 

communication or accompanying mothership. On such instances, the AUV follows a 

preprogrammed mission pattern, and is able to georeference itself by acquiring GPS-fixes 

entering the surface and utilizing inertial positioning. 

 

Data validity – Proof of Concept of the HUGIN 1000 HUS / LOPC System 

 

Since there is no straightforward way to take separate and independent in situ samples of 

zooplankton while conducting the HUGIN surveys with the LOPC, we have to assess the 

quality of our data indirectly from other sources. In between HUGIN missions, we took two 

LOPC profiles while running CTD casts, using the same set-up as described in [14]. These 

were taken at transect two and four (Fig. 4), and confirmed the vertical range of copepods 

with maxima in numbers between 600 m and 1200 m (Fig. 6 and 7). The zooplankton 

abundance measured by the LOPC mounted on the AUV, showed a concentration between 

100 and 150 individuals m-3 at the position of the CTD cast along transect 2 (Fig. 4A) and a 

concentration between 75 and 155 individuals m-3 at the position of the CTD cast along 

transect 4 (Fig. 4B). How well do these numbers match with data obtained from the same 

LOPC instrument, mounted on the CTD a rig during a vertical cast? The zooplankton 

abundance measured with the LOPC lowered vertically showed a concentration between 95 

and 150 individuals m-3 at the position of the CTD cast along transect 2 and between 80 and 

120 individuals m-3 at the position of the CTD cast along transect 4 (Fig. 7). A blow up of the 

profile data in the region relevant to the AUV horizontal tracks are shown in Fig. 8. The 

vertical profiles are calculated with a moving average window and summarized in Table 1. 
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 Transect 2  [individuals m-3] Transect 4 [individuals m-3] 

LOPC mounted on HUGIN 
(horizontal measurement) 

100 - 150 (Fig. 6) 75 - 155 (Fig. 6) 

LOPC mounted on a CTD rig 
(vertical measurement) 

95 - 150 (Fig. 7) 80 - 120  (Fig. 7) 

   

Table 1. Comparison between zooplankton abundance measurements from the LOPC 

mounted on HUGIN or the vertically lowered CTD rig. 

 

The readings from the LOPC mounted on the HUGIN shows very little discrepancy at both 

transects compared  to the readings from the LOPC used in the CTD cast mode (Fig. 6 and 7). 

Actually, along transect 2, the results are strikingly similar, while a slightly bigger 

discrepancy occurs at Transect 4. We therefore conclude that the LOPC operated from 

HUGIN as a carrier platform record the abundance and the size spectrum similar to the cast 

mode operation from a research vessel. This is as close we can get to establish confidence to 

the HUGIN as a carrier platform for LOPC in deep waters.    

 

At any given time while the HUGIN 1000 HUS / LOPC is on a mission, a particle size 

distribution is transmitted to the survey ship and displayed in real time. Hence we were able to 

monitor, record and assess the sampled size spectrum in real-time while conducting the 

missions. The size spectrums showed the distinct signature for C. finmarchicus stage IV/V. 

An example of the size spectrum obtained is shown in Fig. 9. This was also apparent from the 

analysis of the raw data. Both prior knowledge regarding species composition for our survey 

area and the observed size spectrum support the assumption that the data shows C. 

finmarchicus stage IV/V.  

 

Platform dynamics 

 

When mounting the LOPC on the HUGIN 1000 HUS, we were aware that the long tube 

would give rise to increased roll during turns. The added weight on top of the vessel also 

changed the metacentric height of the AUV, also affecting the roll stability during turns. The 

HUGIN 1000 HUS is equipped with active roll stabilization, but due to increased power 
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consumption this is only used when extra roll stability is needed. Since the LOPC missions 

where conducted offshore, where the turn ratio is of no importance, the maximum rudder 

deflection was reduced by 50%, thus keeping the roll during turns in check (Fig. 10). Note 

that the roll without the LOPC mounted is with the normal maximum rudder deflection value. 

The active roll stabilization was not active in either run.  

 

Another vital issue during the design phase was to ensure that the water flow through the 

LOPC sampling tube was undisturbed by vessel movement or vessel-induced turbulence. 

Hence the sampling tube was designed to be fairly long (Fig. 3) and protrude past the wave 

front or potential turbulence created at the head of the AUV. Ideally, the water flow through 

the LOPC sampling tube and the measured velocity of the AUV should be comparable, or 

within the same level. The ground referenced velocity of the AUV in x-direction is shown in 

Fig. 11. The x-direction relates to the AUV-fixed coordinate system and x velocity is then in 

along-ship direction. The velocities measured were generally in the range of 1.9 – 2.1 ms-1, 

with a mean velocity of 1.95 ms-1. As seen, during the mission, the AUV velocities changed 

markedly. This is caused by the combined effect of residual currents and tidal fluctuations. 

Considering merely the residual current, when the AUV is moving upstream, a decrease of 

velocity is expected, and conversely when moving downstream. However, tidal currents can 

potentially change this situation significantly. It depends on the relative magnitude between 

the tidal currents and the residual currents in the survey region, but also on the diurnal and 

monthly tidal cycle. 

 

The calculated water velocity from the LOPC sampling tube is shown in Fig. 12. It has a 

mean velocity of 1.48 ms-1 for the entire mission at 1000 m depth. This amounts to 75% of the 

mean AUV velocity. However, the AUV velocity is earth referenced, and does not show the 

absolute velocity through the water column. Hence, any current movement or fluctuation will 

create deviations between ground referenced velocity and water column velocity. The 

sampling area is located on the continental margin of the western Barents Sea (Fig. 1). The 

NwAC flows northwards along this slope with velocities in the range of 0.2 ms-1. In addition 

to this, the region also has subsurface mesoscale subsurface eddies, adding complexity to the 

current regime. This will create an offset between ground referenced velocity and water 

column velocity, which is a plausible explanation for the 25% discrepancy observed between 

LOPC water flow calculations and AUV ground referenced velocity. 
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Future applications 

 

With respect to zooplankton measurements, using an LOPC sensor with the HUGIN 1000 

HUS as a carrier, introduces a whole suite of novel possibilities. It is feasible to get semi-

synoptic and high-resolution measurements over large areas and volumes, getting far more 

detailed information at a much higher rate than earlier. Given the current properties of the 

HUGIN AUV, it is now possible to conduct efficient measurements at depths down to 3000 m. 

Furthermore, using an AUV as a platform, introduces a new range of choices with respect to 

sampling strategy. One possibility would be to let the AUV actively search for large 

concentrations of zooplankton or map the spatial extent of the concentrations. Another option 

would be to let the AUV follow different types of oceanographic gradients (temperature, 

pressure, salinity etc.) and determine whether there is any correlation with the zooplankton 

abundance or species composition. Bearing this in mind it is also important to be aware of the 

limitations of using an AUV as a platform, which are mostly speed and battery capacity. 

Work in AUV design and operation is already addressing battery technology and energy 

consumption in order to increase operational range and to limit demands for recharging of 

batteries. Whilst getting extraordinarily detailed data from a specific area, spatial coverage of 

larger areas is limited at present. Consequently, AUVs are a potentially powerful new 

platform, supplemental to other tools in this field of science.  

 

Conclusion 

 

As the commercial market for AUVs matures and the number of operational systems rises, we 

can expect the reliability of AUVs to increase and the cost to go down. This will increase the 

number and types of possible applications. For the scientific community n particular, this will 

mean that AUV technology will become much more readily available, and open up 

opportunities for new and novel uses. However, in order to capitalize on this technological 

development, the scientific community needs to focus on how to optimize use of AUVs with 

the focus on new or improved sensors, new applications and new operating areas. The 

HUGIN 1000 HUS AUV equipped with the LOPC, targeting deep-water zooplankton 

communities, performed according to the preplanned missions and has proved capable of 

providing high-resolution data of zooplankton abundance and size classes. The AUV 

collected zooplankton abundance and size data, and the data was also transmitted in real time 
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to the survey vessel. The data shows a number of deep-water zooplankton patches on the 

mesoscale order. 
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Fig. 1. Study region (grey square) including idealized surface circulation map. 
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Fig. 2 The 3D HUGIN Survey tracks. 
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Fig. 3. A) The HUGIN 1000 HUS AUV during a launch sequence. The AUV is released from 

a hydraulic sledge system mounted at the stern of the ship. The AUV system is designed as a 

stand-alone, container based system and can be released and controlled from any survey 

vessel having the required facilities. B) The HUGIN 1000 HUS AUV with the LOPC 

mounted on top. 

 

 

  



  18

 

 

Fig. 4. C. finmarchicus abundance [ind m-3] at 800 m and 1000 m measured with the HUGIN 

1000 S / LOPC System. 2 and 4 refers to transect numbering adressed in the text. 
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Fig. 5. Error fields from the OA interpolation at 800 m and 1000 m. 
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Fig. 6. C. finmarchicus abundance [ind m-3] along Transect 2 and 4 (See Fig. 4) as measured 

by the HUGIN / LOPC System. 
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Fig. 7. Drop down measurements of C. finmarchicus abundance at two stations along Transect 

2 and 4. (See Fig. 4). The LOPC was mounted on a CTD rig and lowered vertically. 
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Fig. 8. A blow up of the zooplankton abundance data in the region relevant to the AUV 

horizontal tracks. 
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Fig. 9. A sample size spectrum obtained from the LOPC / HUGIN AUV. 
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Fig. 10. A comparison of the AUV roll [deg] in a turn with and without the LOPC sensor. 
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Fig. 11. AUV ground referenced velocity in x-direction as calculated by the onboard 

navigational system. 
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Fig. 12. Water velocity as measured through the LOPC sampling tube for (mission at 1000 m 

depth). 

  



  28

References 

 

01. Wiebe PH and Benfield MC. 2001. Zooplankton sampling with nets and trawls.  In 

Encyclopedia of Ocean Sciences, Academic Press, 3237-3253. 

 

02. Herman AW, Beanlands B and Phillips EF. 2004. The next generation of optical plankton 

counter: the Laser-OPC. Journal of Plankton Research, 26, 1135–1145. 

 

03. Helmond I. 2001. Towed vehicles. In Encyclopedia of Ocean Sciences, Academic Press, 

2994-3003. 

 

04. Davis CS, Gallagher SM, Berman MS, Haury LR and Strickler JR. 1992. The Video 

Plankton Recorder (VPR): Design and initial results. Archiv für Hydrobiologie Beiheft, 36, 

68-71. 

 

05. Grosjean P, Picheral M, Warembourg C and Gorsky G. 2004. Enumeration, measurement, 

and identification of net zooplankton samples using the ZOOSCAN digital imaging system. 

ICES Journal of Marine Science, 61, 518-525. 

 

06. Tang X, Stewart WK, Vincent L, Huang H, Marra M, Gallager SM and Davis CS. 1998. 

Automatic plankton image recognition. Artificial Intelligence Review, 12, 177-199. 

 

07. Luo T, Kramer K, Goldgof D, Hall L, Samson S, Remsen A and Hopkins T. 2004. 

Recognizing plankton images from the Shadow Image Particle Profiling Evaluation Recorder. 

IEEE Transactions on Systems, Man, and Cybernetics Part B, 34, 1753-1762. 

 

08. Embleton KV, Gibson CE and Heaney SI. 2003. Automated counting of phytoplankton by 

pattern recognition: a comparison with a manual counting method. Journal of Plankton 

Research, 25, 669-681. 

 

09. Bingham D, Drake T, Hill A and Lott R. 2002. The Application of Autonomous 

Underwater Vehicle (AUV) Technology in the Oil Industry—Vision and Experiences. 

Proceedings of the XXII FIG (International Federation of Surveyors) International Congress, 



  29

Washington, DC, USA. 

 

10. Hagen PE. 2000. Dual Use Development: The HUGIN Untethered Underwater Vehicle. 

SMi Naval Mines Conference Proceedings. SMi Group, London, UK. 

 

11. Edvardsen A, Zhou M, Tande KS and Zhu Y. 2002. Zooplankton population dynamics: 

measuring in situ growth and mortality rates using an Optical Plankton Counter. Marine 

Ecology Progress Series, 227, 205-219. 

 

12. Halvorsen E, Tande KS, Edvardsen A, Slagstad D and Pedersen OP. 2003. Habitat 

selection of overwintering Calanus finmarchicus in the NE Norwegian Sea and shelf waters 

off Northern Norway in 2000–02. Fisheries Oceanography, 12(4:5), 339–351. 
 

13. Slagstad D and Tande KS. 2007. Structure and resilience of overwintering habitats of 

Calanus finmarchicus in the Eastern Norwegian Sea. Deep Sea Research Part II: Topical 

Studies in Oceanography, 54(23:26), 2702-2715. 

 

14. Gaardsted F, Tande KS and Basedow S. Measuring Copepod Abundance in Deep Winter 

Water Habitats in the NE Norwegian Sea: Intercomparison of Laser Optical Plankton 

Counter and Multinet. Fisheries Oceanography. In revision. 

 

15. Hopkins TS. 1991. The GIN Sea - A synthesis of its physical oceanography and literature 

review 1972-1985. Earth-Science Reviews, 30, 175-318. 

 

16. Gandin, L. 1963. Objective Analysis for Meteorological Fields. Leningrad:Gridromet, 

English translation 1965. Israel Program for Scientific Translation, Jerusalem. 242 pp. 

 

17. Brooke Ocean Technology Ltd, 2004. Laser Optical Plankton Counter – Software 

operation manual. OM-0369-03-108, Dartmout, Novia Scotia, Canada. 
 

 

 

 

 


