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Background: Quantitative sensory testing (QST) is a diagnostic tool for the assessment of the 

somatosensory system. To establish QST as an outcome measure for clinical trials, the question 

of how similar the measurements are over time is crucial. Therefore, long-term reliability and 

limits of agreement of the standardized QST protocol of the German Research Network on 

Neuropathic Pain were tested.

Methods: QST on the lower back and hand dorsum (dominant hand) were assessed twice in 

22 healthy volunteers (10 males and 12 females; mean age: 46.6±13.0 years), with sessions 

separated by 10.0±2.9 weeks. All measurements were performed by one investigator. To inves-

tigate long-term reliability and agreement of QST, differences between the two measurements, 

correlation coefficients, intraclass correlation coefficients (ICCs), Bland–Altman plots (limits 

of agreement), and standard error of measurement were used.

Results: Most parameters of the QST were reliable over 10  weeks in healthy volunteers: 

Almost-perfect ICCs were observed for heat pain threshold (hand) and mechanical pain sen-

sitivity (back). Substantial ICCs were observed for heat pain threshold (back), pressure pain 

threshold (back), mechanical pain sensitivity (hand), and vibration detection threshold (back 

and hand). Some QST parameters, such as cold detection threshold, exhibited low ICCs, but 

also very low variability. Generally, QST measures exhibited narrow limits of agreement in 

the Bland–Altman plots.

Conclusion: The standardized QST protocol of the German Research Network on Neuropathic 

Pain is feasible to be used in treatment trials. Moreover, defining a statistically meaningful change 

is possible, which is a prerequisite for the use of QST in clinical trials as well as in long-term 

investigations of disease progression.

Keywords: QST, healthy volunteers, test–retest reliability, intraclass correlations, Bland–

Altman plot, limits of agreement, standard error of measurement, minimum detectable difference

Introduction
Quantitative sensory testing (QST) investigates the submodalities of the somatosensory 

system, such as temperature, touch, vibration, and pain. It provides information on the 

state of peripheral sensory nerves, as well as pain perception and central sensitization. 

The method allows for the evaluation of the functional status of the small (Aδ, C) and 

large (Aβ) fiber sensor systems.1,2

Over the past decade, QST has achieved a unique position within the field of pain 

diagnostics.3–9 However, heterogeneity of the protocols remains a challenge. Recently, 

a highly standardized QST protocol was established by the German Research Network 
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on Neuropathic Pain (DFNS), including a reference database 

with age- and gender-matched normative data from healthy 

volunteers for face, hand, and foot.2,10,11 Additional refer-

ence values for the back were established.12 Consequently, 

QST has been proven to discriminate between pathological 

states reliably from among those found in a normal popula-

tion.13,14 Because of its unique discriminative properties, it 

can be assumed that QST is likewise able to detect changes 

over time. This is obviously relevant regarding the detection 

of pathological changes and functional deterioration, such 

as those observed in diabetes, and could also be relevant 

for quantification of treatment effects in a clinical trial on 

pain. However, a crucial precondition for the usefulness of 

QST as an outcome measure in clinical trials is that repeated 

measures of QST are principally stable over time.

While the reliability of QST has been investigated before, 

available data only include several QST parameters and sub-

modalities measured within a few days up to 1 month.15–25 

These studies found generally high test–retest reliabilities. 

The test–retest reliability of the complete QST protocol of 

the DFNS has only been investigated in a few studies.26–29 

Geber et al29 analyzed 60 QST profiles from patients with 

sensory disturbances in a multicenter study. They found a 

high test–retest reliability for all parameters over a period of 

2 days. Moreover, Pigg et al28 found acceptable intraoral reli-

abilities between 6 and 21 days. Hirschfeld et al27 conducted 

QST in a cohort of children and adolescents over a period of 

15 months and found a systematic decrease in pain sensitiv-

ity, most likely related to maturation. However, information 

about its stability over time under most ideal circumstances 

is required in order to establish QST as a valid instrument for 

clinical trials. In our understanding, optimal circumstances 

would include an investigation over several weeks with a 

highly standardized protocol in healthy, pain-free subjects. 

To our knowledge, there is only one paper available address-

ing this point.30

A particular, methodological problem of repeated mea-

sures is the fact that data can correlate highly yet may not 

present a stable repetition of a measurement. As Bland and 

Altman31 point out: “If one measurement is always twice 

as big as the other, they are highly correlated, but they do 

not agree.” They suggest statistically defining the limits of 

agreement (LoAs) between two measurements. Moreover, it 

is most likely the agreement between two measurements that 

determines the usefulness for detecting meaningful changes 

over time for quantifying a treatment effect or documenting 

pathological deterioration. To date, no information about 

the LoAs under optimized conditions is available for QST. 

Therefore, the present study aims to determine the long-term 

reliability and agreement for a period of 10 weeks in adult 

healthy volunteers using the standardized QST protocol of 

the DFNS.

Methods
Participants
Twenty-two healthy volunteers, 10 males (38.2±13.1 years, 

mean ± SD) and 12 females (54.2±6.8 years, mean ± SD), 

were investigated between March 2013 and September 2014 

(Table 1). All participants were free of pain (numerical rat-

ing scale, NRS =0). In addition, they self-reported no use 

of any pain medication for at least 48 hours before the first 

QST session. The participants were volunteers recruited 

from a participant database and student population of the 

Department of Sports Medicine and Health Promotion and 

the Department of Biological and Clinical Psychology of 

the University of Jena through a telephone survey. The local 

ethics committee of the University of Jena approved the 

study protocol; the study was performed in accordance with 

the Helsinki Declaration. All volunteers provided written 

informed consent prior to participation.

Study design
A repeated-measures design was performed. Each subject 

participated in two QST sessions (measurement session 1: T1; 

and measurement session 2: T2) separated by 10.0±2.9 weeks 

(mean ± SD). The whole QST test battery was conducted 

on two anatomical locations: on the lower back (paraspinal 

lumbar area) and the dorsum of the dominant hand. The area 

of measurement for the lower back was between vertebrae 

L2 and L5 with a mean distance of 4.4±1.8 cm (mean ± SD) 

lateral from the spinous process. The two areas measured 

(lower back and hand dorsum) correspond with the contact 

area of the thermode (3×3  cm). The size of the area was 

Table 1 Descriptive characteristics of all participants (N=22)

Characteristics Healthy participants

Total Male Female

Number of participants, N (%) 22 (100) 10 (45) 12 (55)
Age, years, mean ± SD (range) 46.6±13.0 

(23–61)
38.2±13.1 
(23–56)

54.2±6.8 
(37–61)

Age distribution
20–29 years, N 4 4 0
30–39 years, N 2 1 1
40–49 years, N 3 2 1
50–59 years, N 11 3 8
60–69 years, N 2 0 2

Abbreviation: N, number of participants.
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marked using a skin marker. All participants were right-

handed. The test instructions were given by reading the 

standard QST instructions for all subjects. The measure-

ments were performed in a quiet room (room temperature: 

23.0°C±2.2°C, mean ± SD). To control for the influence of 

skin temperature, the skin temperatures of the lower back and 

hand dorsum were recorded before administering the QST. 

All data were collected by one examiner (HN), trained by the 

DFNS. The laboratory is certified by the DFNS (registration 

number: 36180814).

QST protocol
QST was performed according to the standardized protocol 

of the DFNS.2,10

Thermal detection and pain thresholds as well as the 
number of paradoxical heat sensations (PHS)
Thermal testing was conducted using the thermal stimulator 

Thermal Sensory Analyzer II (TSA; Medoc, Ramat Yishai, 

Israel) with a contact area of the thermode equaling 9 cm2. 

Cold detection threshold (CDT), warm detection threshold 

(WDT), number of PHS using the thermal sensory limen 

(TSL) procedure of alternating cold and warm stimuli, cold 

pain threshold (CPT), and heat pain threshold (HPT) were 

each assessed using the standard protocol of DFNS. The base-

line temperature was 32°C, with a lower cutoff temperature 

at 0°C and upper cutoff temperature at 50°C, and the ramp 

rate for all thermal stimuli was 1°C/s.2,10

Mechanical detection threshold (MDT)
MDT for touch was assessed by using a standardized set of 

modified von Frey filaments (diameter 0.5 mm, Optihair
2
-

Set Marstock Nervtest, Schriesheim, Germany), which exert 

forces between 0.25 mN and 512 mN (factor two progres-

sion). Using the “method of limits”, the final threshold was 

defined as the geometric mean of five series of ascending 

and descending stimulus intensities.32

Mechanical pain threshold (MPT)
MPT was measured using a set of standard pinprick stimula-

tors (cylindrical tip, 250 µm tip diameter) with fixed stimulus 

intensities that exerted forces of 8, 16, 32, 64, 128, 256, and 

512 mN (MRC Systems GmbH, Heidelberg, Germany). The 

stimulators were applied in ascending order until the first 

perception of sharpness was detected. MPT was determined 

using the “method of limits”. The final threshold was the 

geometric mean of five series of ascending and descending 

stimuli intensities.

Mechanical pain sensitivity (MPS) and dynamic 
mechanical allodynia (DMA)
Pain induced by punctate mechanical stimuli was measured 

using the same standard pinprick stimulators as for MPT. To 

obtain MPS for pinprick-evoked pain, all seven pinprick stim-

uli were applied in balanced order, five times each stimulus. 

MPS was defined as the geometric mean of the given stimuli 

as in the standard protocol. To avoid effects of sensitization 

or fatigue, the successive stimuli were not applied at the same 

spot of skin, but some millimeters away from the previously 

stimulated spot. Following each stimulus, participants were 

asked to rate the experienced pain intensity for each stimulus 

on an NRS, with zero indicating “no pain” and 100 indicating 

“maximal imaginable pain”. Pain to light touch (DMA) was 

assessed by light stroking with a cotton wisp (3 mN), a Q-tip 

fixed to an elastic strip (100 mN), and a soft makeup brush 

(200–400 mN). The set of the three light tactile stimulators 

were intermingled with the pinprick stimuli in balanced order. 

If the stroking stimuli were perceived as painful, participants 

were asked to give a rating for the amount of perceived pain 

using the same NRS (0–100).

Wind-up ratio (WUR)
The perceptual correlate of temporal pain summation to 

repetitive pinprick stimuli (WUR) was assessed by a series 

of 10 pinprick stimuli (256 mN) with 1 Hz repetition rates. 

The participants were asked to give a pain rating represent-

ing the pain at the end of the stimuli series using the 0–100 

NRS. The pain ratings to single pinprick stimulation were 

compared with those of 10 repeated stimuli. To determine the 

WUR, the ratio of the mean pain rating of the series divided 

by the mean pain rating of a single stimulus was calculated 

after five trials.

Vibration detection threshold (VDT)
VDT was measured using a standardized Rydel–Seiffer 

graded tuning fork (64 Hz, 8/8 scale) that was placed over a 

bony prominence (back: spinous processes of the vertebrae 

between L2 and L5, hand: ulnar styloid process) accord-

ing to the protocol of DFNS.2,10,11 Volunteers reported the 

disappearance of the vibration. VDT was determined as the 

average of three consecutive measurements of the amount 

of time to disappearance.

Pressure pain threshold (PPT)
PPT was assessed over a muscle on the test areas (back: 

lumbar paraspinal, hand: pollicis muscles/thenar eminence) 

using a pressure gauge device (FDN200, Wagner Instruments, 
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Greenwich, CT, USA) with a probe area of 1 cm2 and that 

exerts pressure up to 2000 kPa. The PPT was determined with 

three series of ascending stimulus intensities, each applied 

at an increasing ramp of 50 kPa/s.

Data analysis
QST data analysis was performed as recommended and 

described previously.2,10,12 The mean thresholds for each sub-

ject were calculated using Microsoft Excel (Microsoft Office 

2013; Microsoft Corporation, Redmond, WA, USA). These 

results were summarized in a single-sheet QST report form 

for each subject and were used for further statistical analysis.

All QST parameters (except CPT, HPT, and VDT) were 

logarithmically transformed (base 10) to achieve a (second-

ary) normal distribution.10 A small constant (0.1) was added 

to pain ratings for pinprick (MPS) prior to log-transformation 

to avoid a loss of values due to zero rating.33 It has been 

already shown that QST parameters were normally (or log-

normally) distributed in a healthy population.2

Analysis of reliability and agreement
The investigation of how similar two tests are is complex and 

reaches beyond the commonly used test–retest reliability.34 

Following recommendations34 and previous methodology,27 

we investigated the following: differences between measure-

ments T1 and T2, correlations, intraclass correlation coef-

ficients (ICCs), and Bland–Altman plots.

•	 Differences between measurements (T1 – T2): Quantita-

tive differences between both QST sessions (T1 and T2) 

were investigated with paired samples t-test.

•	 Correlations between T1 and T2: Pearson’s product–

moment correlation coefficient was used to determine the 

strength of correlation between T1 and T2. Correlation 

coefficients were interpreted as follows: |r| ≤0.29 neg-

ligible, 0.30–0.49 low, 0.50–0.69 moderate, 0.70–0.89 

high, and >0.90 very high.35 Additionally, Tables S3 and 

S4 report the Pearson’s product–moment correlation 

coefficient for normally distributed QST parameters and 

Spearman’s rank correlation coefficient for nonnormally 

distributed parameters.

•	 IC coefficient (ICC): ICC was calculated using the 

two-way random-effects analysis of variance (ANOVA) 

model, type absolute agreement. The ICC values were 

interpreted as follows: ICC ≤0.20 slight, 0.21–0.40 fair, 

0.41–0.60 moderate, 0.61–0.80 substantial, and >0.80 

almost perfect.36

•	 Bland–Altman plots: Bland–Altman plots were used in 

order to assess the level of agreement between T1 and 

T2.31,37 These plots give a transparent visual presentation 

of potential bias of the data and the so-called LoAs.34 The 

plots display differences between both QST measure-

ments (T1 – T2) against the mean values of both QST 

measurements (T1 + T2)/2) for each subject. These plots 

represent the average bias: if differences are systemati-

cally greater than zero, then the QST measurement in T1 

is systematically higher than the QST measurement in T2; 

conversely, if differences are systematically less than zero, 

then the measurement in T1 is systematically lower than 

that in T2. The LoAs (mean differences ±1.96× SD) of 

the Bland–Altman plots were used as a central outcome 

for the determination of the agreement between the two 

QST assessments. These LoAs can be interpreted in the 

following way. If the study were to be repeated, the dif-

ference between measurements should lie within these 

limits in 95% of all cases. Conclusions about reliability 

should be drawn from the mean of differences (average 

bias) as well as the LoAs: if the differences are small (ie, 

the LoAs are small) and the mean of the differences is 

near zero, the test can be considered reliable.

In addition, the standard error of measurement (SEM) and 

the minimum detectable difference (MDD) were calculated. 

SEM was determined as the square root of the mean square 

error term from the repeated-measures ANOVA. The MDD 

was calculated using the following formula: MDD (SEM 

×1.96×21/2).30,38

Confirming our findings of our primary statistical analy-

sis, we performed an additional statistical analysis without 

outliers of each parameter (Tables S5 and S6, Figures S1 

and S2). The outliers were defined as the values that were 

more than 1.5 × interquartile range (IQR) beyond the 25th 

and 75th percentiles.

All statistical calculations were performed using SPSS 

Statistics 22 (IBM Corporation, Armonk, NY, USA). We 

considered the analysis of each parameter as a separate 

hypothesis, and therefore, no adjustment for multiple com-

parisons was needed. Hence, the significance level was set 

to 0.05 for each statistical test. For the Bland–Altman plots, 

the software package R (version 3.2.4; R Core Team, Vienna, 

Austria) was used.

Results
All participants completed the study. Tables 2 and 3 show 

the results for the QST variables (log-transformed data for 

CDT, WDT, TSL, PPT, MPT, MPS, WUR, MDT, and raw 

data for CPT, HPT, and VDT) of the lower back and dominant 

hand for the total sample size (N=22). The results present 
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Table 2 Statistical analysis of QST values for the lower back in healthy volunteers (N=22)

Parameter Difference (T1 – T2) Correlation ICC LoAs SEM MDD

Mean ± SD (95% CI 
of mean)

p r p ICC p (95% CI) Lower LoA – 
upper LoA

Back
CDTlog (ΔT), °C 0.17 ± 0.27 (0.05–0.30) 0.007* 0.18 0.432 0.14 0.212 (–0.18 to 0.47) –0.36 to 0.71 0.19 0.53
WDTlog (ΔT), °C 0.07 ± 0.26 (–0.05 to 0.18) 0.250 –0.53 0.012* –0.51 0.995 (–0.79 to 0.10) –0.45 to 0.58 0.19 0.52
TSLlog (ΔT), °C 0.08 ± 0.17 (0.01–0.16) 0.038* 0.26 0.248 0.23 0.119 (–0.14 to 0.57) –0.26 to 0.42 0.12 0.34
CPT, °C –6.35 ± 10.34 (–10.94 to –1.77) 0.009* 0.35 0.109 0.26 0.070 (–0.10 to 0.58) –26.62 to 13.91 7.31 20.26
HPT, °C –0.14 ± 1.69 (–0.89 to 0.61) 0.708 0.83 <0.001** 0.80 <0.001** (0.58–0.91) –3.45 to 3.18 1.20 3.31
PPTlog, kPa 0.02 ± 0.17 (–0.05 to 0.10) 0.492 0.64 0.001** 0.65 <0.001** (0.32–0.84) –0.30 to 0.35 0.12 0.33
MPTlog, mN 0.13 ± 0.35 (–0.02 to 0.28) 0.099 0.52 0.013* 0.50 0.005* (0.13–0.75) –0.55 to 0.81 0.24 0.68
MPSlog, NRS –0.12 ± 0.25 (–0.23 to 0.01) 0.035* 0.86 <0.001** 0.84 <0.001** (0.62–0.93) –0.60 to 0.36 0.17 0.48
WURlog, ratio 0.02 ± 0.23 (–0.09 to 0.12) 0.752 0.51 0.016* 0.52 0.007* (0.13–0.77) –0.43 to 0.46 0.16 0.45
MDTlog, mN 0.06 ± 0.40 (–0.12 to 0.23) 0.510 0.22 0.329 0.22 0.159 (–0.22 to 0.58) –0.73 to 0.84 0.28 0.78
VDT, x/8 0.06 ± 0.85 (–0.31 to 0.44) 0.739 0.65 0.001** 0.62 0.001** (0.27–0.82) –1.60 to 1.72 0.60 1.66

Notes: QST parameters were logarithmically transformed (except for CPT, HPT, and VDT), according to recommendations of Rolke et al.2 Indexlog denotes QST parameters 
for which calculations are based on log-transformed data. T1, measurement session 1; T2, measurement session 2; ΔT, difference in temperature to the 32°C baseline; level 
of significance: *p≤0.05; **p≤0.001.
Abbreviations: QST, quantitative sensory testing; N, number of participants; CDT, cold detection threshold; WDT, warm detection threshold; TSL, thermal sensory limen; 
CPT, cold pain threshold; HPT, heat pain threshold; PPT, pressure pain threshold; MPT, mechanical pain threshold; MPS, mechanical pain sensitivity; WUR, wind-up ratio; 
MDT, mechanical detection threshold; VDT, vibration detection threshold; NRS, numerical rating scale; ICC, intraclass correlation coefficient; LoA, limits of agreement 
according to Bland and Altman;31 MDD, minimum detectable difference.

Table 3 Statistical analysis of QST values for the dominant hand in healthy volunteers (N=22)

Parameter Difference (T1 – T2) Correlation ICC LoAs SEM MDD

Mean ± SD (95% CI 
of mean)

p r p ICC p (95% CI) Lower LoA – 
upper LoA

Hand
CDTlog (ΔT), °C 0.07 ± 0.30 (–0.06 to 0.20) 0.279 0.13 0.560 0.11 0.300 (–0.31 to 0.50) –0.51 to 0.65 0.21 0.57
WDTlog (ΔT), °C 0.05 ± 0.25 (–0.06 to 0.16) 0.347 0.60 0.003* 0.60 0.001** (0.25–0.81) –0.43 to 0.53 0.17 0.48
TSLlog (ΔT), °C 0.06 ± 0.23 (–0.04 to 0.16) 0.243 0.50 0.017* 0.50 0.007* (0.12–0.75) –0.39 to 0.51 0.16 0.45
CPT, °C –1.51 ± 8.52 (–5.29 to 2.27) 0.414 0.39 0.071 0.39 0.033* (–0.02 to 0.69) –18.22 to 15.20 6.03 16.71
HPT, °C –0.12 ± 1.79 (–0.91 to 0.67) 0.752 0.80 <0.001** 0.81 <0.001** (0.59–0.92) –3.63 to 3.38 1.26 3.50
PPTlog, kPa 0.03 ± 0.15 (–0.04 to 0.10) 0.341 0.52 0.014* 0.49 0.008* (0.11–0.75) –0.27 to 0.33 0.10 0.29
MPTlog, mN 0.23 ± 0.41 (0.04–0.41) 0.017* 0.48 0.023* 0.42 0.011* (0.03–0.70) –0.58 to 1.03 0.29 0.80
MPSlog, NRS –0.10 ± 0.41 (–0.28 to 0.08) 0.265 0.66 0.001** 0.66 <0.001** (0.34–0.84) –0.90 to 0.70 0.29 0.80
WURlog, ratio –0.01 ± 0.26 (–0.13 to 0.10) 0.834 0.29 0.199 0.27 0.112 (–0.18 to 0.62) –0.53 to 0.51 0.18 0.51
MDTlog, mN 0.09 ± 0.38 (–0.08 to 0.25) 0.304 0.32 0.153 0.31 0.072 (–0.11 to 0.64) –0.66 to 0.83 0.27 0.75
VDT, x/8 0.07 ± 0.58 (–0.19 to 0.33) 0.590 0.63 0.002* 0.62 0.001** (0.28–0.82) –1.08 to 1.21 0.41 1.14

Notes: QST parameters were logarithmically transformed (except for CPT, HPT, and VDT), according to recommendations of Rolke et al.2 Indexlog denotes QST parameters 
for which calculations are based on log-transformed data. T1, measurement session 1; T2, measurement session 2; ΔT, difference in temperature to the 32°C baseline; level 
of significance: *p≤0.05; **p≤0.001.
Abbreviations: QST, quantitative sensory testing; N, number of participants; CDT, cold detection threshold; WDT, warm detection threshold; TSL, thermal sensory limen; 
CPT, cold pain threshold; HPT, heat pain threshold; PPT, pressure pain threshold; MPT, mechanical pain threshold; MPS, mechanical pain sensitivity; WUR, wind-up ratio; 
MDT, mechanical detection threshold; VDT, vibration detection threshold; NRS, numerical rating scale; ICC, intraclass correlation coefficient; LoA, limits of agreement 
according to Bland and Altman;31 MDD, minimum detectable difference.

the differences between the measurements T1 and T2, their 

mean, SD, and 95% CI of mean. In addition, the results of the 

statistical analysis of differences between both measurements 

(T1 and T2), correlations, ICCs, LoAs for the Bland–Altman 

plot, SEMs, and MDDs are reported (Tables 2 and 3).

Additionally, we analyzed our data concerning outliers 

for each test parameter and for each test area (back and 

hand). Tables S5 and S6 outline the statistical analysis 

without outliers for all calculations (differences in terms 

of T1 – T2, correlations, ICCs, LoAs, SEM, and MDD). 

Furthermore, Tables S3 and S4 outline the correlation 

analysis by Pearson’s product–moment correlation (normal 

distribution) and the Spearman’s rank correlation (nonnor-

mal distribution).
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Differences between measurements 
(T1 – T2)
Back
The comparison of the means of T1 and T2 showed significant 

differences (p≤0.05) for CDT, TSL, CPT, and MPS (Table 2).

Hand
On the dominant hand dorsum, significant differences were 

observed for MPT only (Table 3).

Correlations between T1 and T2
Back
The correlation analysis revealed significant high correlations 

(r≥0.70; p≤0.001) for HPT and MPS, as well as moderate 

correlations (r≥0.50; p≤0.013) for WDT, PPT, MPT, WUR, 

and VDT (Table 2).

Hand
A significant high correlation between T1 and T2 was shown 

for HPT (r=0.80; p<0.001; Table 3). Moderate correlations 

were found for WDT, TSL, PPT, MPS, and VDT (ranging 

from r=0.50 to r=0.66; all p<0.017). Lower, but still sig-

nificant, correlation was found for MPT (r=0.48; p<0.023). 

Tables S3 and S4 outline the correlation analysis of QST on 

the lower back and on the dominant hand in healthy volun-

teers (N=22) according to the normal distribution.

ICC analysis
Back
The ICC analysis demonstrated an almost-perfect ICC for 

MPS (ICC: 0.84; p<0.001) at the lower back (Table 2). 

HPT, PPT, and VDT achieved substantial ICCs (ranging 

from ICC 0.62 to ICC 0.80; p≤0.001), and moderate ICCs 

were observed for MPT and WUR (ICC 0.50 and ICC 0.52; 

p≤0.011).

Hand
An almost-perfect ICC was shown for HPT (ICC  0.81; 

p<0.001), while the ICCs for MPS and VDT (ICC  0.66 

and ICC 0.62; p≤0.001) were substantial. Moderate ICCs 

were observed for WDT, TSL, PPT, and MPT (ranging 

from ICC 0.42 to ICC 0.60; p≤0.011) on the hand dorsum 

(Table 3). Fair ICC was found for CPT (ICC =0.39; p≤0.033).

Bland–Altman plots
Figures 1 and 2 depict the Bland–Altman plots for all QST 

parameters. The LoAs of all parameters contained the number 

zero for all variables on lower back and hand dorsum. 

Back
The LoAs varied substantially between QST parameters, 

being lowest for WUR (–0.27 to 0.35) and highest for the 

thermal pain thresholds (CPT: –26.62 to 13.91; HPT: –3.45 

to 3.18).

Hand
The LoAs varied between the QST parameters, being the 

lowest for PPT (–0.27 to 0.33) and highest for the thermal 

pain threshold (CPT: –18.22 to 15.20; HPT: –3.63 to 3.38).

All QST values in original units (raw data) with mean, 

SD, 95% CI of mean, median, 25th and 75th percentiles for 

T1, T2, the differences of both measurements (T1 and T2), 

the SEM, and the MDD are presented in Tables S1 and S2 

for the back and the hand, respectively.

SEM results
SEM and MDD are given in Tables 2 and 3 as complements 

to the reliability and agreement measures. These measures 

are important as they determine the clinically significant 

measures for each of the QST parameters. As can be seen 

in Tables 2 and 3, the SEM values were lower for the hand 

compared to those for the back for WDT, CPT, PPT, MDT, 

and VDT, indicating that these QST parameters are precise at 

the hand over a 10-week period. In contrast, the SEM values 

for CDT, TSL, HPT, MPT, MPS, and WUR are lower at the 

back compared to the hand, indicating that these param-

eters are more precise at the back than at the hand over the 

10-week period.

Discussion
The primary aim of this study was to undertake a detailed 

analysis of reliability and agreement, with a time interval of 

10 weeks, for the standardized QST procedure according to 

the German Research Network on Neuropathic Pain (DFNS). 

To our knowledge, the present study is the first indicating 

the normal variations for each parameter of the broadly 

used QST protocol of the DFNS2,8,10–12,14,39,40 over a standard 

intervention time (10 weeks). This helps to define ranges of 

normal variation to provide a basis for using QST as a tool 

in 10-week interventional trials and to assess interventional 

outcomes on an individual basis.

ICC values
High ICC values were found for some QST parameters, such 

as HPT, at the back. This is in accordance with previous 

reports.20,30 However, these findings were not confirmed in all 

of the available studies (eg, only fair reliability for CPT17,22). 
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Figure 1 Bland–Altman plots of the QST parameters for the lower back of healthy volunteers (N=22).
Notes: (A) CDTlog; (B) WDTlog; (C) TSLlog; (D) CPT; (E) HPT; (F) PPTlog; (G) MPTlog; (H) MPSlog; (I) WURlog; (J) MDTlog; (K) VDT; T1, measurement session 1; T2, 
measurement session 2. Bland–Altman plots with the differences between T1 and T2 values (vertical axis) plotted against the mean of each T1 and T2 value (horizontal axis) 
of each participant. The middle horizontal dashed line represents the mean difference between T1 and T2 of all subjects; upper and lower dashed lines indicate the limits of 
agreement (upper and lower limits of agreement, mean difference ±1.96× SD).
Abbreviations: CDT, cold detection threshold; WDT, warm detection threshold; TSL, thermal sensory limen; CPT, cold pain threshold; HPT, heat pain threshold; PPT, pressure 
pain threshold; MPT, mechanical pain threshold; MPS, mechanical pain sensitivity; WUR, wind-up ratio; MDT, mechanical detection threshold; VDT, vibration detection threshold.
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Figure 2 Bland–Altman plots of the QST parameter for the dominant hand of healthy volunteers (N=22).
Notes: (A) CDTlog; (B) WDTlog; (C) TSLlog; (D) CPT; (E) HPT; (F) PPTlog; (G) MPTlog; (H) MPSlog; (I) WURlog; (J) MDTlog; (K) VDT; T1, measurement session 1; T2, 
measurement session 2. Bland–Altman plots with the differences between T1 and T2 values (vertical axis) plotted against the mean of each T1 and T2 value (horizontal axis) 
of each participant. The middle horizontal dashed line represents the mean difference between T1 and T2 of all subjects; upper and lower dashed lines indicate the limits of 
agreement (upper and lower limits of agreement, mean difference ±1.96 × SD).
Abbreviations: CDT, cold detection threshold; WDT, warm detection threshold; TSL, thermal sensory limen; CPT, cold pain threshold; HPT, heat pain threshold; PPT, pressure 
pain threshold; MPT, mechanical pain threshold; MPS, mechanical pain sensitivity; WUR, wind-up ratio; MDT, mechanical detection threshold; VDT, vibration detection threshold.
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Wasner and Brock41 investigated three different measuring 

points and ascertained a better ICC for CPT for an interval 

of 1 day versus an interval of 21 days. Those results are in 

line with our findings on the CPT, showing lower reliabilities 

for a time interval of 10 weeks.

Moderate-to-substantial ICCs for the PPT on the hand 

and back over 10 weeks suggest that the mechanical QST 

parameters are stable over time. Previous studies reported 

good-to-excellent ICCs over short-term intervals for the 

PPT on the face, neck, forearm, finger, and knee.16,25,28,42 

Andersen et al,43 who investigated QST changes before and 

1 year after breast cancer surgery, describe a good reliability 

for MPT determined 1 week apart. One study revealed sub-

stantial reliability for VDT on the back and hand, as well as 

moderate reliability for MPS and slight reliability for WUR 

on the face.28 Felix and Widerstrom-Noga17 even showed an 

excellent ICC for VDT within a short-term interval, while 

good-to-excellent ICCs were reported for MDT.17,25 Overall, 

our results are in line with lower ICCs for the mechanical 

QST parameters, when tested over short-term intervals.38

In conclusion, test–retest reliability is sufficient for most 

of the QST measures.

Agreement
Our data show smaller as well as larger LoAs for different 

QST parameters. LoAs have been investigated only rarely 

with regard to QST parameters. Hirschfeld et al27 reported 

LoAs for repeated QST measures for the hands at the same 

day in a longitudinal investigation of developmental changes 

in somatosensation in children. Another study investigated 

some QST parameters in the course of breast cancer sur-

gery, reporting the LoAs for forearm, leg, and breast.43 The 

reported LoA (Table 5 in the study by Andersen et al43) are 

larger or in the same range as our data. This is surprising as 

the time difference between QST examinations in our study 

was larger. Possible reasons for the narrower limits in our 

study might be due to the population examined (patients in 

some studies vs healthy subjects in our study) and the highly 

standardized procedures used in our laboratory (standardized 

QST protocol, standardized test instructions, meeting the 

extensive requirements for certification of our QST labora-

tory).44 While ICCs are often nonsignificant, LoAs exhibit 

rather favorably small and consistent 95% CIs, which appear 

to be counterintuitive. Bland–Altman plots (Figures 1 and 2) 

reveal that many of the individual QST values are located 

within a small interval, suggesting the existence of a mean 

value with a small, but random variation (eg, CPT on the 

lower back; Figure 1D). This lack of systematic variation 

alone is sufficient to explain the lack of a significant correla-

tion. However, it is exactly this small data range of some of 

the QST parameters, particularly in healthy subjects, which 

makes QST a suitable measure to detect both deviations 

from the norm, as may be seen in patients,8,39,40 as well as 

changes induced by treatments. The question of how stable 

a measure is can be answered by analyzing how similar two 

measurements are, and this question is best answered by 

using the LoAs.45,46

SEM results
SEM as an absolute reliability index that reflects the agree-

ment between repeated measures within each individual is 

suitable in interventional trials to calculate the MDD values 

for determining the sample sizes.30 To our knowledge, there 

is only one study30 providing SEMs for time intervals longer 

than 1 week for four QST parameters, namely, CPT, HPT, 

PPT, and WUR. Our SEM values are mainly in line with the 

results of Marcuzzi et al.30 Thus, our data confirm the lower 

SEM values at the hand for CPT and PPT, indicating that CPT 

and PPT are more precise when conducted at the hand than 

at the back. Accordingly, HPT showed lower SEM values at 

the back in comparison to the hand, both in our study and in 

the study by Marcuzzi et al.30 In contrast to that study,30 SEM 

values for WUR were higher at the hand in comparison to 

those of the back, indicating that WUR in our study is more 

precise at the back than at the hand. This difference cannot 

be explained by outliers (Tables S5 and S6).

As we used the comprehensive QST protocol of the DFNS 

network, we provide, for the first time, SEMs for all QST 

parameters expected. Our data indicate that SEM values for 

CDT, TSL, MPT, and MPS were lower at the back compared 

to those at the hand, indicating that these QST parameters are 

precise measures when conducted at the back over a 10-week 

period. In contrast, SEM values for WDT, MDT, and VDT 

were lower at the hand compared to the back for this period.

Future directions and limitations
Knowledge of the variability of QST parameters is a prerequi-

site to assess meaningful changes of any kind of intervention 

on these parameters (which should be larger than the vari-

ability). One strength of our study is the application of the 

comprehensive QST protocol, including detection thresholds 

(CDT, WDT, TSL, MDT, and VDT), as well as pain thresh-

olds and related pain parameters (HPT, PPT, MPT, MPS, 

and WUR), over a period of 10 weeks. Our data indicate 

that QST parameters are suitable for individual monitor-

ing over 10 weeks. Furthermore, our study provides a set 
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of useful items to depict reliability and agreement. Beyond 

the estimation of effects from interventional trials, our data 

might contribute to the expression of a treatment effect on 

QST with regard to the LoAs. The data for each subtest may 

serve as the norms in order to evaluate the deviation of a 

patient’s value. The effects of an intervention would then be 

expressed as the possible change in the deviation, or, ideally, 

if the subject’s values lie within the LoAs after intervention, 

as normalization. The use of the LoAs would overcome 

some of the issues of all correlation-based measures, such 

as test–retest reliability, namely, that the absolute values 

may well decrease or increase over time, but as long as the 

ranking of the individual within the cohort is similar between 

the two measurements, the correlation is high. With regard 

to the estimation of a treatment effect, this phenomenon may 

represent a challenge. One example of a QST subtest where 

this could be relevant is the PPT, which has been shown to 

change from the first to the second measurement in particular, 

while still exhibiting high test–retest reliabilities.30,42 Even 

though we did not find such dramatic differences between T1 

and T2, a similar trend was seen in our data. Here, the LoAs 

may be more suitable to detect an intervention-induced effect.

A DFNS-trained researcher (HN) performed the QST 

assessment in all subjects at both T1 and T2. Our approach 

was similar to a recent study on long-term reliability on some 

QST parameters,30 where one investigator performed the QST 

measurements. Since the aim of our study was to determine 

the stability (test–retest reliability and agreement) over longer 

periods under ideal conditions, we chose 1) a highly standard-

ized protocol, namely, the DFNS protocol, 2) healthy, pain-

free volunteers, and 3) one, highly trained investigator. The 

rationale for this approach was the assumption that, if QST 

did not show sufficient long-term reliability and agreement 

under these highly standardized conditions, further investi-

gation of this research question would be obsolete as QST 

would not be a suitable measure for interventional trials on 

pain. Moreover, a highly standardized approach represents 

also the method of choice within a clinical trial. Nonetheless, 

it can be questioned whether such an approach achieves a 

sufficient degree of ecological validity for clinical practice, 

where often several clinicians perform the tests. However, 

this question was not the focus of the present study. It would 

be of interest to assess the interrater long-term reliability, 

similarly to short-term reliability.29

Generally, our results as well as the data from Marcuzzi 

et al30 do not necessarily reflect the results from literature 

discussed herein. Both studies investigate healthy volunteers, 

while the results on reliability and agreement in most of the 

studies are derived from patient populations, or, as in the case 

of the data from Hirschfeld et al,27 from somewhat atypical 

populations such as children. Thus, generalizability of our 

results to a patient population remains to be confirmed. Similar 

to the data of Marcuzzi et al,30 some of the QST parameters 

seem to show considerable adjustments over time and it 

remains unclear whether this is an effect related to learning. 

Since Marcuzzi et al30 found the strongest differences between 

T1 and T2, it may be recommended to assess two baseline 

measurements in a clinical trial setting, in order to avoid a 

confounding effect within the treatment phase of the trial.

Even though our results are to a large extent in line with 

a recent published study with a larger sample,30 one relevant 

limitation of this study is its small sample size (N=22). 

Nonetheless, assuming a power of 80%, large effects with 

Cohen’s d>0.6 could be sufficiently detected by our study. 

Our study asks whether QST is suitable for monitoring 

individuals over 10 weeks, which might be useful for moni-

toring the effects of interventions in clinical trials on pain. 

Within a clinical trial, the most relevant question is whether 

the difference found between two interventions is clinically 

meaningful. This is usually measured with a visual analogue 

scale or other markers as main outcomes, directly related 

to the patients’ experience of pain. A clinically meaningful 

effect may well represent a 30%–50% change of the main 

outcome with regard to baseline,47 which can be considered 

a strong effect. The power of a clinical trial may be increased 

by investigating a large number of patients, so that smaller 

changes also of the main outcomes, eg, a 10% change from 

baseline, become statistically significant. Such a trial would 

be able to detect small effect sizes. However, the results, 

even though statistically significant, would clinically not 

be relevant. In conclusion, within a clinical trial setting, the 

achieved power may well be sufficient to detect a clinically 

significant change. However, further studies, in particular 

within relevant patient groups, are urgently needed.

There are some technological limitations. These limita-

tions are inherent to the equipment and not related to the 

particular protocol used. The CPT normally has a cutoff 

temperature of 0°C. Some participants do not push the button 

before the thermode stops the cooling automatically, which 

means no painful cold experience is reported. Frey filaments 

are limited in their range from 0.25 mN to 512 mN.2,10 Some 

healthy participants are able to detect the thinnest hair with 

a force of 0.25 mN. These limitations may induce a ceiling 

effect.

To date, test–retest reliability and agreement of QST 

are inconclusive. Inconsistent results ranging from poor 
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reliability to excellent reliability are related to lack of 

standardization of the procedures, including the use of dif-

ferent equipments, algorithms, populations, and statistical 

methods.5 Moreover, studies are often selective in their 

use of tests, investigating the reliability of only thermal 

QST modalities20,22,41 or of some selected parameters of the 

QST.17,25,43 The time interval is also rather inconsistent and 

ranges from 3 days to 3 weeks.17,20,22,25,43 To avoid the stan-

dardization issues, we followed the standard QST protocol 

according to the German Research Network on Neuropathic 

Pain (DFNS)2,10 and used an interval similar to that often used 

in clinical trials on pain.

A major problem is that the synonymous use of the terms 

reliability and agreement is inappropriate.48 The different 

statistical approaches make a comparative interpretation of 

results almost impossible. A critical review on test–retest 

studies in QST identified considerable heterogeneity in sta-

tistical evaluations and recommends minimal methodological 

requirements and a protocol for reporting test–retest data.34

Conclusion
This study presents test–retest data, SEMs, MDDs, and LoAs 

for two highly standardized QST measurements for the com-

prehensive QST protocol over a period of 10 weeks. With 

regard to the additionally tested retest reliability, the results 

are generally in line with recently published data.30 Our data 

constitute the first step to define LoAs for each subtest of the 

standardized QST. Such data are a prerequisite when QST 

should serve as a basis for interventional trials as an outcome, 

which might be relevant for clinical research.
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