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One-Pot Synthesis of a bis-Pocket Corrole through
a 14-fold Bromination Reaction

Hans-Kristian Norheim,” Christian Schneider,” Kevin J. Gagnon,” and Abhik Ghosh*®

A one-pot protocol, effecting 14-fold bromination with ele-
mental bromine, has afforded copper [(-octabromo-meso-
tris(2,6-dibromo-3,5-dimethoxyphenyl)corrole, a new bis-
pocket metallocorrole. The Cu complex underwent smooth de-
metalation under reductive conditions, affording the free cor-
role ligand, which in turn could be readily complexed to Mn"
and Au". A single-crystal X-ray structure was obtained for the
Mn" complex.

bis-Pocket porphyrins and corroles afford sterically protected
environments that may potentially stabilize high-valent transi-
tion metal-oxo, -imido, and -nitrido intermediates."® Of the
wide variety of such ligands reported, porphyrins and corroles
with 2,6-disubstituted meso-aryl groups are among the more
easily accessible. Even so, the syntheses of such corroles rarely
proceed in yields higher than 10%. Thus, condensation of pyr-
role and the appropriate 2,6-disubstituted benzaldehyde pro-
vides 5,10,15-tris(2',6'-dichlorophenyl)corrole” in 9% yield and
meso-trimesitylcorrole®™ and 5,10,15-tris(2’,4’,6'-triphenylphe-
nyl)corrole®™ each in 7% yield. Recently, a dipyrromethane-al-
dehyde condensation led to 5,10,15-tris(2’,6'-dibromophenyl)-
corrole in 11% yield.” Bhyrappa and co-workers reported an
elegant, if serendipitous, solution to the problem of low yields
involving the direct bromination of copper 5,10,15,20-tetra-
kis(3’,5"-dimethoxyphenyl)porphyrin with elemental bromine,
which resulted in the hexadecabromo bis-pocket complex
copper 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(2',6'-
dibromo-3',5’-dimethoxyphenyl)porphyrin  in  nearly 80%
yield."” Reported herein is an analogous protocol for the
smooth 14-fold bromination of copper 5,10,15-tris(3’,5'-dime-
thoxyphenyl)corrole, Cu[Tm,m'MeOPC] (1), affording the
copper 2,3,7,8,12,13,17,18-octabromo-5,10,15-tris(2’,6’-dibromo-
3',5'-dimethoxyphenyl)corrole,  Cu[Br,,Tm,m'MeOPC]  (1-Br,,,
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Figure 1) in 55% yield. As discussed below, bis-pocket complex
1-Br,, proved to be a valuable starting material for the synthe-
ses for other bis-pocket metallocorrole complexes.

Figure 1. Synthesis of 1-Br,,.

Exposure of readily accessible Cu[Tm,m'MeOPC] (1) to an
excess of elemental bromine in chloroform yielded the bis-
pocket complex Cu[Br,,Tm,m'MeOPC] (1-Br,,) in yields of over
55% and quantities of >100 mg per batch, with clear indica-
tions that the synthesis could be scaled up further."" The tetra-
decabromocorrole product was contaminated with trideca-
and dodecabrominated impurities (as inferred from mass spec-
trometric analysis), which fortunately could be readily removed
by overnight recrystallization from chloroform/methanol. To
our satisfaction, 1-Br,, underwent smooth reductive demetala-
tion with anhydrous FeCl, and concentrated H,SO,, affording
the free-base ligand Hs[Br,,Tm,m'MeOPC] (2-Br,;) in 77%
yield."*"™ To demonstrate its utility as a transition-metal
ligand, 2-Br,, was used to synthesize its Au"" (3-Br,,) and
Mn"'>'¢ (4-Br,,) complexes, which proceeded in good vyields.
A high-quality single-crystal X-ray structure was obtained for
the Mn" complex 4-Br,,-H,0 (Figure 2 and Table 1), providing
conclusive proof of composition and structure for the unusual
14-fold brominated complex. An attempt at rhenium insertion,
however, led to a mixture of partially debrominated products
Re[Br,Tm,m’MeOPC](O) (n < 14), presumably reflecting the in-
ability of the sterically hindered macrocycle to adopt the
domed conformation observed for ReO corroles."”

Electrochemical (Figure 3) and UV/Vis (Figure 4) measure-
ments (see Table 2 for select data) showed that 14-fold bromi-
nation has a substantial impact on the electronic character
Cu[Tm,m’MeOPC] (1) and Au[Tm,m'MeOPC] (3).The most signif-
icant effect is an upshift of approximately 500 mV of both the
oxidation and reduction potentials of the two metallocorroles.
These upshifts are significantly higher than the 300-350 mV
effect of P-octabromination on the oxidation and reduction
potentials of Cu triarylcorroles,"? but similar to those observed
for other corrole derivatives."® Interestingly, 14-fold bromina-
tion of 1 engenders a significantly smaller redshift (ca. 15 nm)
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Figure 2. X-ray structure of 4-Br,,-H,0. Selected distances (A): Mn(1)-N(1)
1.918(4), Mn(1)-N(2) 1.936(4), Mn(1)-N(3) 1.931(4), Mn(1)-N(4) 1.918(4), and
Mn(1)-O(7) 2.182(4).

Table 1. Selected X-ray data for 4-Br,,-H,0.

Parameter Value
Chemical formula Cs3.80H33.80Br1407.06NsMN
Formula mass 2022.82
Crystal system trigonal
Space group R-3

A [A] 0.7749

a[Al 42.0826(16)
c[A] 23.8267(11)
V4 18

VA% 36543(3)
Temperature [K] 100(2)
Density [gecm ] 1.655
Measured reflections 153835
Unique reflections 13947
Parameters 717
Restraints 1

R 0.0804

6 range [°] 2.111-27.231
R, wR, all data 0.0367, 0.0889
S (GooF) all data 1.068
Max/min res. Dens. [e/A’] 1.295/—-0.851

of the Soret maximum than [}-octabromination does for Cu tri-
arylcorroles (ca. 27 nm)."? Unfortunately, our attempts to relate
these observations to the molecular structures of 1-Br,, and 3-
Br,, were thwarted by our inability to grow X-ray quality crys-
tals of either compound. A few speculative, explanatory re-
marks, however, may still be entertained. Copper corroles are
inherently saddled as a result of a specific Cu(d,:_,:)-corrole(r)
orbital interaction."®?" Octabromination considerably enhan-
ces the saddling."®?" The 27 nm Soret redshift resulting from
octabromination of Cu triarylcorroles is thought to reflect both
the direct electronic effect of the bromine atoms and the en-
hanced saddling."®2" The six ortho bromine atoms in 1-Br,,
presumably result in somewhat diminished saddling relative to
regular Cu B-octabromo-meso-triarylcorroles, which would ex-
plain the reduced Soret redshift of 1-Br,, relative to 1. Whether
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Figure 3. Cyclic voltammograms in CH,Cl, (V vs. SCE).

4-Br,, and other transition-metal derivatives of the new bis-
pocket corrole exhibit improved catalytic properties has not
been examined herein and remains a key question for the
future.??

Experimental Section
Materials

All reagents and solvents were obtained from Sigma Aldrich and
used as purchased, unless otherwise noted. Dimethylformamide
was dried and stored over 4 A molecular sieves under argon. The
metal salts Au(OAc),;, Cu(OAc),4H,0, and Mn(OAc),-4H,0O were ob-
tained from Merck. Pyrrole was passed over a short column of
basic alumina (Merck, 1 cm width, ca. 5cm height) to remove
brownish impurities and stored at —20° C. Silica gel 60 (0.04-
0.063 mm particle size; 230-400 mesh, Merck) was used for flash
chromatography. Silica gel 60 preparative thin-layer chromato-
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Figure 4. UV/Vis spectra in CH,Cl,.

Table 2. Soret, Q 1,,., [nm], and E,, values [V] for selected complexes.

Complex Soret Q Ejox  Evjred AE

Cu[Tm,m'MeOPC] 415 539 0.775 —0.180 0.955

Au[Tm,m’MeOPC] 418 530, 561 0.800 —1.400 2.200

Cu[Br,,Tm,m'MeOPC] 430 575 1.285 0.340 0.945

Au[Br,,Tm,m'MeOPC] 436 509, 548,585 1325 —-0.850 2.175

Mn[Br,;,Tm,m'MeOPC] 412, 435 520, 589, 605, 0.940 - -
630, 668

graphic plates (20 cm x 20 cm, 0.5 mm thick, Merck) were used for
the final purification of the new complexes.

Instrumentation

UV/Vis spectra were recorded on an HP 8453 spectrophotometer
in CH,Cl,. Cyclic voltammetry was performed with an EG&G model
263A potentiostat having a three-electrode system, including

ChemistryOpen 2017, 6, 221 -225 www.chemistryopen.org

. Open Access )
- ChemistryOPEN

<« Communications

-

DRk

a glassy carbon working electrode, a platinum wire counter elec-
trode, and a saturated calomel reference electrode (SCE). Tetra(n-
butyllammonium perchlorate, recrystallized twice from absolute
ethanol and dried in a desiccator for at least 2 weeks, was used as
the supporting electrolyte. The reference electrode was separated
from the bulk solution by a fritted-glass bridge filled with a sol-
vent/supporting electrolyte mixture. The anhydrous dichlorome-
thane solutions were purged with argon for at least 5 min prior to
measurements and an argon blanket was maintained over the sol-
utions all through the measurements. All potentials were refer-
enced to the SCE and a scan rate of 100 mVs™' was used. 'H NMR
spectra (400 MHz) were recorded in CDCl; (referenced to 7.26) at
298 K on a Varian Inova spectrometer. High-resolution electrospray-
ionization (HR-ESI) mass spectra were recorded from methanolic
solution on an LTQ Orbitrap XL spectrometer. Elemental analyses
were obtained from Atlantic Microlabs, Inc. In general, the Br,, de-
rivatives failed to yield satisfactory elemental analyses; whether the
high degrees of bromination lead to interference in the analyses
remains uncertain at this point. Proof of composition and purity of
these compounds, thus, came from fully assigned "H NMR spectra,
HR-ESI spectra, thin-layer chromatography, and, in one case (4-
Br,,4), also from single-crystal X-ray structure analysis.

Synthesis of Free-Base 5,10,15-tris(3’,5’-Dimethoxyphenyl)-
corrole

In a slight modification of a literature protocol,® 3,5-dimethoxy-
benzaldehyde (5 mmol, 831 mg) and pyrrole (10 mmol, 697 ul)
were dissolved in 200 mL MeOH, followed by slow addition of
water (200 mL) and of 37% HCI (4.25 mL) under vigorous stirring.
The reaction mixture was stirred overnight at room temperature,
extracted with CHCI;, washed twice with distilled water, once with
saturated aqueous NaHCO,, dried over Na,SO,, and filtered. The fil-
trate was diluted to 300 mL, followed by addition of p-chloranil
(1.23 g), and refluxed for 1h. The reaction mixture was then
washed three times with NaHCO, (aq), dried over Na,SO,, and fil-
tered; the filtrate was rotary-evaporated to dryness. The residue
was dissolved in a minimal amount of 1:1 n-hexane/CH,Cl, and
chromatographed on silica gel with the same solvent mixture to
flush out fast-eluting impurities and subsequently with 1:2 and 1:3
n-hexane/CH,Cl, to elute the bluish-green free-base corrole, which
partially overlapped with and was followed by a reddish brown im-
purity. All fluorescent fractions were combined and evaporated to
dryness. Treatment of the residue with cold, 3:1 n-hexane/CH,Cl,,
sonication, and filtering afforded the desired corrole as a bluish
solid. Yield: 206 mg (17 %). Analytical data were consistent with lit-
erature data.””

Synthesis of Copper 5,10,15-tris(3’,5’-Dimethoxyphenyl)-
corrole (1)

The procedure used was adapted from the literature."" Free-base
5,10,15-meso-tris-(3,5-dimethoxyphenyl)corrole (40 mg) and Cu-
(OAC),4H,0 (40 mg) was added to a 100 mL round-bottom flask
equipped with a stirrer bar, dissolved in 25 mL of pyridine and
stirred for 30 min at room temperature. The solvent was then re-
moved through rotary evaporation and the resulting residue dis-
solved in @ minimum volume of 1:2 n-hexane/CH,Cl,. Flash chro-
matography (silica gel, n-hexane/CH,Cl,, 1:1, then 2:3) yielded the
target compound as a brownish red fraction. Yield: 37 mg (85 %).
UVNVis (CH,Cl,): Aoy [€ X 107 (M™" em™)] (nm); 415 (8.0), 539 (0.8).
'H NMR (400 MHz, chloroform-d) ¢ 7.88 (d, J=4.2 Hz, 2H, B-pyrrol-
ic), 7.69 (d, J=4.2 Hz, 2H, B-pyrrolic), 7.42 (d, J=4.4 Hz, 2H, p-pyr-

© 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim


http://www.chemistryopen.org

.@‘* ChemPubSoc
g Europe

rolic), 7.31 (d, J=4.5Hz, 2H, p-pyrrolic), 6.92 (d, /=23 Hz, 4H,
5,15-0), 6.82 (d, /=23 Hz, 2H, 10-0), 6.67 (m, 3H, 5,10,15-p), 3.86
(s, 12H, 5,15-methoxy), 3.84 (s, 6H, 10-methoxy). MS (HR-ESI) m/z
766.1856 (M™), calcd 766.1847. Anal calcd for CuC,sH3sN,Og (%): C
67.31, H 4.60, N 7.30. Found (%): C 67.24, H 4.73, N 7.33.

Synthesis of Gold 5,10,15-tris(3’,5-Dimethoxyphenyl)corrole

A procedure was adapted from the literature™* as follows: free-

base 5,10,15-meso-tris-(3,5-dimethoxyphenyl)corrole (40 mg,
0.057 mmol) and Au(OAc); (70 mg, 0.188 mmol, 3.3 equiv) were
added to a 10 mL glass-vial equipped with a stirrer bar, dissolved
in 5 mL of pyridine, and stirred for 22 h at room temperature. After
rotary evaporation of the solvent, the resulting solids were dis-
solved in a minimum volume of CH,Cl,. Flash chromatography
(silica gel, 1:1 n-hexane/CH,Cl, gradually changing to pure CH,Cl,)
afforded the title compound as the first red fraction. Yield: 8 mg
(15%). UV/Vis (CH,Cl,): Apay [e X 107* (M'cm™)] (nm); 418 (12.8),
530 (0.6), 561 (2.4), 572 (2.6). THNMR (400 MHz, Chloroform-d) o
9.22 (d, J=4.3 Hz, 2H, B-pyrrolic), 9.14 (d, J=4.8 Hz, 2H, B-pyrrolic),
8.97 (d, J=4.4 Hz, 2H, B-pyrrolic), 8.90 (d, J=4.9 Hz, 2H, B-pyrrolic),
7.48 (d, J=2.4 Hz, 4H, 5,15-0), 7.38 (d, J=2.4 Hz, 2H, 10-0), 6.91-
6.86 (m, 3H, 5,10,15-p), 4.00 (s, 12H, 5,15-methoxy), 3.97 (s, 6H, 10-
methoxy). MS (HR-ESI) m/z 900.2213 (M™), calcd 900.2217; Anal
caled for AuC,sHasN,Og (%): C 57.34, H 3.92, N 6.22. Found (%): C
57.81, H 4.28, N 5.74.

Synthesis of Copper -Octabromo-5,10,15-tris(2’,6’-Dibromo-
3’,5’-dimethoxyphenyl)corrole (1-Br,,)

A procedure was adapted from the literature as follows:"" Copper

corrole 1 (85 mg, 0.11 mmol) was dissolved in CHCl; (30 mL) in
a round-bottom flask equipped with a magnetic stirrer bar. To the
stirred reaction mixture at room temperature, was added bromine
(296 uL, 52.5 equivalents) dissolved in CHCl; (12 mL) with a drop-
ping funnel over a period of 30 min. After an additional 1 h of stir-
ring, pyridine (561 pL, 63 equivalents) dissolved in CHCl; (12 mL )
was added with a dropping funnel over a period of 15 min. The re-
action mixture was stirred at room temperature overnight, shaken
with 20 mL of 20% w/v aqueous sodium metabisulfite, dried over
MgSO, and filtered. The filtrate was evaporated to dryness and the
residue was flash-chromatographed (silica, n-hexane/CH,Cl,, 1:1,
then 2:3, then 1:2), affording 1-Br,, as the first yellowish brown
fraction; the product at this stage was contaminated with small
amounts of various tridecabromo and 2',4’-brominated impurities.
Two subsequent overnight recrystallizations from 1:3 CHCI;/MeOH
then afforded the pure complex. Pure 1-Br,, could also be ob-
tained with only one recrystallization followed by preparatory TLC
(silica gel, 1:6 n-hexane/CH,Cl,, R;=0.55). Yield: 113 mg, (55%). UV/
Vis (CH,CL,) A, [¢ x 107* (M~ em™)] (nm): 430 (10.0), 575 (1.0).
'H NMR (400 MHz, CDCl;) 6 6.71(s, 2H, 5,15-p), 6.69 (s, TH, 10-p),
3.98 (s, 12H, 5,15-methoxy), 3.95 (s, 6H, 10-methoxy). MS (HR-ESI)
m/z 1870.9168 (M™), calcd 1870.9184.

Synthesis of Free-Base [3-Octabromo-5,10,15-tris(2’,6"-Dibro-
mo-3’,5’-dimethoxyphenyl)corrole (2-Br,,)

A literature!* procedure was adapted as follows: Powdered 1-Br,,
(45 mg, 24 umol) and anhydrous FeCl, beads (608 mg, 4.8 mmol,
200 equiv) were added to a 25-mL round-bottom flask and careful-
ly layered with 3 mL of sulfuric acid (95.0-97.0%). The suspension
was sonicated at for 3 h at room temperature and then carefully
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quenched with distilled water (10 mL). The mixture was transferred
dropwise to a separating funnel containing CHCl; (25 mL) and sa-
turated NaHCO; (aqg) (50 mL). Upon separation, the organic phase
was shaken repeatedly with NaHCO; (aq), once with distilled H,O
(50 mL), dried over anhydrous MgSO,, and filtered and the filtrate
rotary-evaporated to dryness. The green residue was dissolved in
1:1 n-hexane/CH,Cl, (aided by sonication) and flash-chromato-
graphed (silica gel, n-hexane/CH,Cl,, 1:1, then 1:2-1:4). A few milli-
grams of unreacted, brown copper corrole eluted first and could
be recovered, followed by 2-Br,, as a dark green band. Yield:
33.5mg (77%). UV/Vis (CH,Cl,) Ao [e X 107 (M™" cm™ )] (nm): 446
(8.4), 589 (1.8), 630 (1.4), 681 (1.3). "H NMR (400 MHz, chloroform-d)
0 6.95 (s, 3H, 5,10,15-p), 4.12 (s, 12H, 5,15-methoxy), 4.11 (s, 6H,
10-methoxy). MS (HR-ESI) m/z 1810.0030 (M-H*), calcd 1810.0066.

Synthesis of Gold 3-Octabromo-5,10,15-tris(2’,6"-Dibromo-
3’,5’-dimethoxyphenyl)corrole (3-Br,,)

In an adaptation of a literature procedure,* free-base 2-Br,,
(15 mg, 0.00825 mmol) and Au(OAc); (13 mg, 0.033 mmol, 4 eqv.)
were dissolved in pyridine (6 mL) and stirred overnight at room
temperature. The reaction mixture was rotary-evaporated to dry-
ness, dissolved in a minimum volume of CH,Cl,, and flash-chroma-
tographed (silica gel, n-hexane/CH.Cl,, 1:1, then 1:2 and 1:3). The
target compound 3-Br,, eluted as a red band (yellowish when
dilute). Yield: 15mg (90%). UV/NVis (CH,Cl) A, [e x 10°*
(M~ em "] (nm): 436 (13.4), 509 (0.5), 548 (1.2), 585 (5.2). '"H NMR
(400 MHz, chloroform-d) 6 7.04-7.01 (m, 3H, 5, 10, 15-p), 4.15 (s,
12H, 5, 15-methoxy), 4.13 (s, 6H, 10-methoxy); MS (HR-ESI) m/z
2043.9221 (M+K™), calcd 2043.9191).

Synthesis of Manganese [3-Octabromo-5,10,15-tris-(2’,6’-Di-
bromo-3’,5’-dimethoxyphenyl)corrole (4-Br,,)

In an adaptation of literature procedures,® free-base 2-Br,,
(27 mg, 0.0149 mmol) and Mn(OAc),-4H,0 (36 mg, 0.149 mmol)
were added to a 50 mL two-necked round-bottom flask equipped
with a condenser and a magnetic stirrer bar and dissolved in
10 mL of anhydrous dimethylformamide. The system was sealed
with rubber septa and connected to an oil-bubbler outlet. The re-
action mixture was deoxygenated by bubbling argon through the
solution under vigorous stirring for 10 min. The mixture was then
refluxed for 2 h under argon, cooled to room temperature, and
rotary-evaporated to dryness. Flash chromatography (silica gel, n-
hexane/EtOAc, 1:1, then 1:2-1:3) of the residue afforded 4-Br,, as
the first green fraction. X-ray-quality crystals were obtained from
slow vapor-diffusion of n-heptane into a benzene solution of the
complex. Yield: 18 mg (65%). UV/Vis (CH,Cl,) A [e x 107°
(M~ ecm™)] (nm): 412 (9.6), 435 (8.2), 520 (5.3), 589 (52.8), 605 (2.9),
630 (2.6), 668 (2.9). MS (HR-ESI) m/z 1863.9326 (M+H), calcd
1863.9341.

X-ray Structure Determination

X-ray data for 4-Br,,-H,0 were collected on beamline 11.3.1 at the
Advanced Light Source, Lawrence Berkeley National Laboratory.
Samples were mounted on MiTeGen® kapton loops and placed in
a 100(2) K nitrogen cold stream provided by an Oxford Cryostream
800 Plus low-temperature apparatus on the goniometer head of
a Bruker D8 diffractometer equipped with a PHOTON100 CMOS de-
tector operating in shutterless mode. Diffraction data were collect-
ed by using synchrotron radiation monochromated using sili-
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con(111) to a wavelength of 0.7749(1) A. An approximate full-
sphere of data was collected by using a combination of phi and
omega scans with scan speeds of 1's per degree for the phi scans,
and 1 and 3 s per degree for the omega scans at 260 =0 and —45,
respectively. The structures were solved by intrinsic phasing
(SHELXT) and refined by full-matrix least squares on F* (SHELXL-
2014). All non-hydrogen atoms were refined anisotropically. Hydro-
gen atoms were geometrically calculated and refined as riding
atoms. Additional crystallographic information has been summar-
ized in Table 1 and the crystal structure reported herein has been
deposited to the Cambridge Crystallographic Data Centre.”
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