
Page 1 of 63 -

I NF-3981INF-3981INF-3981INF-3981

Mas te r ’ s Thes i s i n Compu te rMas te r ’ s Thes i s i n Compu te rMas te r ’ s Thes i s i n Compu te rMas te r ’ s Thes i s i n Compu te r

S c i enceSc i enceSc i enceSc i ence

Securing Private Peer-To-Peer Networks

Lars A. Fredriksen

AUGUST, 2007

Faculty of Science

Department of Computer Science

University of Tromsø

--

Page 2 of 63

I NF-3981

Mas te r ’ s Thes i s i n Compu te r

S c i ence

SECURING PRIVATE PEER-TO- PEER NETWORKS

Lars A. Fredriksen

August, 2007

--

Page 3 of 63

Table of contents
TABLE OF CONTENTS ..3

ABSTRACT ..7

ACKNOWLEDGEMENTS ...9

1. INTRODUCTION...10

1.1. PRIVATE PEER-TO-PEER NETWORKS ...10

1.2. GOALS ..10

2. BACKGROUND ...13

2.1. DEFINITIONS ...13

2.1.1. Ad-hoc and Distributed Transient Networks ..13

2.1.2. Peer...13

2.1.3. Peer-to-Peer application ..13

2.1.4. Peer-to-Peer network..14

2.1.5. Private Peer-to-Peer network...14

2.2. BACKGROUND...15

3. PROBLEM ..18

3.1. LEVELS OF SECURITY ..18

3.1.1. Confidentiality ..19

3.1.2. Integrity ..19

3.1.3. Availability..19

3.2. THREATS ...19

3.3. ASSUMPTIONS, TRUST AND ASSURANCE..20

3.4. GOALS OF SECURITY ...20

3.5. PROBLEM TO SOLVE ..20

3.5.1. Authentication...20

3.5.1.1. Authenticate ... 20

3.5.1.2. Identity ... 21

3.5.2. Access ...21

3.5.3. A note about autonomy versus control..21

3.5.4. Focus ..22

3.5.5. Motivation...22

4. RELATED WORK AND TECHNOLOGIES ..23

4.1. SECURITY APPROACH FOR NETWORK APPLICATIONS IN A PEER-TO-PEER PERSPECTIVE............23

4.2. SECURITY MECHANISMS..23

4.2.1. Basic access and authentication mechanisms...23

4.2.1.1. Secrets as authentication .. 23

4.2.1.2. Locality as a form of authentication ... 24

4.2.2. Cryptographic mechanisms for access and authentication ..24

4.2.2.1. Manual exchange.. 24

4.2.2.2. Trusted key servers... 25

4.2.2.3. Certificate Authorities .. 25

4.2.2.4. Web of Trust... 25

4.2.2.4.1. Web Of Trust in PGP... 26

4.3. CRYPTOGRAPHIC ALGORITHMS AND PROTOCOLS ..26

4.3.1. Symmetric cryptography...26

4.3.1.1. Advanced Encryption Standard .. 27

4.3.2. Asymmetric cryptography...27

4.3.2.1. RSA.. 27

4.3.3. Theory of Authentication protocols ..28

4.4. GRADING OF SECURITY IN CURRENT PRIVATE P2P NETWORKS ...30

--

Page 4 of 63

4.4.1. Direct Connect..30

4.4.2. Octopod ..31

4.4.3. Waste ..31

4.4.4. Retroshare ..32

4.4.5. Turtle ..33

4.4.6. Freenet..33

4.4.7. Tsne...34

4.5. SPECIFYING THE CHALLENGES ..35

5. THE SOZIALIZED.NET EMBEDDED – AN EXISTING PRIVATE PEER-TO-PEER

SOLUTION WITH LIMITED LEVELS OF SECURITY ...37

5.1. THE SOZIALIZED.NET EMBEDDED (TSNE) AS A STARTING POINT...37

5.2. OVERVIEW OF TSNE ..37

5.3. THE INNER WORKINGS OF THE ORIGINAL TSNE ...39

5.3.1. Announce – peer announcing its presence (neighbor discovery)39

5.3.2. Ping Pong – Keeping track of active peers at ‘any’ location ...40

5.3.3. File searching and sharing...41

5.4. LEVELS OF SECURITY IN THE ORIGINAL TSNE..43

6. SPECIFICATION AND DESIGN ...44

6.1. THE SOSIALIZED.NET EMBEDDED - CRYPTOGRAPHIC VERSION, AN ENVISIONED PRIVATE PEER-

TO-PEER SOLUTION WITH GRADED LEVELS OF SECURITY ..44

6.2. SPECIFICATION OF TSNECV ...44

6.2.1. Specification ...44

6.3. DESIGN OF TSNECV ...46

6.3.1. Selected levels of security ...46

6.3.2. Selected encryption algorithms and bit strength...47

6.3.2.1. Symmetric encryption with AES.. 47

6.3.2.2. Asymmetric encryption, signatures and authentication with RSA ... 47

6.3.2.3. Selected bit strength of RSA and AES ... 47

6.3.3. Encryption module..48

6.3.3.1. crypformat .. 48

6.3.3.2. crypglobals ... 48

6.3.3.3. crypdocrypto .. 48

6.3.4. Authentication and key exchange module...48

6.3.4.1. neighbord (neighbor discovery).. 48

6.3.4.2. crypprotocol ... 49

6.3.4.3. crypprotocolgetunsecurekey... 49

6.3.4.4. crypprotocolgetsecurekey... 49

6.3.4.5. crypprotocolauth... 49

6.3.4.6. crypprotocolspinner.. 49

6.3.4.7. crypselecter... 50

6.3.5. Access module...50

6.3.5.1. crypauth.. 50

6.3.5.2. network (web server).. 50

6.3.6. Trust for autonomously granting access...51

6.3.7. Important manual operations in Tsnecv ...53

7. IMPLEMENTATION ..54

7.1. IMPLEMENTING THE SOSIALIZED.NET EMBEDDED - CRYPTOGRAPHIC VERSION54

7.2. PREPARATION, TOOLS, SYSTEM SOFTWARE AND HARDWARE SETUP ...54
7.2.1.1. Hardware .. 54

7.2.1.2. Software ... 54

7.3. OVERVIEW OF THE IMPORTANT MODULES OF TSNECV ..55

7.3.1. Encryption module..55

7.3.2. Authentication and key exchange module...56

7.3.3. Access module...57

--

Page 5 of 63

7.4. DAILY USE, AND TESTING..57

7.4.1. Daily use ...57

7.4.2. Testing ..58

7.4.2.1. Authentication .. 58

7.4.2.2. File streaming and Remote play access .. 58

7.5. LIMITATIONS AND PROBLEMS ...58

7.6. RESULTS AND POSSIBILITIES AND FURTHER DEVELOPMENT ..58

8. CONCLUSIONS ...59

9. REFERENCES..60

--

Page 6 of 63

--

Page 7 of 63

Abstract

This thesis describes the research of grading security in private Peer-to-Peer

(P2P) networks, and ultimately the development of “The Socialized.Net

Embedded – Cryptography Version” (Tsnecv). Tsnecv is a revision of “The

Socialized.Net Embedded” (Tsne) which is the embedded version of Njål

Borch’s doctorate “The Socialized.Net”. Tsne is a P2P file sharing application

which builds it private P2P network as an Ad-Hoc or Distributed Transient

Network. Tsnecv focuses on applying different levels of security to the

network with respect to authentication of peers and access to resources,

primarily through the use of public key cryptography and assignment of

varying trust to peers that meet in the network.

The goal is to establish secure authenticated communications in such a way

that peers may be assigned different policies with respect to access of files and

resources, and in this way introduce different levels, or rather grade the

security and trust of other peers. An exiting feature is the possibility to use a

wireless device to perform a search among the files of all your friends’ and

friends’ friends, or other people you have passed by, and automatically having

your living room media PC stream the live audio. Files are accessed based on

user groups. Someone who forms an Ad-Hoc (spontaneous) network with your

wlan unit while passing you by, may autonomously assign you a low trust

level, and thus probably access to few or no files. Your close friends however,

may grant you access to everything but their most private files.

An important aspect was attempting a transparent integration between Tsne

and the new levels of security and the mechanisms used to obtain them. It was

attempted to inconvenience the users as little as possible, while keeping the

accessibility of available resources as high as possible for all peers, while still

allowing as much control as possible. Not only is it important to be able to

grade the security at different levels, but it would be nice if users did not have

to stop and ask each other for passwords, keys, secrets or to carry memory

sticks in case they meet someone new and interesting. In other words, to keep

the autonomy as intact as possible and the resources plentiful while allowing

peers to control access to their shared resources.

Public (as in asymmetric) key encryption was the choice of tool to achieve

authentication of nodes. Web Of Trust was used as a starting point for the

exchange of keys, but Tsnecv grades both nodes and networks at different

levels of security, so in some cases you may meet someone new and exchange

a key autonomously and publicly, but still consider the security of the key and

the association of an identity to the key strong enough to securely authenticate

a peer at a later time.

Keywords: P2P private peer-to-peer trust security access authentication

--

Page 8 of 63

--

Page 9 of 63

Acknowledgements

I would like to thank Kristina who was extremely understanding during the

last weeks of my writing and kept the household afloat among papers, books,

and a continuos flow of boxes with take away. She was also very

understanding during my constant monologues where I talked myself through

events leading to problems during the development of the multithreaded

cryptographic networked computing system .

I would like to thank Anders Andersen at the University in Tromsø, who was

willing to be my teaching supervisor. I probably should have requested more

advise. The first advice I got was to write down absolutely everything I did

along the way, any decision I made, why I made it, and make sure to include

even the smallest detail. During the final days when the last strands of

powdered coffee were dwindling and my eyes wanted to look at anything but a

monitor, these notes helped a lot.

I would like to thank my external teaching supervisor Njål Borch. I would

especially like to thank him for the starting point, TheSocialized.Net

Embedded, which in spite few comments in the code, was a joy to experiment

with.

It has been enjoyable to work with a project where the reward has been a

continuous flow of music between my machines. I would therefore like to

thank the artist Morten Abel who sang ‘INPARTICULAR’, and the girl who

sang ‘JUHUUU’ in the background, every time a test of the system was

successful.

I would like to thank all the contributors of music to the Creative Commons

project. Without them public testing could have been quite cumbersome.

Finally I would like to thank all the contributors to projects hosted at

Sourceforge. The tools and Python extensions I obtained from Sourceforge

have been invaluable.

Any and all copyrighted music was of course legally obtained and only made

available to myself in a restricted user group of type 8 or 9. In other words, no

artist was harmed during the research of this thesis.

Finally, I would like to thank my family for providing the toy phones, and

providing me with other means of exploring my interest at a young age.

--

Page 10 of 63

1. Introduction

1.1. Private Peer-to-Peer networks

Peer-to-Peer (P2P) networks have grown popular due to their inherent

scalability and low cost. P2P file sharing networks are to a large extent open,

global networks, with very limited or no access limitations.

A specialized form of P2P networks, are private P2P networks. In a private

P2P network, only a limited selection of entities are granted access to the

system. For peers in some of these private P2P networks it may be desirable to

assign groups of selected entities different access restrictions, or policies. An

example of a group is a person’s home computer, a media PC connected to a

television, a handheld unit and a portable computer. In such a closed group,

one might desire to share mp3 files, photographs and home movies among the

units without making them accessible to strangers. Another form of limited

group might be close friends and family, whom a peer wishes to grant access

to mp3’s, without granting access to other private parts of the files system.

There are many aspects to consider in such a system. Among them are: How to

include units in the limited group, how to limit access to the system and shared

resources, how to protect the exchange against eves dropping, and even the

consideration of whether or not it is desirable to protect this exchange .

1.2. Goals

This project will research which possibilities are available to secure private

P2P networks. Some known approaches to security in systems with limited

access are ‘Web of Trust’, certification through certificates based on

asymmetric public key cryptography (and a trusted third party) and other

cryptography based systems. Important aspects of all these systems are

confidentiality (access), integrity (authentication), and trust (who can you

trust?). Some of the benefits one may achieve is control of to whom data is

published to, and guaranties of the integrity of data originating from trusted

nodes. For those who are interested in protecting themselves from frivolous

copyright infringement lawsuits of the type that is spreading over the world, it

might be an important aspect to be capable of securely limiting access to

private network to comply with current legislation.

It is the opinion of the author that one of the characteristics which makes P2P

networks popular is their autonomy. The peers generally does not need to

concern them selves with how other peers connect to the network. The peers

simply use the P2P application to access resources while the network grows

--

Page 11 of 63

and handles nearly everything else on its own. One of the goals will thus be to

retain much of this autonomy, while still allowing the security to be graded.

The question which will be researched is:

How may access to resources shared among peers in private Peer-

to-Peer networks be graded, in a secure manner, and with limited

intervention by the users.

With the rise of handheld wireless devices, more and more private networks

operate in so called disconnected mode, in other words, the networks are not

connected to the internet at all times (or maybe not at all). The users also has a

much more limited user interface than is normally found on a regular desktop

computer. There is often no mouse, only small keys, which makes it important

for a system to be able to handle as much as possible of the decision making

by it self. This project will thus have as one of its goals, to look at the

possibilities of securing private P2P networks, but at the same time be as little,

or not at all dependant on centralized servers.

A part of the project will be to further develop an existing P2P system in such

a way that the levels of security may be graded. Njål Borch developed the

system “The Socialized.Net Embedded” (Tsne). Tsne is an adaptation of his

doctorate , “The Socialized.Net”, designed specifically to stream mp3 (music

files) between peers in an Ad-Hoc network. The implementation of graded

security will build on the analysis of the different possible approaches which

will be part One of this project. The implementation will be a specialized

form of the mechanisms that are researched for grading the security in private

P2P networks. Important aspects will be some of the things that are already

mentioned; access policies for limited groups, authentication, and trust. In

some instances you trust your friends’ friends, while other times, you might

only trust your friends, or maybe just your self and you own systems. In this

setting we will explore other implementations, cryptography, which entities

are trustworthy, suitable trusted authorities, and if we even need such

authorities in our system. The purpose of the developed system will not be to

produce a complete and functioning network. The implementation of Tsnecv

will be developed to enable experimentation with the different aspects of

security, and should enable us to observe how system grades security . The

system should have a fairly easy way of manipulating data which defines the

security of the system. By doing this, it will hopefully be possible to show

how choices that are made influence the security and autonomy.

--

Page 12 of 63

--

Page 13 of 63

2. Background

2.1. Definitions

As Platoon once expressed, before something may be discussed, the

definitions of the topic at hand must be clear. The P2P technology is a

relatively new concept with conflicting definitions and ambiguities. In the

following subsections the authors usage of important terms will be clarified.

2.1.1. Ad-hoc and Distributed Transient Networks

The term Ad-hoc[3] networks are most commonly used about wireless devices

which spontaneously forms networks among them by connecting directly to

each other, and usually forming an overlay network. Ad-Hoc is however also a

suitable term for nodes on a local area network(LAN)[28]. which

spontaneously form an overlay network. Ad-hoc networks are a part of the

Distributed Transient Network(DTN) paradigm. The definition of DTN

networks is somewhat broader and is defined as: “the type of network which is

inherently decentralized by nature and consists mainly of nodes which are not

per se constantly a part of the network and are able to join or leave at any time

at any place in the network”[2].

2.1.2. Peer

A peer is one of many entities connected to a P2P network with a P2P

application. When referring to a peer it will be both the application and

inherently the user of the application that is being referred. In pure P2P

networks there are only peers. Other P2P networks rely on centralized servers

in one form or the other, or relies on concepts such as special peers referred to

as super nodes[29,30]. When concepts such as super nodes or servers are

discussed, they will not be referred to as peers.

2.1.3. Peer-to-Peer application

P2P applications allows peers to access resources other peers on the same P2P

network is sharing, and it allows peers to make resources available to other

peers. The resources are generally files which may contain virtually anything.

Modern P2P applications and protocols are sometimes more general and may

allow the routing of any type of data stream, such as text messages, voice

streams, video streams, and generally any other type of communication.

--

Page 14 of 63

2.1.4. Peer-to-Peer network

A P2P network is considered the entire system that allows peers to participate

in their sharing activity. It is the P2P application itself, the physical network

that allows the machines running the applications to connect, and all (if any)

specialized applications that may be acting as some sort of centralized server.

Some of these P2P networks rely heavily on centralized servers (even though

they may be replicated) for locating other peers and / or to perform searches or

even transfer files, especially when problems occur1. Other systems are

largely decentralized and it is usually the peers themselves that keep track of

and inform each other of the addresses of other participating peers. Such P2P

networks are generally referred to as overlay networks. This is because

searches and sometimes transfers follow a path routed among the peers, and

generally do not need an intermediate server for its basic operation. Still, these

systems relies on some sort of mechanism to allow new peers into the P2P

network for the first time. This mechanism may be as simple as posting the IP

address of a peer in the network on a website.

2.1.5. Private Peer-to-Peer network

In sections where only private P2P networks are being discussed, the wording

private P2P network will normally only be used the first time it occurs unless

it is probable that this could cause ambiguity. After that it will only be referred

to as network.

Private implies that the network is only available to selected peers. There are

many aspects of privacy, but in this setting it is used to describe a network

where only a selected group of peers are allowed access to the network and its

resources. Nothing is implied about how this group is selected, the anonymity

of the peers or the confidentiality of transferred resources, and most definitely

nothing is implied about attempts to conceal that something is being

transferred.

The distinguishing characteristics between P2P networks and more traditional

networking applications are diminishing and it is becoming harder to

distinguish a P2P network from applications like Windows Live Messenger,

some web sites, and even new concepts for advanced web browsers. To

alleviate this somewhat we require that the resources and infrastructures of

private P2P networks are provided by the peers. We also demand that there is

1 One such problem could arise when two peers are connected through a natural address

translation device. To avoid using some form of third party, the NAT devices would usually

need to be manually configured for incoming traffic to reach the correct host system. Even

then only one peer could be connected to each NAT device (assuming the P2P application

relies on the use of default ports).

--

Page 15 of 63

some level of trust involved when a new peer is granted or gains access to the

network (otherwise one might possibly argue that it is only a cumbersome P2P

network).

As an example, the P2P network Direct Connect (DC) [8,9,10,14] is used both

as a regular P2P network and as a private P2P network. There are a multitude

of DC networks scattered around the Internet and the different DC P2P

networks entry points are centralized servers (hubs). A peer connects to a DC

network by contacting2 one of these hubs, and is immediately ready to

participate in file sharing and chat rooms. The only difference between a DC

P2P network and a DC private P2P network is that the hub of the private

network requires a username and password before a peer is allowed access.

In private networks new peers are usually allowed into the network by an

existing trusted peer, and the new peer is usually considered as trustworthy as

the existing peer. Because the chain of trust has a tendency to grow over time,

this type of private network is generally suited for smaller groups of peers. In

some networks new peers will have to build trust over time, maybe by chatting

and transferring files, before they gain the same trust as any other peer (and

even then they may never gain the same trust). As we will see later on, there

are other forms of trust that may be suitable for granting access to a private

P2P network. In Tsne the trust is implied in the fact that peers have at one

point or another been connected to the same LAN . Nothing is implied about

the effectiveness of the security mechanisms many of these private P2P

networks use to protect themselves from unauthorized use or access.

The peers in private P2P networks are generally controlled by different users.

Even though one user may have a few peers connected at different locations or

different times, private P2P networks are suitable and intended for connections

between different users. This generally excludes the concept of sensor

networks[31] because these networks contain nodes controlled by a single user

or organization operating completely autonomously. Sensor networks are not

referred to as private P2P networks in this thesis. The security concepts

discussed may or may not be applicable for sensor networks.

2.2. Background

The author has always had a special interest in security systems. While

enrolled in elementary school (ages 6 through 13) he appeared in a radio

2 Selections of many public hub addresses are hosted on web servers that are pre configured id

the DC client. A DC client may select one or several of these hubs (depending on

implementation), or connect to hubs with addresses the user has obtained manually.

--

Page 16 of 63

program for children on one of two stations covering the entire nation3. The

program had a weekly spot to showcase the ideas of young innovators. In the

program he demonstrated an alarm system made of toy phones which were

wired together with switches and sensors to raise an alarm in different rooms

of the house if his room was entered or if his drawers were opened.

This interest was carried onto his interest for computer systems. One of the

first programs that was developed (on a Commodore Vic 20 computer with

built in support for Commodores implementation of the Basic programming

language) was a simple ciphering and deciphering program. It was not

sophisticated in any way, but it enabled him to store secret messages on his

computer, without the risk of the message being readable by anyone without

the secret key used for encryption.

After many years the author was introduced to the wonderful world of the

Internet. Few commercial businesses had begun to use The World Wide Web

(www) as a sales channel and the Internet as a whole was still, to a large

extent, reserved for academic institutions and people with a special interest in

computer science. This is how he entered the realm of Internet Relay Chat

(IRC) clients, File Transport Protocol (FTP), electronic mail (email) and

similar technologies.

It was immediately apparent to the somewhat ‘paranoid’ author that security

was a problem. Even defining security was problematic, but it seemed to have

similar properties with the protection of a room with an alarm made from a toy

phone, or limiting access to files, or at least limiting who could decipher the

content. On a regular basis someone was able to hack into the servers of the

local Internet provider (i.e. breach the security) and brag about reading the

contents of emails or listening in on IRC conversations. FTP servers which

were made available to friends continuously got visits from users who had

persuaded someone to give them the passwords, and even a few who had

obtained the password by performing a brute force attack4.

The number of networking applications grew at a fast pace in the following

years. Aside from the WWW, email systems, and a few others, a particular

type of application rapidly gained in popularity among users, namely file

sharing applications. A multitude of applications of this type exists, but during

the last years it is the Peer-to-Peer (P2P) applications that have become

3 The program was a weekly program for children called ‘Barnetimen’ (which would loosely

translate as ‘The hour for children’) and was broadcast on The Public Broadcasting Services

of Norway.

4 A brute force attack is an attack where a certain combination is needed (like a password) and

the combination is found by exhaustively trying combinations until the correct combination is

found.

--

Page 17 of 63

dominant. In P2P applications the users (generally referred to as peers5) make

files of interest available and participate in a cooperative effort to exchange

the files effectively (some applications more successfull than others). P2P

networks has many resemblances with the WWW. It is most often files that

are moved across a network, and the exchange is generally open for all who

wants to participate. As the use of the WWW has broadened, security needs

has prompted solutions such as requiring login with passwords to restrict

access, the Secure Socket Layer protocol combined with certificates to

provide authenticated and confidential communication, and many other

innovative solutions. However, in the extensive list of P2P systems the author

has experimented with, it seems as if the original intent of P2P, the

cooperative and effective distribution of content to all participants, has

somewhat clouded other needs and other uses for this technology.

One of the ingenious concepts of P2P is the autonomy. As soon as the

application is started, the peer has access to resources. Other peers come and

go, and with no interaction from the users standpoint all the shared resources

are available. But, it is the opinion of the author that many, if not most or all,

users have files they consider private and do not want to make available to all

other users of the P2P network they are part of. However, it isn’t improbable

that these same users might probably want to have remote access to these files

themselves, or maybe even grant a few selected peers access to some restricted

files. To illustrate this with an example we imagine the P2P system

‘Fastswap’. In this system peers are joining and leaving the network without

the need of asking other peers to accept them, it seems completely open just

like a regular P2P network. However, friends and acquaintances may grant

each other access to files they do not want the rest of the network to see. In the

same system, a peer may own several machines and be connected to the

network from different locations (and appearing in the network as several

peers, one for each machine running Fastswap). These users may select to

grant special access to even more restricted files, their private files, only to

those peers they are running themselves. Maybe they even use the Fastswap

application to make other resources than files available.

One small step in solving such problems is a private P2P network. A private

P2P network distinguishes itself from a P2P network mainly by limiting the

user base and moving the responsibility for approving peers to either the

currently participating peers or a peer that is considered trusted. As stated it is

5 It is observed that in most contexts the distinction between the person who is using a P2P

application, the application itself or even the machine or network it is connected to is only

vaguely stated. Throughout this thesis a peer will generally be considered an instance of the

application executing on a single machine with access to a network adapter and a network. It

will not be considered important who is using the application (be it a human or some sort of

artificial intelligence). Only in selected sections where identity and authentication is discussed

will a distinction be stated.

--

Page 18 of 63

only a small step, but the basic assumption is that in such a network the peers

have some sort of relation with each other, they are not simply random peers

scattered around the virtual community of the Internet, and the peers are

somewhat stronger associated with an identity. Still, a more fine grained

control may be desirable. If this could be combined with the advantages of the

P2P technology, a new generation of P2P networks may begin to emerge. If

supply is a result of demand, the recent increase in the number of projects in

this field and the constant flow of advertisements promising secure P2P

services, this should be enough incentive for anyone with an interest to pick up

the torch.

The imagined Fastswap application gives rise to a need for security measures.

How may users be distinguished from each other ? How may one peer be

identified and authenticated by another peer ? How may malicious peers or

other entities be restricted from accessing the resources ? How is access to

different resources granted to different peers ? How may the autonomy of the

P2P application be kept as intact as possible ? These are aspects of different

levels of security that may be desirable in a given system. The developed test

system will be used to explore these questions, with a focus on graded access,

authentication and trust.

3. Problem

Several approaches for securing private P2P networks have been presented by

researchers. Some of these ideas have been implemented and some

implementations have been based on the developers own ideas. The most

striking feature of all of these is their diversity. A small network may find a

simple solution where peers connect directly to a centralized server favorable.

A single peer may have the responsibility of approving new peers, distributing

keys, and evicting abusers. Larger networks may favor a more distributed

approach where peers are allowed, at their own discretion, to invite new peers

they trust to the network. In other networks it may be some other form of

relation, such as location or presence, that allows users into the network, one

such system is Tsne. This diverse selection of systems and the diversity of

peers using them offers and demands different aspects security. Before we are

able to identify the complete scope of the problem, we must look at the

different levels of security that may be implemented and desirable in such

systems.

3.1. Levels of security

--

Page 19 of 63

3.1.1. Confidentiality

Confidentiality is :”the concealment of information or resources”[5:pp4].

Access control is one of the mechanisms which is used in computer systems to

achieve confidentiality. While information is moving from one system to

another over an unsecured channel, additional steps must be taken to retain

this confidentiality. The methods used to achieve this generally involves

cryptography. Another aspect of confidentiality is the concealment of the

existence of resources (resource hiding) or transmissions of these resources.

3.1.2. Integrity

Data integrity and origin integrity refers to the trustworthiness of resources[5].

For data to have integrity it must be certain that it has not been subject to

unauthorized change. Data integrity applies to both stored and transmitted

data. Origin integrity is more commonly referred to as authentication.

Authentication applies to the source of data, and cryptographic mechanisms

may be used to enable the receiver of data to be certain who the original

source of the data was. In the setting of this thesis, where peers are generally

communicating through the public Internet, it is not the prevention of

unauthorized changes of transmissions that is important, but the detection of

such changes.

3.1.3. Availability

“Availability refers to the ability to use the information or resources

desired”[5:pp6]. For a system to be reliable it should be resilient against

actions or behaviors which deliberately or even inadvertently makes resources

that are supposed to be available inaccessible.

3.2. Threats

Threats are possible ways to attack a system. If the attack is successful it may

lead to use which violates the intended security[5]. Successful attacks breaches

the policies for one or more of the discussed security services, confidentiality,

integrity and availability. Successful attacks may result in some widely

recognized problems [5:pp7]:

• Snooping

• Masquerading or spoofing

• Delay

• Denial of Service

• Unauthorized modification or alteration

--

Page 20 of 63

• Repudiation of origin

• Denial of receipt

3.3. Assumptions, trust and assurance

Systems which implement some level of security rely on the concepts trust and

assurance. Systems are never stronger than their weakest link and it is

important to identify which components (be it hardware, software, human or

other) represent a threat to this security. If a system is considered secure

because it has locked gate, the security may be breached if unauthorized

personnel has access to the key, or if the door is made of paper. If however all

personnel who has access to the key is considered trusted and the door is

considered impenetrable, and these assumption are correct, the systems

security may not be breached. Of course this relies on a specification of the

security which states that the locked door should only be unlocked by

authorized personnel. If the intention is to keep the room behind the door

secure, the specification would also have to state that the room should only be

possible to enter through the unlocked door (and thus steps would have to be

taken to make this the only possible way to enter). This means that for the

intention of a security policy to be achieved, a specification which

implementation prevents all possible threats from breaching the security must

be stated. Because of this the security of a system relies on the assumption that

the specification is correct and includes all possible ways to breach the system.

3.4. Goals of security

According to Bishop[5], the proper specification of a given security policy’s

secure and non secure actions or states allows for the implementation of

mechanisms which may prevent, detect or recover from attacks. When

designing a secure system it must be decided which of these mechanisms are

needed. For a home computer with no private files where the only security

policy involves availability of the files, a routinely complete backup routine

for the system (and procedures for restoring from backup) may be considered

a sufficient specification of the security policy. In most systems the

specification is much more complex. In private P2P systems, private is an

important indicator of what the specification of the security policy should have

as its focus.

3.5. Problem to solve

3.5.1. Authentication

3.5.1.1. Authenticate

--

Page 21 of 63

The technology that is being researched is private P2P networks, and we are

looking at mechanisms for grading the security. Following the definition of a

private P2P network in section 2.1.5 an important characteristic is the

limitation with respect to which peers are allowed access. This is part of the

integrity security, specifically origin integrity, more commonly referred to as

authentication. The first problem that must be solved is a specification of a

mechanism for a peer to be authenticated before it is allowed access to the

network. It would be preferable if this authentication was capable of grading

new peers according to the level of trust existing peers have in them. This

differentiation should attempt to be relatively autonomous in order to retain

the autonomy which we must presume is at least partly responsible for the

prosperous spread of the P2P technology.

3.5.1.2. Identity

As explained, peers joining private P2P networks are generally invited by

peers who are already part of the network. When the joining peer connects and

the network attempts to authenticate it, the networks attempts to authenticate

the connecting machine, or at least the origin of the data which is being

transmitted. Identity and authentication is not the same. Identity may in the

scope of a private P2P network be described as the glue between the

authenticated node and the user controlling it. The identity doesn’t necessarily

identify a person by a name or other personal information, but the identity

allows others peers to at least differentiate between one peer and another. It

will be attempted to include some sort of applicable identity as a part of the

authentication mechanism.

3.5.2. Access

There would be little sense in grading peers during authentication if this

grading wasn’t applied to resources. Access is a part of confidentiality. This

second problem which needs solving is the specification of a mechanism

which makes resources accessible only to authenticated peers. If the thrust of

an authenticated peers is graded, the access to resources should also be graded

accordingly. As with the authentication, the grading of access should be as

autonomous as possible to retain the autonomy of the overall system.

3.5.3. A note about autonomy versus control

Autonomy and control are largely opposite characteristics. In section 3.5.1 we

made the assumption that the autonomy of P2P networks is a contributing

factor in their wide spread use. If this assumption is correct it follows that with

two identical systems only differing in the amount of manual operations

involved in accepting new peers, the one with the fewest operations is the

superior one (at least from the peers viewpoint). However, this thesis

--

Page 22 of 63

researches private P2P networks, which differs from regular P2P networks

mainly by the control of who is granted access. Balancing autonomy and

control implies a tradeoff where the control comes at a cost of reduced

autonomy. The researcher will do his best to limit the reduction of the

autonomy.

3.5.4. Focus

Among the aspects of security that are not the focus of this thesis, even though

some of them will be discussed briefly, we mention some important ones:

concealment, data integrity and availability. From this it follows that among

the mentioned threats the concepts delay, denial of service, unauthorized

modification or alteration (of stored data), repudiation of origin and denial of

receipt are considered less important than snooping, masquerading and

spoofing. This thesis will rather focus on the concepts of access (a part of

confidentiality) and authentication (the origin integrity part of integrity).

Access and authentication are considered important because they are very

basic to the operation of keeping networked communication private.

3.5.5. Motivation

A multitude of projects related to P2P networks are under constant

development and new projects and ideas are presented. In the authors opinion

none of these have sufficiently fused the autonomy of the regular P2P

networks with the control associated with private P2P networks. It seems as if

the focus of private P2P networks is either networks that hides the origin of

data (like Freenet[19,20] where the origin of resources is concealed, or the

more common private P2P networks like those based on the Direct Connect

technology [8,9,10,14] or Torrent networks where all resources are available

to all peers and the invitation to enter is only one of many obstacles. This was

the motivation that led the researcher to the task of researching a technology

which will hopefully make the development of an application with the control

of a private P2P network but the autonomy, broad user base, and resource

availability of a regular P2P network possible, or at least bring the two

branches of the P2P technology a few steps closer together. From the authors

view point, grading in the authentication process of peers and grading of

access, both in more autonomous fashions than the current technology is

capable of, are the first steps towards a diminishing gap between these two

branches of the P2P technology.

--

Page 23 of 63

4. Related work and technologies

4.1. Security approach for network applications in a Peer-To-Peer

perspective

With the capabilities of many current communication devices, spontaneously

creating networks (Ad-Hoc networks) or other networks with transient

properties, using P2P technologies get a broader application. When someone

walks around with their mobile device with its Wireless Local Area Network

(WLAN) or Bluetooth turned on, the device will meet many other devices. If a

device can control another or access its resources, it becomes obvious that the

level of security or policies in many cases should be different. For example the

security needs are different when a mobile meets the media PC of its owner,

than when the mobile meets ‘Joe Shmoe’ in the street or while connected to

the Internet. Private P2P networks has some of the same characteristics as

walking around with a network capable device. Some of the peers you meet

are people the user knows, while others may be complete strangers, included

in the network by a friend of a friend, or someone along a chain mixed of

acquaintances and strangers. In this chapter we will discuss how current

technologies has attempted to solve the challenges of the different levels of

security discussed in the previous chapter. The chapter is divided in two parts.

The first discusses security mechanisms such as passwords and cryptography.

The second discusses how these security mechanism are used in the current

private P2P technologies and which levels of security the mechanisms are used

to achieve.

4.2. Security mechanisms

As discussed in chapter 3, security is based on three concepts, confidentiality,

integrity and availability. As stated in section 3.5.4, the focus of security in

this thesis is on the concepts of access (a part of confidentiality) and

authentication (the origin integrity part of integrity). The following describes

technologies for providing these levels of security. Only concepts that are

considered somewhat effective will be discussed. For example, controlling

access by not publicly distributing the IP address or hostname of a centralized

server will not be discussed as access control.

4.2.1. Basic access and authentication mechanisms

Private P2P networks grants access to selected peers. The network uses an

authentication mechanism to authenticate these selected peer and then grants

access to some or all resources in the network.

4.2.1.1. Secrets as authentication

An unsophisticated system may use the common approach to access of simply

requiring that a peer has the knowledge of a secret, like a password. This

--

Page 24 of 63

secret may be a shared password for all selected peers (identifying the peer as

belonging to the group of selected peers), or a specific password for this exact

peer (identifying the peer as a specific peer belonging to the group of selected

peers). If the system is more advanced it will use encryption mechanisms to

prevent attackers from snooping the password and masquerading or spoofing

the identity of the peer. In both cases a routine for the initial assignment and

exchange of the password (shared or specific) must be in place.

4.2.1.2. Locality as a form of authentication

At least one private P2P network relies on locality for authentication. A

system like Tsne (discussed in the next chapter) grants initial access to peers

which are present on the same LAN, and the network is thus considered

private for peers on this LAN (even if the LAN is connected to the Internet).

Tsne allows peers which has once met on a LAN to connect to each other

through the Internet at a later time. At that point Tsne authenticates peers only

by their supplied node ID, which makes spoofing a relatively trivial attack on

the system6.

4.2.2. Cryptographic mechanisms for access and authentication

Private P2P networks aiming for higher levels of security uses advanced

cryptographic concepts to achieve this security. An advanced cryptographic

system is able to authenticate nodes in such a way that the success of an attack

on the cryptographic part of the system becomes infeasible with the resources

that are available.

When the public keys of entities are known, cryptographic systems like RSA

may be used to authenticate and provide secure communication [6,7].

However, in systems where keys are not previously known, two devices or

systems which haven’t meet before has the problem of how to exchange their

first keys securely. In an encryption system where authentication is a

necessity, common solutions include manual distribution of the keys (which

are linked to some form of identity), and exchange aided by a trusted third

party, sometimes combined with certificate signature schemes.

4.2.2.1. Manual exchange

Manual exchange is often referred to as out of band exchange. This means that

the encryption system relies on the keys to be distributed through a separate

6 There are many other challenges related to access and authentication in Tsne, but these will

be described in detail in the design and implementation chapters.

--

Page 25 of 63

mechanism. This includes solutions like delivering the key by phone, mail,

email, floppy disks, other portable storage devices, and several others. It is

noted that for the security of the system to be kept intact, the confidentiality of

the key itself must be assured.

4.2.2.2. Trusted key servers

Trusted key servers stores the keys of all or a large group of the peers in the

network. For a peer to acquire the key of another peer, it only needs to know

the key or keys of the trusted key servers. This alleviates the problem of

distributing keys, but introduces the problem of a single point of failure in the

trusted key servers. For a private P2P network that already relies on

centralized servers this is not necessarily an added disadvantage, but for pure

P2P systems a centralized trusted key server will add an unnecessary point of

failure, affect scalability, and also the need for administration of the server.

4.2.2.3. Certificate Authorities

Another solution is the use of public key cryptography based digital

certificate servers, also known as certificate authorities (CAs)[6]. The CA has

at least one known public key, which is distributed with applications that has a

need for secure communication. Using public key cryptography like RSA and

Elliptic Curve Cryptography, the CA creates a certificate for a device (like a

web site or a peer) that needs to identify itself. The simplified explanation of

the process involved when generating a certificate would be to take the

device’s public key, some additional info like a Universal Resource Locator

(URL) of a web site or some sort of naming representing a peer, packing it

together, hashing it, and finally signing the hash with the CA’s private key[6].

The certificate may be used to establish both a secure communication channel

between peers who have never met or exchanged keys, and to authenticate

peers who is attempting to access a private P2P network. The advantage of

certificates compared to a trusted key server, is that the peers themselves

exchange the certificates, it is only the creation of the certificate that must be

done by the centralized servers.

4.2.2.4. Web of Trust

In a web of trust friends have established authenticated communication

channels. Peers trust their friends or friends of friends (and so on) to supply

the proper key and information about people their friends have the means to

establish a secure connection with, but whom the peer does not have a key or

certificate for. In its simplest form, a web of trust is used only to supply the a

peer with the needed information to establish a secure connection with a friend

of the friend. In this type of network there are only two levels of trust. A peer

trusts their friend, and the peer selects to trust any friend of the friend because

their friend trust the friend of the friend. In some specifications and

implementations, intricate webs are created by chains of trust spanning many

--

Page 26 of 63

levels of friends of friends of friends and so on. Because a security system is

only as strong as its weakest link, shorter chains of trust are arguably more

secure. However, longer chains of trust increase the number of peers that may

connect securely without some form of out of band key exchange.

4.2.2.4.1. Web Of Trust in PGP

In PGP a web of trust (WOT)[32,33] provides authentication and secure

communication based on public key cryptography and certificates from a

network of trust. The WOT does not depend on a central CA, even though

WOTs often have several data bases where many certificates are stored. In a

WOT devices that meet use their keys to sign each other’s certificates. They

also add each others list of certificates they trust to their lists of trusted

certificates. Gradually as a certificate gets more signatures and the certificate

propagates to more devices that trust this certificate, the WOT grows. It is the

intention that a route to a destination should always be possible to find. By

route we mean a way for two devices who want to communicate, but haven’t

signed each others certificates, to find a combination of certificates with their

associated lists of certificates they trust, which will prove that the two

respective certificates of the devices are legitimate. The web of trust is built on

the foundation that a device will most often know a device which knows a

device who knows a device (and so one), which finally knows a device which

has meet and trusted the device with whom one wants to communicate. Before

a choice is made to use a certificate scheme like the one in used in PGP or a

simpler version, the tradeoff between the increased number of devices that

may be authenticated and the lessened security resulting from a long chain

should be considered.

4.3. Cryptographic algorithms and protocols

Cryptographic algorithms and protocols form the basis for modern secure

networking applications. Cryptography is a broad and advanced field which

involves many advanced topics including mathematics sometime beyond the

comprehension of most computer scientist. Proving the correctness of an

algorithm or protocol and the associated assumptions that are made when

specifying their security often requires years of work and the combined effort

of hundreds of researchers. This thesis does not focus on the inner workings of

cryptographic algorithms, but will in the following introduce some of the

important concepts, particularly cryptographic algorithms that are in broad use

today and details related to protocols that are relevant to authentication.

4.3.1. Symmetric cryptography

Algorithms for symmetric cryptography use the same key for encryption and

decryption. All current renowned symmetric algorithms use block ciphers to

--

Page 27 of 63

encrypt and decrypt. Block ciphers only encrypt one block of a message at a

time, consuming a fixed number of bits for each block (with 128 bits being the

block size of current block ciphers). According to Ferguson and Schneier[6] a

block cipher may be visualized as a very big key-dependent table. For every

key there would be a table that map the plaintext to the ciphertext. For a block

cipher with 128 bits this table would contain 5 .1039 bytes of data. The highest

achievable bit security of a n-bit block cipher is the limit n bits. All ciphers

have limitations and vulnerabilities (such as certain keys which are considered

weak because the allow certain types of statistical attacks and thus are

excluded) which reduce the actual bit security slightly.

4.3.1.1. Advanced Encryption Standard

The block cipher ‘Data Encryption Standard’ (DES) has long been an

encryption standard but the encryption is easily broken with current

resources[6]. The United States (U.S.) government uses the ‘Advanced

Encryption Standard’(AES)[6] which is considered secure in years to come[6].

Other block ciphers (like Serpent) which are considered more secure (by most

serious cryptographers) exist[6], but due to other factors such as speed, ease of

implementation and the strong position of the U.S. government and trust in

their evaluation of the AES specification, AES is the de-facto standard. One

large advantage of using AES for symmetric encryption is the fact that it has

undergone a huge amount of scrutiny and analysis.

4.3.2. Asymmetric cryptography

Algorithms for asymmetric cryptography, also known as public-key

encryption, use two separate keys for encryption and decryption. In its general

use, the private key is used to encrypt a message or cleartext to ciphertext, and

the public key is used to decrypt the ciphertext to cleartext. The current

algorithms are mathematical calculations where knowledge of the public key

reveals nothing of the private key. Some of the algorithms may be used to

provide both digital signatures and public-key encryption. Digital signatures

are very useful for systems that has a need for authentication.

4.3.2.1. RSA

The RSA[23] algorithm, named after its inventors Ronald Rivest, Adi Shamir

and Leonard Adleman, was published in 1978. According to Ferguson and

Schneier[6] RSA relies on a mathematical concept known as a Trapdoor One

Way Function. Johnsen[7] explains the security of RSA in terms of the

complexity of factoring large primes and modular multiplication. In an RSA

system an entity uses the mathematical algorithm to generate a key pair

consisting of a public and a private key, and the public key is published.

Anyone may use this key to encrypt cleartext to ciphertext. Even though

everyone has access to the public key, only the entity which produced the

--

Page 28 of 63

private key will be able to decrypt the ciphertext to cleartext. This allows

anyone to produce encrypted messages which may only be decrypted by the

desired entity (given that the authenticity and data integrity of the public key is

secure). If the private key is used to encrypt a cleartext, decryption with the

public key will result in the cleartext. It may seem of little interest to encrypt a

message in such a way that everyone (because everyone has access to the

public key) may decrypt it. However, this property allows RSA to be used in a

signature scheme, and allows the owner of the private key to sign messages,

which in turn allows recipients to confirm the authenticity of the sender.

A strong competitor for the RSA system is Eliptic Curve

Cryptography(ECC)[34]. ECC is probably secure or even more secure than

RSA (assuming of course that for both systems the keys that are said to

produce the same calculated bit security is used). The advantage of ECC is

that the increase in the length of the key required to increase its bit security,

grows much slower than it does for RSA. RSA is considered safe for many

years to come, but the U.S. government has already switched to ECC (which

means cryptographic systems that are purchased by them must use ECC not

RSA). The problem with RSA is that it will not be possible to produce keys of

sufficient length some time in the foreseeable future. Because the required

keys for similar bit security in ECC are much shorter, ECC will outlast RSA.

For developers there is sometimes no choice to be made. ECC is a new

technology, and unless the developer intends to implement the internals of the

cryptographic parts of the system, RSA is often the only available (of the two

competitors) cryptographic solution for the development platform. There are

of course other public-key solutions, but RSA is probably the most widely

used and best known of them all[6]. As with AES, RSA has undergone a huge

amount of scrutiny and analysis after it was published.

4.3.3. Theory of Authentication protocols

Authentication protocols allow entities to confirm the origin integrity of data.

In a private P2P network, public-key cryptography may be used to both

authenticate an entity (e.g. a peer) and to establish a secure channel for

communication over an unsecured network.

There are several approaches to the implementation of authentication using

public-key cryptography and signatures. Ferguson and Schneier[6] explains

RSA signatures. Current hashing algorithms are much faster than encryption

with RSA. Hashing a message and signing only the hash has both performance

and security advantages. In addition RSA can only encrypt or sign bitstrings

that are shorter than its key (actually key length in bits minus 1), so signing a

message which was longer would require some sort of mechanism similar to

cipher block chaining[6] to split the message into sequences of proper length.

--

Page 29 of 63

Using the commonly known abstractions of entities in the cryptographic

world, Bob, Alice and Eve, an authentication could follow the following

sequence:

Bob Alice

EncAlicePub(

Sign(Hash(I’m Bob,Bob’sChallenge,SymKey),

(I’m Bob,Bob’sChallenge,SymKey)) ->

<- EncBobPub (

Sign (Hash(I’m Alice,Alice’sChallenge,BobChallengeResponse),

(I’m Alice,Alice’sChallenge,BobChallengeResponse))

EncAlicePub(

Sign(AliceChallengeResponse),

(AliceChallengeResponse)) ->

“I’m Bob” or “I’m Alice” are expressions of some sort of permanent and

usually unique identifier for a peer. Bob and Alice hash and then encrypt the

hash of the challenges, challenge responses, identities and the symmetric key

for future communication. When the messages are received and decrypted, the

receiver hashes the information shown on the last line in each stage above.

The signature on the first line in each stage is then verified against the

produced hash and the public key of the sender. If any part of the message has

been changed by an adversary, the signature verification will fail.

Eve has the ability to snoop and change the contents of exchanged messages.

Because the messages are encrypted with the public keys of the recipients,

only the intended receiver may decrypt the challenge and give the correct

response. If the challenge is answered correctly Bob has authenticated Alice,

and vice versa. If the symmetric session key supplied by Bob is used for

further communications, the content of the communication will be secret from

anyone else than Bob and Alice. Cryptographic systems are intended to secure

in different ways. Depending of the specification of the security the exact

protocols may have important differences. For example, it is usual to use some

form of mechanism to defeat replays of messages. For example, part of the

encrypted message may be a sequence number or a time stamp. Handling of

out of sequence or untimely messages depend completely on the demands of

the systems security. A very useful part of properly authenticating peers and

handling exploits such as replays, is that attackers or malicious peers are

unable to spoof the user identities of offline peers to gain access to resources

--

Page 30 of 63

and privileges intended for the spoofed peer. If the exchanged session key is

used for communication, even if an attacker has acted as a man in the middle,

the only thing which is revealed is the presence of the communication, not the

meaning of its contents.

4.4. Grading of security in current private P2P networks

In this section we explore different private P2P networks to discover if the

security of the network is graded, and how this is achieved. As our definition

of a private P2P network states that access is granted to selected peers, any and

all networks we discuss has at least graded access security at two levels. Either

a peer is granted access, or the access is denied. It is not necessarily how

secure the network is that is explored. It is rather the ability of the network to

use differentiated levels of security for both access and authentication.

The grading of the security which is to be designed in the next chapter will be

done in an existing system which is a private pure P2P network, i.e. it has no

centralized servers. The existing technology in these types of networks will be

of special intrest. The very recent survey of private P2P networks by Roger

and Bhatti [1] is an informative starting point for information about such

networks. A representative selection of current private P2P networks such as

those surveyed here will be presented in the following. The networks will

however be analyzed with respect to grading of security instead of topologies,

search routines, discovery, etc.

4.4.1. Direct Connect

In the direct connect (DC)[8,9,10,14] network, peers connect to a centralized

server referred to as a hub. Searching is done by querying the hub which stores

the file lists of all online peers. When a peer requests a file it is redirected to

the peer that is hosting the given file, and downloads it directly. Direct connect

is more a protocol than a single application. Many versions and variations of

implementations exists. Aside from the original DC system by NeoModus,

which spawned the reverse engineered version ‘open direct connect’, the

probably most well known is DC++[10]. DC++ allows peers to connect to

several hubs (and thus networks) at the same time. In the DC communities the

hubs also serves a chat room where peers may socialize, and through the hub

users may also create private chat rooms.

In its original form, the servers were controlled by one peer and there were no

restrictions to access the network. With newer versions of the hubs like

YnHub[11], private networks are created by requiring a password from

connecting peers, normally one password per peer. The key is exchanged out

of band. There is no cryptographic authentication of the peer. This makes

spoofing of user identities a real threat for private DC networks.

--

Page 31 of 63

4.4.2. Octopod

Octopod[12] is in some ways the least autonomous and most restrictive of the

discusses technologies. The system consists of peers running the same

application. Keys are exchanged automatically through a distributed hash

table[13](DHT), but must sometimes be exchanged manually. Each peer

creates one or several share directories. For any peer to be granted access to

this share, the sharing peer must manually add the peer who is being granted

access to the share. In addition, for a peer who is granted access to be able to

access the files in the shared folder, a share ID must be delivered out of band

from the sharing peer to any peer which is granted access. The Octopod

network is probably secure, but the cumbersome addition of peers to shares

will make the growth of the network slow, and the extremely restricted

environment may arguably be closer related to group ware than a regular

private P2P network. The access may however be graded at any level. A

sharing peer may add all peers to a single share, in addition to granting access

to specific shares to a few or one single peer. It is not possible to add all peers

to a single share automatically.

4.4.3. Waste

The WASTE[15,16] networks consists of several completely separate groups

of peers running the same application. In each network (group) peers use their

group ID in combination with their user ID when connecting other peers to

avoid inadvertent joining of the different networks (traffic from foreign group

IDs are ignored). The connections between peers are encrypted using a

common key. Communication between the peers is secure, granted that none

of the peers disclose the key to a third party. There is no method of

authenticating individual peers. The IP address of a connected peer is required

to connect to the network the first time, but IP addresses of participated peers

are propagated through the network once a peer connects to the network, and

the IP address of peers are updated when they connect from new addresses.

Even though the initial connection procedure is somewhat advanced, the

further use of the system is simple. Files may be pushed to specific peers, and

shared files of other peers may be browsed and downloaded. Except from the

manual pushing of files there is no grading of access, nor authentication of

peers. Even though the connections between peers are encrypted, each

intermediate peer may decrypt the passed messages, allowing snooping and

spoofing.

--

Page 32 of 63

4.4.4. Retroshare

Retroshare[17] (and several similar systems which are omitted because they

rely on a web service controlled by unrelated third parties) uses cryptography

to establish secure channels between peers who are friends. Files are

transmitted directly between friends, or through an intermediary common

friend when strangers communicate (and only if such a common friend exist).

Retroshare does not rely on a centralized server in the control of a third party.

Retroshare achieves this through the use of a DHT. The public keys of a peer

is packed in a certificate. This certificate is then signed by friends. The signed

certificates are distributed through the DHT, and as the number of signatures

on each certificate increases, it becomes more likely that a joining peer will

only have to obtain a few signatures out of band before it may connect

securely to most of its friends. Certificates that are signed by a friend (who is

supposed to have established the identity of the certificate owner) may be

signed in band. The certificate/signature scheme is a variation of a web of trust

(discusses earlier in this chapter).

 Friends are generally peers who have some social connection. Peers who are

not friends but share a common friend may communicate through the secure

channel that is created by their two separate secure channels to the common

friend acting as an intermediary peer. These types of private P2P networks are

from the average users viewpoint very similar to applications such as the MSN

messenger.

The Retroshare documentation is ambiguous. At one point it states that only

communication between friends is safe, while at another it states that files are

only visible and accessible to friends and to friends of friends who are granted

access through the auto discovery mechanism. The ambiguity probably has to

do with the Retroshare team’s definition of secure. The access and visibility of

the files are only available to friends and friends of friends, but it is not

considered “secure” to transfer a file to or from a friend of a friend. It is

assumed that they intend to express that if you transfer something to someone

you don’t know, it is not always wise to trust your friends judgement of the

intentions of this friend of your friend. Grading of access is very limited. Files

are either shared or not shared. If a peer is considered a friend, access is gained

to all files. If a friend of a friend connects through the auto discovery

mechanism, the sharing peers must either grant access to all or no files. Only

strangers who are friends with a common friend may connect through the auto

discovery mechanism.

--

Page 33 of 63

4.4.5. Turtle

Turtle[18] uses password mechanisms to generate and distribute keys. In

Turtle friends who want to authenticate for the first time use out of band

communication to agree on a question they both know the answer to. The

answer, which is not revealed or exchanged, is used to generate an encryption

key. This enables the two friends to authenticate each other securely. The use

of a public question with a secret answer based on a social relation may

increase the security, because snooping of the out of band communication will

not automatically reveal the key. The opposite may also be true. Because users

will trust the scheme, they may be more likely to use channels that are less

secure than they normally would to agree on a question. Where a physical

exchange may normally be used, regular email or a chat client may be used

when users rely on the concept. This could decrease the security, especially if

attackers have a social relationship with the peers, because they are more

likely to make educated guesses (or even know) of the answer to the publicly

discussed question.

4.4.6. Freenet

Freenet[19,20] is not a private P2P network by it self. Freenet uses a

combination of signatures of data and signatures of pseudonyms of the peer

which inject data. The Freenet network effectively conceals the origin of data,

and only allows a peer which holds the private key of the signatures to inject

data under the given pseudonym. The injected data is distributed among the

peers in the DHT according to a stochastic algorithm. Peers in the network are

not able to determine if a file is being injected in the part of the DHT they are

responsible for, or if the data is simply being redistributed to increase the

availability. It is noted by the author that because the network is completely

open, attackers may use multiple identities and thus there is the possibility that

a statistical attack to reveal publishers of data may exist.

To use Freenet as a private P2P network, the peers agree, out of band, on a

pseudonym to use when injecting data. They also share the knowledge of the

private key. To keep access security, the data must be encrypted before

injecting it in the network (otherwise all peers may access it), so an additional

encryption key must also be shared in the private P2P network. To clarify, any

peer may access all files in a Freenet network, but peers who want to use this

same network as a private network, takes some additional steps. They encrypt

the data before they inject it, they use a key they have agreed on, and they

have also shared the knowledge required to publish data under a pseudonym,

and this pseudonym identifies the data they are going to share among them.

The Freenet is considered effective in its concealment the origin of data.

Groups of peers who want to use it as a private P2P network basically have to

use some sort of out of band communication to distribute the secret keys to

new peers who are invited. If the keys are leaked at any time, all data will

probably be available for download from the network for a long time after the

--

Page 34 of 63

leak, and all the data will be accessible and may be decrypted by anyone with

the leaked key. For sharing where the security only depends on concealing the

identity this may be acceptable, but in such a system, using Freenet in its

original form may be sufficient. If the confidentiality of the data should be

keept secure for a limited time (for example to distribute files during a short

period without drawing attention), it may still be a good idea to use the

described approach for a private P2P Freenet. In such a setting it may be

acceptable that someone leaks the key after a while.

The Freenet is innovative with respect to its charter to fight censorship. As a

private P2P network it relies on the same principles of out of band key

exchange among peers with some form of social relationship. Depending on

the intended use by a peer, the solution may be considered very interesting or

completely unacceptable. For example, the only way to grade security with

respect to access, is to form one group which each set of peers that is supposed

to get access to a given set of files. This would imply that all peers in each

group intend to share the same ‘types’ of files with each other. For example,

five friends form one group. Two of these friends wants to share some special

files without making them available to the others, and must thus create another

group. One of these peers wants to share yet another set of special files with

another friend in the group, and thus another group must be formed. For each

created group, new keys must be exchanged out of band.

4.4.7. Tsne

In Tsne7 peers gain access to to a network by broadcasting an announce

message on a LAN. All peers who receive the announcement adds the peer to

its list of active nodes. There is no authentication mechanism, it is the trust

peers on the physical network has in each other that is the basis for the private

P2P network. When a node moves from the LAN to a different location that is

connected to the LAN but not on the LAN (for example to another LAN which

is connected to the first LAN through the internet), it will attempt to connect

with the nodes on the original LAN based on their IP address. If it is able to do

this, it will be allowed to continue to participated in the private P2P network.

The peer is recognized by its node ID, a string selected by each individual

peer.

Peers only connect to peers they have met on the LAN. To increase the

number of available resources in the network, peers will forward the search to

all its connected peers. In this way, peers who are searching for content will

have access to the content of its peers, and their peers’ peers.

7 Tsne is the system which will be used as a basis for the implementation. It is described in

greater detail in the next chapter, and even more technical details are discussed in the design

and implementation chapters.

--

Page 35 of 63

The greatest feature of the Tsne network is its autonomy. Moments after the

application is started for the first time, the peer is automatically connected to

all peers on its LAN. Over time the network builds lists of locations for peers

that are not always connected directly on the LAN but rather from remote IP

addresses on other locations, and even track dynamic addresses that do not

change too often quite effectively. This autonomy is a disadvantage when it

comes to keeping the network private.

There is no authentication in Tsne. Because of this the private P2P network is

very susceptible to spoofing. An attacker spoofing a node ID will be granted

access to all resources in the network . All peers and even an attacker who is

able to listen in on the traffic (which is always unencrypted) going to a single

node, will be able to listen in on searches, and retrieve the node IDs of all

currently connected nodes (which may later be used for spoofing). In addition

to this, the resources are made available by a separate port opened by Tsne.

Tsne runs a web server on this port, and will serve any shared resource to

anyone who connects. The formatting requests for resources is well known,

and an attacker may easily gain access by requesting files identified by a

numeric ID starting at 0 and incremented every time new content is added by

the sharing peer.

Finally there is no mechanism for grading access. All peers are either part of

the network or not. Peers in the network are granted full access to searching

and files.

4.5. Specifying the challenges

As the review of current private P2P networks shows, there are some general

challenges related to grading of the security. First of all, nodes need to be

authenticated. With proper authentication, a network has more information to

use for grading security, for example grading access.

As part of authentication there has to be a mechanism for exchanging keys. As

we see, common solutions use out of band channels or concepts like web of

trust or adaptations of this. All of these approaches has its greatest challenge

when exchanging keys for the first time, especially when a new invited peer is

joining the network. It will be attempted to find a suitable mechanism for

exchanging a key, and for associating it with an identity. Trust is an important

aspect of authentication, so it should be looked into how trust may be used in

the setting of key exchange and authentication.

When a peer is authenticated, access may be graded based on many

parameters. It is evident that peers using private P2P networks wants to restrict

access to resources for one reason or the other. It will be attempted to find a

suitable solution for grading access to resources. In this context grading access

could generally be interpreted as granting different peers access to different

--

Page 36 of 63

shared files. However it will be attempted to make the solution suitable for

resources on a general level, not only files.

The impression of the author is that all the current private P2P networks has

problems with finding a solution which retains the favorable autonomy of a

regular P2P network, while providing the control of a private P2P network.

The private P2P networks seems to either have a very strict control and a low

autonomy, or little control (or is at least very vulnerable to attacks) and high

autonomy. It will be attempted to find a solution which provides strict control

while keeping the autonomy more intact than in current private P2P

technologies, and thus merge the two P2P concepts closer together, keeping

the best of both and maybe even adding some features.

--

Page 37 of 63

5. The Sozialized.net Embedded – An existing private

peer-to-peer solution with limited levels of security

5.1. The Sozialized.net Embedded (Tsne) as a starting point

As previously stated, the implementation of Tsne was going to be used as an

example of a private P2P network without differentiated levels of security.

This implementation was to be explored, and based on the research in the

previous chapters, a restructured design would be developed. The goal of the

restructured design would be to introduce mechanisms for differentiated levels

of security in the Tsne system, preferably retaining much of the autonomy of

the original design. In this chapter we describe the design of the original Tsne

private P2P network. This chapter is based mainly on inspection of the source

code of Tsne, snooping of traffic which the Tsne network transmits,

experimentation with the application, and the insight that came with making

the revised version as part of the developed test system. Resources[21,22]

written by its creator, Njål Borch, has also been very helpful in researching its

operation.

5.2. Overview of Tsne

Tsne is a P2P file sharing application which allows peers to share mp3 files.

On the networking and file sharing level the system operates autonomously, or

in other words, Tsne discovers peers and adds them to the private network

without the interaction of the users of Tsne. Tsne does not rely on a centralized

nor a decentralized authority to allow peers to connect to a network or to each

other. Instead a Tsne peer builds a network of peers it meets on different LAN

networks it is connected to.

--

Page 38 of 63

Figure 3: Example of topology of a private P2P network without a centralized

server

Figure 3 shows a typical topology of a small Tsne network. The peers stores

the IP addresses of the peers they interact with. If these IP addresses are

publicly accessible addresses, a peer that migrates to another network is able

to reconnect with a peer that is still on the LAN where they met. The new IP

address of the migrated peer (in addition to the IP address it recently had on

the LAN) is stored in the peer that did not move. If the unmoved peer also

moves at this time, it is able to connect to the peer that moved first, because it

already knows its new IP address. As this process continues, the peers

continually build a private network which maps different selections of IP

addresses as possible locations of given peers. When a node responds to a

probe at a given IP address, it is considered active (in contrast to the

alternative state of being offline). An active node may then be used by the peer

to search for mp3 files. The active node will return a compiled list of URL

references to mp3 files on the active node itself and on all nodes the active

node has currently registered as active. The searching peer will compile its

own list of URL references, this list consists of mp3 files the searching peer it

self is sharing, and the responses from all its active peers. This compiled list of

URLs to mp3 resources is then passed to the peers media player, and the

media player will begin to play the mp3 by streaming the files. Just to clarify it

is noted that the files that are being streamed, are located on any of these

locations:

• The searching peer itself

• An active peer that has responded with a compiled list of URLs and

the URL that is being streamed is located on this active peer’s

system

• A node that is not known to the searching peer, but an active peer

that is known to the searching peer has returned a compiled list of

URLs, and the URL that is being streamed references this unknown

peer.

The streaming itself is handled by a simple web server which is implemented

in Tsne. The web server has no restrictions and will serve any shared8 resource

to any entity which requests it. There is no control of which peers are allowed

to connect to the private network or to the web server. In addition there is no

control over which of the shared resources the peers (or other probing entities)

get access to. In this way, any online entity which is capable of following the

8 The web server selects which file to serve by parsing the request looking for a resource

identification. This identification is used to do a look up in the web servers database. The

database contains a mapping between resource identifications and shared files. The web server

will thus only serve files which are identified by a resource identification.

--

Page 39 of 63

http protocol could download any file from any peer in the private network by

simply probing the http servers and requesting random resource

identifications.

5.3. The inner workings of the original Tsne

In this section we take a closer look at the inner workings of the original Tsne.

Based on the research in the previous chapters and our examination of Tsne

we will use the next chapter to identify sections of the code where it may be

possible to introduce some of the different levels of security we have

discussed. In the next chapter we will consider which of these are suitable for

alterations or additions without changing the original idea of Tsne. Or in other

words, we will attempt to introduce levels of security while keeping the

autonomy of the system as intact as possible.

5.3.1. Announce – peer announcing its presence (neighbor discovery)

The basic operation of a private P2P network is a mechanism for discovering

and registering peers. In Tsne this is handled by socializing with nodes on a

LAN and the process is as follows:

To start Tsne, tsne.py is executed without parameters. By doing so, all

peers running Tsne uses the module neighbord (neighbor discovery) to

open a server socket on a predefined port and starts listening for

incoming network traffic. We will call this part of the system for the

daemon.

All Tsne peers will periodically broadcast9 an Announce10 message to

this same port, announcing their presence on the LAN, their random

user identification (ID) and the implied intention to participate as a

peer.

Any Tsne peer which receives this broadcast announcement will check

the user ID against its database to see if this is a new peer or a peer it

has met before. If it has not seen it before the new peer is added to the

database with the source IP address of the broadcast, if it has seen the

ID before the source IP address of the broadcast is added as another

possible address of this ID.

9 Tsne was actually written supporting IPv6 link local multicasts, the equivalent of IPv4

broadcasts. The restructured design uses IPv4 broadcasts, and thus the two will not be

differentiated in this setting.

10 The word Announce is the first line of the message (just like GET is the first line of a http

request) and indicates to Tsne which subroutine should be called to handle the incoming

message.

--

Page 40 of 63

This means that any Tsne peer on a LAN network or migrating between

different LAN networks, for example at work, a university, a WLAN hot spot

or similar, will socialize with other Tsne peers and gradually populate its

database with a list of IDs and associated IP addresses.

5.3.2. Ping Pong – Keeping track of active peers at ‘any’ location

The database of peers a given peer has meet will continue to grow each time it

meets a new peer in this way. To maintain a list of peers that are available

when a given peer connects to a network, a pinging scheme is used:

All peers running Tsne uses the module neighbord (neighbor

discovery) to open a socket on a predefined port and starts listening for

incoming network traffic (the same port that listens for the

announcements mentioned above)

All peers will continuously check the database entries for each of the

peers they have met and examine the timestamp of their last contact

with any given peer.

• A very recent timestamp indicates an active peer

• A recent but older than a few seconds indicates an active

but stale peer.

• A timestamp which is older than approximately one minute

indicates an offline peer.

Stale and offline peers will be sent a ping. Stale peers are pinged on the

IP address they are currently active on, while offline peers are pinged

on all known previous IP addresses. When a pong is received the

timestamp will be updated (and thus the peer will be considered active

again). If a given peer does not respond with a pong, the timestamp

will eventually expire (or the timestamp is already expired), and the

peer is considered offline.

When a peer receives a ping with the ID of a peer it has meet before, the

source IP address of this ping is added to the database as a possible address of

this ID (if it is different than the previously stored IP addresses of this ID). If

we look at two peers, and both peers leave the LAN at the same time, they will

not be able to reconnect until they are both on the LAN at the same time

again. However, if one of the peers move to a new IP address (at home, an

office or similar) and pings the peer which has remained on the LAN, the

LAN peer will then know two possible addresses of the peer that moved. If the

LAN peer then moves to another IP address, it will attempt to ping the peer

that moved first on both its known locations. Given that the first peer has not

moved again, receiving a ping with the ID of a peer it has seen before, will

update the database with another location to connect to the peer with this ID. If

--

Page 41 of 63

the networks are suitable the peers will still be able to connect11 even though

they have both moved to new IP addresses. As the peers move around, it will

become more and more likely that a peer, which moves to a new IP address,

will have the current IP address of the peer it is trying to ping among its list of

previously known IP addresses for this peer.

5.3.3. File searching and sharing

The private P2P network ,with its announcements, pings and pongs, is the

backbone of Tsne. The objective of Tsne is to share resources, specifically

mp3 files12. Mp3 files are located through a distributed search among the

peers, and searched files are available for streaming to anyone who is

participating in the private network (or pretending to participate, but more on

this later).

Tsne handles searches and streaming of resources through a built in web

server which supports a sub set of the http specification. The details are as

follows:

When Tsne is executed without parameters, it uses the module network

(web server) to start a web server (in addition to the neighbord daemon

explained in the previous section) on a given port.

A user executes Tsne with ‘-- play’ as a parameter, followed by one or

several search terms. The search terms would typically be one or

several artists, song titles, music genres13 or similar. For example

11 Connectivity is a complicated issue. Tsne relies on traffic flowing in both directions directly

between two peers. If one of the peers is behind a firewall or a router which does not allow the

incoming traffic to pass or does not allow server sockets, one peer may see the other as active,

while the other peer sees the first as offline. Similar problems will be observed if one of the

peers are on a network which uses NAT when assigning IP addresses to network adapters that

are present on the LAN. Solutions for this problem are considered beyond the scope of this

thesis and relates to the original design of Tsne and its intended use.

12 Tsne is programmed to share mp3 files, but it is noted that rewriting Tsne to share any

resource that may be represented as a read only stream is by the author of this paper

considered trivial (this does not imply anything about the amount of time it would take to

perform the actual rewrite). Because Tsne operation is based on searching, the streams should

have meaningful search parameters associated with them.

13 During testing of the original Tsne it was noticed that searches seemed to only return

resources where some or all search terms matched tokens in the file names of resources.

Tsne’s database, which is used to do the search, is designed to create a mapping between

given resources and searchable tokens in the file name, but also between given resources and

tokens in the ID3 tag for the given resource. The searchability of the ID3 tag is considered

insignificant for this thesis and thus the reason for this problem was not explored. It is

however noted that Tsne either has a bug in its handling or searching of the ID3 tag, or the test

system had a compatibility problem with the original Tsne code. This problem carries over to

--

Page 42 of 63

tsnecv.py --play Morten Abel Inparticular

Tsne then sends a http query request to the local instance of the Tsne

web daemon, with the search terms as part of the query.

The query originating from the peer itself is handled in the same way a

query from any other peer would be handled. The web server performs

a search among the local resources and compiles a list of URL

references which contains its own IP address and the assigned resource

ID of all (if any) resources which match the search keywords. The web

daemon then passes the same query to all active peers listed in its

database (and because all peers are running Tsne this is repeated

throughout the private P2P network). This results in a flooded

distributed search, and the local web server will add all timely search

responses to its list of URLs that references resources which match the

search terms. Finally, the local web daemon will return a http response

with its list to Tsne (which as we remember was called with --play as a

parameter and is not to be confused with the Tsne daemons that are

running the Tsne system itself).

Tsne will store the transmitted list and then execute the operating

system’s default media player or the mpeg123 media player if the

environment variable for media player isn’t configured. When

executing the media player, path to the stored compiled list of URL

references is passed as a parameter.

The media player interprets this as a regular play list (which it in fact

is), and begins to stream the mp3 resources like it would any other

resource. The media player sends a http get request to the given IP

addresses in the play list, with the resource ID where one would

‘usually’ see a file name (i.e.

http://158.39.41.256:3074/resource?id=1329 14).

The respective network daemons on the peers that are referenced will

then respond by streaming the resource their database has associated

with the resource ID.

the implementation of the revised Tsne, and thus the revised version is also only able to search

the file names of resources, not the ID3 tag. This may or may not be the case for any other test

system which experiment with the revised version.

14 Note that identical resource IDs has different associations on different peers. Also note that

this example IP address is non existent.

--

Page 43 of 63

5.4. Levels of security in the original Tsne

In the next chapter we will explore the levels of security that Tsne does not

have and the levels that based on our research are considered desirable to

attempt to introduce. This is a large topic and is more suitable for discussion in

the design of the revised version of Tsne. In this short section however, we

will briefly mention the few levels of implied security that Tsne already has

and a few obvious problems related to this.

In Tsne any peer which is present on a LAN network with another peer is

autonomously added to the list of peers. Peers has no means of accepting or

rejecting these added peers. It is possible to clear all peers but not just one

single peer (even though this would be trivial to implement). The problem is

however, that even if a peer is deleted it will immediately be added again if it

is still on the same LAN, or even if it ever sends a ping to an IP address that

the deleting peer is at.

Resources on a Tsne system are either shared or not shared. Typically one or

several folders containing mp3s are imported into Tsne and made available for

searching and streaming. Any peer which is active will have access to all

shared resources (actually even a hostile peer pretending to be offline would

have the same access, but more on this in the next chapter).

The implied security that we associate with Tsne is that users on a LAN may

be peers that other peers on the same LAN choose to trust somewhat more

than random peers on other locations on the Internet. There are many problems

related to this implied security and they will be discussed and attempted to be

resolved in the revised version. A few of the related problems are as follows:

If Tsne is used on a laptop, it will typically intermittently be connected

to both LANs with peers one would choose to trust and LANs with

complete strangers, and there is no mechanism for differentiating

between these.

If there were a mechanism for differentiating between peers(for

example a trivial revision allowing manual approval or disapproval of

the addition of peers) there would still be no way to authenticate an

approved peer connecting remotely at another time.

Even on a LAN with peers one would normally trust, there is no

mechanism for excluding or limiting access to resources for known

hostile peers, nor is there a mechanism for granting selected peers

access to specific restricted resources.

--

Page 44 of 63

6. Specification and design

6.1. The Sosialized.Net Embedded - Cryptographic Version, an envisioned

private peer-to-peer solution with graded levels of security

As part of the research in this thesis, Tsne was revised to support grading of

security. In the following section the specification of the expected security of

the revised version is specified. The specification was used to create a design

for the revised version, The Sosialized.Net Embedded - Cryptographic Version

(Tsnecv). This design was the basis for the implementation of Tsnecv,

described in chapter 7 of this thesis. The design shows the features the system

should be able to simulate. In the implementation some of the features are

handled directly by the system, while others are handled by manipulating the

database entries for peers in the system.

6.2. Specification of Tsnecv

This section specifies the conditions that defines the expected operation and

security of Tsnecv. All the conditions had to be fulfilled to achieve what is

considered a secure system. The consideration of secure only applies to the

level of security that is implicitly provided by the specification.. Truly Secure

Cryptographic systems are large and complicated, and are only as strong as

their weakest link. The focus of this thesis was grading of security, and the

features that were selected were selected to achieve or demonstrate that such

grading is possible, not to make the system as a whole completely secure from

every possible attack. As an example, the research that has been done has

described known cryptographic systems which has shown that if entities are

authenticated, it is also possible to create a secure channel. This realization

was used to select authentication as a feature of the specification. In a truly

secure cryptographic system the authenticated peer would use a secure channel

to retrieve a file, and the file would thus only be readable by the authenticated

peer. According to the following specification we choose to ignore that the file

must be accessed on a secure channel, and only require that a peer must be

authenticated before access is granted to the file. This allowed us to focus on

how the authentication and other aspects of trust might be used to grade

security by giving selective access to files. According to the specification the

implementation is what is considered to be secure in the setting of this thesis.

This does not however imply that the system as a whole is truly secure in a

real world setting.

6.2.1. Specification

The following specification of the systems behavior aimed to autonomously

but cryptographically secure grant access to any new peers, while allowing

peers to share some (if any) files with all peers and selected files with selected

groups of peers (where a group may possibly contain just 1 peer).

--

Page 45 of 63

The application shall be able to execute on a Windows XP 32 bit computer

system with a LAN adapter, connected to a LAN, where other instances of the

application, executing on other Windows XP 32 bit computers, may join and

leave at their own discretion.

The network shall function while connected to the Internet, not just in a test

laboratory.

Peers must be authenticated in a cryptographic secure manner before they

are allowed to participate in the private network.

If a peer is authenticated and is believed to reside at a given IP address, it is

not considered a breach of security if an entity uses the unsecured channel of

the web server (which every peer makes available to other peers through

Tsnecv) to gain access to resources by spoofing the given IP or acting as a

man in the middle making Tsnecv believe that the authenticated peer resides

on the attackers IP address.

A session key which could be used to create a secure channel shall be

exchanged during authentication. This key should be exchanged to

demonstrate that the secure channel is available even though it is not used

when downloading files.

The quality of external cryptographic libraries shall not be considered a part

of the systems level of security.

All peers on a LAN shall be able to join the network autonomously.

All peers shall have the option of making selected resources available to all

peers.

All new peers shall be able to autonomously provide their key to existing peers

by in band communication

All peers shall have the option of obtaining or confirming keys of other peers

through a mutual peer which of both trust the public key completely, if such a

mutual peer exist.

All peers shall have the option of manually confirming keys and then to

increase their trust in the key associated with the peer.

All peers shall have the option of manually increasing their trust in the key

associated with a peer without manually confirming the key.

Tsnecv shall autonomously assign trust to a new peer in the network based on

how the public key of the peer is obtained.

Tsnecv shall autonomously give authenticated peers access to files shared to

specific groups of peers based on how much trust is associated with the key

identifying the authenticated peer.

--

Page 46 of 63

All peers shall have the option of making selected resources available to only

a selected group, of which at least one group should be used to represent the

peers a single person is the owner of. The number of separate groups is not

important, but it should be at least 5, and a group should be able to contain

zero or more peers.

6.3. Design of Tsnecv

If we look back at chapter four where suitable technologies were discussed,

the following aspects of security were identified:

Authentication (origin Integrity) - Which entity is communicating

Data integrity - Is the data unchanged

Confidentiality (access) - restricted access to data, or at least restricted

access in the form of only selected entities being able to decrypt data

that is visible to all(meaningless to all others)

Secrecy - Is the communication invisible to others

Availability - Is the data available when an entity requires access

When we designed a revised version of Tsne we had to consider which of

these were desirable for the intended purpose of Tsne. We also had to consider

which of these might be implemented without interfering more than necessary

with the autonomy which is a founding concept in the original design. Another

very important aspect was how strong the security should be. By strong we

mean how much resources, be it computational power, bandwidth, storage or

other, we were willing to use on a specific level of security. For example,

looking back at authentication we remember that increased key length for a

given cryptographic algorithm generally increases the security for the

algorithm. But, generating longer keys require more computational cycles, and

decryption and encryption with longer keys also require more computational

cycles. We also note that a longer key requires more space to be stored and to

be transmitted.

6.3.1. Selected levels of security

Confidentiality in the form of access control and origin integrity in the form of

authentication has been the focus of most of this research. The research show

that these are levels of security that are considered desirable by most of the

private P2P networks. For the intended private use of Tsne they are definitely

considered to increase the security level of the network.

--

Page 47 of 63

6.3.2. Selected encryption algorithms and bit strength

6.3.2.1. Symmetric encryption with AES

For algorithms in Tsnecv which rely on symmetric encryption, the leading

standard AES was selected. The algorithm has been determined to be secure

by a broad base of researchers, some of these have been referenced in chapter

four. 3DES and Serpent were considered, but AES was selected both because

of its standardization and its presence in the elected cryptographic package.

6.3.2.2. Asymmetric encryption, signatures and authentication with RSA

For algorithms in Tsnecv which relies on asymmetric encryption, the leading

standard RSA was selected. The algorithm has been determined to be secure

by a broad base of researchers, some of these have been referenced in chapter

four. Elliptic Curve Cryptography was also considered due to its use of shorter

keys to achieve the same bit strength as RSA. There are two reasons why

ECC was not selected. First of all, there was no readily available or renowned

implementation of ECC with could be incorporated directly with Python.

Implementing ‘just’ ECC for python is by the author considered far beyond

the scope of this thesis . The second reason was that RSA is, even though it is

very secure, based on mathematical concepts which are covered by the

mandatory mathematical courses leading up to this thesis. As a result the

author is able to understand how it works, and thus reduce the risk of using it

incorrectly (which is a serious threat in all cryptographic systems).

6.3.2.3. Selected bit strength of RSA and AES

According to RSA Laboratories[24], 1024 bits is currently considered

sufficient for corporate (including online transactions) use, but the security is

expected to be breached in the not so distant future. A bit length of at least

1024 bits should be used, but if testing determines that a regular home

computer is able to efficiently use stronger keys (e.g. 2048 or 3072)without

dramatically impacting performance, stronger keys should be used. It must be

noted that there should be a correlation between strength of the symmetric

keys used and the RSA keys, in order for the increase to truly increase the

security as much as intended . The following table shows the relationship

between RSA bit length and symmetric bit strength according to RSA

Laboratories.

RSA 1024 Symmetric 80 bit

RSA 2048 Symmetric 112 bit

RSA 3072 Symmetric 128 bit

Table 1 - Correlation of RSA key bit lengths and bit security of symmetric block algorithms

--

Page 48 of 63

6.3.3. Encryption module

An external library which implements the selected cryptographic algorithms

was used. The following modules were designed to encapsulate access to the

cryptographic functions:

6.3.3.1. crypformat

Helper functions which converts tuples of strings to one single string which

may then be encrypted and decrypted (by another module), and converted

back to the same tuple in a predictable fashion.

6.3.3.2. crypglobals

A static file which only contains variables used to configure the operation of

the cryptographic system.

6.3.3.3. crypdocrypto

Helper functions which was designed to perform the actual cryptographic

functions by using a publicly available cryptographic implementation of RSA

and AES. If the selected cryptographic algorithms are exchanged for similar

ones, this should be the only module that must be rewritten extensively (even

though its format should not need to change).

6.3.4. Authentication and key exchange module

The existing module in Tsne neighbord (neighbor discovery) is in Tsnecv

responsible for initiating authentication and key exchange based on expired or

non existent authentication state for a connecting peer. The actual work is

carried out by the protocol part of the module.

6.3.4.1. neighbord (neighbor discovery)

The operation of the original neighbord module is specified in chapter 5.3.1

and 5.3.2. The revised version in Tsnecv was designed to uses a scheme

similar to the existing Ping - Pong scheme used for discovery. Just like there is

a timeout for nodes becoming stale or offline, the redesigned version was

designed to use a timeout for the authentication process. The design specifies

that Authenticated nodes be registrerd as AUTHACTIVE. When the timeout

(typically configured to be 60 seconds) expires an authenticated node should

be flagged as AUTHSTALE, an soon after it should be flagged as

AUTHEXPIRED. Active and stale peer(in terms of Ping - Pong) which are not

AUTHACTIVE should be authenticated again. This solution was selected

because access to the web server does not use a secure channel. Because a peer

may be contacted by anyone on the last known IP address a peer has

connected to, it was necessary to combine the authentication with a timeout.

--

Page 49 of 63

Just like Pinging, this could be viewed as an implementation of presence, ie

actively polling peers to confirm they are still connected. The only difference

is that the ‘authentication ping’ includes a mechanism for authentication. To

perform the authentication the design specifies that a crypprotocol object is to

be instantiated in a manner that represents an authentication protocol.

6.3.4.2. crypprotocol

Class that defines variables needed to perform all the protocols. One object of

this class should be created every time a protocol is initiated. It was designed

to use separate protocol objects for every connection to another peer where

either an authentication or key exchange was initiated, and even one separate

protocol object for each protocol it was involved in with the same peer. The

progress through the protocol was designed to be controlled by repeatedly

requesting each object to continue to the next step of the protocol if possible

after checking the internal state of the protocol object.

6.3.4.3. crypprotocolgetunsecurekey

The algorithm was designed to handle the protocol for the unsecure public

exchange of a relatively untrusted key. The exchange design allowed in band

exchange over an unsecure channel.

6.3.4.4. crypprotocolgetsecurekey

The algorithm was designed to handle the protocol for the secure exchange of

a relatively trusted key through a common trusted peer.

6.3.4.5. crypprotocolauth

The algorithm was designed to handle the protocol for the authentication of

any peer, using the known public key of the peer (whether the key is trusted or

not). A key is always obtainable from a peer that is attempting to connect

(because it may be retrieved unsecurely). Being authenticated does not imply

that a peer is identified, it only establishes a relation between a public key and

an assumed identity, which may be used in future communications to identify

this assumed identity. The trust Tsnecv or the peer has in this key and assumed

identity grades the security of the authentication from nearly zero, to complete

trust and absolute security equal to that of the encryption algorithms used and

the correctness of the implementations of these algorithms and the Tsnecv

protocols.

6.3.4.6. crypprotocolspinner

This algortihm was designed as a very simple helper function which should

continuously poll to check if a message has been received from the network,

and then use crypselecter to determine which protocol object the message is

designated for.

--

Page 50 of 63

6.3.4.7. crypselecter

This algorithm was designed as a helper function which should examine

incoming authentication and key exchange communication to determine which

protocol object is responsible for handling the communication, based on the

source IP address of the communication.

6.3.5. Access module

As Tsne was an existing system, access was not handled as a separate module.

Access was designed to be handled by querying stored information about

authenticated nodes. These queries are performed in the existing web server

module by accessing the database module. The only helper function the design

relied on was crypauth.

6.3.5.1. crypauth

Helper functions designed to access stored information about the system, to

determine which groups a peer is associated with, and which specific

resources these groups has access to.

6.3.5.2. network (web server)

The operation of the original network module is specified in chap 5.3.. The

revised version in Tsnecv was designed to enforce the specified access policies

which will be described in section 6.3.5.3 (next section) and section 6.3.6. As

stated in the specification for Tsnecv, a secure channel is not required to

access resources on the web server. The web server in the original Tsne does

not limit access to the web server to peers in the network. Because of this, no

mechanism was in place to handle access restrictions in the revised version.

The revised version limits access in two ways. The web server has been

redesigned to use the IP address of the request as an identifier. The web server

is designed to only allow access to resources to authenticated nodes (as

maintained in the data base by the neighbor discovery). In addition, the web

server was designed to use the crypauth helper function to determine which

groups the authenticated peer was associated with. Based on the permissions

of the groups the peer is a member of, access is graded. A peer is only allowed

access to resources which at least one of its groups has been granted access to.

As an additional feature, the web server was designed to provide a resource

other than the mp3 files supported by the original Tsne. A special request to

the web server allows a peer to request the host machine of the web server to

perform a regular search as a peer, and play the resulting play list directly on

the host machine. Peers are supposed to only add peers they control (or maybe

household members) to the two special groups which are allowed to obtain

remote access to this functionality. This was done mainly to illustrate one use

--

Page 51 of 63

of graded security with respect to access in a peer to peer network, beyond that

of limiting access in a file sharing private P2P network.

6.3.6. Trust for autonomously granting access

The proposed solution for autonomously granting access in Tsnecv was is to

grade the trust of a public key and its associated user ID. The graded trust was

then used to grade access to resources according to the autonomously assigned

trust. The assignment of trust was done by the neighbord discovery, and

enforced by the web server.

The system was designed to assign trust in the following way:

A peer connecting for the first time, which is only able to provide its public

key and alleged identity by in band communication should be assigned a trust

level of 1, the lowest trust possible (other than 0 which isn’t used, but would

imply that the connecting peer is not even using Tsnecv but rather performing

a port scan or some other form of probing). A Tsnecv network consisting of

such peers only, would represent a regular P2P network, not a private P2P

network. Peers with trust level 1 were autonomously granted access to files

shared to group 1. Adding resources to group 1 is done at Bob’s discretion, so

Bob does not have to participate in this sharing of resources. The peers of this

type is considered anonymous peers.

A key with trust level one may be upgraded to a trusted key by a peer. The

upgrade is done at the peer’s discretion. This means that the peer has the

choice of either manually confirming the received key by out of band

communication with a friend. The peer may also select to use his knowledge

and compare the supplied identity of a connecting peer with information about

a friend. The peer must then decide if it trusts the network and the exchange of

the key. For example, if Bob and Alice are sitting in a room, connected to each

other through a switch, Bob will observe someone who is identifying

themselves as something like ‘CoolAlice<and a cryptographic secure random

number>’. The probability of someone acting as man in the middle to forge

the key in this setting would usually be considered minimal15 , and Bob may

15 This is a consideration that must be made by the user. Two regular peers connected to a

switch on a LAN they trust, are very unlikely to be under attack. If however these two peers

were likely to be subjected to industrial espionage or maybe even peers sharing military

defense information, extraordinary precautions would have to be taken. These peers would

have to consider the possibility of secret agents infiltrating the building, exchanging the switch

with a specially designed switch under their control, which would allow them remote access

and the possibility to change the content of messages, while acting as man in the middle. This

indicates that security is relative. For the average peer, considerations such as switches and

routers with firmware with security holes are a greater threat, as this may allow hackers to

perform the same operation as those described with the secret agent (and secret agents may of

course also use hackers)

--

Page 52 of 63

select to upgrade this key to trusted. To manually trust the key implies that

Bob knows Alice, so upgrading the key also upgrades Alice to become a

friend. Friends with confirmed keys are autonomously granted access to

resources shared to group 7, 5, 3 and 1.

Bob also has the option of manually upgrading an assumed ‘key to identity’

binding for Alice to become a friend without upgrading his trust in the key.

Such an upgrade implies that Bob is quite certain it really is Alice, but until it

is confirmed he is not quite as willing to share resources as he will be when

the binding is confirmed (by himself or other peers). The manual upgrade to

friend but with untrusted key autonomously grants the friend access to

resources shared to group 5, 3 and 1. If Tsnecv is at a later time able to have

the key confirmed by another friend with a secure connection, the key is

upgraded to trusted and the friend is granted the additional access of resources

shared with group 7 (so total access is 7, 5, 3 and 1)

Friends of friends (FoF) are handled in two ways. If Alice is a friend of Bob,

and Bob has a trusted key to Alice, Tsnecv trusts Alice’s judgment and

autonomously grants FoFs that reach Bob through Alice access to files shared

to group 3 and 1. Adding resources to group 3 is done at Bob’s discretion, so

Bob does not need to rely in the judgement of his friends even though Tsnecv

does so. If Bob does not have a trusted key to Alice, Tsnecv autonomously

treats the FoFs who reach him through Alice the same way he treats

anonymous peers.

It is noted that if the friend of a friend with an unconfirmed key connects to

the same LAN as Bob, this friend of friend would autonomously be treated as

a peer connecting for the first time, and thus be autonomously granted access

to the resources of group 1.

The first time Tsnecv is started, it adds itself to group 9. This is a special

reserved group which has access to the resources of all other groups. There is

another reserved group, group 8. Peers may only be added manually to group 8

and 9 (except for the described addition to group 9 when the system is

initialized for the first time). Group 8, like 9, has access to the resources of all

other groups. Group 8 is reserved for what should be considered a house hold

or similar. The group is used to share a special resource, the ability to invoke

remote playing of mp3 files. In a typical configuration, a peer will add all its

devices to group 9 and have access to private files shared among its devices in

group 9. Household members, such as a media PC in the living room is added

to group 8, allowing different members of a household to share music to group

8 and invoke the remote play function of the media PC in the living room from

any peer they have added to the media players group 8. The media player is

not able to play music shared to group 9. The media PC operates as any other

peer in the system, so the members of the household must use the Tsnecv

running on it to add their peers to the media players group 8.

--

Page 53 of 63

The special groups with negative numbers, -9 through -1 could be used by a

peer to make specific files available to a specific group of peers. The members

of each group could be added manually by the sharing peer from the list of

available peers in the network. These groups would be intended for friends,

and would require members to be friends with trusted keys.

Information used for autonomous grading of peer

access based on characteristics of friendship and key

to identity binding

Autonomous

Group access

FRIEND with confirmed/trusted key 7

FRIEND with unconfirmed/untrusted key 5

FoF through FRIEND with confirmed/trusted key 3

Anonymous peer with any key 1

FoF through FRIEND with unconfirmed/untrusted key 1

All others (probing, protocol errors etc) 0

Figure 2: Table of autonomous access. FoF is a friend of a friend, FRIEND is

a friend. Group 0 implies no access.

6.3.7. Important manual operations in Tsnecv

The following operation was designed to configure Tsnecv

• Select a nick name which will be recognizable by friends.

The following operations were designed to allow peers to control the

managment of their trust in other peers.

• Upgrade to friend by trusting key.

• Upgrade to friend but do not trust key.

Add peer to group 8 or 9.

• Delete peer to reset all info, but allow to reconnect as a new peer.

--

Page 54 of 63

7. Implementation

7.1. Implementing The Sosialized.net Embedded - Cryptographic Version

In this chapter the actual implementation of Tsnecv, the revised version of

Tsne, is described. It will show which mechanisms are used to fulfill the

requirements of the specification of the required security stated in chapter 6 of

this thesis. It will be demonstrated that the requirements were met, or if the

attempt to implement a specific feature was not successful the problems

leading to failure will be explored.

The algorithms will be discussed in general terms, for details the reader will be

referred to the source code which is a part of the deliverables for this thesis.

7.2. Preparation, tools, System software and hardware setup

7.2.1.1. Hardware

Because it was planned to use a Windows Mobile Wlan capable phone, it was

decided to use Windows as the development platform. To make sure the

system would really work as described, in the real world, a setup resembling a

typical system (except for the few number of nodes) was used. 2 machines

were connected to a switch. These machines were connected to the Internet

through the Internet line of the switchand were assigned public IP addressed.

A laptop was connected to the Internet line from a completely different

network segment (two separate Internet providers, HiTos/Uninett and

Bluecom). As both lines were available in the same room, the real life

situation of a peer moving to a new network could be tested by plugging the

network cable back and forth between the switch or the separate ADSL line.

The Bluecom line was completely open (no firewalls or NAT), but the Uninett

line had a very limited selection of ports which were open for incoming traffic,

so the Tsnecv configuration files were set to use these open ports.

7.2.1.2. Software

The development was done in XEmacs. The application that was to be furter

developed, Tsne, was available in Python, and Tsnecv was thus naturally

developed in Python . Two Sourceforge projects were used: PYsqlite was used

as the database, and pYcrypto[25,26] was used by algorithms which had use

for cryptographic functions. pYcrypto is a quite low level interface and

implementation which mainly contains the ciphering mechanisms and key

generation. Functionality like padding, Cipher Block Chaining (CBC)[6,27],

and signature verifications had to be implemented separately. The binaries for

these two projects are a part of project’s code delivery, along with the source

code of both Tsne and the developed Tsnecv

--

Page 55 of 63

7.3. Overview of the important modules of Tsnecv

The Tsne code was well structured, but communication in the neighbor

discovery was based on a ‘fire and forget’ concept. A peer would send a Ping

and forget all about it. Later it would probably receive a Pong, and update a

timestamp for the last contact with whoever was pinged. This approach is a

good implementation of a ping, but complicates cryptographic protocols.

Authentication and key exchange is usually done by sending several messages

back and forth. This is usually done in a connected mode where the two parties

maintain a channel throughout the process.

Because the neighbor discovery uses connectionless communication it was

decided to use the same for the authentication protocols. This was done in

order to follow the original design of Tsne, even though additional steps would

have to be taken. Several helper functions had to be implemented in order to

resolve issues related to the connectionless operation. The main issues were to

maintain and update the state of each step in the authentication or key

exchange, while directing incoming protocol messages to the object which was

involved with exactly that message. At a single point in time, Tsnecv may

have several active protocol objects. For example, 20 objects which are

authenticating 20 different peers and a few objects which are attempting to

exchange keys. This will lead to at least the same number of messages, but

they will arrive in no particular order, on the same port. While waiting for

responses, the objects must also handle timeouts, and resends.

7.3.1. Encryption module

The encryption is very important for the secure operation of the system.

Because of this the cryptographic module was fully implemented. It used the

pYcrypto library for the actual encryption. This library includes the actual

encryption, decryption, signing, signature verification, and key generation

algorithms. However, the framework for a cryptographic system is much more

than these functions. In the following we look at the most important classes in

the module.

crypdocrypto formats all calls to the actual cryptographic functions. It

performs functions such as padding, unpadding, conversion of data to a form

that may be encrypted, the CBC mode used with AES, and a few other

formatting functions. It also incorporated testing functions which were used to

verify the correctness of the cryptography.

crypauth was not very sophisticated, but provides a solution which may be

used to easily associate folders with groups of peers that should have access to

them. The folders holds an indicator of required access level in their path

name, and the folders may be used at both one or several levels of depth.

--

Page 56 of 63

crypglobals only holds configuration parameters, but is mentioned because it

allows tweaking of the protocols, particularly the behavior which is taken

when keys are missing, not trusted and so on. It also allows tweaking of the

strength of the cryptographic algorithms used in pYcrypto

7.3.2. Authentication and key exchange module

As stated earlier, the use of a ping pong scheme in Tsne’s neighbord daemon,

with connectionless communication, made cryptographic protocols a

challenge. This was solved by creating a spinning algorithm which would

continuously wake protocol objects which still hadn’t completed their task.

The protocol object is a derived class from the auth, getunsecurekey and

getsecurekey classes. This allows the protocol objects to hold all state for the

protocol which is carried out. An alteration to the neigbord daemon

implemented a spinning fucntion which continuously woke protocol objects

and allowed them to update timers and state and decide if they had timed out,

should retry, or if they had used to many attempts to without succeeding

(leading to failure). The spinner in the neighbord deamon used a similar

scheme to pinging to determine when a node should be authenticated.

The idea was that a an authenticated node should be allowed access to files for

a period of time (one minute) after each authentication. When this was about

to expire, the node would be authenticated again, allowing it to continued

access to the system.

The individual protocol classes auth, getunsecurekey and getsecurekey had the

responsibility of defining the steps of each protocol. Get unsecure key was

implemented completely using real cryptographic keys from the encryption

module. In situations where a protocol would fail, the object would self

destruct. It would then be the responsibility of the neighbord daemon to spin a

new object after a given time had passed.

auth implemented the steps in the protocol, and would correctly abort if it did

not have the required key to authenticate. The authentication was simulated

without the use of real kesy, and rather simulated by manipulating the

database entries or by inserting errors in the code of the test system .

The implementation of get secure key was eventually abandoned, due to an

unresolved problem with the signature verification. A manual copy of a

signed text, transported by a removable storage device would work, but when

transmitted over the network, the signature verification would always fail.

--

Page 57 of 63

7.3.3. Access module

There was no access restrictions to searching. The enforcement of graded

access was handled by the network class. Based on either combinations of key

sources, status as a friend, friend of friend, the trust of the key source, or

manipulated values of these values access to files was either granted or denied.

These variables represented a combination of how much the peer trusted

whoever was connecting, and how much the peer trusted the link between a

public key and it’s assumed identity.

The required user level (or group) was determined by requesting it from the

crypauth class in the encryption module.

 In addition the network module would confirm that the authentication and key

exchange module currently considered the connecting peer to be authenticated.

If the access level of the user was sufficient the requested files would be

served. These files were served unencrypted. If the peer was not authenticated

or did not have the proper authentication, the protocol would simply abort and

not give a response in order to avoid leaking information. This is considered a

good cryptographic practice. When something fails, everything one was

working on should be shredded.

In addition to files, the network class also makes remote play available. By

requesting a particular url, the the same procedures as with file access is

followed, but only users with the two highest user levels which are currently

authenticated are granted access. If access is granted, the peer will begin to

play music locally, requested to do so by a remote peer. This access was

designed to be available for the peers own nodes in the same system, and also

for household members if so desired.

7.4. Daily use, and testing

7.4.1. Daily use

The Tsnecv network has been continuously tested throughout it’s

development. One peer has generally been used to store music, and a laptop on

the other side of the room, connected to a different network, has been used to

play music with remote play. Two friends of the author has been allowed to

test the system during its development, and it has behaved as expected

according to the stage it was at, at the time of testing. At that point and with

it’s given configuration it was able to support remote play, secured by the

knowledge of a secret key. At this point remote play is fully supported with

the exchange of keys and by adding the peer to the restricted user groups

(either 8 for household or 9 for the owner). The system is also capable of

granting peers access to files based on which user level they have. Peers who

join the network are all granted access to the lowest group autonomously

--

Page 58 of 63

7.4.2. Testing

7.4.2.1. Authentication

when peer x is trying to authenticate peer y, the authentication will fail if peer

y does not have peer x’s public key. The related protocol object will revert to

public key exchange. At the next attempt to authenticate, peer x will

authenticate peer y. Signatures are not tested or created by invoking them from

the encryption module, but the protocol follows the procedure. Increase of

trust may be simulated by upgrading peers to friends or household members

by accessing the database. This results in increase access

7.4.2.2. File streaming and Remote play access

The file streaming access is fully implemented. Based on the granted access

and a current authentication, only files which are supposed to be available are

made available. If a peer leaves it’s IP address, a new peer joining on the same

address will have the possibility to probe for files for up to 60 seconds, due to

the timeout of the authentication, and the unencrypted channel that is used for

transfers

7.5. Limitations and problems

The system does not use signatures, but the algorithms are implemented in the

encryption module.

The trusted key exchange was abandoned due to the problems with the

signatures.

Access is not secure with respect to the unsecure channel that is used when

transferring files.

The problems were not directly related to the protocols but rather to the

complicated nature of cryptographic systems. Debugging is extremely difficult

to perform, due to the inherent secret content of what is being debugged. The

problem is that it is not always clear at what point of a long chain of events

that something goes wrong. It is considered probable that signatures failed

because messages were not properly formatted.

7.6. Results and possibilities and further development

The research that was done found some new ideas to grade security. The next

generation of the system should be able to implement the signatures properly,

and thus authenticate securely. If the transport channel of the web server is

encrypted according to an industry standard, it should be possible to make the

system quite secure. The grading of access proved to be very exiting. Peer who

--

Page 59 of 63

joined the network by appearing on a LAN, would in matter of seconds gain

access to the files made available to the lowest group. Still they would not be

able to invoke remote play or gain access to private files. As part of further

development, a detailed study of the encryption protocols should be done

8. Conclusions

It has been demonstrated that it is possible to grade security autonomously by

assigning trust to the way a key is exchanged. If a peer joins and simply shouts

his key, he gets the lowest access. If the key is manually decided to represent

his assumed identity, he may be upgraded to access more files. Only if a peer

wants to grant more access, does he need to take some form of action.

It has not been proved that the security of the system is intact. Due to the

failure of the signatures to verify authenticity , a complete chain of trust is not

reached, and the system may be breached by an attacker.

The concept seems promising. The system works and performs many of the

operations it was designed to do. The different levels of trust assigned to keys

and the ability to accept a received key based on information about who is on

the same network at that time, without manually checking the key itself, may

be found sufficient for grading security.

--

Page 60 of 63

9. References

1. Rogers, M, Bhatti, S: “How to Disappear Completely: A Survey of

Private Peer-to-Peer Networks”.

Paper at SPACE 2007 (Sustaining Privacy in Autonomous Collaborative

Environments). Available at http://www.cs.ucl.ac.uk/staff/mrogers/private-

p2p.pdf (2007)

2. Wikipedia, “Distributed Transient Network”. Article.

Available at http://en.wikipedia.org/wiki/Distributed_Transient_Network

3. Wikipedia, “Ad-hoc”. Article.

Available at http://en.wikipedia.org/wiki/Ad-hoc#Ad_hoc_computer_network

4. Wikipedia, “Brute force attack”. Article.

Available at http://en.wikipedia.org/wiki/Brute_force_attack

5. Bishop, M, Computer Security: Art and Science, Addison-Wesley,

Boston, MA (2003)

6. Ferguson, N, Schneier, B, Practical Cryptography, Wiley Publishing,

Inc., Indianapolis, IN (2003)

7. Johnsen, B, Kryptografi: En prosjektorientert introduksjon, Tapir

Akademisk Forlag, Trondheim (2005)

8. Wikipedia, “Direct Connect Network”. Article.

Available at http://en.wikipedia.org/wiki/Direct_Connect_network

9. NeoModus, “Direct Connect”, website (now closed) .

--

Page 61 of 63

Available through mirroring service, The Wayback Machine at

http://web.archive.org/web/20050612080703/http://www.neo-modus.com/

10 . “DC++”, website.

Available at http://dcplusplus.sourceforge.net/

11. “YnHub”, website.

Available at http://www.ynhub.org/

12. “Octopod”, website

Available at http://sysnet.ucsd.edu/octopod/

13. Balakrishnan, H, Kaashoek,F, Karger,D,Morris,R,Stoica,I, :“Looking

up data in P2P Systems”, Communications of the ACM (February 2003)

Available at http://www.project-iris.net/irisbib/papers/dht:cacm03/paper.pdf

14 “Open Direct Connect”, website.

Available at http://sourceforge.net/docman/?group_id=36589

15. “WASTE”, website.

Available at http://waste.sourceforge.net/

16. Sayers,R: “Secure File Transfer With WASTE “, video.

Available at

http://showmedo.com/videos/video?name=sayersWaste000&fromSeriesID=63

17. “Retroshare”, website.

Available at http://retroshare.sourceforge.net

--

Page 62 of 63

18. Popescu, B, Crispo, B, Tanenbaum, A: “Safe and Private Data Sharing

with Turtle: Friends Team-Up and Beat the System”, Proc. 12th Cambridge

International Workshop on Security Protocols (April 2004).

Available at http://citeseer.ist.psu.edu/popescu04safe.html

19. “The Free Network Project”, website.

Available at http://freenetproject.org/

20. Clarke, I, Hong, T, Miller, S, Sandberg, O, Wiley,B: “ Protecting Free

Expression Online with Freenet”, IEEE Internet Computing article (2002)

Available at http://citeseer.ist.psu.edu/462603.html

21. Borch, N: “Social Peer-to-Peer for Social People”, The International

Conference on Internet technologies & applications, Wrexham (September

2005).

Available at http://www.socialized.net/#Papers

22. “The Socialized.Net”, website

Available at http://www.socialized.net/

23. R.Rivest, A.Shamir, L.Adleman: “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems”, Communication of the ACM, vol.

21(2), pp. 120-126 (1978).

Available at http://citeseer.ist.psu.edu/rivest78method.html

24. RSA Laboratories :“TWIRL and RSA key size”, article

Available at http://www.rsa.com/rsalabs/node.asp?id=2004

25. Python Cryptography Toolkit, website.

Available at http://www.amk.ca/python/code/crypto

26. Python Cryptography Toolkit Documentation, website

Available at http://www.amk.ca/python/writing/pycrypt/

Or In the source code [25], in the file ‘pycrypto-2.0.1\pycrypto-

2.0.1\Doc\pycrypt.tex’

27. Weiss, J, Java Cryptography Extensions: Practical Guide for

Programmers, Elsevier Inv. (2004)

--

Page 63 of 63

28. IEEE 802 specification, website

Available at http://standards.ieee.org/getieee802/

29. Kazaa, website

Available at http://en.wikipedia.org/wiki/Kazaa

30. Kazaa, website

Available at www.kazaa.com

31. Bharathidasan, A, Ponduru, V:”Sensor Networks: An Overview”,

paper, University of California, Davis, CA (August 2002)

32. Gerk, E, : “ Overview of Certification Systems: X.509, CA, PGP and

SKIP”, MCG publications, website.

Available at http://mcwg.org/mcg-mirror/papers.htm

33. Finney, H: “Hal Finney Essays: PGP Web of Trust Misconceptions”,

website

Available at http://www.finney.org/~hal/web_of_trust.html

34. Certicom, “ Online Elliptic Curve Cryptography Tutorial”,website

Available at http://www.certicom.com/index.php?action=ecc_tutorial,home

