
	

	
	 	

FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

Decentralized Orchestration of Open Services
Achieving High Scalability and Reliability with Continuation-Passing
Messaging

Abul	Ahsan	Md	Mahmudul	Haque	
A dissertation for the degree of Philosophiae Doctor – August 2017

Acknowledgements

First and foremost I would like to express my deepest and sincere
gratitude to my advisor, associate professor Weihai Yu. During this
whole journey, I remain indebted for him not only for his continuous
support for my Ph.D study and related research but also for his un-
derstanding and support during the times when I was really down. I
am really thankful to him for his patience, motivation, and immense
knowledge. His guidance helped me in all the time of research and
writing of this thesis. I could not have imagined completing this thesis
without his continuous guidance and effective suggestions.

I would also like to thank my co-advisor associate professor Anders
Andersen for his guidance and valuable comments during discussing
experimental results and writing papers. I am also grateful to him
for paying detail attention to my thesis and making helpful comments
and valuable suggestions.

I would also like to thank other research fellows (specially Nazeeb
and Dr. Razib Hayat) for their valuable discussions and giving me
this believe that I can pursue and fulfill my research goals. I would
also like to thank my current colleagues for their encouragements and
supports which allow me to complete this thesis besides my current
work.

Last but not the least, I would like to thank my family: my wife Sadia,
my parents and my brother for supporting me spiritually throughout
writing this thesis and my life in general.

Abstract

Orchestration of the executions of composite services in a service-
oriented architecture is typically carried out by dedicated central en-
gines. With central engines, monitoring and management of execu-
tions of composite services are relatively straightforward. However, a
central engine can easily become a performance bottleneck when the
number of services to be orchestrated is getting large. Furthermore,
finding feasible locations for central engines is much harder when the
services are beyond enterprise boundaries, especially for open services,
services publicly available for wide range of applications, where natu-
rally those services remain outside of the administration boundary of
enterprises.

We investigate a decentralized approach as an alternative to central-
ized service orchestration. Decentralized orchestration, however, is
generally regarded as more challenging for certain orchestration man-
agement tasks due to the absence of global run-time states. The
hypothesis of this thesis is that if we let the messages for service
orchestration carry the control and status information about service
executions, we could dispense with dedicated central engines. Further-
more, if we effectively utilize the current run-time states and future
orchestration plans in the messages, we could eventually enhance the
reliability of the executions of the composite services.

The primary contribution of this dissertation is a fully decentralized
approach to orchestration of open services. The approach is called
continuation-passing messaging (CPM), where control and run-time
state information are carried in messages in terms of continuations.
Service orchestration is a process of exchanging and interpreting CMP
messages. Our orchestration approach deviates considerably from
other decentralized approaches as it does not require pre-allocation
of resources to follow up the monitoring and management tasks.

Another important contribution of this dissertation is reliability of
service orchestration. In our system model, failures may occur in one
of two places: either at the service providers or at the orchestration

agents. We handle the first type of failures through exception handling
of composite services and the second type with replication.

Exceptions of composite services could be handled either by back-
ward recovery or forward recovery. The recovery plans can either be
specified manually or generated automatically according to certain
pre-defined rules. With CPM, we could automatically generate recov-
ery plans at run time and encapsulate them in messages in terms of
compensation continuations. We also devised a mechanism for moni-
toring the executions of services and propagating exceptions through
scope managers.

We designed a special replication scheme called replicated CPM. It
utilizes the run-time status information, which is already distributed
among the participant orchestration agents for orchestration, and en-
hances the handling of the information for backup and replication
purposes. It is a flow-oriented replication mechanism where failure of
the orchestration agents is handled by the set of the backup agents
that are chosen according to the structure of the composition. With
replicated CPM, an orchestration activity has a replication degree k,
meaning that, it is assigned with a list of k + 1 orchestration agents
and can tolerate up to k simultaneous agent crashes.

Our performance study showed that decentralized orchestration im-
proves the scalability of the orchestration process. Our orchestration
approach has a clear performance advantage over traditional central-
ized orchestration and over the current practice of web mashups where
application servers themselves conduct the execution of the compo-
sition of open web services. Finally, in our performance study we
presented the overhead of the replication approach for services or-
chestration.

Contents

Contents iv

List of Figures vii

Nomenclature viii

1 Introduction 1
1.1 Web services as open services . 1
1.2 Service composition and

service orchestration . 2
1.3 An evolution of web technology and open services 3
1.4 Problem statement . 5
1.5 Summary of contribution . 6
1.6 Brief overview of approach . 6
1.7 Limitations . 7
1.8 Dissertation outline . 7

2 Background 9
2.1 Composition of services . 9
2.2 Open web services . 10
2.3 Orchestration of open services . 12
2.4 Dencentralized services orchestration 13
2.5 Challenges with decentralized

services orchestration . 14
2.5.1 Fault at services . 15
2.5.2 Fault at orchestration elements 17

2.6 Summary . 20

3 Approach Overview 21
3.1 System model . 21
3.2 Continuation-passing messaging 23

iv

CONTENTS

3.3 CPM by example . 25
3.4 Organization of an OA network 28
3.5 Covering SPs . 29
3.6 Related work . 33
3.7 Summary . 34

4 CPM in Detail 35
4.1 Messages . 35
4.2 Environment and contexts . 37
4.3 Commence and termination of orchestration 38
4.4 Scopes . 39
4.5 Structural compositions . 40
4.6 Service operations . 41
4.7 Fault handling . 44
4.8 Dependency links . 45
4.9 Example . 47

4.9.1 Service installation . 48
4.9.2 Successful execution . 49
4.9.3 Rollback after a fault . 53

4.10 Related work . 54
4.11 Summary . 56

5 Replicated CPM 57
5.1 Overview . 57
5.2 Selection of backup OAs . 58
5.3 Normal execution . 62
5.4 Handling unavailability of OAs 65
5.5 Example . 66

5.5.1 Replication degree 1 . 66
5.5.2 Replication degree 2 . 68

5.6 Related work . 69
5.7 Summary . 71

6 Performance Evaluation 72
6.1 Performance of different services

orchestration approaches . 72
6.2 Performance of web mashups . 79
6.3 Performance of replicated CPM 81
6.4 Summary . 83

v

CONTENTS

7 Conclusion 85
7.1 Contributions . 85
7.2 Limitations . 87
7.3 Future work . 87

Appendix: Publications 89

References 148

vi

List of Figures

1.1 A perspective of the evolution of web technology 3

2.1 An example composition . 11
2.2 An example composition with fault handling 15
2.3 Control flow of example composition 16

3.1 SPs, OAs and OA coverages . 22
3.2 Structure of an Orchestration Agent 24
3.3 Service invocation and orchestration messages 25
3.4 Steps of learnWithPing to learn about an SP 31
3.5 Steps of learnInOrch to learn about an SP 32

4.1 Constructs of messages . 36
4.2 A dependency link . 46
4.3 Example process . 48
4.4 Orchestration messages for a successful execution 49
4.5 Process in message (P1) . 50
4.6 Orchestration messages for a rollback 53

5.1 Extended Structure of an Orchestration Agent 58
5.2 OA graph for backup selection . 59
5.3 Backups of Ae . 61
5.4 Message timestamps . 63
5.5 Messages from Ad for replicated CPM 67

6.1 Aggregate throughput of all servers 74
6.2 Throughput of a service site . 74
6.3 SA response time . 75
6.4 SA recovery time . 75
6.5 Aggregate throughput (pooled ctr) 77
6.6 Throughput of a service site (pooled ctr) 77
6.7 SA response time (pooled ctr) . 78

vii

LIST OF FIGURES

6.8 SA recovery time (pooled ctr) . 78
6.9 Response time of the example SA 79
6.10 Response time of a simple loop 80
6.11 Throughput of 100 SPs . 81
6.12 Response time of SAs . 82
6.13 Resource utilization at OAs at MPL 6 83

viii

Chapter 1

Introduction

Service orientation [21] is a design paradigm for cost-effective construction and
integration of sophisticated enterprise applications. This new genre of software
paradigm finds its origin in object-oriented and component-based software devel-
opment, and aims at enabling developers to build networks of interoperable and
collaborative applications. Application developers could make use of indepen-
dent computational units, primarily known as services, regardless of the platform
where the applications and services run and of the programming language used to
develop them [74]. Individually shaped services are composed to be collectively
and repeatedly utilized to meet specific business goals. Traditional business pro-
cess and workflow technologies have been successfully applied to service-oriented
architectures for the orchestration of the composite services.

The World Wide Web [9], or simply the web, initially thought of as primar-
ily for human use, has evolved towards an Internet-Scale application model that
supports automated and repeated use of applications. Web applications targeted
towards other applications are generally known as web services. The web ser-
vice technology takes leverage from existing Internet technologies and related
standards, and at the same time brings about new challenges.

1.1 Web services as open services

The web was initially designed primarily for human use. Lately, an ever-growing
large number of web applications provide open services through published APIs
(Application Programming Interfaces). New applications are built as the compo-
sition of the functionality and data from these open web services. A particular
group of such open-service based applications, which also take the form of web
applications, are widely known as web mashups. A web mashup is a web appli-

1

1. Introduction

cation that uses other open web services. ProgrammableWeb1, for instance, lists
thousands of open services and mashup applications. According to their research
center, the number of web APIs has increased thousand times from early 2005 til
the end of 2013. Although open services show highest popularity among social
media based applications, their popularity also ranges from sectors like finance,
enterprise, mapping, e-commerce, etc. The APIs could be SOAP based (Simple
Object Access Protocol) [79], RESTful (Representational State Transfer) [25],
JSON, or combinations of SOAP and REST.

Currently, a web mashup can invoke individual open web services, but there
is no systematic way of composing open web services as in service-oriented archi-
tectures. In this thesis we focus on and experiment with the run-time support of
composite open services. We carefully manage the control information, run-time
status and states of the open services, and further enact this information during
the orchestration of the services.

1.2 Service composition and

service orchestration

Available services, when work individually, may not fulfill the required functional-
ity. For example, a map service and a bus routing service independently may not
provide sufficient services for map-enhanced travel planning. However, when they
work as a coordinated composition, they can perform to achieve the predefined
goals.

Service orchestration is the process of conducting the coordinated executions
of composite services. Web services and specially composite web services need to
be orchestrated on the Internet, meaning that when a number of individual web
services are glued together, we need to manage and monitor data and control
flows of the composite service.

Services orchestration can be carried out either centralized or decentralized.
In a centralized approach, orchestration of composite services is carried out by
dedicated central engines. With central engines, monitoring and management
of service executions are relatively straightforward. A central engine, however,
can easily become a performance bottleneck when the number of services to be
orchestrated is getting large. Furthermore, finding feasible locations for central
engines is much harder for open web services which are typically beyond enterprise
boundaries.

In contrast, a decentralized approach does not require a dedicated central
engine. Instead, participant service providers or intermediate agents collabo-

1www.programmableweb.com

2

1. Introduction

rate with each other and exchange or distribute messages over the network. As
the overall control of the execution is distributed among the participating ser-
vice providers or intermediate agents, there is no single point of performance
bottleneck. On the other hand, decentralized approached are subject to other
challenges, such as monitoring and management of run-time states, handling of
failures, etc. We work on a new decentralized approach and deal with these
particular challenges.

1.3 An evolution of web technology and open

services

Here we present our perspective of the evolution of the web technology and open
services, and how this thesis work fits in this evolution. Figure 1.1 depicts the
evolution of web technologies starting from very generic client-server technique
towards advanced service compositions. The numbers labeling the edges represent
the possible technique for building web applications.

Web browser

Web server
(mashup) Web service

Web service

2

3

1

3

3

4
4

4

Figure 1.1: A perspective of the evolution of web technology

When the web first appeared in the late eighties, it was primarily used by
human users. A human user interacts with a web browser, which obtains data
content directly from web servers (marked as 1 in the figure).

With the advent of scripting languages inside browsers, such as Javascript,
the browser can perform certain tasks, like validation of user input, without
contacting the web server (marked as 2 in the figure).

When a web server provides open APIs as services, they can be used by
programs, either from web browsers or from other web applications known as

3

1. Introduction

web mashups (marked as 3 in the figure).
As a web mashup is essentially a composition of existing web services, a lot

can be learned from service-oriented computing (SOC). Suppose that we would
like to build a web application for a conference that reuses existing web services.
The application offers useful information for the conference attendees, such as
literature references and sight-seeing attractions, which it obtains from external
services like digital libraries and tourist offices. The application can even au-
tomatically build interest groups and set up extra discussion sessions or social
events using external social network services. It may happen that due to un-
expected reasons, certain partially executed or completed operations need to be
rolled back. For example, due to time conflicts or unavailability of conference
rooms, establishment of some groups or sessions must be undone. Currently,
no mashup building tool is able to support all features this application needs,
such as exception handling and rollback. Most of these features are already well
supported in different SOC approaches.

SOC focuses on cost-effective construction and integration of sophisticated
applications within and across organizational boundaries. Therefore unlike web
mashups, service compositions generally limit themselves within enterprises or
between enterprises with mutual agreements. SOC is typically built on business
process or workflow technology and provides more structural and feature-complete
support than web mashups. [83] discusses the differences between mashup and
SOC, with an emphasis on support for mashup application development.

Usually in SOC, dedicated central engines carry out the orchestration of com-
posite services. However, finding feasible locations for central engines is hard
when the services are beyond enterprise boundaries [81]. As mashup applications
are by nature composed of services from different service providers, finding feasi-
ble locations for the central engine for their orchestration is even harder. Even if
such an engine exists, relying on central engines and/or individual big-name ven-
dors would be subject to issues like availability, scalability, reliability, censorship,
policy-dependence etc. [12]. Therefore a decentralized approach to open service
orchestration would be more attractive to a wide range of next generation mashup
applications. In figure 1.1, edges marked as 4 show an example of this kind of
orchestration where service providers or other intermediate agents orchestrate the
composition as collaborative tasks.

In this thesis work, we use continuation-passing messaging for decentralized
orchestrate of open web services. With this approach, orchestration activities are
carried out at places close to the open services and no resource is allocated in the
distributed environment prior to the execution of the composite application.

4

1. Introduction

1.4 Problem statement

In an open distributed environment, a lot of things can happen beyond the control
of anybody. Open services can come and go. Computer systems can crash.
Network connections can be torn down. The utmost question this thesis work
attempts to answer is:

Q. Is it possible to perform reliable orchestration of composite open services?

As open services are outside the administration boundary of any enterprise,
the orchestration of composite open services should not rely on central engines.
Therefore, we take a decentralized approach to service orchestration.

Decentralized orchestration approaches have already been devised as a re-
search effort to overcome the drawbacks of centralized approach even within en-
terprise boundaries. Decentralized orchestration, however, is generally regarded
as more challenging for certain orchestration management tasks due to absence of
global run-time states. In particular, the orchestration of services need to monitor
and manage dynamic run-time status and controls of composite services. As this
information is needed to utilize further in error or fail recovery, one of the major
challenges remains in maintaining this information carefully and effectively.

Existing decentralized approaches rely on the pre-allocation of control and
resources prior to the execution of the composite services. The pre-allocated
resources take care of the monitoring and management of the dynamic run-time
state. In an open environment, however, it could be unfeasible to pre-allocate
resources . So our first specific research issues is:

Q1. Is it possible to orchestrate open services without a central engine
and without pre-allocation of control and resources?

When a software program is running, exceptional conditions may happen. It
is more so during the orchestration of composite services where things happen in
different places in the distributed environment. For a software program, excep-
tion handlers are constructed for certain expected exceptions. When an exception
occurs, it is typically propagated to and handled by the corresponding exception
handler. With centralized service orchestration, the central engine observes and
then handles the exception. With decentralized orchestration that pre-allocates
resources and control, an exception is propagated to some pre-allocated control-
ling entity which then handles the exception. With a decentralized orchestration
without pre-allocated of control and resources, our next research issues is:

Q2. Is it possible to handle exceptions at run time when the execution
is dynamically spread around in the distributed environment?

5

1. Introduction

Robustness of a computer system can be defined as the ability of the system
to react appropriately to some abnormal conditions. It is generally known that
we can not guarantee [40] to completely prevent failures either by the integrity
of the program or by the host environment where the program executes. This is
particularly true in an open environment. If we can not prevent failures, then the
right mechanism should be able to tolerate them. So our next research issue is:

Q3. Is it possible to tolerate unexpected failures when the execution is
dynamic and distributed?

1.5 Summary of contribution

In this thesis, we present a decentralized approach to services orchestration called
continuation-passing messaging (CPM). Dynamic execution status and control
are carried in messages as continuations. The messages also contain exception
handlers and recovery plans, called compensation continuations, that are dynam-
ically generated during execution. Our approach tolerate network and system
failures with a dynamic replication scheme.

The major contribution of this thesis are presented in the papers [35, 36, 37,
38, 85] outlined in the Appendix.

This thesis has general contribution in the field of distributed computing, as
composite web services is a special form of distributed computing. Here we give
an overall summary of these contributions:

• We have designed and implemented continuation-passing messaging (CPM),
a decentralized reliable open services orchestration approach that does not
pre-allocate resource and control prior to execution and can handle excep-
tions at run time [37, 38, 85].

• We have devised a flow-aware dynamic replication approach that tolerates
system and network failures [35, 36].

• We have carried out experimental studies and evaluated the performance
of our approach [35, 36, 37, 38, 85].

1.6 Brief overview of approach

In our decentralized approach, a network of orchestration agents (OAs) collec-
tively orchestrate the executions of processes using continuation-passing messag-
ing (CPM) [37, 38, 85]. Service orchestration messages contain information about
the flow of control in continuations and data in environments. The recovery plan

6

1. Introduction

for exception handling is dynamically generated in compensation continuations.
The initial continuation and environment of a CPM message are generated when
an OA starts to orchestrate a composition of services. The message is later on
sent to subsequent OAs that independently interpret the messages and invoke the
service operations of the appropriate service providers (SPs). New continuations
and environments are generated based on the messages being interpreted as well
as the outcomes of the service executions.

With CPM, information about the orchestration is usually already spread
among multiple OAs. This information, if carefully maintained, could be used to
handle occasional unavailability of OAs. This is the key idea behind replicated
CPM [35, 36]. One of our primary goals is that the selected set of replicas can
reuse as much as possible stored run-time states using CPM in order to keep the
run-time overhead of replication as low as possible.

We have developed a prototype to run in a simulator and evaluated our work
with simulation.

1.7 Limitations

We decided to focus ourselves on selected important research issues and limit the
scope of this thesis work.

We have used simulation to investigate our concepts rather than building
a full-featured application prototype. Our primary concern is whether the new
approach works at all and how it compares to other relevant related work in terms
of performance and scalability. Since our approach is completely new, much of
the foundation work must be in place before any realistic application prototype
can be built. Attempting to develop a prototype would force us to spend a lot of
time on less relevant issues. Simulation also allows us to experiment with different
orchestration approaches.

We have concentrated mostly on the control flow part of orchestration of open
services. Effective data flow management could be the immediate follow-up of
our current work.

We have not worked on security issues, which are clearly highly relevant to
distributed application in general and decentralized service orchestration in par-
ticular. Other researchers in our research group are working on security issues
that could apply to our work [4].

1.8 Dissertation outline

The remainder of the dissertation is structured as follows:

7

1. Introduction

• Chapter 2 presents some background relevant to this this work, including
web service composition and orchestration, open services, and challenges.

• Chapter 3 presents a brief overview of Orchestration Agents (OA) and an
introduction towards the CPM approach to decentralized service orchestra-
tion.

• Chapter 4 describes CPM in more detail, including the construction of
CPM messages, the interpretation of messages, fault handling etc. We walk
through an example to help the reader understand how CPM works.

• Chapter 5 shows a dynamic replication mechanism that tolerates system
and network failures during orchestration of open services.

• Chapter 6 evaluates our work with experimental performance studies.

• Chapter 7 concludes and outlines possible future work.

8

Chapter 2

Background

In a service oriented architecture (SOA), individually shaped services are com-
posed to be collectively and repeatedly utilized to meet specific business goals. In
the literature [59], “orchestration refers to an executable business process (i.e. a
composition) that can interact with both internal and external (web) services.
The interactions occur at the message level. They include business logic and task
execution order, and they can span applications and organizations to define a
long-lived, transactional, multi-step process model.”

Services in SOA is normally constrained within the same enterprise boundary.
Traditional workflow or business process technologies have been successfully ap-
plied to this architecture for the interaction among component services. Orches-
tration of composite services in SOA is usually carried out by dedicated central
engines. However in open service, these interactions usually exceed enterprise or
organization boundaries. It is therefore hard to find feasible locations for central
engines. The primary goal of this dissertation is to achieve fully decentralized
orchestration of open services.

In this chapter, we present the background of our research, namely service
composition, open services and decentralized service orchestration. We also dis-
cuss research issues, with an emphasis on issues concerning reliability in de-
centralized service orchestration.

2.1 Composition of services

In general, composition is the process of building a larger structure by combing
or assembling smaller components. In our context, these smaller components
are services. They are fundamental elements or building blocks for developing
large-scale applications. In computing, services can be defined as platform and
network independent operations that clients or other services invoke [51].

9

2. Background

The technology of business process [80] and workflow [43] is widely adopted
for services composition and orchestration. For example, in WS-BPEL [57], the
de facto standard for web-services composition, where individual web services are
composed into BPEL processes. According to [80], a business process consists of
a set of activities that are performed in coordination in an organizational and
technical environment. These activities jointly realize a business goal. Each
business process is enacted by a single organization, but it may interact with
business processes performed by other organizations. Business processes may
consist of parts that are carried out by computers and parts that are not supported
through computers. A workflow is the part of a business process that is carried
out by computers [43]. If we limit the activities to services or web services,
workflows become service or web service compositions.

In the literature [63], as well as in this dissertation, terms for workflow, busi-
ness process (or simply processes) and service composition are often used inter-
changeably. For example, a workflow or process corresponds to a service composi-
tion, a task corresponds to a service, workflow enactment corresponds to services
orchestration, and so on.

Service composition is most beneficial when currently available services do
not fulfill the required functionalities while as a coordinated composition it can
perform that. Thus a composition of multiple services can make more capable
and powerful applications. Service composition consists of several steps: selection
of appropriate services, specification of composition in some execution languages
(for example, WS-BPEL, WS-CDL, etc.), verification of the service composition
according to the objective and composition requirements, and finally monitor or
adaptation of the composition if it is required [60].

Figure 2.1 shows an example composition p. Normally a service (simple or
composite service) is specified by an identifier (e.g., URL), a set of operations
and a set of attributes. Here in our examples, we have ignored attributes for the
sake of simplicity; instead of using URL as an identifier we have used service
providers name to locate a service.

The example composition consists of invocations to operations a at Sa, b at
Sb, c at Sc and d at Sd. p first invokes a and then forks two parallel branches.
The first branch invokes b n times in a loop. The second branch invokes c and
d in sequence. The element (or activity in BPEL’s terminology) invoke(Sa, a)
means: “run service operation a at Sa.

2.2 Open web services

In general, Web Services can be considered as a way of communication between
computer programs using traditional Web technologies namely the HTTP net-

10

2. Background

p: process(
sequence(

invoke(Sa, a),
fork(

loop(n, invoke(Sb, b),
sequence(

invoke(Sc, c),
invoke(Sd, d)))))

a

b
c

d

1 . . . n

control flow

Figure 2.1: An example composition

work (application layer) protocol. The development and standardization of Web
Services technology is coordinated by the World Wide Web Consortium (W3C)
in the framework of Web Services Activity [78]. According to the Web Services
Glossary by W3C [79], the definition of the Web Services is as follows:

A Web service is a software system designed to support inter-operable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related stan-
dards.

In the Web Services Activity Statement, it is mentioned that one of the im-
portant aspects of Web Services is the ability to combine services “in a loosely
coupled way in order to achieve complex operations”[78], meaning that Web ser-
vices are meant to be inter-operable and extensible. We use the term open to
emphasize the interoperability, extensibility and autonomy of services in general,
and web services in particular.

In recent years, an ever-growing large number of web applications provide
open services through published APIs [20].

A new generation of applications are built by combining and integrating the
functionalities and data from these open web services. A particular group of such
open-service based applications – web applications – are widely known as web
mashups. The initial idea of mashup was to mix and mash up search results and
to visualize those results in more interesting ways. However, programmers can
take a lot of leverage from these open services and can even develop new innova-
tive services and offer them to the website visitors. For example, a composition
may handle a whole purchasing service that includes services which calculate the

11

2. Background

final price for the products, select a shipper, and schedule the shipment for the
order. Again this service composition may itself become services, thus it makes
a composition as a recursive operation.

Successful adoption of open-service based applications requires both develop-
ment-time and run-time support [83]. Development-time support includes the
tools for correct service invocation through open APIs and for extraction and
conversion of data obtained from the external services. Run-time support, or
orchestration of open services, is the conduct of the execution of applications
that use these open services. Thus a service orchestration may combine services
following a certain composition pattern to provide new service functions.

2.3 Orchestration of open services

Business processes or workflows are typically enacted in a centralized manner. A
central engine monitors the progress of the processes, maintains their run-time
status and conduct the executions of the tasks. This has been working very well,
given the application scenarios of business processes. However, when applied to
composition of open web services for a wider range of applications, the traditional
business process technology has a number of serious limitations.

The application scenarios of composing widely open web services are signifi-
cantly different from those of traditional business processes. Traditionally, busi-
ness processes are primarily constrained within enterprises and many tasks are
carried out by human workers. Moreover, business processes usually involve regu-
lar routines and have stable structures. The same process is therefore repeatedly
instantiated and executed. Web services may not be constrained within enter-
prise boundaries and the services are typically run purely by software without
human intervention. The compositions normally do not involve regular routines
and the structures can be dynamic and flexible. Moreover, new Internet-scale
applications are appearing in a rapid pace, exemplified by social networks and
peer-to-peer data sharing. It is not hard to envision that services composition
will eventually be applied in or even across such Internet-scale applications.

Consider the following example where conference organizers would like to
build a temporary social network for a conference. If upon registration, a par-
ticipant provides her interests, a registration report may offer useful services like
recommendations for accommodation and sightseeing, people with similar inter-
ests (such as research, country, institute, etc.), as well as information about the
conference itself: number of submissions, acceptance rate now and earlier, most
referenced papers, awards, and so on. Many of these can be constructed by com-
posing existing external services. These can further be the basis of new services,
such as collaborations among particular groups of people.

12

2. Background

The number of compositions as the above example is potentially unlimited.
The compositions can also be very dynamic. Some of those could be built by
the conference organizers and be instantiated multiple times; some others could
be composed by the participants and might be run only once or even often be
aborted half way.

In a centralized approach, the central engine sends messages to service sites for
service invocations. When a service is done, or when some fault occurs, a service
site sends a message back to the engine, either as a return message, or as a call-
back. Information like activity execution order and run-time state is maintained
at the central engine. To be applied to Internet-scale applications, this approach
is constrained with scalability limits. Furthermore, for such applications, there is
hardly a suitable place where a central engine can reside.

Based on these observations, we argue that a decentralized approach could be
more feasible for the orchestration of composite open services.

2.4 Dencentralized services orchestration

Over the years researchers have noticed issues and limitations of centralized or-
chestration approaches and have proposed decentralized approaches. The general
idea is that, the orchestration is carried out collectively by a number of engines
or agents, spread around in the distributed environment.

We classify decentralized approaches into two groups: instantiation-based and
messaging-based. With instantiation-based approaches (for example [8, 22, 55, 56,
68]), a composite service is instantiated before execution. During an instantiation,
the resources and control are allocated in the distributed environment based on an
analysis of the composition structure. As a common problem to these approaches,
resources are allocated even for the parts that are actually not executed, such as
some of the alternative paths or when a process rolls back at an early stage.

With messaging-based approaches (for example, [11, 52, 67, 82]), the informa-
tion for controlling the order of execution is carried along with messages at run
time. In the current messaging-based approaches, part of the static specification
of the process, for instance represented as mobile code, is carried in messages for
service executions.

When instantiation or messaging relies on static process structures for de-
centralization, they are subject to difficulties for tasks that cannot be properly
planned in advance, such as fault handling and recovery. To address these issues,
these approaches typically delegate such tasks to a single site [8, 14, 22, 52, 82].
They are thus subjected to the same issues of the centralized ones.

A web mashup, as of today, can invoke open web services and compose them
internally using any host programming language. The current web mashups are

13

2. Background

not subject to the challenges due to central engines. However, it is the pro-
grammer of the individual web mashups to deal with all the lower-level details
of composition and management tasks. A means of higher level composition is a
natural next major step toward wider adoption of web-services compositions.

2.5 Challenges with decentralized

services orchestration

Computer systems are subjected to performance and reliability challenges. De-
centralized services orchestration is no exception. Scalability is an important
performance measurement. In general, we regard a system as scalable if it can
handle the addition of requests and resources without significant additional cost
and complexity or loss of performance. In decentralized orchestration, absence
of a centralized engine reduces the possibility of a potential performance bot-
tleneck. However, inappropriate design of a decentralized system can also lead
towards potential deadlocks or non-optimal usage of system resources [15]. In
Chapter 6, we compare the scalability of three orchestration approaches: central-
ized with central engines, decentralized with continuation-passing messaging, and
decentralized with instantiation of control prior to the execution of a composition.

In computer science, dependability and reliability are often used interchange-
ably as both are related with the fault tolerant behavior of the system, though
conceptually they have subtle differences. In fact, dependability covers useful re-
quirements for distributed systems like: availability, safety, maintainability, and
reliability. In our context, dependability is a quality of the delivered service so
that other services can trust or rely on the service and may build other services
based upon this service. Reliability refers to the property of a system or compo-
nent that can perform its functionalities continuously without any failure [73].

Therefore, reliability of a service becomes always an issue while services or
systems depends on other services or systems, as is the case of composition and
orchestration of services.

The main impairments to establish a reliable service are: faults, errors and
failures. A system failure occurs when its delivered service differs from the ex-
pected service. If the system is an application that uses another service, a failure
may occur due to some erroneous condition met in the application host, the ser-
vice providers site or in the network infrastructures. In this context, an error is
that part of the service site or network state which is liable to lead to the failure.
The cause of an error is a fault. In other words, the failure of a component is a
fault that causes an error and leads to a failure of an entire system. In the context
of service orchestration, faults can occur in any of these places: at a service, at
an orchestration element or at the communication network.

14

2. Background

There are basically two approaches toward system reliability: fault prevention
and fault tolerance. Fault prevention aims at reducing the possible number of
faults. Fault tolerance aims at recovering from errors. We work towards fault-
tolerant service orchestration, since faults will occur in a distributed environment
beyond our control.

2.5.1 Fault at services

An observable service failure may occur in one of two ways: either the service site
throws a fault (also known as an exception), or it does not respond to a request
at all. An observable service failure can be handled through the fault-handling
mechanism of the service composition mechanism.

In BPEL, services can be composed into a hierarchical structure, as nested
scopes, and fault handling is associated with scopes. Let us consider a hierarchi-
cal service composition structure. Individual services are composed into scopes,
lower-level scopes are composed into higher-level scopes. A top-level scope is a
composite service, which can either be adopted as an application or as an open
service.

p: process(
scope(

sequence(
invoke(Sa, a, ā),
fork(

loop(n, invoke(Sb, b, b̄)),
scope(

sequence(
invoke(Sc, c, c̄),
invoke(Sd, d, d̄)),

any : sequence(compensate, invoke(Se, e))))),
invoke(Sf , f))))),

any : compensate))

Figure 2.2: An example composition with fault handling

Figure 2.2 shows an extension of the composition in Figure 2.1. The new
composition now includes the concept of scope and fault handling. We assume
that operations a, b, c and d have reverse operations ā, b̄, c̄ and d̄. In BPEL [57],
compensation means logical rollback and reverse operations are called compensa-
tion operations. The element invoke(Sa, a, ā) in Figure 2.2 means: “run service
operation a at service site Sa; if the composition p has to be rolled back due to an

15

2. Background

a

b

c

d

c̄

e

1 . . . n

(a) rolling forward

a

b
...
b

b

c

b̄

...
b̄

c̄

ā

(b) rolling back

a

b
...
b

c

db̄

...
b̄

f

ā

(c) rolling back

Figure 2.3: Control flow of example composition

exception that occurs after operation a successfully returns but before the entire
p finishes, run service operation ā to compensate for the executed effect of a”.
Notice that invoke(Sa, a, ā) is a composition construct that is not understood by
Sa. Sa only understands either invoke(a) or invoke(ā).

The top-level scope has a fault handler of any faults. Upon a fault of any
type, the scope simply rolls back the service operations that have successfully
executed within the scope so far.

The nested scope has a fault handler, also of any faults. It first rolls back the
executed service operations and then invokes service operation e to roll forward
the current scope.

The nested scope has also a compensation handler that invokes service oper-
ation f . The compensation handler provides the rollback plan for the situations
where the scope has successfully completed but the top-level scope fails and it
has to be rolled back anyway.

Figure 2.3 shows the control flows after a fault. If a fault occurs within the
nested scope, according the the fault handler of the scope, the scope first rolls
back the finished service c and then rolls forward by running service operation e
(Figure 2.3-a). If a fault occurs in the top-level scope, the currently completed
execution is rolled back. There are two different cases. If the nested scope has
not completed when the fault occurs, the reverse operation c̄ of the completed
operation c is executed (Figure 2.3-b). If the nested scope has completed, the
operations in its compensation handler is executed. That is, instead of running
the revrse operations d̄ and c̄, a new operation f is executed (Figure 2.3-c).

In decentralized services orchestration, scopes, fault handlers and compensa-
tion handlers work together to handle faults during the execution of composite
services. If a scope fails, the predefined compensation handlers are supposed to
be activated and undo the completed activities. Furthermore, exception handlers
perform the task of forward progression which in turn leads towards the termi-
nation of the process [33]. Error handling mechanisms in decentralized services
orchestration has several challenges:

16

2. Background

Managing control context
Run-time monitoring of compositions has always been difficult and is ac-
knowledged as a significant and challenging problem [6]. Managing the
run-time information and control context of the composite service (as well
as of the component services) while the execution is flowing from one place
to another is a challenging task to perform.

Propagation of faults
Fault propagation is important for compositions as a fault in one service
can lead to a failure in the whole composition. Therefore, we need to
employ mechanisms to propagate and notify about the fault to appropriate
orchestration elements.

Generating recovery plans
As compositions include a series of service invocations, a failure in one
service may need to undo the previously completed services. As services
are dependent on each other in sophisticated ways (intra- and inter-scopes),
generating and automatizing recovery plans for the service composition can
be complicated.

2.5.2 Fault at orchestration elements

Fault handling of composite services works only when the service orchestration
infrastructure is still working. However, faults may arise in the orchestration
infrastructure itself. For example, an orchestration element or component may
crash. To tolerate faults of the orchestration infrastructure itself, we have to
introduce redundancies [28, 61].

One common way of tolerating the failure of a component is replication. That
is, the system uses multiple instances of the same component (replicas) and these
instances fail independently. The run-time state of the component is replicated
among these instances. When some of the instances fail, the rest instances that
are still working can continue to serve the function of the component.

There are two general replication approaches. In a primary-backup approach
[2, 7, 10], a primary instance of a component is backed up by a number of replicas.
During normal operation, the primary instance interacts with the backups to
maintain some level of data and state consistency. Whenever the primary instance
fails, one of the backup instances takes over the responsibility and continues the
function of the component. [2] presents an early single-primary multiple-backup
strategy. When the primary instance receives an incoming request, it propagates
the request to each of its backups following the same order as it has received those
messages. The primary instance does not reply the request until it has propagated

17

2. Background

that request to at least one of its backups. In case the primary instance fails, a
backup is elected as the new primary. The new primary takes leverage from the
necessary information it has received from the previous primary and continues
the rest of the operation. The system uses request sequence numbers to assure
that non-idempotent operations are performed exactly once. If a backup instance
fails, it is removed from the backup list.

Unlike the primary-backup approach, in an active replication or state-machine
approach, all non-faulty instances of the same component actively serve the same
incoming requests [17, 66]. To ensure correctness, all non-faulty replicas receive
and process the same sequence of requests in the same relative order. To tolerate
fail-stop faults, any replica’s output can be chosen. To tolerate Byzantine faults,
a majority consensus of the replicas’ output is necessary.

Replication approaches as discussed above are mostly applicable to client-
server systems. Rollback recovery protocols introduce another form of redun-
dancy to long-running applications where multiple processes collaborate through
message passing.

In rollback recovery protocols, each process has access to a stable storage that
survives all tolerated failures. During normal operations, processes periodically
record their run-time and communication states to their stable storage. When
a process fails, the system restarts the process and resume the operation from
a recorded intermediate state, thereby reducing the amount of lost work and
computation. This saved recovery information, also known as checkpoints, usually
includes participating process’ states. Checkpoint-based protocols and log-based
protocols are the main variants of distributed rollback-recovery [19].

Checkpoint-based protocols [16, 61] require the processes to periodically record
checkpoints. The frequency and nature of the recording depend on the pattern of
the coordination among the processes. One of the requirements of this approach is
that in faulty situations, all processes need to rollback to their most recent global
consistent state, even for the non-failed processes. Log-based recovery approaches
[3, 72] record additional run-time information that allow a failed process to replay
the same operations from a checkpoint, so as to avoid the surviving processes to
rollback.

With decentralized service orchestration, several orchestration elements, called
orchestration agents in our system, jointly conduct the execution of a composi-
tion of services. These orchestration agents are distributed in the network. We
assume that the network of these orchestration agents is established on a volun-
tary basis. These agents can be up and down regularly. We cannot assume that
a failed agent be able to restart within a given time frame.

Some aspects of such a system impose both special challenges and opportuni-
ties with respect to reliability.

18

2. Background

Moving targets
As we aim at an approach that does not pre-allocate resources prior to the
execution of a composition, the responsibilities of the orchestration tasks are
assigned to dynamically selected orchestration agents. These agents jointly
orchestrate the composition by exchanging and interpreting orchestration
messages. The run-time state of the orchestration moves and updates from
agent to agent. Each agent keeps only some partial state that is just enough
for certain particular part and stage of the orchestration.

To keep track of the dynamic and distributed state of the orchestration is
like shooting at a moving target. There are challenges to reliably monitor
and manage the progress of the orchestration. Challenging issues include:
Who is responsible for a particular orchestration task? Who is responsible
for monitoring the status of an agent? If an agent is detected to be unavail-
able, which other agents should be notified and who should take over the
remaining task assigned to that agent?

In order to be able to take over the tasks assigned to a failed agent, the
system must be able to restore the state information maintained by that
agent. That is, the necessary information must be replicated somewhere. So
the further challenging issues include: What kind of replication mechanism
is appropriate for our system? Where should certain state information be
replicated? How to maintain the replicated information?

Distributed states

With decentralized orchestration of services, the orchestration state is dis-
tributed among a number of orchestration agents. This imposes challenges,
as discussed above. In fact, it also presents interesting properties that we
could explore.

When an agent has finished its part of the orchestration task, it propagates
the responsibility to the following agent. Now these two agent have over-
lapping state information about the orchestration. So some replication is
already in place, for free! In addition, different orchestration agents may
have already been collaborating due to the composition structure or for the
purpose of fault handling. For example, agents may relate to each other
due to hierarchical dependencies or for handling of parallel branches.

Therefore we might be able to benefit from these properties to enhance the
reliability of service orchestration. The challenge is: How?

19

2. Background

2.6 Summary

In this chapter, we first presented some background about open services, com-
position of open services and orchestration of open services. We argued that de-
centralized orchestration is more feasible for open services. We then categorized
decentralized orchestration approaches into two main groups: instantiation-based
and messaging-based, and proposed that message-based approaches is more suit-
able for orchestration of open services.

Then, we discussed some of the major challenges with decentralized orches-
tration, with emphasis on reliability and fault handling. In the context of service
orchestration, faults can occur in any of these places: at a service, at an orches-
tration element or in the communication network. We went into some depth
on reliability issues with decentralized orchestration, including fault detection,
fault propagation and fault handling, as well as fault tolerance mechanisms for
distributed systems including rollback recovery protocols and replication.

20

Chapter 3

Approach Overview

In the context of services composition, decentralized orchestration system consists
of multiple orchestration elements that collaborate with each other without the
necessity of a central coordination entity. Here each of the orchestration element
plays nearly an equal role in orchestrating the execution of the compositions.
The goal of establishing the decentralized orchestration system is to fulfill all the
requirements of the centralized orchestration system by utilizing the capabilities
of a set of orchestration elements.

The orchestration elements in our system are called orchestration agents. Gen-
erally a software agent is an entity which is capable of performing flexible and
autonomous actions in order to accomplish their design goals [65]. Flexible au-
tonomous agents have already been used in various application domains ranging
from autonomous control of spacecrafts to personal digital assistance. In our
thesis, a network of orchestration agents collaborate to orchestrate the execution
of open services.

This chapter presents a high-level overview of our approach to decentralized
orchestration of open services. More details are presented in the subsequent
chapters.

3.1 System model

Open services are provided by service providers (SPs) in terms of operations in
their public APIs. A service-based application (SA), also known as a service com-
position in the literature, consists of invocations to a number of service operations
in a prescribed manner. Services orchestration is the conduct of an execution of
an SA.

In our orchestration approach, a network of orchestration agents (OAs) jointly
orchestrate the executions of SAs using a particular mechanism called continuation-

21

3. Approach Overview

S1
1 S2

1

S3
1 S4

1

S1
2

S2
2

S1,2

Sx Sy

Sz

S1
3 S2

3

S3
3 S4

3

A1

A2

A3

Figure 3.1: SPs, OAs and OA coverages

passing messaging (CPM). The OAs invoke the service operations on behalf of
the SAs and are responsible of moving forward the execution of the SAs to the
other OAs. In addition, they handle exceptional conditions upon the occurrences
of errors.

An OA covers a number of SPs. A general criterion for an SP to be covered
by an OA is that the geographic distance, and hence the delays of messages,
between the OA and the SP is short. To invoke a service, it is advantageous
performance-wise to choose an OA covering the corresponding SP.

Figure 3.1 illustrates SPs, OAs and coverage of OAs. As shown in the figure,
at a specific moment, SPs may or may not be covered by OAs and OAs may have
overlapping coverage. For example, at this particular moment Sx, Sy and Sz are
not covered by any OAs; meanwhile S1,2 is covered by both A1 and A2.

SPs become covered by OAs either by registration to specific OAs or through
a learning process (see Section 3.5).

An OA can run on a dedicated server, such as provided by a cloud provider.
Alternatively, an SP may volunteer to provide an OA as well. Providing an OA
may make an SP’s service more attractive. For example, if either an SP or the
cloud hosting the SP has an OA, repetitive invocations to SP’s services may
appear to be much faster, as shown in our experiment in Chapter 6.

An SP may be unavailable, due to disconnection or system crashes, and does
not respond to invocations. An SP may also return an error. We assume that
business critical services support the at-most-once operation semantics. That is,
an SP can recognize duplicated invocations and execute the same invocation at
most once.

When an SP is not available or returns an error message, an exception is
thrown so that an appropriate exception handler of the SA will handle it, such
as by invoking an alternative service or rolling back the execution so far. Our
orchestration mechanism guarantees effective propagation and handling of excep-
tions.

22

3. Approach Overview

An OA may become unavailable in two ways. It may leave the OA network
intentionally, or it may crash or get disconnected due to network failures. We
assume a fail-stop crash model. The replicated CPM (Chapter 5) enhances the
availability of the orchestration when the OAs are subject to such unavailability.

3.2 Continuation-passing messaging

With CPM orchestration, information like operation execution order and SA-
aware data is carried in orchestration messages, called CPM messages, in terms
of continuations and environments. A continuation is a stack of activity elements,
such as scope, fork, invoke that will be carried out, beginning from the head of
the stack. An environment contains information of activity status and SA-aware
data.

The OAs interpret the received CPM messages and conduct the execution of
services. New continuations are generated based on the messages being inter-
preted as well as the outcomes of service executions. The outcomes of the service
executions and the remaining activities of the process are carried in new CPM
messages to the subsequent OAs.

Therefore services orchestration is actually a sequence of message exchanges
and interpretations by the involving OAs.

An SA specifies how exceptions are handled with fault handlers associated
with scopes. To facilitate exception handling during the execution of SAs, CPM
messages also contain compensation continuations, which are rollback plans au-
tomatically generated during the execution of SAs.

Figure 3.2 shows the overall structure of an OA. The message handler dis-
patches the incoming messages to the corresponding components. There are three
types of messages: CPM messages for the orchestration of the execution of SAs,
scope messages for the management of SA scopes, and OA routing messages for
the management of OA networks.

When an OA is asked to conduct the execution of an SA, it generates a CPM
message with initial continuations and environment. The activity elements in
the continuations are assigned with OAs according to the information offered by
the OA routing component. Later, the knowledge from the other OAs may help
choose better alternatives for the assignment of OAs. The CPM message is then
interpreted.

The message interpreter interprets an incoming or a local CPM message ac-
cording to the head element of the continuation. The following may happen
during the interpretation:

• In some cases, a message can be interpreted alone. In other cases, multiple
messages must be available to be further interpreted, for example, when

23

3. Approach Overview

messages

message
interpreter

OA
router

scope
management

message
handler

pending
messages

scope
registry

routing
table

Figure 3.2: Structure of an Orchestration Agent

messages from multiple parallel branches join. In the latter cases, the first
arrived messages are put in the pool of pending messages. They are further
interpreted when all dependent messages are available.

• The interpretation of a message or multiple messages may lead to one or
more new messages. Some messages are further interpreted locally by the
same OA and some are sent to other OAs for further interpretation.

• If the head element of the continuation is an invocation assigned to the
OA, the OA sends an invocation to the corresponding SP and waits for the
result. The message is further interpreted according to the out-come of the
invocation.

An OA may also be a scope manager and maintains some status information
about scopes in its scope registry. The main task of scope management is fault
handling. When an OA throws a fault, it notifies the scope manager about this,
which in turn propagates this notification to the other branch OAs of the scope.
In order to achieve this, every CPM message contains the information about the
scope and scope manager, and every scope manager maintains in its scope registry
the current OAs of all branches for each scope. When an OA sends a message to
another OA so that the current branch is passed forward to the next OA, it also
sends a message to the scope manager, which keeps its scope registry up to date.

OAs also exchange messages for the management of OA networks. The OA
router handles the OA management messages (see Sections 3.4 and 3.5).

24

3. Approach Overview

3.3 CPM by example

Let us use the example composition p in Figure 2.2 to see how CPM works.
To start the execution of p, the SA provider Sp requests OA Ap for the exe-

cution of p by sending the message orch(p, Sp).
When receiving the message, Sp converts p into an initial CPM message, where

it assigns OAs to the corresponding activities according to the information in the
OA routing table. Assume that SP Sa is not covered by any OA and SPs Sb, Sc

and Sd are covered by OAs Ab, Ac and Ad, the initial CPM message looks like

orchAp(scopeAp(invokeAp(Sa, a, ā) · fork(loop(n, invokeAb(Sb, b, b̄)), . . .)))

where orchestration activities like orch and scope are assigned to OAs Ap etc.
For the purpose of space and readability, in what follows, we use notations like
scopeAp(−) to suppress the details of the scope activity.

Ap then start orchestrating the execution of p by interpreting the CPM mes-
sage.

Sp

Ap

Ab
Ac

Ad

Sa

Sb
Sc

Sd

1

2

3 4
5

6

7

n times

Figure 3.3: Service invocation and orchestration messages

Figure 3.3 shows the messages among OAs for the orchestration of the ex-
ample SA p. There are three types of messages for services orchestration: CPM
messages (red lines), service invocation messages (blue lines), and scope man-
agement messages (not shown in the figure). Orthogonal to the messages for
services orchestration, OAs exchange routing messages to update the routing and
availability status of other OAs.

25

3. Approach Overview

In Figure 3.3, message 1 is orch(p, Sp), the message from Sp that requests for
orchestration. The initial CPM message orchAp(scopeAp(−)) is a local message
at Ap. Note that local messages are not shown in the figure.

In some cases, a message can be interpreted alone. For example, the CPM
message orchAp(scopeAp(−)) is interpreted into scopeAp(−) ·eorchAp(−), which in
turn is interpreted into invokeAp(Sa, a, ā) · fork(−) · eosAp(−) · eorchAp(−). Here
eorch and eos stand for end-of-orchestration and end-of-scope.

In other cases, multiple messages must be available to be further interpreted,
for example, when messages 3 and 6 from the two parallel branches join. In this
case, Ap puts the first arrived message, say message 6, in the pool of pending
messages. When message 3 from the other branch arrives, Ap interprets messages
3 and 6 together and the execution of p moves on.

The interpretation of a message or multiple messages may lead to one or more
new messages. Some messages are further interpreted locally by the same OA, like
the orchAp(−) above, and some are sent to other OAs for further interpretation.

If the head activity of the continuation is an invocation assigned to the OA,
the OA sends an invocation to the SP and waits for the result by putting a wait
message in its message pool. For example, interpreting message

invokeAa(Sa, a, ā) · fork(−) · . . . · eosAp(−) · orchAp(−),

Aa sends invoke(a) to Sa and puts message

waitAa(Sa, a, ā) · fork(−) · . . . · orchAp(−)

in its message pool. Aa will later interpret the wait message according to the
outcome of the the service a.

An OA may also be a scope manager and maintains some status information
of each branch in its scope registry. In particular, a scope manager keeps track of
the current location of each enclosing branch. In our example, when the second
branch moves from Ac to Ad with message 5, Ac informs the scope manager Ap

of the move with a scope management message.
The following table lists the continuations in the remote CPM messages as

shown in Figure 3.3. Continuations of intermediate local messages are not shown
in the table. In the table, κ is a continuation segment that is common in several
continuations.

26

3. Approach Overview

Msg Continuation

1 orch(scope(−), Sp)

2 invokeAb(Sb, b, b̄)

· loop(n− 1, invokeAb(Sb, b, b̄)) · κ
3 κ

4 invokeAc(Sc, c, c̄) · invokeAd(Sd, d, d̄) · eosAp(id2,−) · κ
5 invokeAd(Sd, d, d̄) · eosAp(id2,−) · κ
6 eosAp(id2,−) · κ
7 eorch(Sp)

κ joinAp(idj, 2) · eosAp(id1,−) · eorchAp(Sp)

A join activity joins multiple parallel branches into one. It has an identifier
and a join condition. Here the join condition is simply the number of branches
to be joined.

The eos activity marks the end of a scope and encapsulates necessary infor-
mation for exception handling. The general form of an eos activity is

eosA(id, κ, h1, h2 . . .),

where A is the scope manager, id is the unique identifier of the scope, κ is a com-
pensation continuation, and h1, h2 etc. are exception handlers. The compensation
continuation is the recovery plan of the scope. It is automatically generated dur-
ing the orchestration. The table below lists the compensation continuations in
the eos activities of the remote CPM messages. Notice that in messages 4, 5 and
6 there are two compensation continuations, one in the eos element of the nested
scope, the other in the eos element of the top-level scope.

Msg Compensation continuation

1 nil

2 κ̄

3 invokeAb(Sb, b̄) · . . . · invokeAb(Sb, b̄) · κ̄
4 eosAp(id2′ ,−)

κ̄

5 invokeAb(Sb, b̄) · eosAp(id2′ ,−)

κ̄

6 invokeAc(Sc, c̄) · invokeAb(Sb, b̄) · eosAp(id2′ ,−)

κ̄

7 nil

κ̄ joinAp(idj′ , 2) · invokeAp(Sa, ā) · eosAp(id1′−) · eorchAp(Sp)

27

3. Approach Overview

If the execution of service b fails, Ab will catch an exception. It then runs the
corresponding exception handler in the enclosing eos activity and at the same
time notifies the scope manager Ap of the exception. Ap then propagates the
exception to the other branch.

Chapter 4 discusses in detail how CPM messages are interpreted.

3.4 Organization of an OA network

The organization of an OA network is based on the distances between OAs.
Distances can be measured in terms of communication delays or number of IP
hops. Regardless of the measure, long distances imply long delays. An OA has a
ping operation that can be called to measure the distance with the caller.

OAs organize themselves into OA flocks according to their distances. A small
subset of OAs near the geo-graphical center of a flock are the head OAs of the
flock. The radius of a flock is the longest distance that is allowed from any OA
of the flock to a head OA. The distances between flocks are measured with the
distances between head OAs of the flocks.

The OA management component of an OA (Figure 3.2) maintains the follow-
ing tables:

• TOA: OA → flock

• TSP : SP → OA(s) or flock

• Tflock : flock → head OAs, radius, distances to flocks

• Tdistance : OA → distance to OAs of the same flock.

TOA tells which flock an OA belongs to. TSP provides information about which
OA(s) or flock an SP is covered by. The distance information is maintained at
two levels: Tflock provides distances between flocks (as well as the flocks’ head
OAs and radii); Tdistance provides distances between OAs of the same flock.

Maintaining distances at two levels makes the network more scalable for OA
routing. The distance granularity at flock level is usually sufficient to the assign-
ment of SPs to OAs for the orchestration of SAs. Therefore an SP can be covered
by a flock, so that any OA of the flock can be assigned to an invocation on an
operation of the SP. When fine grain optimization of performance is needed, an
OA closer to the SP can be chosen to invoke the operations of the SP.

Routing information is propagated at two levels. At the inter-flock level,
updates of the Tflock , TOA and TSP are propagated among head OAs of different
flocks. At the intra-flock level, updates of all tables are propagated among the
OAs of the same flock.

28

3. Approach Overview

When a new OA joins the OA network, it obtains a Tflock from any OA and
measures the distances with all flocks. If the new OA is within the reach of the
nearest flock (by comparing the distance to a head OA and the flock radius),
it joins that flock. Otherwise, a new flock is created. A flock is split if it is
overpopulated.

3.5 Covering SPs

An SP can register to the OA network to be covered by proper OAs. There
are two options for the registration: an SP can request to be covered by specific
OA(s), or it can enable response to incoming ICMP (Internet control message
protocol) ping messages for the OA network to learn about it.

With the former option, the SP is covered immediately by the specified OA(s).
This option is useful when, for example, an application or organization sets up an
OA in the same subnet of the SP, or when a cloud provider offers an OA to cover
all services running in the same cloud. Providing such OAs makes the services
under their coverage more attractive. For instance, when the services in the
subnet or cloud are invoked in loops, the total delay of the loops is significantly
shortened (as our performance study in Chapter 6 shows).

With the latter option, we present two simple algorithms for the OA network
to learn about the SP and find an appropriate flock for the SP.

In the first algorithm, a head OA from each flock calls the provided ping
operation of the SP to measure the distance. The SP is then covered by the OAs
of the nearest flock (if the SP is within the reach of that flock).

In the second algorithm, the following learnWithPing operation is called on a
series of head OAs of different flocks to learn about the SP.

Figure 3.4 shows the steps to learn about the SP S. The learning starts at
any flock (flock headed by OA A1 in the figure). A1 first measures the distance to
S and gets d1 (line 3 of the algorithm). S is covered by the flock headed by A1 if
d1 is less than the radius of the flock (lines 6–8). Otherwise, all flocks that are d1
away from A1 (plus/minus their radii, shown with the pink circle in the figure),
obtained as the result of method candidates ping on the table Tflock (line 10),
are candidate flocks for S. Pick any flock (flock headed by OA A2 in the figure)
from the candidates (line 16) and continue with the process (line 17). Flocks that
are both d1 away from A1 and d2 away from A2 (at the intersections of the two
circles), are the new candidates. If there are sufficient OAs for all locations, this
algorithm normally terminates within 4 tries. In the figure, OA A3 is found to
cover S with 3 tries.

Both the proposed algorithms require that the network is not congested so
that the measured distances are valid. The first algorithm is more straightforward.

29

3. Approach Overview

1: procedure learnWithPing(sp,min dist =∞, candidate flocks = all flocks)
2: {
3: dist ← sp.ping()
4: if dist > min dist then
5: return nil
6: else if dist ≤ self .radius then
7: TSP .add(sp, self)
8: return self
9: else

10: candidates ← candidate flocks ∩ Tflock .candidates ping(self , dist)
11: if candidates = {} then
12: return nil
13: else
14: result ← nil
15: while result = nil ∧ candidates 6= ∅ do
16: next flock ← candidates .pop()
17: result ← next flock .learnWithPing(sp, dist , candidates)
18: end while
19: return result
20: end if
21: end if
22: }
23: end procedure

30

3. Approach Overview

S

A1

d1

A2

d2

Ax

A3

Figure 3.4: Steps of learnWithPing to learn about an SP

It guarantees that the nearest flock is chosen to cover the SP. If, however, the
number of flocks is large, this may involve a lot of calls to the ping operation
of the SP. Furthermore, the distances that are measured must be gathered at a
selected OA so that the final decision could be made.

The second method involves only a few head OAs in sequence. It takes much
less messages and is therefore much cheaper. It may however not find the nearest
flock. So the result is sub-optimal.

OAs can also learn, dynamically during orchestration, about the SPs that
are not registered. The learning is embedded in loops of SA executions. In
each of the first iterations of the loop, a different head OA is assigned to the
invocation to the operations of the SP to be learned. An OA learns the distance
to an SP by measuring the response time of the service operations. However, the
learnWithPing algorithm will not work in this case, because the response time
includes both communication time and operation execution time.

We present here a learnInOrch algorithm that takes operation execution time
into consideration. The learnInOrch algorithm assumes that the network is not
congested and that operation execution time is stable during the learning period.
We think this is not a very strong assumption, because the learning period is short

31

3. Approach Overview

S

A5

A1

d1

A2

A4

d2,4
A3

Figure 3.5: Steps of learnInOrch to learn about an SP

and is embedded in an SA loop. The different invocations of the same operation
within a loop typically have similar contexts and therefore the execution time
typically does not vary significantly.

Figure 3.5 illustrates how the learnInOrch algorithm works. The learning
starts with any flock (flock headed by OA A1 in the figure) in a first iteration of
a loop. A1 measures the response time of the executed operation. It makes an
initial guess of the execution time tS and the measured distance d1 excludes tS.
In the next three iterations, the invocations of the same operation are assigned to
new flock headers A2, A3 and A4 respectively. These flocks are chosen with the
properties d1,2 ≈ d1,3 ≈ d1,4 ≈ d1 and d2,3 ≈ d2,4 ≈ d3,4 where di,j is the distance
between flock header Ai and Aj and can be obtained from the table Tflock. That
is, flock headers A2, A3 and A4 are evenly distributed on the circle centered at
A1 with radius d1. These flock headers then obtain the distances d2, d3 and d4
from S, all excluding tS. Now choose flock headers A2 and A3 that are closer to
the S, that is d2 < d4 and d3 < d4. Then choose flock header A5 that is closest to
S for the next iteration. A5 is near the intersection of the line between A1 and S
and the same circle around A1 with radius d1. That is,

d1,5 ≈ d1 ∧ d2,5 < d2,3 ∧ d3,5 < d2,3 ∧ d2,5
d3,5
≈ d2

d3
.

If the response time of the service invoked from A5, t5, is close to tS, the initial
guess of tS happens to be a good one and the flock headed by A5 will be covering
S. Otherwise, the difference between t5 and tS would suggest a new guess and

32

3. Approach Overview

the learning process continues. We found that A5 is usually already very close to
S and a second guess is sufficient to find the right flock to cover S. Therefore the
right flock is found with 5 or 10 tries.

3.6 Related work

In this section, we discuss briefly research work related to OA network. We discuss
research work related to CPM in the next chapter after we have presented CPM
in detail.

Organization of an OA network is related to at least two technology areas:
peer-to-peer (P2P) system and content delivery networks (CDNs).

P2P systems are widely regarded as having the properties like highly scalabil-
ity, resilience to faults, resistance to surveillance and low cost of ownership [47].

P2P data sharing is one of the most popular application area of the P2P
technology. Routing to data items is either unstructured, such as with random
walking [30], or structured, such as through an overlay network with a distributed
hash table (DHT) [26, 32, 62, 64, 70]. In their most basic forms, data are iden-
tified using storage keys and routing is conducted with the hash structure of the
keys. To improve performance, proximity-base optimization is often applied using
measures like round-trip delay time [18, 32, 46, 87].

The OA network is different from P2P data sharing in that distance (i.e.
latency) to SPs is the primary criterion of OA routing.

A CDN deploys a large number of edge servers throughout the Internet. When
a user requests some content, a nearby edge server, rather than the content
provider, is selected to deliver the content to the user. This may significantly
reduce the delivery time to the user. The basic technique for edge server se-
lection is well established and involves simply identifying and resolving content
providers’ hostnames [76].

The selection of an OA is just the opposite as the selection of an edge server
in a CDN: the OA should be as close to the service provider as possible, whereas
the edge server should be as close to the user as possible. The techniques of edge
server selection in CDN can be adopted in OA selection.

In the context of services orchestration, OSIRIS [68] and OSIRIS-SR [71]
share some similar design goals and principles as ours, including achieving high
scalability and reliability through decentralized orchestration and replication. In
OSIRIS-SR, execution nodes, which correspond to SPs and OAs in our model,
are organized in a ring, like the ones for P2P data sharing. The identifiers of the
nodes in the ring determine the responsibilities of monitoring of execution and
handling of faults. This determinism makes management of the network easier.
It does not explore the proximity of nodes and process structures for efficient

33

3. Approach Overview

process execution, as we do.

3.7 Summary

Our system consists of service providers (SPs) and orchestration agents (OAs). A
service application (SA) is a composition of services provided by SPs. A network
of OAs jointly orchestrate the executions of SAs, using a particular mechanism
called continuation-passing messaging (CPM). That is, OAs orchestrate the exe-
cution of an SA through exchanging and interpreting CPM messages.

The main elements of CPM messages include continuations for flow control,
environments for run-time data, and compensation continuation for fault handling
and recovery. We presented a high-level description of CPM through an example.

An OA covering an SP is responsible for the invocation of services provided
by the SP. The geographic distances between the SP and the OAs determine the
designated OA. In order to maintain a stable OA network, OAs maintain several
tables and propagate routing information accordingly. We devised a simple or-
ganization of OA networks and some experimental OA selection algorithms. As
our focus is mainly on CPM service orchestration, we do not explore further on
OA network management .

34

Chapter 4

CPM in Detail

As continuation-passing messaging (CPM) is one of the fundamental components
of our thesis, here we introduce the related concepts and the details about ser-
vices orchestration in CPM. Conceptually, the core idea behind CPM is based
on explicit message passing mechanism. That is, orchestration agents collectively
orchestrate the execution of composite services by exchanging and interpreting
messages. The key, therefore, is message interpretation.

Our service composition language is based on BPEL [57], though application
of CPM is not specific to BPEL. In BPEL’s terminology, a SA (service application,
i.e. a composition) in our model (Section 3.1) is called a process.

4.1 Messages

We use the following conventions in the representation of messages:

sites: s identifiers: id names: x, y, op, f, l

values: v expressions: e activities: a, ba, ca, pa, eh, fh, ch

links: ln environments: env continuations: c, k

We try to use representative names. For example, ba for BPEL activity, ca for
continuation activity, eh for event handler activity, and so on. For continuations,
we use c for normal continuations and k for compensation continuations.

Figure 4.1 shows the constructs of messages in a variant of Backus-Naur Form
(BNF), where a? indicates zero or one instance of a, a∗ a sequence of any number
of instances of a (separated by ‘,’), and a+ a sequence of one or more instances
of a.

A message consists of a continuation and an environment, which correspond
to the control and data parts of a process respectively. A continuation is a
stack of activities. An activity is either a BPEL activity as specified in the

35

4. CPM in Detail

x, y, op, f, l (name)

ln ::= l : source | l : target (link)

ba ::= τ | pa | assign(x, e) (BPEL activity)

| scope(x, y, . . . , ba, {f : fh}∗, ch?, eh∗)
| sequence(ba+) | flow(ba+, l∗) | if (e, ba, ba) | while(e, ba)

| receive(op) | reply(op)

| invoke(s, op, f : fh∗, ch?) | send(s, op, f : fh∗, ch?)

| throw(f ?) | rethrow(f ?) | compensate
| (ba, ln+, e)

eh,fh, ch ::= ba (handler)

pa ::= process(x, y, . . . , ba) (process)

ca ::= eop | eot(s, {f : fh}∗, eh∗) (continuation activity)

| eos(s?, id, {f : fh}∗, ch?, eh∗, l∗, c) | eosk(s?, id)

| join(s, id, e) | notify(s, id, f) | lnk(l, e)

a ::= ba | ca (activity)

c ::= ⊥ | orchs(pa, sc) | eorch(sc) | inst(ba, s) | as? · c (continuation)

m ::=< c, env > (message)

Figure 4.1: Constructs of messages

BPEL standard [57] or a continuation activity defined particularly for specific
orchestration tasks. An activity a in a continuation can be optionally associated
with a site, written as as, where s is the site of an OA (orchestration agent) for
the activity. ids uniquely identify the constructs of specific process instances.
They could be either the correlation sets1 as specified in the BPEL standard, or
identifiers automatically generated by message interpreters.

We do not attempt to be exhaustive on the treatment of BPEL constructs.
For example, we only deal with the installation and teardown of event handlers
and leave the behavior of event handlers untouched.

We will describe the individual activities when we explain the interpretation
of the corresponding messages in the subsequent sections. For the sake of con-

1During its lifetime, a business process instance typically holds one or more conversations
with services. A correlation set specifies the correlation of the messages involved in a conver-
sation.

36

4. CPM in Detail

venience, we name a message with its continuation’s head activity. For example,
if the head activity of a message is a sequence activity, we call the message a
sequence message.

Message interpretation is defined by interpretation rules. Below is an example
rule, named Rule (oa), standing for the orchestration-agent rule:

< as · c, env >sc
oa−→
s
< a · c, env >s (oa)

A subscript of a message indicates the site of an OA at which the message
is interpreted. When it is clear from the context, we omit the subscript. We

use
rule−−→
site

to represent a message interpretation. The text above the arrow is the

interpretation rule applied. If there is text under the arrow, it indicates the site
to which the message is sent.

In Rule (oa), as ·c is a continuation. as is the head of the continuation and c is
the tail. The messages at both sides of the interpretation rule are an a-message.
The Rule (oa) says that when site sc interprets an a-message assigned to OA s,
it sends the message to s.

4.2 Environment and contexts

BPEL allows different visibility of process-aware data. The process construct
makes a new (sub-)process and defines a new process context. Only data variables
declared by the current process context are visible. The scope construct creates
a nested scope and a corresponding scope context. A data variable declared by
the nearest enclosing scope of the current (sub-)process is visible by the current
scope. The environment for process-aware data therefore has a linear structure
of process contexts and a nested structure of scope contexts, as below.

{
visible current process context︷ ︸︸ ︷

[. . . , x : v, . . .︸ ︷︷ ︸
current scope

[. . . [. . .︸︷︷︸]]︸ ︷︷ ︸
outer scopes

]} ·
invisible process contexts︷ ︸︸ ︷

{[. . . [. . .]]} · {[. . . [. . .]]}

When a process message is interpreted, with Rule (proc) below, a new process
context is added to the environment and an eop (end-of-process) continuation
activity is inserted into the continuation. Process variables (x and y here) declared
in the process are visible to the activities in the current process. Later, when the
activity (a, the body) of the process is done and the eop activity is interpreted,
with Rule (eop), the context of the newly finished process is deleted from the new
environment.

< process(x, y, a) · c, env0 > proc−−→ < a · eop · c, {x, y} · env0 > (proc)

< eop · c, {x : vx, y : vy} · env0 > eop−−→ < c, env0 > (eop)

37

4. CPM in Detail

When a scope message is interpreted, the scope context of the current process
context is extended such that the new scope context encapsulates the outer scope
contexts, thus forming a nested structure of the scope contexts. At the same time,
an eos (end-of-scope) activity is inserted into the continuation. When the scope
terminates and the eos activity is interpreted, the context of the terminating
scope is deleted from the environment.

< scope(x, y,−, a) · c, {cxt} · env0 > (scp cxt)
scp cxt−−−−→ < a · eos(−) · c, {[x, y, cxt]} · env0 >

< eos(−) · c, {[x : vx, y : vy, cxt]} · env0 > eos cxt−−−−→ < c, {cxt} · env0 > (eos cxt)

In the message representations, we use “−” to suppress some uninteresting
details. The interpretation rules (scp cxt) and (eos cxt) above are primarily only
concerned with the environment part of the message. The interpretation rules
for the continuation part will be presented later in Section 4.4.

Process-aware data variables defined in the innermost scope (and thus appear
outermost in the environment) or the nearest enclosing scope are visible to the
current activities. For example, they can be updated by an assign activity.

< assign(x, e) · c2 · eos(−, k) · c1, {[. . . , [x : v0, . . . [. . .]]]} · . . . > (asgn)
asgn−−→ < c2 · eos(−, assign(x, v0) · k) · c1, {[. . . , [x : eval(e), . . . [. . .]]]} · . . . >

eval(e) evaluates an expression e (for instance as an XPath expression [57])
in the current process context. The x variable in the nearest enclosing scope
is now associated with the new evaluated value. Notice that a compensating
assign activity is added to the compensation continuation of the scope. If the
scope is later rolled back, x will be assigned with its original value v0. Scope and
compensation will be discussed in detail in the following sections.

In what follows, we focus only on the continuation parts of messages and omit
the environment parts.

4.3 Commence and termination of orchestration

A client program at site sc sends message orchs(pa, sc) to ask the orchestration
agent at site s to orchestrate the process specified in pa. Rule (orch) indicates the
commence of an orchestration. The new eorch activity in the continuation marks
the termination of the orchestration. It also remembers the site of the client.

orchs(pa, sc)
orch−−→
s

pa · eorchs(sc) (orch)

< eorch(sc) >s
eorch−−−→
sc

done (eorch)

38

4. CPM in Detail

When all activities of pa have finished, eorch is the only element in the con-
tinuation. Site s sends a reply message to sc and the orchestration terminates.

4.4 Scopes

In BPEL, scopes are the units of fault handling and recovery. A scope activity
contains a primary activity as the body of the scope, and optionally, a set of
named fault handlers, a set of event handlers, and a compensation handler.

A fault handler is run when some particular fault is thrown from within an
unfinished scope.

A compensation handler is run to roll back the effects of a finished scope.
Therefore a compensation handler is only provided for a nested scope (i.e., not
a top-level scope) and is typically run as part of a fault handler of an enclosing
scope.

An event handler handles events asynchronously with the main activities of
the scope (such as an alert triggered by a timer).

To keep our discussions to the point, we show below only one fault handler fh
for handling faults of type f , a single event handler eh, and for a nested scope, a
compensation handler ch.

A scope is managed by an OA as its scope manager. A scope manager keeps
track of some necessary run-time information about the scope, including the
current locations of all branches. Choosing the proper OA of a scope manager is
a design issue. The default OA of a scope manager is where the scope is created.

The OA of the scope manager is encapsulated in the eos activity. Whenever a
branch is moving to a new OA, the scope manager is notified. These notification
messages are sent in parallel with the normal orchestration messages and thus do
not cause any additional delay to process executions.

A scope activity creates a scope and installs its event handlers (Rule (scp)).
Notice that a scope may have an optional compensation handler ch.

scopes(a, f : fh, ch?, eh) · c scp−→
s

{
a · eos(s, id, f : fh, ch?,⊥) · c
eh

(scp)

When a top-level scope is done (Rule (eos t)), the event handler eh of the
scope is torn down and the execution continues.

eos(s,−) · c
eh

}
eos t−−→
s

c (eos t)

39

4. CPM in Detail

When a nested scope terminates, the message is interpreted with Rule (eos).

eos(s,−, ch?, k2) · c1 · eos(−, k1) · c0
eh

}
(eos)

eos−→
s

{
c1 · eos(−, ch · k1) · c0 if ch

c1 · eos(−, k2 · k1) · c0 otherwise

In the eos message, k2 is the compensation continuation of the terminating
scope, k1 is the compensation continuation of the enclosing (parent) scope, and
c1 is the part of the continuation that represents the remaining work of the par-
ent scope. If the terminating scope has a compensation handler ch, the handler
is pushed to the compensation continuation k1 of its parent eos activity. If no
compensation handler is given for the scope, the generated compensation contin-
uation k2 of the scope is pushed to the compensation continuation of the parent
scope.

4.5 Structural compositions

Sequential, selective and iterative compositions are pretty straightforward to in-
terpret.

sequence(a1, a2, . . .) · c seq−→ a1 · a2 · . . . · c (seq)

if (e, at, af) · c if−→
{
at · c if eval(e) = true

af · c if eval(e) = false
(if)

while(e, a) · c whl−−→
{
a · while(e, a) · c if eval(e) = true

c if eval(e) = false
(whl)

A flow activity makes a parallel composition so that constituent activities
run in parallel. Interpreting a flow message with Rule (flw) leads to multiple
messages, one for each parallel branch.

flow(l, a1, a2, . . .) · c2 · eos(s,−, k) · c1 (flw)

flw−−→





a1 · join(s, idj) · c2 · eos(s,−, l : link , join(s, idk) · k) · c1
a2 · join(s, idj) · c2 · eos(s,−, l : link , join(s, idk) · k) · c1
. . .

A flow activity may declare dependency links. The declared links are registered
in the current eos activity. Here we show one link l. We discuss dependency links
in Section 4.8.

40

4. CPM in Detail

The parallel branches will later join back into a single one. This is achieved
with join activities. A join activity indicates where the join will occur. Here
the branches will join at the location of the current scope manager. Related join
activities are identified, with id for normal execution and idk for compensation.
In addition, they share a join condition, which must be evaluated to be true for
the branches to join so that the execution of the process can move on.

In Rule (flw), the join condition is a default true expression, meaning that
as long as the join messages of all branches arrive, execution of the process can
move on.

When all the join messages are available at the join site s, they are further
interpreted with Rule (jon).

join(s, idj) · c2 · eos(−, k1 · join(s, idk) · k) · c1
join(s, idj) · c2 · eos(−, k2 · join(s, idk) · k) · c1
. . .



 (jon)

jon−−→ c2 · eos(−,flow(k1, k2, . . .) · k) · c1

Every branch i has generated its compensation continuation ki during the
execution before reaching join. When the branches join, the individual compen-
sation continuations are merged into a flow activity in the new compensation
continuation.

4.6 Service operations

In BPEL, a service operation can be either request-response with a reply activity
or one-way without a reply message.

A service operation is installed at site s with an inst activity.

inst(sequence(receive(op), . . .), s)
install−−−→

s
< receive(op) · . . . >s (install)

A receive message can only be further interpreted together with a matching
invoke or send message. The receive message is therefore stored in the pool of
pending messages at site s.

We use invoke for invoking request-response operations and send for invoking
one-way operations. Executions of service operations are actually enclosed within
implicit scopes. So strictly speaking, invoke and send are structured activities.

An invoke activity may provide fault handlers and a compensation handler.
An invoke message is interpreted with Rule (inv), when it matches an installed

41

4. CPM in Detail

service operation.

invoke(s, op, f : fh, ch?) · c0
< receive(op) · . . . · reply(op) >s

}
(inv)

inv−−→
{
. . . · eos(id, f : fh, ch?, rethrow) · c0
< receive(op) · . . . · reply(op) >s

Interpreting the matching messages leads to two new messages: one for the
process running the service operation and the other for re-installing the service
operation.

With continuation-passing messaging, the execution can move directly to the
subsequent activity without sending a reply message to the invoker (so as far
as continuation-passing messaging is concerned, the term “request-response” is
misleading, because no response message is actually sent to the invoker).

The execution of a service operation is enclosed in a floating scope, which
does not have its own scope manager. Some of the scope management tasks are
delegated to the enclosing non-floating scope manager. If a fault is thrown from
within the operation body and the partially executed effects are rolled back, the
floating scope has to re-throw the fault to its parent scope.

With a one-way operation, the invoking branch continues its execution after
sending the invocation message, and collects the outcome of the operation later
with a callback operation. A process calling a one-way service looks like this:
sequence(. . . , send(s, op), . . . , receive(ôp), . . .), where ôp is the callback operation.

send(s, op, f : fh, ch?) · ci · receive ŝ(ôp) · c1 · eos(−, k) · c0
< receive(op) · cop · send(ôp) >s

}
(call)

call−−→





ci · receive ŝ(ôp) · eos(−, receive ŝ(ôp) · rethrow) · c1 · eos(−, k) · c0
cop · send(ŝ, ôp) · eos(−, f : fh, ch?, send(ŝ, ôp))

receive(op) · cop · send(ôp)

In Rule (call), ôp is the callback operation, ŝ is the site ôp is expected to be
installed, ci is the continuation representation of the activities at the invoking
branch prior to the callback, cop is the continuation representation of the body
of the one-way operation, and k is the compensation continuation of the current
scope.

The interpretation leads to three new messages that represent the invoking
branch, the execution of the one-way operation, and the re-installation of the
operation,

With the callback after op is successfully done (Rule (callbk)), the two branches
are merged into one. The recovery plans of the two branches are composed into

42

4. CPM in Detail

a flow activity. Similar to the request-response case, if no compensation handler
is provided during the invocation, the generated compensation continuation kop
will be used for compensation.

< receive(ôp) · eos(−, ki · receive ŝ(ôp) · rethrow) · c1 · eos(−, k) · c0 >ŝ

send(ŝ, ôp) · eos(−, ch?, kop · send(ŝ, ôp))

}

callbk−−−→
{
c1 · eos(−,flow(ki, ch) · k) · c0 if ch

c1 · eos(−,flow(ki, kop) · k) · c0 otherwise
(callbk)

In the messages as the result of Rule (call), the the compensation continuations
include the same callback as in the normal continuations. If operation op fails and
rolls back, this callback tells the invoker about the fault. The invoker interprets
this send message with Rule (callbk k op) and throws a fault.

< receive(ôp) · eos(−, ki · receive(ôp) · rethrow)
· c1 · eos(−, k) · c0 >ŝ

send(ŝ, ôp) · eosk(−)



 (callbk k op)

callbk k−−−−→ throw · eos(−, ki · receive(ôp) · rethrow) · c1 · eos(−, k) · c0

Similarly, if the invoking branch fails and rolls back, it will also wait for the
same callback (Rule (callbk k i)).

< receive(ôp) · eosk(−, rethrow) · c1 · eos(−, k) · c0 >ŝ

send(ŝ, ôp) · eos(−, ch?, kop · send(ŝ, ôp))

}
(callbk k i)

callbk k−−−−→ throw · c1 · eos(−, k) · c0

If the invoker of a one-way operation does not expect any result of the oper-
ation, the invoking branch and the operation branch join before the end of the
enclosing scope, as stated by Rule (snd).

send(s, op, f : fh, ch,) · c1 · eos(s0,−, k) · c0
< receive(op) · cop >s

}
(snd)

snd−−→





c1 · join(s0, id1) · eos(s0,−, join(s0, id2) · k) · c0
cop · eos(id3, f : fh, ch, rethrow)

· join(s0, id1) · eos(s0,−, join(s0, id2) · k) · c0
< receive(op) · cop >s

Notice that all the five rules above, i.e. Rules (call), (callbk), (cakkbk k op),
(callbk k i) and (snd), are used to interpret a pair of receive and send messages.

43

4. CPM in Detail

In these cases, the head activities of the continuations alone are not sufficient to
determine which rule to apply. We have to look further for other related activities
in the continuations, for example, whether a receive or send activity is followed
immediately with an eos or eosk activity.

4.7 Fault handling

Every scope is associated with a number of fault handlers that are first provided
in the the scope activity and later encapsulated in the eos activity. When a fault
f is thrown within the scope, the corresponding fault handler is executed. If the
scope activity does not have a fault handler for f , a default fault handler will
run, which is typically sequence(compensate, rethrow). That is, the default fault
handler rolls back the finished activities of the scope and re-throws the caught
exception to the parent scope.

Because the fault handler is encapsulated in the eos activity of the contin-
uation, fault handling can start immediately when a fault is thrown. However,
a scope may have several parallel branches concurrently, the fault must also be
propagated to the other branches. This is achieved through the notify activity.

In Rule (thw) below, assume that Branch 1 throws a fault f from within a
nested scope. Moreover, suppose that the fault handler consists of three parts:
fh1, compensate and fh2.

throw(f) · c11 · eos(s, id, f : fh1 · compensate · fh2, ch, k
1) · c0 (thw)

thw−−→
{

notify(s, id, f)
fh1 · k1 · fh2 · eosk(s, id) · c0

In the throw continuation, c11 represents the remaining work of the scope and
k1 represents the current compensation continuation of the scope. Catching the
fault leads to two messages, one for notifying the other branches and the other
for handling the fault.

Handling the fault is achieved through the following changes in the continu-
ation: (1) the remaining continuation of Branch 1 within the current scope, c11,
is discarded, (2) the eos activity is replaced with eosk (end-of-scope in compen-
sation), and (3) the fault handler is applied in the new continuation. Since in
BPEL, a compensation itself cannot be compensated for, eosk does not contain
a compensation continuation. The compensate activity in the fault handler is
replaced with the compensation continuation k1 of Branch 1 for rolling back the
effects that have been achieved by the execution so far.

A fault is notified to other branches via the scope manager with the notify
message. That is, the site throwing the fault sends a notify message to the

44

4. CPM in Detail

scope manager which then forwards the messages to the current sites of the other
branches. These branches, once receiving the notify messages, start handling the
fault, similar to the fault-throwing site (Rule (nty)).

for all branches i = 2, . . . , n
ci2 · eos(si1,−, ki1) · ci1 · eos(s, id, f : fh1 · compensate · fh2, k

i) · c0
ehi

eh
notify(s, id, f)





(nty)

nty−−→
{

for all branches i = 2, . . . , n

ki1 · ki · fh2 · eosk(s, id) · c0

Notice that these branches may have entered new scopes and created new
event handlers. In Rule (nty), we assume that all these branches have entered a
nested scope. The recovery thus must also rollback these child scopes.

The executed effects of all branches of the faulty scope are rolled back in par-
allel branches represented by the compensation continuations ki (i = 1, . . . , n).
These recovery branches eventually join into a single one. For example, if the par-
allel branches were created with flow , all recovery branches will reach join(s, idk)
(see Rule (flw)). Consequently, the fh1 and fh2 parts of the fault handler are run
only once (fh1 by Branch 1 and fh2 by the OA that joins the branches).

A rethrow from a fault handler is captured by the parent scope. Its handling
is similar to a throw .

4.8 Dependency links

In a BPEL process, dependency links enforce additional precedence dependencies
among activities. An activity that is targets of some links can not start before
the source activities of these links finish. Figure 4.2 shows and example of a
dependency link.

A link is first declared by a flow activity and then attached to some activities
in different branches of the flow. An activity attached with links takes the form
(ba, ln+, e), where ln+ is the set of links and e is a join condition on the status
of the target links. An activity can only be further interpreted when the join
condition evaluates to be true.

Because branches may create new scopes, links may cross scope boundaries.
If a source activity of a link is not declared inside an enclosing scope, the link is
said to be leaving the scope. Similarly, if a target activity of a link is not declared
inside an enclosing scope, the link is said to be entering the scope.

45

4. CPM in Detail

fork(
sequence(

invoke(Sa, a, lad : source, true),
invoke(Sb, b)),

sequence(
invoke(Sc, c),
invoke(Sd, d, lad : target , true)),

lad)

a

b

c

d

lad

Figure 4.2: A dependency link

Because incoming and outgoing links may influence the behavior of a scope,
such as the compensation ordering, an eos activity keeps track of the links de-
clared in this scope as well as the incoming and outgoing links.

eos(−, ls : link , lout : outgoing, lin : incoming)

For the sake of readability, in what follows, we will not show the links in eos
activities.

A source activity is interpreted with Rule (src).

(a, ls : source, e) · c src−→ a · lnk s(l, e) · c (src)

If the link is not declared in the current scope, it will be registered in the
eos as an outgoing link. To enforce the execution precedence, a lnk activity is
inserted after the source activity.

A lnk message is interpreted with Rule (lnk).

lnk s(l, es) · c1 · eos(−, k) · c0 lnk−→
{
c1 · eos(−, (τ, l : target , true) · k) · c0
lnk s(l, e)

(lnk)

Interpreting a lnk message leads to a message with the single lnk activity to
the OA of the corresponding target activity.

A link l is introduced in the compensation continuations to enforce the right
compensation order (τ is an empty activity). That is, compensating the effect of
l’s target activity must take effect prior to compensating the effect of l’s source
activity. In the branch of l’s source activity, an empty target activity with link l
is now pushed to the new compensation continuation.

A target activity is interpreted, with Rule (tgt), when all its dependent lnk

46

4. CPM in Detail

messages arrive. Here we show an activity with only one target link.

(a, l : target , e2) · c1 · eos(−, k) · c0
lnk(l, e1)

}
(tgt)

tgt−→ if (eval(e1 ∧ e2),
a,

if (suppressJoinFailure,

τ,

throw(joinFailure)))

· c1 · eos(−, lnk(l, true) · k) · c0

If the join condition evaluates to be true, the target activity a will run. If the
join condition evaluates to be false and the suppressJoinFailure flag is on, the
target activity a is skipped. If the join condition evaluates to be false and the
suppressJoinFailure flag is off, a joinFailure fault is thrown.

A lnk(l, true) activity is pushed to the compensation continuation so that
compensation of l’s source activity follows the compensation of l’s target activity
through link l.

For dependency links, there is a special issue, known as the dead-path issue.
If a source activity is part of a selective composition and is not run, the target
activity may wait forever. One solution to this issue is to falsify all source ac-
tivities inside a selective constituent that is not run. For example, Rule (if fsy)
below falsifies the activity that is not run.

if (b, at, af) · c if fsy−−−→
{

falsifylinks(af) · at · c if eval(b) = true

falsifylinks(at) · af · c if eval(b) = false
(if fsy)

falsifylinks(. . . (a, l : source, e) . . .) · c fsy−→
{

lnk(l, false)

c
(fsy)

4.9 Example

We run the example process in Figure 4.3 to illustrate concretely how CPM works.
The process consists of a scope. The body of the scope is a flow activity of

two parallel branches. The first branch invokes two service operations A and B
in sequence. The second branch is enclosed in a nested scope. It invokes service
operations C and D in sequence. The nested scope has a compensation handler
that compensates for the completed effects of C and D with operation F . Each
of the scopes has a default fault handler with a single compensate activity that

47

4. CPM in Detail

process(scope(flow(sequence(invoke(SA, A, invoke(SA, A)),

invoke(SB, B, invoke(SB, B))),

scope(sequence(send(SC , C),

...

receive(Ĉ),

invoke(SD, D, invoke(SD, D))),

any : compensate,

invoke(SF , F))),

any : compensate))

Figure 4.3: Example process

rolls back the partial execution of the scope. None of the scopes have any event
handler.

In what follows, we refer to remote messages by numbers and local messages
by numbers prefixed with the site identifier. For example, message 1 is a remote
message and message P1 is a local message at site OP .

4.9.1 Service installation

In order to illustrate features for service operations, we assume that all service
providers in our example are also orchestration agents.

Suppose that service operations A, B, . . . , and their compensation operations
A, B, . . . , are installed at sites SA, SB, . . . respectively. Suppose further that
only operation C is one-way; all the other operations are request-response.

Service operation A looks like this:

sequence(receive(A), invoke(SE, E, invoke(SE, E)), reply(A))

That is, service operation A invokes service operation E from within its body.
Installing A at site SA results in a receive message A1 stored in the pool of
pending messages at SA.

inst(sequence(receive(A),−))
inst−−→
SA

< receive(A) · invokeSE(SE, E, invokeSE(SE, E)) · reply(A) >SA
(A1)

48

4. CPM in Detail

The other service operations are similarly installed. The messages for the
installed operations A,B, . . . and A,B, . . . are A1, B1, . . . and A2, B2, They
are stored in the pools of pending messages at sites SA–SE, after the installation
messages are interpreted. The one-way service operation C provides results on
callback operation Ĉ.

< receive(A) · . . . · reply(A) >SA
(A1, B1, . . .)

< receive(A) · . . . · reply(A) >SA
(A2, B2, . . .)

< receive(C) · . . . · send(Ĉ) >SC
(C1)

4.9.2 Successful execution

Figure 4.4 shows the remote messages for the orchestration of a successful execu-
tion of the process.

orch(process(−), Sclient)

OPSA
1

SB

5

SC

2
6

SD

7

8

SE

3

4

Figure 4.4: Orchestration messages for a successful execution

A process instance is created when an orch message arrives at OP .

< orchOP (process(−), Sclient) >Sclient

orch−−→
OP

process(−) · eorchOP (Sclient) (P1)

The initial process instance is represented as message P1. Figure 4.5 shows
how orchestration agents are assigned to specific activities.

After a series of interpretation steps, the message of the process instance is
turned into a flow message P2.

P1
proc−−→ scope(−) · eop · eorch(Sclient)
scp−−→flow(−) · eos(OP , 1, any : compensate,⊥) · ceop (P2)

where
ceop = eop · eorch(Sclient) (ceop)

49

4. CPM in Detail

process(scopeOP (flow(sequence(invokeSA(SA, A, invokeSA(SA, A)),

invokeSB(SB, B, invokeSB(SB, B))),

scopeOP (sequence(send(SC , C),

...

receiveOP (Ĉ),

invokeSD(SD, D, invokeSD(SD, D))),

any : compensate,

invokeOP (SF , F))),

any : compensate))

Figure 4.5: Process in message (P1)

Interpreting P2 leads to two messages, 1 and 2, representing two parellel
branches, that are sent to SA and SC . Notice the two join activities in each of
the messages, one for the normal execution and one for rollbacks.

P2
flw−−→





seq−→ invoke(SA, A,−) · invoke(SB, B,−) · c2join (1)
scp,seq−−−−→ send(SC , C) · . . . · receive(Ĉ) · invoke(SD, D,−) (2)

· eos(OP , 4, any : compensate, invoke(SF , F),⊥) · c2join

where

c2join = join(OP , 2) · eos(OP , 1, any : compensate, join(OP , 3)) · ceop (c2join)

The first branch invokes operation A that in turn invokes operation E with
message 3.

1
A1

}
inv−−→





invoke(SE, E) · eos(5, invoke(SA, A), rethrow)

· invoke(SB, B,−) · c2join

A1

(3)

After operation E is done, the invocation of its compensation operation E is
pushed to the compensation continuation of the eos(5,−) activity of the enclosing

50

4. CPM in Detail

scope, i.e., the floating scope of operation A.

3
inv,...,eos−−−−−→ eos(5, invoke(SA, A), invoke(SE, E) · rethrow)

· invoke(SB, B,−) · cjoin

eos−→ invoke(SB, B,−) · join(OP , 2) (4)

· eos(OP , 1, any : compensate, invoke(SA, A) · join(OP , 3))

· ceop

Further, when the eos(5 ,−) of operation A is interpreted, invoke(A) for com-
pensating A is pushed to the eos activity of the top-level scope. This branch
moves further on with an invoke message 4 directly from SE to SB. Note that
there is no reply message to SA when operation E is done, or to OP when oper-
ation A is done.

Notice that invoke(E) in the compensation continuation of the eos(5,−) al-
lows E to reverse the effect of E when there is a fault and operation A has
not finished. When the execution of A has finished, the compensation handle
invoke(A) is inserted in eos(1,−) of the enclosing scope and the compensation
continuation in eos(5,−) is discarded.

When operation B is done, a join message 5 is sent back to OP . The com-
pensation continuation of the branch is updated accordingly. If the join message
of the other branch has not arrived yet, message 5 is stored at OP as a pending
message.

4
inv,...,eos−−−−−→ join(OP , 2) (5)

· eos(OP , 1, any : compensate,

invoke(SB, B) · invoke(SA, A) · join(OP , 3))

· ceop

The second branch is enclosed in a nested scope, managed also at OP . In
the scope, the one-way operation C is invoked. This in turn leads to two new
branches (in addition to C1 that re-installes C), one continuing execution at the
invoking site OP and the other running the one-way operation C.

2
C1

}
call−−→





...−→< receive(Ĉ) · eos(7, ki · rethrow) · invoke(SD, D,−) (P3)

· eos(OP , 4, any : compensate, invoke(SF , F),⊥)

·c2join >OP

...−→ send(OP , Ĉ) · eos(OP , 6, kC · send(OP , Ĉ)) (6)

C1

51

4. CPM in Detail

After doing some work at OP , the invoking branch waits for the result of C
with callback Ĉ. The receive message for the callback is stored in the pool of
pending messages at OP . After receiving the result from the callback message
6, this branch moves further on to operation D with message 7. ki and kC are
the compensation continuations generated during the executions of the invoking
branch and the one-way operation C, respectively. The nested scope is terminated
with the eos(4,−) message 8 back to OP . Interpreting the eos message leads to
a local join message P4.

P3
6

}
callbk−−−→

invoke(SD, D,−) (7)

· eos(OP , 4, any : compensate, invoke(SF , F),flow(ki, kC))

· c2join

inv,...,eos−−−−−→ eos(OP , 4, any : compensate, invoke(SF , F), (8)

invoke(SD, D) · flow(ki, kC))

· c2join

eos−→ join(OP , 2) (P4)

· eos(OP , 1, any : compensate, invoke(SF , F) · join(OP , 3))

· ceop

When the join messages of both branches, 5 and P4, are available at OP , the
process moves on and finally sends a reply message back to the client.

5
P4

}
jon−−→

eos(OP , 1, any : compensate,

flow(invoke(SB, B) · invoke(SA, A), invoke(SF , F))) (P5)

· ceop

eos−→ eop · eorch(Sclient)
eop−−→ eorch(Sclient)

eorch−−−→
Sclient

done

Notice that the eos(1,−) activity of message P5 contains the rollback plan of
the entire process.

52

4. CPM in Detail

4.9.3 Rollback after a fault

Suppose now that service operation B throws a fault. The latest remote message
that SB has received is message 4 in Figure 4.4. Figure 4.6 shows the remote
messages for fault propagation and process recovery.

orch(process(−), Sclient)

OPSA

3

SB

2 1

SC

7

SD

4

6

4

5

SE

Figure 4.6: Orchestration messages for a rollback

The process state at the faulty branch is represented by message 4. The fault
is caught by the fault handler in the eos activity of the top scope.

4
...,thw−−−→

{
notify(OP , 1, any) (1, 4)

invoke(SA, A) · c3join (2)

where
c3join = join(OP , 3) · eosk(OP , 1) · ceop (c3join)

Catching the fault leads to two messages, 1 for fault propagation and 2 for
handling the fault at the faulty branch.

The scope manager at OP will further propagate the fault, with message 4,
to the other branch, currently at SD, represented by message 7.

The fault handler of the faulty branch consists of a single compensate activity.
So compensation of the branch starts by applying the compensation continuation
encapsulated in the eos activity. This leads to message 2 that invokes the com-
pensation operation A, followed by message 3 that joins with the other recovery
branch at OP .

2
inv,...,eos−−−−−→ c3join (3)

The other branch, upon receiving the notification message 4, starts handling
the fault and rolls back the execution that has been done so far. Because this
branch has a nested scope, rolling back the top scope includes the rollback of the

53

4. CPM in Detail

nested scope, too.

4
7

}
nty−−→ flow(ki, kC) · c3join

flw−−→
{
ki · join(OP , 8) · c3join (5)

kC · join(OP , 8) · c3join (6)

Since operation C is one-way, the compensation happens in two branches,
message 5 for rolling back the effects at the invoking site OP with the generated
compensation continuation ki, and message 6 for rolling back the effects of C
itself. Since no compensation operation was provided when C was invoked, the
compensation continuation kC generated during the execution of C becomes the
recovery plan. These two branches then join at OP .

5
...−→ join(OP , 8) · c3join

6
...−→ join(OP , 8) · c3join (7)

}
jon−−→ c3join (P1)

Finally, the two recovery branches of the top-level scope join.

3
P1

}
jon,eosk−−−−→ ceop

4.10 Related work

Services orchestration is typically carried out by central engines, although this
is generally regarded as neither scalable nor reliable [1]. Our performance study
described later in Chapter 6 shows that even with techniques like replication or
pooling [58], centralized approaches cannot achieve the scalability of decentralized
ones. Moreover, for the ever-growing Internet-scale applications, adoption of a
central engine is hardly possible.

With instantiation-based decentralization, a process is instantiated before ex-
ecution (for example, [8, 22, 55, 56, 68]). Resources and control are allocated
in the distributed environment during instantiation. These approaches are more
suitable for enterprise applications where the overhead of instantiation is ap-
portioned to the repeated executions. For more dynamically composed services,
messaging-based approaches incur less run-time overhead for services orchestra-
tion. A more serious problem with instantiation-based approach for open web
applications is that it is practically unacceptable to allocate resources for the
parts (often provided by other web applications) that are actually not executed,
such as some of the alternative paths or when a process rolls back at an early
stage.

54

4. CPM in Detail

Messaging-based approaches (for example, [11, 52, 67, 82]) replace the over-
head of instantiation with larger (and sometimes more) messages. In the earlier
messaging-based approaches, parts of the static specification of the process, rep-
resented as mobile code, is carried in messages.

In all the aforementioned decentralized approaches, whether instantiation-
based or messaging-based, decentralization is based on the static structure of the
process. There lacks a general mechanism for the features that require dynamic
run-time information, such as fault handling and recovery. Furthermore, they
tend to have limited adaptability at run time, because the control is mostly al-
ready in place before the execution started. Typically, tasks like fault handling
and recovery are delegated to a single dedicated site [8, 14, 22, 52, 82]. They
are therefore subject to similar limitations of a central engine. With our ap-
proach, a scope manager plays a similar role of the dedicated site. However, the
number and locations of scope managers are not fixed. Moreover, fault handlers
and dynamically generated recovery plans are encapsulated in messages. Conse-
quently, a fault is caught anywhere it is thrown, rather than be propagated to a
pre-selected site.

Services orchestration can also be supported with rule-based or event-driven
approaches. PADRES [44, 45] is a decentralized event-driven system for services
orchestration. It adopts a publish/subscribe approach, where a message bro-
ker takes care of the interdependencies among activities specified in composite
subscriptions. PADRES supports content-based routing in a network of overlay
brokers, resembling a pool of engines. [44] shows a case with 5 overlay brokers.
[45] extends to 30 brokers with 20 publishers and 30 subscribers.

INCA [5] is a rule-based system with some properties similar to our approach.
A message carries rules and a log. The rules and the log play the roles of normal
and compensation continuations of our approach. Besides the principle difference
between the approaches (rule-based versus continuation-passing), there are some
subtle differences in what can be achieved. With INCA, a site conducts process
execution using both the rules carried in messages and pre-installed local rules.
Thus INCA can be regarded as a hybrid of instantiation-based and messaging-
based approaches.

The concept of continuation is widely used in the programming language com-
munity, particularly of functional programming languages. We refer interested
readers to [27] for an excellent introduction of the concept.

Micro-workflow [48] provides a software framework that uses continuations for
workflow enactment, similar to our work. The purpose of the framework is to
support separation of the control concern from the other concerns during software
development. There is thus limited support for distribution: remote workflows
are enacted with synchronous remote procedure calls. There is no support for
recovery.

55

4. CPM in Detail

Our work is built on CEKT [41] and PCKS [54] machines, which are ex-
tensions to the CEK machine [24] (a variant of the SECD machine [42]) for
interpreting functional programs using continuations. The CEKT machine sup-
ports asynchronous execution of distributed programs [41]. Upon invocation of a
remote procedure, a continuation is passed to the agent, which, after executing
the procedure, applies the continuation instead of returning the control back to
the caller. Our handling of invocations of request-response operations follows
this approach. CEKT , however, supports only one (distributed) thread of con-
trol. The PCKS machine supports parallel executions of functional programs in
a shared-memory environment [54].

Success and failure continuations have been applied in execution of logical pro-
grams [75] and specification of denotational semantics of stateflows [34]. There,
the use of success and failure continuations is similar to the treatment of an if
activity (to deal with the cases where the condition evaluates to true or false). To
our knowledge, we are the first to use compensation continuations for recovery.
We are not aware of any published work on enforcing correct compensation order
with explicit control dependencies in decentralized approaches.

4.11 Summary

In this chapter, we worked out the details of continuation-passing messaging
(CPM), including the construction of CPM message, the rules for controlling the
execution flows and fault handling. One special property of CPM, as opposed
to approaches based on remote procedure call (RPC), is that after the execution
of a service operation, the execution can directly move to the next service site
without sending a reply message back to its invoker.

As the relevant fault handler is encapsulated in the eos activity of the contin-
uation, fault handling can start immediately when a fault is thrown. In case of
multiple parallel branches, the site throwing the fault also sends a notify message
to the scope manager and later the scope manager notifies other branches about
the fault.

Section 4.9 illustrate how CPM works with an example. It shows both a
normal execution and a scenario where a service operation fails and requires
rollback.

Finally, this chapter surveyed related work, focusing on related decentralized
approaches. The subtle difference between earlier approaches and our approach
is that we utilize dynamic run-time information for fault handling and recovery
purposes. Thus we eliminate the necessities of any designated site for exception
or fault handling.

56

Chapter 5

Replicated CPM

In a wide open distributed environment, failures may occur. In our system model,
failures may occur either at SPs or at OAs.

An SP may be unavailable, due to disconnection or system crash, and does
not respond to invocations. An SP may also return an error. We assume that
business critical services support the at-most-once operation semantics. That is,
an SP can recognize duplicated invocations and execute the same invocation at
most once.

When an SP is not available or returns an error message, an exception is
thrown so that an appropriate exception handler of the SA will handle it, such
as by invoking an alternative service or rolling back the execution so far. As
discussed in Chapter 4 our orchestration mechanism guarantees effective propa-
gation and handling of exceptions.

An OA may become unavailable in two ways. It may leave the OA network
intentionally, or it may crash or get disconnected due to network failures. We
assume a fail-stop crash model. This chapter presents the replicated CPM that
enhances the availability of the orchestration when the OAs are subject to such
unavailability.

5.1 Overview

With CPM, information about the orchestration is usually already spread among
multiple OAs. This information, if carefully maintained and updated, could be
used to handle occasional unavailability of OAs. This is the key idea behind
replicated CPM.

Consider the example service-base application (SA) in Figure 2.2 and an
orchestration of its execution in Figure 3.3. When OA Ac sends orchestration
message 5 to OA Ad, Ac has the latest state information about the current branch.

57

5. Replicated CPM

If Ac does not discard this information, Ac can serve as a backup of Ad. If Ad

crashes during the execution of service d, Ac could take over the role of Ad and
resume the orchestration.

In addition, when OA Ac sends orchestration message 5 to OA Ad, it also
sends a scope message to the current scope manager Ap. If in addition to the
scope message, Ac also sends Ap an update of the orchestration state information,
Ap can serve as an additional backup of both Ac and Ad.

With replicated CPM, an SA orchestration has a replication degree k. That
is, every activity is assigned with a list of k + 1 OAs. The first OA in the list,
called the active OA, is responsible for the interpretation of the message. The
rest k OAs are backup OAs. For message c, we use c.A for its active OA and c.A
for the backup OAs. We also use c.A+ for the list of both c’s active and backup
OAs.

messages

message
interpreter

OA
router

scope
management

backup
management

message
handler

pending
messages

scope
registry

backup
scope

registry

backup
messages

routing
table

Figure 5.1: Extended Structure of an Orchestration Agent

Figure 5.1 shows the structure of an OA extended with replicated CPM sup-
port. It extends the structure of the basic OA in Figure 3.2 with additional
components for backup management.

5.2 Selection of backup OAs

One of our primary goals for the selection of backup OAs is to reuse stored states
and keep the run-time overhead of services orchestration as low as possible. The
selection is based on the following observations:

58

5. Replicated CPM

• Every OA assigned with some activity for the orchestration will sooner or
later obtain some information about the orchestration and this information
would overlap with some backup information.

• To keep an OA updated with the information about an OA it backs up,
it is often sufficient to send it the deltas of the latest changes, which are
typically small fractions of the entire information.

• The amount of overlapping information, and therefore the sizes of the deltas,
depends on the freshness of the currently stored information at OAs.

An important property of backup selection is that the backups of an OA can
be unambiguously calculated by any OA at any time of the orchestration. This
simplifies the handling of events like OA crashes.

The selection algorithm is built on OA graphs (OAG) of orchestrations. An
OAG is first obtained with a projection of the control flow of the SA to the
assigned OAs. If the number of OAs in an OAG is not sufficient for the number
of backup candidates, it is extended with more OAs.

Ap

Ab

Ac

Ad

Ap

Au

OAG of the example SA p

Ap

Ab

Ac

Ad

Ap

As

Ae

Af

As

Ag

Ac

OAG of an extended SA s

Figure 5.2: OA graph for backup selection

Figure 5.2 shows two OAGs. The OAG to the left consists of OAs assigned
to an orchestration of the example SA p of Figure 2.2. The OAG to the right
is an extension s with more service operations. In the OAG of p, Ap is a parent
of Ab and Ac. If an OA is assigned to consecutive orchestration activities, the
OA appears as a single node in the OAG. For example, if both invoke(Sc, c) and
invoke(Sd, d, d̄) were assigned to Ad, only a single Ad node would have appeared
in the OAG. On the other hand, the same OA may appear multiple times in an

59

5. Replicated CPM

OAG if it is assigned to activities separated by other OAs. For example, there
are two Ap nodes in the OAGs. Parallel branches are ordered. The ordering of
branches are decided when an SA is initialized for orchestration. The general
rule is that a branch with more orchestration activities has higher priority. For
example, the branch with Ab has more orchestration activities than the other
branch when n of the loop is larger than 2. In Figure 5.2, a branch on the left
has higher priority than a branch on the right.

The number of OAs in an OAG is the degree of the OAG. It determines the
number of backup candidates each OA may have. If an orchestration of p requires
that every OA should have 4 backup candidates, the minimum degree of the OAG
is 5. For p, the number of assigned OAs is 4. An OAG with degree 5 can be
obtained by appending one more OA to the youngest node Ap, as Au in Figure 5.2.
The selection of Au is based on the information in the routing component, such
as geographic distances.

The backup candidates of an OA A are selected with the following priority
order:

S1. OAs of A’s enclosing scopes have higher priorities than OAs of lower level
nested scopes.

(a) Scopes closer to A have higher priorities.

S2. In a scope, OAs of the same branch have higher priorities than OAs of other
branches.

In A’s branch,

(a) Ascendant OAs have higher priorities than descendant OAs.

(b) OAs closer to A have higher priorities.

Among the other branches,

(c) OAs of a higher-priority branch have higher priorities.

(d) In the same branch, OAs closer to the scope manager have higher
priorities.

These rules are based on the lifetime and freshness of the run-time and man-
agement data maintained by the OAs. The OAs of the enclosing scopes of a given
activity have higher priority (Rule S1), because the enclosing scopes maintains
more status data related to the activity and live longer. The OAs closer to A in
the OAG have higher priorities (Rules S1.a and S2.b), because they have fresher
status data relevant to the activities assigned to A. Ascendant OAs (Rule S2.a)

60

5. Replicated CPM

or OAs closer to the scope manager (Rule S2.d) have higher priorities , because
they have already orchestrated some activities and thus know more details about
what has happened. In addition, the activities for the descendant OAs may never
happen in case of exception events. OAs in branches with more activities have
higher priorities (Rule S2.c), because there are more message exchanges there and
the status information is more likely to be fresh.

Ap

Ab

Ac

Ad

Ap

As

Ae

Af

As

Ag

Ac

1. S1, S2.a, S2.b

2. S1, S2.a

3. S1, S2

4. S1, S2.c

5. S1

6. S2.c

7.

Figure 5.3: Backups of Ae

Figure 5.3 shows the priorities of the backups for Ae in Figure 5.2 and which
rules are applied. Suppose As is the scope manager of the top-level scope and Ap

is the scope manager of the nested scope. The OAs As, Ap, Af , Ag and Ac are
assigned for activities in the same scope as Ae. They have higher priorities than
Ab and Ad that are only assigned for activities in the nested scope (Rule S1). As,
Ap and Af are in the same branch as Ae. They have higher priorities than Ag

and Ac (Rule S2). As and Ap are ascendants of Ae (Rule S2.a). Ap is closer to
Ae than As (Rule S2.b). Therefore according to Rules S1, S2.a and S2.b, Ap has
the highest priority. Figure 5.3 shows the rule for the other backup agent.

The following table shows the lists of backup candidates (with length 4 for p
and 7 for s) of the OAs for the two OAGs in Figure 5.2.

61

5. Replicated CPM

OA p (length = 4) s (length = 7)
As Ap, Ae, Af , Ag, Ac, Ab, Ad

Ap Ab, Ac, Ad,Au As, Ae, Af , Ab, Ac, Ad, Ag

Ab Ap, Ac, Ad,Au Ap, Ac, Ad, As, Ae, Af , Ag

Ac Ap, Ad, Ab,Au Ap, Ad, Ab, As, Ae, Af , Ag

Ad Ac, Ap, Ab,Au Ac, Ap, Ab, As, Ae, Af , Ag

Ae Ap, As, Af , Ag, Ac, Ab, Ad

Af Ae, Ap, As, Ag, Ac, Ab, Ad

Ag As, Ac, Ap, Ae, Af , Ab, Ad

Ac Ag, As, Ap, Ae, Af , Ab, Ad

During an orchestration, c.A+, the actual active and backup OAs for message
c are selected from the first k + 1 available OAs in the candidates OAs obtained
from the OAG.

5.3 Normal execution

The RCPM mechanism extends CPM as described in Chapter 4 with the following
tasks:

• it keeps the backup OAs updated about the lasted orchestration states, and

• it informs the backup OAs to purge the backup states when they are no
longer needed.

Every CPM message contains an integer k as the replication degree of the
current branch, an OAG of degree l (l > k) and a list of actual active OA and
backups.

In addition, every message has a timestamp that can be used to check causal
relations between messages. A timestamp is of the form [b0, n0] · [b1, n1] · . . . ,
where b0, b1, . . . are the unique identifies of the branches which the message is
part of, and n0, n1, . . . are the sequence numbers in the branches. As shown in
Figure 5.4, in the beginning, there is only one branch (0). After a fork, two new
branches (0, 0) and (0, 1) are created. The orch message has sequence number 0
in branch (0). All messages in the new branches have the same sequence number
1 in the parent branch (0), but different sequence numbers 0, 1, . . . , in the new
child branches (0.0) and (0, 1).

To compare the causality of two messages m1 and m2, we first get the longest
prefix of their timestamps such that b10 = b20, . . . , b

1
i = b2i (i ≥ 0). Message m1

happens before Message m2 in the same SA execution, denoted m1 ≺ m2 or
m2 � m1, if there exists k(0 < k ≤ n) such that n1

0 = n2
0, . . . , n

1
k−1 = n2

k−1 and

62

5. Replicated CPM

orch
[(0), 0]

invoke(b) · . . .
[(0), 1] · [(0, 0), 0]

wait(b) · . . .
[(0), 1] · [(0, 0), 1]

join · . . .
[(0), 1] · [(0, 0), n1]

invoke(c) · . . .
[(0), 1] · [(0, 1), 0]

wait(c) · . . .
[(0), 1] · [(0, 1), 1]

eos · . . .
[(0), 1] · [(0, 1), n2]

eorch
[(0), 2]

Figure 5.4: Message timestamps

n1
k < n2

k. That is, the m1 and m2 are for activities in the same branch b1k(= b2k),
and m2 has a larger sequence number n2

k. Messages m1 and m2 are concurrent,
denoted m1 ‖ m2, if n1

0 = n2
0, . . . , n

1
i = n2

i . That is, m1 and m2 are for activities
in two different branches b1i+1 and b2i+1.

Suppose OA A received a messages c0, has done some local interpretations
and is currently interpreting message c. Suppose further that the current scope
manager and its backups are c.S and c.S (and c.S+ = {c.S}∪ c.S). The following
are the steps related with sending messages during the orchestration of a normal
execution:

C1. When the orchestration of a branch is moving away from A with CPM
message c:

(a) Select c.A+.

(b) Send to c.A+ message c (or its delta).

(c) Notify c.S+ ∪ G about the move with message m. m contains two sets
of OAs c.S+ and G = c0.A− c.A+.

C2. When A stores a local message c in its pending message pool, it also sends
the delta of the message c to c0.A.

Step C1.a selects the next active OA and its backups according to the avail-
ability of OAs obtained from its OA manager (Figure 5.1). Step C1.b extends

63

5. Replicated CPM

the destination of a CPM message to include the backups. Step C1.c has two
purposes: 1) it extends a scope message to include the scope manager’s backups
(c.S+); 2) it informs some of A’s backups (G, which no longer backup the subse-
quent states of the same SA) to purge the backup states. Step C2 informs A’s
backups about its own state changes.

c.S+ in step C1.c was selected when the corresponding scope element was
interpreted. Step C1.c does not check the availability of the scope manager like
step C1.a. The unavailability of an OA that has been active, like a scope manager,
is handled in Section 5.4.

Some messaging overhead is reduced when OAs play multiple roles. For exam-
ple, when c.A = {A}, which is typically true for k = 1 (according to the backup
selection rules), step C1.b does not involve any additional remote message than
a non-replicated orchestration.

When OA Ar receives a CPM message c (or delta), it does the following:

R1. Ignore c if Ar has already received a message c′ such that c′ � c.

R2. If Ar = c.A, interpret c.

R3. If Ar ∈ c.A, store or update backup status of c.A.

R4. If Ar = c.S, update scope state in scope registry.

R5. If Ar ∈ c.S, update backup scope registry.

If a message of a later stage of the same SA execution has already been
processed, the newly arrived message is ignored (step R1). The message is handled
depending on whether the receiver is an active OA (step R2), a backup OA (step
R3), an active scope manager (step R3) or a backup scope manager (step R4).

When OA Ar receives a message m, notifying that an orchestration is moving
from A to A′, it does the following:

M1. Ignore m if Ar has already received a scope message m′ such that m′ � m.

M2. If Ar = m.S, update the status of scope in the scope registry.

M3. If Ar ∈ m.S, update the backup status of the scope in backup scope registry.

M4. If Ar ∈ m.G, purge backup status of A.

Notice that in some situations, c.A+ ∩ c.S+ 6= ∅, the tasks for steps M2 and
M3 are done in R4 and R5. In general, the more these sets overlap, the more
overhead is avoided.

64

5. Replicated CPM

5.4 Handling unavailability of OAs

When an OA becomes unavailable, its tasks for services orchestration, either as
an active or backup OA, are taken over by other OAs. There are two types
of tasks: interpretation of CPM messages and management of scopes. In this
section, we focus on the first type, i.e., to continue interpreting CPM messages
when an OA becomes unavailable. The steps to continue scope management is
almost the same.

The unavailability of OAs is handled on a per-message basis, or a per-branch
basis, because every CPM message represents an SA branch. When an OA in
c.A+ becomes unavailable, it is always the highest ranked available OA in c.A+

to take the responsibility of handling the unavailability.
An OA becomes unavailable either when it leaves the OA network on purpose,

or when it crashes or is disconnected due to some network failure. Before OA A
leaves on purpose, it notifies the highest ranked available OA in c.A+ − {A} for
every message c in its pending message pool and backup message pool about its
leaving. An OA Ar does the following when receiving this message:

L1. If A is the highest ranked OA in c.A+, Ar takes over as the actual active
OA of c.

L2. Add a new OA to c.A+ according to the OAG and inform the new c.A+

about the latest update of c.

When an OA crashes or is disconnected from the network, its unavailability
is detected when another OA is unable to send it a message. Because the OAs
exchange routing messages regularly (Chapter 3), the unavailability is detected
in short time. Generally, the busier the OA network, the shorter the detection
time. As soon as an unavailability is detected, it is propagated to the entire OA
network.

When an OA Ar is notified of the unavailability of A, it finds relevant CPM
messages in its pending message pool and backup message pool. A message c is
relevant if A ∈ c.A+. For each such message c, it does the following:

U1. If Ar is the highest ranked available OA in
c.A+ − {A}, do L1 and L2.

With respect to correctness, think of a message as representing a particular
step of a branch. Because only the highest ranked available backup OA takes
over the role as the new active OA of a message when the current active OA
becomes unavailable (and once an OA is detected as unavailable, it will not be
re-assigned to the same process execution when it becomes available again), it is

65

5. Replicated CPM

impossible for two OAs to simultaneously take over as the new active OA of the
same message.

However, backups of different messages of the same branch may coexist in
different OAs. Consequently, different OAs may independently take over the role
as the active OAs of different steps of the same branch. This does no harm when
business critical services enforce the at-most-once execution model. In addition,
if a scope manager observes that two OAs are responsible for the orchestration
of the same branch, it kills the activities represented by the outdated messages.
Eventually, the active OA of the most up-to-date message wins as the only active
OA of the branch. See near the end of Subsection 5.5.1 for a concrete example of
this scenario.

The last issue will not occur for replicated scope managers, because a scope
manager never moves from OA to OA in the basic CPM scheme.

At this point, it should be clear that the replication scheme can tolerate up
to k crashes during the time interval between the detection and the handling of
an unavailability.

5.5 Example

We use the same example as in Section 3.3 and Figure 2.2 to illustrate how
replicated CPM works.

5.5.1 Replication degree 1

Suppose the replication degree is 1. When OA Ap starts to orchestrate SA p, Ap

generates an initial CPM message c0 = orchAp(−) that includes an OAG as the
left part of Figure 5.2 (without the Au part, since the replication degree is 1).

When interpreting CPM message invokeAp(Sa, a, ā) · . . ., Ap sends an invoca-
tion message to SP Sa and stores message waitAp(Sa, a) · . . . in its message pool.
According to Rule C2, it also sends this CPM message to c0.A, which is {Ab}.
So now Ab is the backup of Ap for the orchestration of p.

When interpreting message c = invokeAb(Sb, b) · . . ., Ap sends the CPM mes-
sage c (corresponding to message 2 in Figure 3.3) to c.A+, which is {Ap, Ab}
(Rule C1-b).

When Ab receives the message, it further interprets the message (Rule R.2).
Ap stores the message in its pool of backup messages (Rule R.3). Note that when
the replication degree is only 1, no remote message is actually sent for the purpose
of backup.

The current scope manager c.S is Ap. c.S+ = {Ap, Ab}, c0.A = {Ab} and
c.A+ = {Ab, Ap}. So c.S+ ∪ c0.A − c.A+ = ∅ and not message is sent according

66

5. Replicated CPM

to Rule C1-c.
The table below shows the messages (the head activities of their continuations)

and the corresponding backup OAs during the orchestration of p.

Msg c0.head c.head c0.A c.A

local at Ap orchAp(−) waitAp(Sa, a) Ab Ab

2 orchAp(−) invokeAb(Sb, b) Ab Ap

local at Ab invokeAb(Sb, b) waitAb(Sb, b) Ap Ap

3 invokeAb(Sb, b) joinAp(−) Ap Ab

4 orchAp(−) invokeAc(Sc, c) Ab Ap

local at Ac invokeAc(Sc, c) waitAc(Sc, c) Ap Ap

5 invokeAc(Sc, c) invokeAd(Sd, d) Ap Ac

local at Ad invokeAd(Sd, d) waitAd(Sd, d) Ac Ac

6 invokeAd(Sd, d) joinAp Ac Ab

local at Ap joinAp(−) eosAp(−) Ab Ab

To see more specifically how this works, now consider the case where Ad

interprets CPM message c = joinAp · . . . , as Figure 5.5 illustrates. Ad sends
message c (messages 6 and 6’ in Figure 5.5, which correspond to message 6 in
Figure 3.3) to c.A = {Ap, Ab} (Rule C1-b).

Ad

Ap

Ab

Ac

5

6

6’
6”

R2, R4

R3, R5

M4

Figure 5.5: Messages from Ad for replicated CPM

The current scope manager c.S is Ap. c.S+ = {Ap, Ab}, c0.A = {Ac} and
c.A+ = {Ap, Ab}. So c.S+ ∪ c0.A − c.A+ = {Ac} and Ad notifies Ac that the
current branch moves to Ap (message 6” in Figure 5.5).

When Ap receives message 6, it further interprets the message (Rule R2) and
update the status of the current scope (Rule R4). When Ab receives message 6’, it
updates the backup messages (Rule R3) and the backup scope status (Rule R5).
When Ac receives message 6”, it purges the backup messages about p (Rule M4).

67

5. Replicated CPM

Now consider the situation where Ab becomes unavailable before the loop of
p finishes. When Ac observes, or is notified of, the unavailability of Ab, it does
nothing, except notifying other OA about this (as part of OA network manage-
ment).

When Ap is notified that Ab becomes unavailable, it finds message c =
waitAb(Sb, b) · . . . in its backup message pool. It takes over the job of Ab to further
orchestrate p (Rule L1). In addition, it adds Ac to c.A according to the OAG of
p and informs c.A+ = {Ap, Ac} about the latest update of p (Rule L2).

Now consider a particular situation: OA Ad becomes unavailable just after it
sends the messages 6, 6’ and 6”, and the notification of the unavailability arrives
at Ac before message 6”. In this situation, Ac may take over and repeat the work
that Ad had just finished before it became unavailable. Ac repeats the service
invocation at Sd. A business-critical service will return with an exception due
to the at-most-once semantics. With a proper fault handler, Ac will be able to
continue with the execution. The repeated work will eventually arrive at Ap. By
checking the timestamp of the message (Rule R1), Ap can figure out that the
orchestration of this branch has already passed over this stage. The same is also
detected by the scope manager (Rule M1), which is Ap again in this example.

5.5.2 Replication degree 2

Now suppose the replication degree is 2.
When interpreting CPM message invokeAp(Sa, a, ā) · . . ., Ap sends an invoca-

tion message to SP Sa and stores message waitAp(Sa, a) · . . . in its message pool.
According to Rule C1, it also sends this CPM message to c0.A, which is {Ab, Ac}.
So now Ap has two backups Ab and Ac for the orchestration of p.

When interpreting message c = invokeAb(Sb, b) · . . ., Ap sends the CPM mes-
sage c (corresponding to message 2 in Figure 3.3) to c.A+, which is {Ap, Ab, Ac}
(Rule C1-b).

When Ab receives the message, it further interprets the message (Rule R.2).
When Ap and Ac receive the message, they store the message in their pools of
backup messages (Rule R.3).

The current scope manager c.S is Ap. c.S
+ = {Ap, Ab, Ac}, c0.A = {Ab, Ac}

and c.A+ = {Ab, Ap, A.c}. So c.S+ ∪ c0.A − c.A+ = ∅ and no message is sent
according to Rule C1-c.

The table below shows the messages, their head activities and the correspond-
ing backup OAs during the orchestration of p.

68

5. Replicated CPM

Msg c0 c c0.A c.A

local at Ap orchAp(−) waitAp(Sa, a) Ab, Ac Ab, Ac

2 orchAp(−) invokeAb(Sb, b) Ab, Ac Ap, Ac

local at Ab invokeAb(Sb, b) waitAb(Sb, b) Ap, Ac Ap, Ac

3 invokeAb(Sb, b) joinAp(−) Ap, Ac Ab, Ac

4 orchAp(−) invokeAc(Sc, c) Ab, Ac Ap, Ad

local at Ac invokeAc(Sc, c) waitAc(Sc, c) Ap, Ad Ap, Ad

5 invokeAc(Sc, c) invokeAd(Sd, d) Ap, Ad Ac, Ap

local at Ad invokeAd(Sd, d) waitAd(Sd, d) Ac, Ap Ac, Ap

6 invokeAd(Sd, d) joinAp(−) Ac, Ap Ab, Ac

local at Ap eosAp(−) joinAp(−) Ac, Ad Ac, Ad

Now suppose again that Ab becomes unavailable. When Ac is notified of this,
it does nothing. Although Ac finds message c = waitAb(Sb, b) · . . . as a backup
message, Ac is not the highest ranked available OA in c.A+ − {Ab} = {Ap, Ac}
(Rule U1).

When Ap is notified that Ab becomes unavailable, it finds message c =
waitAb(Sb, b) · . . . in its backup message pool. It takes over the job of Ab to further
orchestrate p (Rule L1). In addition, it adds Ad to c.A according to the OAG of
p and informs c.A+ = {Ap, Ac, Ad} about the latest update of p (Rule L2).

When Ac receives message c from Ap, it does nothing, because it already has
c as a backup message (received earlier from Ab) and c � c (Rule R1).

5.6 Related work

The focus of research on reliable services orchestration has been on dealing with
failures of constituent services, mostly based on compensation-based recovery [15,
23, 53, 85]. For centralized services orchestration, traditional replication methods
can be applied to realize reliable servers. For decentralized service orchestration,
little work is done on dealing with failures of orchestration engines or agents.

OSIRIS [68] and OSIRIS-SR [71] take an instantiation-based approach to de-
centralized services orchestration. The execution nodes in OSIRIS-SR, which
correspond to SPs and OAs in our model, are organized in a ring. During the
orchestration of a process, the execution migrates from nodes to nodes. One
main task of this migration is the transfer of execution data, called whiteboards,
from a current node to the succeeding nodes. To avoid losing data due to node
crashes, the whiteboards are replicated. The node identifiers in the ring are used
to determine on which nodes a whiteboard is replicated. This approach does not

69

5. Replicated CPM

explore the process structures for efficient replication and process execution, as
we do.

Several replication schemes have been proposed in the research area of data
streams and continuous queries and bear some similarities to our approach. [29]
applies a passive or backup replication mechanism to executions of continuous
queries. A continuous query is executed on peers with matching ids. The selec-
tion of replicas or backups is based on peer ids and neighbor proximity of the
peer-to-peer network. In peerCQ, selecting replicated peers from the neighbor
list localizes the replication process; in addition, peers belongs to this list do
not require to remain close to each other geographically, thus the probability of
collective failures becomes low. Our replication approach also provides similar
advantages by selecting OAs, which are closely associated in a composition. [50]
supports an overlay network of peers through which data flow from sensors to data
processing programs. Peers are grouped into cells. Active replication is applied
to the peers in the same cells to enhance the availability of the data flows.

Active replication ensures a fast reaction to failures, whereas passive reaction
usually has a slower reaction to failures. On the other hand, active replication
utilizes more resources than passive replication during normal processing. [49]
proposes an active replication scheme to a stream variant of map-reduce sys-
tem consisting of stages of map-reduce operators. Replication is applied among
data partitions of the same stage. The focus is on utilizing unused CPU cycles
for replication. [86] introduces a hybrid active/passive replication scheme to a
peer-to-peer stream processing system to deal with transient failures due to high
workload. It dynamically switches between active and passive schemes according
to the workload in order to utilize the best part of both schemes.

In [13], authors present an integrated approach for scale out and failure recov-
ery through explicit state management of stateful operators in stream processing
systems (SPS). In their implementation, check point states are backed up in
upstream operators. Checkpointing is a technique for preserving critical state in-
formation. This sort of upstream backup [39] requires nodes to maintain backups
until they have been processed by downstream operators or agents. On failure,
lost operations are supposed to be replayed by upstream nodes. In general, this
suffers from long recovery times when a large set of operations have to be re-
operated to restore stateful operators and cannot support state that depends on
the complete history. In our approach, scope manager inherently maintains in-
formation similar to checkpoints when control flows forwards from one OA to
another OA. We maintain and do the selection of backups by a combination of
both upstream and downstream orchestration agents. This type of selection pro-
cedure reduces overhead significantly and becomes very lucrative, in particular
when the replication degree is 1.

Checkpointing is also a method for recovering task execution in case of failure

70

5. Replicated CPM

in multicore processor system. In [31], authors propose a checkpointing based
task scheduling algorithm for multicore processor systems. The main idea is:
create a checkpoint, and prepare a recovery plan from failure. Checkpoints are
created when execution and transfer of the resulting data of each task node to
the subsequent processing node is completed. In case of failures (assumed single
node failure), it finds the closest ancestor node which is not affected by the
failure. Furthermore, recovery plan starts and recovers the processing results
from the saved state in that node. During normal execution it has overhead
as the communication time between nodes. Similarly, we do recoveries by taking
leverage from the scope manager in our context. In addition, we tolerate multiple
failures of orchestration agents by also selecting agents from the downstream of
any composition.

5.7 Summary

Replicated CPM enhances the availability of OAs when OAs intentionally or
accidentally leave the OA network. With replicated CPM, every orchestration
activity has a replication degree k, meaning that, orchestration activity is assigned
with a list of k + 1 OAs and can tolerate up to k simultaneous OA crashes.
We deigned our selection of backup OAs such that they reuse already stored
state information and keep the run-time overhead of services orchestration as low
as possible, particularly when the replication degree is 1, there are almost no
additional remote messages than a non-replicated orchestration.

Another important property of the backup selection is that the backups of an
OA can be unambiguously calculated by any OA at any time of the orchestration.
When an OA receives a CPM message, it can handle this message independently
regardless of whether the OA is an active OA, a backup OA, an active scope
manager or a backup scope manager. We have explicit rules for comparing the
causality of messages and purging messages when its necessary.

This chapter also includes examples and shows how we calculate selection of
backup OAs, handles CPM messages, while we have replication degree 1 and 2.

Finally, this chapter surveyed related work, focusing on the approaches in dis-
tributed orchestration and replication mechanisms for high reliability and avail-
ability. The replication in the related work is designed for application domains
like continuous queries and data stream processing. There, tasks assigned to pro-
cessing agents or peers are long lasting. It is therefore more suitable to have a
relatively stable set of replicas and even special-purpose multicast communication
among them.

71

Chapter 6

Performance Evaluation

This chapter presents the results of some performance studies of our work.
We developed a prototype of OA (as shown in Figure 5.1) in C++. The proto-

type runs as OMNet++ simulations [77] and messages as described in Chapter 4
are represented in Extensible Markup Language (XML). We choose simulation
over running prototype applications for performance study, because with simula-
tion we have better control over a wider variety of configurations and run-time
parameters, and thus can obtain better understanding of the factors that influ-
ence the performance. Of course, running simulations is more limited and less
realistic than running real applications. On the other hand, developing applica-
tions is more time consuming and we would have to spend considerable amount
of time on implementing the parts that are not relevant to the key research issues
of this work.

6.1 Performance of different services

orchestration approaches

We first study the performance of different service orchestration approaches, with
focus on the scalability to increasing number of services. We compare three
orchestration approaches:

• centralized orchestration with central engines,

• decentralized orchestration with continuation-passing messaging, and

• decentralized orchestration where an SA is instantiated and control is pre-
allocated to OAs prior to the execution of the SA.

72

6. Performance Evaluation

In the table and figures that follow, ctr stands for the centralized approach,
cpm for continuation-passing messaging, and dectr for decentralized approach
with process instantiation.

In the simulations, service sites are connected with 10mbps links. In central-
ized and traditional decentralized orchestration, the message size depends on the
sizes of the input and output of the service operations. In CPM orchestration,
the message size is also dependent on the sizes of the continuations and environ-
ments, which change during the execution of the SAs. In the simulations, the
orchestration messages are on average 10K bytes with ctr and dectr. The size of
a CPM message is on average 10K bytes multiplying the number of invocations
to service operations.

An execution of a service program at a service site takes on average 100ms. A
central engine takes on average 5ms to dispatch an activity. With cpm and dectr, a
service site works both as an SP and an OA. That is, the computational resources
of a site are used both for service execution and for services orchestration. A
service site takes on average 10ms to interpret a continuation-passing message
and 4ms to interpret an invocation message for an instantiated SA. With central
engines, a service site takes on average 2ms to dispatch an invocation.

Every SA consists of 4 parallel branches, each consisting of a sequence of 4
service invocations. The service sites are chosen randomly. The second service in
the second branch has a 20% chance of throwing a fault.

successful execution failed execution
ctr 0.88 0.87
cpm 0.82 1.52
dectr 0.98 1.68

Table 6.1: Response time of processes (in seconds)

Table 6.1 shows response time of the SAs when there is no resource contention.
For successful executions, cpm has the shortest response time. For failed execu-
tions, ctr outperforms decentralized approaches. The reason is that, invocations
of all services are routed via the central engine, so that a fault is notified to any
non-faulty branch by the next invocation. With decentralized approaches, a non-
faulty branch simply moves forward until a notification message from the scope
manager arrives.

To study performance under different workload, we adopt a closed queuing
model that keeps a constant system load during each simulation run. The work-
load of a site is given by its multiprogramming level, or MPL, which is the number
of concurrent service executions at that site. So MPL 6 means that each site con-
currently executes 6 services most of the time. Initially, a fixed number of SAs are

73

6. Performance Evaluation

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
gh

p
u
t

(p
ro

cs
p

er
se

co
n
d
)

MPL

cpm(20)
dectr(20)

ctr(20)
cpm(40)

dectr(40)
ctr(40)

Figure 6.1: Aggregate throughput of all servers

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
gh

p
u
t

(s
er

v
ic

es
p

er
se

co
n
d
)

MPL

cpm(20)
dectr(20)

ctr(20)
cpm(40)

dectr(40)
ctr(40)

Figure 6.2: Throughput of a service site

74

6. Performance Evaluation

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

R
es

p
on

se
ti

m
e

(s
ec

on
d
s)

MPL

cpm(20)
dectr(20)

ctr(20)
cpm(40)

dectr(40)
ctr(40)

Figure 6.3: SA response time

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

R
ec

ov
er

y
ti

m
e

(s
ec

on
d
s)

MPL

cpm(20)
dectr(20)

ctr(20)
cpm(40)

dectr(40)
ctr(40)

Figure 6.4: SA recovery time

75

6. Performance Evaluation

fed into the system. A new SA is started as soon as an existing one terminates.
First, we run simulations with 20 and 40 service sites. In the figures 6.1–

6.8, the numbers in parentheses are the numbers of service sites. Figure 6.1
shows the aggregate throughput of all service sites (measured in the number
of successfully completed SAs per second). Figure 6.2 shows the throughput
of individual service sites (measured in the number of services of successfully
completed SAs per second). Figure 6.3 shows the response time of the succeeded
SAs.

When there are 20 service sites, ctr outperforms the decentralized ones, with
both higher throughput and shorter response time. Note the slight unfairness
in this comparison: ctr has dedicated extra resource solely for the purpose of
orchestration, i.e., 21 vs. 20 machines.

When there are 40 service sites, the central engine gets congested, whereas
with decentralized approaches, throughput still grows with the increase of system
load. For decentralized approaches, cpm outperforms dectr, meaning that the
overhead due to process instantiation in dectr outweighs the overhead due to
larger messages and longer message interpretation time in cpm.

Figure 6.4 shows the recovery time of failed executions. Here, the recov-
ery time is the time from a fault is thrown till the recovery completes, i.e., it
includes the time for both fault propagation and compensation of completed ser-
vices. With the increase of workload, the recovery time of ctr increases faster
than the decentralized approaches, indicating that the performance of recovery
is more sensitive to the load at the central engine. dectr uses less time for recov-
ery than cpm, because the control for recovery was already allocated during SA
instantiation.

To further study the scalability of the different approaches, we next run sim-
ulations where the central engine is implemented as a pool of 10 engines. Dis-
patching the messages to the right engine incurs an extra overhead of 1ms. The
number of service sites now increases to 200 and 400.

The performance is shown in Figures 6.5–6.8. As we can see, even when
the number of service sites is 200, ctr cannot scale further up after MPL 5.
Decentralized approaches scales up much better than centralized ones.

Although in theory it is always possible to scale up a central server with
a larger engine pool, it is impractical when the number of active service sites
and their workload are dynamic and unknown. With decentralized approaches,
response time and throughput of service sites show identical curves with 200 and
400 service sites, meaning that the performance of individual service sites is nearly
independent of the number of other service sites around in the world.

76

6. Performance Evaluation

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
gh

p
u
t

(p
ro

cs
p

er
se

co
n
d
)

MPL

cpm(200)
dectr(200)

ctr(200)
cpm(400)

dectr(400)
ctr(400)

Figure 6.5: Aggregate throughput (pooled ctr)

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
gh

p
u
t

(s
er

v
ic

es
p

er
se

co
n
d
)

MPL

cpm(200)
dectr(200)

ctr(200)
cpm(400)

dectr(400)
ctr(400)

Figure 6.6: Throughput of a service site (pooled ctr)

77

6. Performance Evaluation

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

R
es

p
on

se
ti

m
e

(s
ec

on
d
s)

MPL

cpm(200)
dectr(200)

ctr(200)
cpm(400)

dectr(400)
ctr(400)

Figure 6.7: SA response time (pooled ctr)

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

R
ec

ov
er

y
ti

m
e

(s
ec

on
d
s)

MPL

cpm(200)
dectr(200)

ctr(200)
cpm(400)

dectr(400)
ctr(400)

Figure 6.8: SA recovery time (pooled ctr)

78

6. Performance Evaluation

6.2 Performance of web mashups

Execution of web mashups can be regarded as a hybrid of centralized and de-
centralized service orchestration. There is no central orchestration engine, but
the hosts of SAs (i.e. mashups) conduct the execution of the SAs in a centralized
manner.

Because there is no central engine, there is no single system-wide performance
bottleneck. The performance is therefore dependent on the individual hosts of
the SAs. However, invoking a remote service is more costly than invoking a local
procedure. The response time of an SA may be dependent on the distances of
the invoked services.

This section compares the response time of CPM orchestration with executions
of web mashups, i.e. orchestrations with SA hosts.

We use the example SA in Figure 2.2 for this study.
The SPs in the SA are chosen randomly from 100 SPs. With CPM orches-

tration, Sb and Ab are located in the same LAN. We vary the loop size with 1,
10, 100 and 1000 iterations. Figure 6.9 shows the average response time of the
successful executions. The performance gain of CPM orchestration increases with
the size of the loop. Therefore, if Sb, or the cloud hosting Sb, offers the function
of an OA, the overall performance of Sb may appear to be increased significantly.

1

10

100

1 10 100 1000

1.79 2.69

12.5

103

1.67

5.85

45.3

410

R
es

p
on

se
ti

m
e

(s
ec

on
d
s)

Number of iterations

SA host
cpm

Figure 6.9: Response time of the example SA

Next, we study the response time in different specific scenarios:

1. the SA is orchestrated by the SA host that is near Sb;

2. the SA is orchestrated by the SA host that is far from Sb;

79

6. Performance Evaluation

3. the SA is orchestrated with CPM, Sb is far from the SA host and the
coverage of Sb is known;

4. the SA is orchestrated with CPM, Sb is far from the SA host, the coverage of
Sb is unknown and the algorithm learnInOrch is used in the first iterations
to learn about Sb (Section 3.5 and Figure 3.5).

0

1

2

3

4

5

2 4 6 8 10 12 14 16 18 20

R
es

p
on

se
ti

m
e

(s
ec

on
d
s)

Number of iterations

SA host far
SA host near

cpm, known SP
cpm, learn SP

Figure 6.10: Response time of a simple loop

Figure 6.10 shows the result of the experiment where the SA consists of a
single loop. When the SA host is near Sb, orchestration by the SA host has short
response time (Scenario 1). However, when the SA host is far from Sb and the SA
is still orchestrated by the SA host (Scenario 2), the response time grows quickly
with the number of iterations of the loop.

When the SA is orchestrated with CPM and the coverage of Sb is known
(Scenario 3), the response time of the SA is very close to Scenario 2, although
the SA host is far from Sb.

When the coverage of Sb is unknown (Scenario 4), the first few iterations incur
longer delays, because the OAs have to do some extra work to learn about the Sb.
As soon as the OAs have learned the coverage of Sb, the delays of the following
iterations are the same as when the coverage is known. In this particular case,
the cost of the learning, i.e. the extra delay in the first few iterations (compared
to Scenario 3), is less than 1 second.

80

6. Performance Evaluation

6.3 Performance of replicated CPM

Now, we study the performance of OAs with different degrees of replication and
at different workload.

In our experiment, there are 100 SPs, 10 of the which are OAs as well. That
is, these 10 sites both process service invocations and contribute to orchestration
of services. Every OA covers 10 SPs. The distances between an OA and the SPs
it covers are relatively short. An SA consists of 4 sequential invocations to service
operations at different SPs. These SPs are chosen randomly.

Figure 6.11 shows the aggregate throughput of all SPs (measured in the num-
ber of completed SA executions per second). Figure 6.12 shows the average
response time of the SAs.

It is not surprising that the higher the replication degree, the more run-time
overhead the orchestration has, and thus the lower throughput and longer re-
sponse time.

Next, we analyze where the run-time overhead comes from.

160

170

180

190

200

210

220

230

3 6 9

T
h
ro

u
gh

p
u
t

(S
A

s/
se

c)

MPL

k = 0
k = 1
k = 2
k = 3

Figure 6.11: Throughput of 100 SPs

81

6. Performance Evaluation

1.5

2

2.5

3

3.5

4

4.5

3 6 9

R
es

p
on

se
ti

m
e

(s
ec

)

MPL

k = 0
k = 1
k = 2
k = 3

Figure 6.12: Response time of SAs

Figure 6.13 shows the average resource utilization at OAs when the SP MPL is
6. We only show the resource utilization at one particular MPL, because although
the total resource utilization varies at different MPLs, the proportion of different
kinds of message handling is almost the same through all MPLs.

The Figure shows the total resource utilization, like 77% etc., and the por-
tions for specific tasks, like “P” for processing service operations, “I” for message
interpretation, and so on.

In Figure 6.13, we can see that as the degree of replication increases, the overall
overhead of backup management (“B” and “G”) increases, and the capability of
normal service orchestration (“I” and “S”) and service operation execution (“P”)
decreases. Consequently the overall SP throughput decreases and SA response
time increases, as shown in Figures 6.11 and 6.12.

It is interesting to notice that when k = 1, the overhead of backing up orches-
tration states (“B”) is less than the overhead of purging the backup states (“G”).
The reason for this is that when an OA A forwards the orchestration to the next
OA A′, c.A+ = {A,A′} in step C1 of Section 5.3. In other words, A already has
the state locally and the overhead of backing up the state is therefore low.

It is also interesting to notice that when k increases, the overhead of purging
the backup states (“G”) decreases. This is because an OA backups up the states
of several stages of the same orchestration. When it stores the backup state of a
new stage, it also purges the state of an earlier stage. In other words, the larger
overlap of c0.A and c.A+ in step C1.c of Section 5.3 leads to the decrease of “G”.

We also experimented with the situation where an OA becomes unavailable.
Although we made some observations, we were not able to to draw definitive

82

6. Performance Evaluation

80%

P

I

k = 3

79%

P

I

k = 2

78%

P

I

k = 1

77%

P

I

k = 0

S
G
B

P: service process, I: message interpretation, S: scope management

B: store/update of backup states, G: purge of backup states

Figure 6.13: Resource utilization at OAs at MPL 6

conclusions. When an OA becomes unavailable, other OAs will handle the un-
availability. We expected that this will cause a sudden increase of workload which
will influence the overall performance of the system. For example, when k is 2
and SP MPL is 6, an OA covering 10 SPs is handling (most of the time) 60 CPM
messages and backing up 120 for other OAs. If an OA crashes, 180 messages will
be handled by other OAs. However, in our experiments, we could not observe
significant overall performance hiccup. The main observable difference in overall
performance is that MPL of OAs has increased nearly 10%, both during handling
of the unavailability and afterwards. It turns out that the messages that the
unavailable OA was actively orchestrating (60 in this example) were the primary
contributor to the increase of load at other OAs. The backup messages (120 in
this example) contributed only very little to the increase of load at other OAs.
More precisely, it is primarily the “I” part in Figure 6.13 that contributed to the
increase of load at the remaining OAs.

6.4 Summary

We evaluated the performance of decentralized service orchestration with CPM
by running simulations.

First, we compared the scalability of one centralized and two decentralized
orchestration approaches. Decentralized approaches are clearly more scalable
than centralized ones. This also includes the cases where the central engine is
implemented as a pool of servers.

83

6. Performance Evaluation

Second, we compared CPM orchestration with web mashups, which can be
regarded as a hybrid of centralized and decentralized approaches. Since CPM
takes into account the structure of a composition and the geographical locations
of the OAs and SPs, when a composition involves repeated invocations to a
particular service, CPM orchestration outperforms web mashups.

Finally, we experimented with replicated CPM. Clearly, replication incurs a
performance penalty. We further analyzed specifically where replication intro-
duced run-time overheads.

84

Chapter 7

Conclusion

In this final chapter, we summarize the main contributions of this thesis work,
point out its limitations and shed some light on possible future work.

7.1 Contributions

We present the contributions of this thesis work according to the Problem State-
ment (Section 1.4) in the Introduction of this dissertation.

Q1. Is it possible to orchestrate open services without a central engine
and without pre-allocation of control and resources?

We proposed continuation-passing messaging (CPM), as a new approach to
decentralized services orchestration. Instead of central engines, a set of orches-
tration agents, which are outside of any administration boundaries, jointly or-
chestrate open services by exchanging and interpreting orchestration messages.
Information that is necessary for the orchestration of composition of open services,
including execution plans and run-time states, is encapsulated in CPM messages.
Our approach is different from most of the earlier decentralization approaches
in that there is no need to instantiate the composite services and pre-allocate
resources before their executions. We argue that this is more appropriate for the
orchestration of open services.

For the aspects we have investigated, in particular, for the control of execu-
tions according the composition specification, our answer to the question is yes,
it is possible to orchestrate open services without central engines and without
pre-allocation of control and resources.

We also conducted performance studies and compared our approach with cen-
tralized approaches and with decentralized approaches that pre-allocate control

85

and resource before the executions of composite services. The studies show that
decentralized approaches are clearly more scalable to the increasing number of
concurrent services than the centralized ones.

Q2. Is it possible to handle exceptions at run time when the execution
is dynamically spread around in the distributed environment?

With service-oriented computing, run-time exceptions are typically captured
and handled by central engines or dedicated resources pre-allocated prior to the
execution of composite services. We introduced two mechanisms to handle run-
time exceptions. First, we dynamically generate recovery plans during the or-
chestration of composite services and encapsulate them in CPM messages in the
form of compensation continuations. Second, we use scope managers to prop-
agate and handle exceptions. When an exception occurs, it is captured locally
by the current orchestration agent. The agent can already handle the local part
of the exception. In addition, it notifies the enclosing scope manager to further
propagate and handle the exception.

So our answer to this question is yes, it is possible to handle exceptions at
run time when the execution is dynamically spread around in the distributed
environment.

Q3. Is it possible to tolerate unexpected failures when the execution is
dynamic and distributed?

To deal with the unexpected unavailability of the orchestration agents at run
time, we presented a replication scheme that utilizes and expands the run-time
status information already spread in the distributed orchestration environment.
With a replication degree k, the approach can tolerate up to k simultaneous
crashes of orchestration agents. Our replication scheme is special in that it utilizes
the decentralized nature of CPM where information about the control and run-
time states of an orchestration is already spread and partially replicated. We
have also run experiments to study the extra run-time overhead of the replication
scheme.

Our answer to this question is yes, it is possible to tolerate unexpected failures
when the execution is dynamic and distributed.

Q. Is it possible to perform reliable orchestration of composite open services?

We have only investigated some aspects of decentralized orchestration of open
services, namely conduct of the execution of a composition according to the speci-
fication, handling of exceptions and unexpected failures. We believe these are key
to the success for reliable orchestration of composite open services. Our research
indicates promising possibilities. Still, our work is very limited and there are a

86

number of open issues, as discussed in the following sub-sections.

7.2 Limitations

We chose to use simulation to evaluate our work, which is clearly more restricted
in some respects than using a working application. We believe this is the right
choice, because we can then focus on the core technical issues within a limited
time frame.

There are still a number of issues to be addressed before our approach can be
practically adopted.

Security is always an important concern of distributed applications. We have
not worked on security issues yet, but our approach is already useful when used in
special cases. For example, if the orchestration agents are deployed at geograph-
ically different places by the same organization or a set of trusted applications,
CPM orchestration can be used as a smart pool of orchestration engines where
the orchestration activities are dispatched to the most appropriate engines.

We have currently focused on control flows of composite services. Manage-
ment of data flows is also important, in particular when the volume of data is
significant, such as in data-intensive applications. In our current work, we can use
dependency links between activities (Section 4.8) as a way of explicitly defining
data flows. More work is needed to reduced the amount of data transfer during
service executions.

Currently, the only operation on data is assignment, as is the case in web
service standards like WS-BPEL [57]. To develop real-world applications, a richer
data-manipulation language is needed.

7.3 Future work

Concurrent updates of data at different parallel branches may leave the data val-
ues non-deterministic. We have earlier proposed an approach to data consistence
through scope management [84]. We are currently investigating conflict-free data
types [69] as a means to achieving data consistence.

Orchestrating services does consume a significant amount of resource. An
incentive model that rewards these orchestration-offering service providers would
encourage more to offer as orchestration agents. For example, applications that
consist of services from these providers should have higher priority when scheduled
in orchestration agents and should be more entitled to higher degree of replication.

87

Our performance study shows that replicated executions incur a performance
penalty. Unnecessarily high degree of replication should therefore be avoided.
Not all activities in an application have the same requirement on availability. We
are interested in an adaptive replication scheme where different activities of the
same execution may have different degrees of replication.

More broadly, we have shown that continuations-passing messaging can be
regarded as a new form of decentralized execution of programs. It would be
interesting to see in which new areas this new form of program execution can find
its application.

88

Appendix: Publications

This appendix presents an overview of the publications which this dissertation is
based on.

Chapters 3 and 4 are based on Papers I, II and III.
Chapter 5 is based on Paper IV and V.
Chapter 6 is based on the performance results in Papers I, II and V.

Paper I

I. Weihai Yu and Abul Ahsan Md Mahmudul Haque. Decentralised web-
services orchestration with continuation-passing messaging. International
Journal of Web and Grid Services (IJWGS), 7[3], pages 304–330, 2011.

In this paper, we presented a new approach to decentralized process orchestra-
tion using continuation-passing messaging. This is an early version of our work,
where the service providers are themselves responsible for the orchestration of the
processes they involve.

Service-oriented architecture is primarily adopted for cost-effective construc-
tion of enterprise applications. Meanwhile, many web applications start to pro-
vide open APIs to be readily applicable by a wider range of applications. Whilst
the traditional centralized approaches to orchestrating composite services are suc-
cessful in enterprise service-oriented architectures, they are subject to serious
limitations for orchestrating services in the wider range of open web applica-
tions. Dealing with these limitations calls for decentralized services orchestra-
tion. However, existing decentralized approaches are themselves faced with a
number of technical challenges, due primarily to lack of overview of dynamic
process status. Tasks like fault handling and recovery are generally considered
difficult for decentralized approaches. We introduced a decentralized approach
based on continuation-passing messaging where control and status information
about service executions is carried in messages for services orchestration. We

89

demonstrated that this new decentralized approach is capable of handling dy-
namic run-time tasks like fault handling and recovery. Our experimental results
show performance advantage of the approach, both in normal executions and in
case of service failures.

Papers II and III

II. Abul Ahsan Md Mahmudul Haque and Weihai Yu. Peer-to-peer orches-
tration of web mashups. International Journal of Adaptive, Resilient and
Autonomic Systems (IJARAS), 5[3], pages 40–60, 2014.

This paper explores the idea of services orchestration, specially web mashups,
which takes leverage from a network of agents. This is an extension to our
earlier work which looks too intrusive as it requires that service providers support
message interpretation. Although this might be arguably acceptable for enterprise
applications, it is too strong as a requirement for open services.

Web mashups are web applications built on top of external web services
through their open APIs. As mashups are becoming increasingly complex, there
is a need for systematic support for their development and orchestration. This
paper presents a peer-to-peer approach to mashup orchestration where a network
of agents carry out orchestration using continuation-passing messaging. The ap-
proach supports exception handling and recovery. Our experimental results show
clear performance gains of the approach over traditional centralized orchestra-
tion in service-oriented computing and orchestration done by application servers
hosting mashups.

This paper was initially published in

III. Abul Ahsan Md Mahmudul Haque, Weihai Yu, Anders Andersen, and
Randi Karlsen. Peer-to-peer orchestration of web mashups. In Proceed-
ings of the 14th International Conference on Information Integration and
Web-based Applications & Services, (iiWAS’12), pages 294–298, ACM, 2012.

Later the paper was among the short list of the papers nominated for the
IJARAS Journal.

90

Papers IV and V

IV. Abul Ahsan Md Mahmudul Haque and Weihai Yu. Towards a dynamic
replication scheme for processes with open services. In 2013 IEEE 6th
International Conference on Service-Oriented Computing and Applications
(SOCA’13), pages 366–370, Dec. 2013.

In this paper, we present the idea of a dynamic replication scheme for a de-
centralized orchestration approach, where a network of agents collectively orches-
trate open services using continuation-passing messaging. The scheme utilizes
the knowledge about the control structures that are encapsulated in messages
and the run-time states that are already spread in the distributed environment
to enhance the reliability of the processes.

Later, we extended our work and published the following paper which received
“Best Paper Award” in the conference.

V. Abul Ahsan Md Mahmudul Haque and Weihai Yu. Decentralized and reli-
able orchestration of open services. In The Sixth International Conferences
on Advanced Service Computing SERVICE COMPUTATION, pages 1–8,
May 2014.

This paper enhances our previous work. We developed an OA prototype for
replicated CPM and studied the performance of OAs with different degrees of
replication and at different workload.

Next, we include Papers I, II and V for further convenience.

91

References

[1] Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, and
C. Mohan. Functionality and limitations of current workflow management
systems. submitted to IEEE Expert, 1997. 54

[2] Peter A. Alsberg and John D. Day. A principle for resilient sharing
of distributed resources. In Proceedings of the 2Nd International Conference
on Software Engineering, ICSE ’76, pages 562–570, Los Alamitos, CA, USA,
1976. IEEE Computer Society Press. 17

[3] Lorenzo Alvisi and Keith Marzullo. Message logging: Pessimistic,
optimistic, causal, and optimal. IEEE Trans. Software Eng., 24[2]:149–159,
1998. 18

[4] Anders Andersen. SNOOP: privacy preserving middleware for secure
multi-party computations. In Proceedings of the 13th Workshop on Adap-
tive and Reflective Middleware, ARM@Middleware 2014, Bordeaux, France,
December 8-12, 2014, pages 8:1–8:6, 2014. 7

[5] Daniel Barbará, Sharad Mehrotra, and Marek Rusinkiewicz.
INCAs: Managing dynamic workflows in distributed environments. Journal
of Database Management, 7[1]:5–15, 1994. 55

[6] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-time
monitoring of instances and classes of web service compositions. In 2006
IEEE International Conference on Web Services (ICWS’06), pages 63–71,
Sept 2006. 17

[7] Joel F. Bartlett. A nonstop kernel. In Proceedings of the Eighth ACM
Symposium on Operating Systems Principles, SOSP ’81, pages 22–29, New
York, NY, USA, 1981. ACM. 17

148

REFERENCES

[8] Boualem Benatallah, Marlon Dumas, and Quan Z. Sheng. Facil-
itating the rapid development and scalable orchestration of composite web
services. Distributed and Parallel Databases, 17[1]:5–37, 2005. 13, 54, 55

[9] Tim Berners-Lee. The World Wide Web: Past, present and fu-
ture. https://www.w3.org/People/Berners-Lee/1996/ppf.html, 1996.
Accessed: 2017-01-05. 1

[10] Anita Borg, Jim Baumbach, and Sam Glazer. A message system
supporting fault tolerance. In Proceedings of the Ninth ACM Symposium on
Operating Systems Principles, SOSP ’83, pages 90–99, New York, NY, USA,
1983. ACM. 17

[11] László Böszörményi, Robert Eisner, and Herbert Groiss. Adding
distribution to a workflow management system. In DEXA Workshop, pages
17–21, 1999. 13, 55

[12] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwita-
man Datta. Peerson: P2P social networking: early experiences and in-
sights. In Proceedings of the Second ACM EuroSys Workshop on Social
Network Systems(SNS), pages 46–52, 2009. 4

[13] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kaly-
vianaki, and Peter Pietzuch. Integrating scale out and fault tolerance
in stream processing using operator state management. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 725–736, New York, NY, USA, 2013. ACM. 70

[14] Girish Chafle, Sunil Chandra, Pankaj Kankar, and Vijay Mann.
Handling faults in decentralized orchestration of composite web services. In
Boualem Benatallah, Fabio Casati, and Paolo Traverso, edi-
tors, ICSOC, 3826 of Lecture Notes in Computer Science, pages 410–423.
Springer, 2005. 13, 55

[15] Girish Chafle, Sunil Chandra, Vijay Mann, and Mangala Gowri
Nanda. Decentralized orchestration of composite web services. In Proceed-
ings of the 13th international conference on World Wide Web (WWW 2004),
pages 134–143, 2004. 14, 69

[16] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Trans. Comput. Syst.,
3[1]:63–75, 1985. 18

149

https://www.w3.org/People/Berners-Lee/1996/ppf.html

REFERENCES

[17] M. Chereque, D. Powell, P. Reynier, J.-L. Richier, and J. Vo-
iron. Active replication in delta-4. In Fault-Tolerant Computing, 1992.
FTCS-22. Digest of Papers., Twenty-Second International Symposium on,
pages 28–37, 1992. 18

[18] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans
Kaashoek, and Robert Morris. Designing a DHT for low latency and
high throughput. In 1st Symposium on Networked Systems Design and Im-
plementation (NSDI 2004), March 29-31, 2004, San Francisco, California,
USA, Proceedings, pages 85–98, 2004. 33

[19] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and
David B. Johnson. A survey of rollback-recovery protocols in message-
passing systems. ACM Comput. Surv., 34[3]:375–408, September 2002. 18

[20] Nicole C. Engard. Library mashups : exploring new ways to deliver
library data. Information Today, Medford, 2009. 11

[21] Thomas Erl. Service-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall, second edition, 2005. 1

[22] Georgios John Fakas and Bill Karakostas. A peer to peer (P2P)
architecture for dynamic workflow management. Information & Software
Technology, 46[6]:423–431, 2004. 13, 54, 55

[23] Georgios John Fakas and Bill Karakostas. A peer to peer (P2P)
architecture for dynamic workflow management. Information & SW Tech-
nology, 46[6]:423–431, 2004. 69

[24] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD-machine, and the lambda-calculus. In 3rd Working Conference on the
Formal Description of Programming Concepts, pages 193–217, August 1986.
56

[25] Roy T. Fielding and Richard N. Taylor. Principled design of the
modern web architecture. In Proceedings of the 22Nd International Con-
ference on Software Engineering, ICSE ’00, pages 407–416, New York, NY,
USA, 2000. ACM. 2

[26] Pierre Fraigniaud and Philippe Gauron. D2B: A de bruijn based
content-addressable network. Theor. Comput. Sci., 355[1]:65–79, 2006. 33

[27] Daniel P. Friedman and Mitchell Wand. Essentials of Programming
Languages. MIT Press, 2008. 55

150

REFERENCES

[28] Felix C. Gärtner. Fundamentals of fault-tolerant distributed comput-
ing in asynchronous environments. ACM Comput. Surv., 31[1]:1–26, March
1999. 17

[29] B. Gedik and Ling Liu. A scalable peer-to-peer architecture for dis-
tributed information monitoring applications. IEEE Transactions on Com-
puters, 54[6]:767–782, 2005. 70

[30] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random
walks in peer-to-peer networks: Algorithms and evaluation. Perform. Eval.,
63[3]:241–263, 2006. 33

[31] Shohei Gotoda, Minoru Ito, and Naoki Shibata. Task scheduling
algorithm for multicore processor system for minimizing recovery time in
case of single node fault. In Proceedings of the 2012 12th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012),
CCGRID ’12, pages 260–267, Washington, DC, USA, 2012. IEEE Computer
Society. 71

[32] P. Krishna Gummadi, Ramakrishna Gummadi, Steven D. Grib-
ble, Sylvia Ratnasamy, Scott Shenker, and Ion Stoica. The im-
pact of DHT routing geometry on resilience and proximity. In Proceedings of
the ACM SIGCOMM 2003 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication, August 25-29, 2003,
Karlsruhe, Germany, pages 381–394, 2003. 33

[33] Claus Hagen and Gustavo Alonso. Exception handling in work-
flow management systems. Software Engineering, IEEE Transactions on,
26[10]:943–958, 2000. 16

[34] Grégoire Hamon. A denotational semantics for stateflow. In Wayne
Wolf, editor, EMSOFT, pages 164–172. ACM, 2005. 56

[35] Abul Ahsan Md Mahmudul Haque and Weihai Yu. Towards a dy-
namic replication scheme for processes with open services. In 2013 IEEE 6th
International Conference on Service-Oriented Computing and Applications,
pages 366–370, Dec 2013. 6, 7

[36] Abul Ahsan Md Mahmudul Haque and Weihai Yu. Decentralized
and reliable orchestration of open services. In The Sixth International Con-
ferences on Advanced Service Computing SERVICE COMPUTATION 2014,
pages 1–8, May 2014. 6, 7

151

REFERENCES

[37] Abul Ahsan Md Mahmudul Haque and Weihai Yu. Peer-to-peer
orchestration of web mashups. International Journal of Adaptive, Resilient
and Autonomic Systems (IJARAS), 5[3]:40–60, July 2014. 6

[38] Abul Ahsan Md Mahmudul Haque, Weihai Yu, Anders Ander-
sen, and Randi Karlsen. Peer-to-peer orchestration of web mashups. In
Proceedings of the 14th International Conference on Information Integration
and Web-based Applications & Services, IIWAS ’12, pages 294–298, New
York, NY, USA, 2012. ACM. 6

[39] J. H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stone-
braker, and S. Zdonik. High-availability algorithms for distributed
stream processing. In 21st International Conference on Data Engineering
(ICDE’05), pages 779–790, April 2005. 70

[40] Kjetil Jacobsen. Practical Fault-Tolerance for Mobile Agents. PhD thesis,
university of Tromsø, Faculty of Science and Technology, Department of
Computing Science, 2011. 6

[41] Suresh Jagannathan. Communication-passing style for coordination lan-
guages. In David Garlan and Daniel Le Métayer, editors, COOR-
DINATION, 1282 of Lecture Notes in Computer Science, pages 131–149.
Springer, 1997. 56

[42] Peter John Landin. The mechanical evaluation of expressions. Computer
Journal, 6[4]:308–320, 1964. 56

[43] Frank Leymann and Dieter Roller. Production Workflow: Concepts
and Techniques. Prentice Hall, second edition, 2005. 10

[44] Guoli Li and Hans-Arno Jacobsen. Composite subscriptions in
content-based publish/subscribe systems. In Gustavo Alonso, editor,
Middleware, 3790 of Lecture Notes in Computer Science, pages 249–269.
Springer, 2005. 55

[45] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen. Adaptive
content-based routing in general overlay topologies. In Valérie Issarny
and Richard E. Schantz, editors, Middleware, 5346 of Lecture Notes
in Computer Science, pages 1–21. Springer, 2008. 55

[46] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans
Kaashoek. Bandwidth-efficient management of DHT routing tables. In
2nd Symposium on Networked Systems Design and Implementation (NSDI
2005), May 2-4, 2005, Boston, Massachusetts, USA, Proceedings., 2005. 33

152

REFERENCES

[47] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma,
and Steven Lim. A survey and comparison of peer-to-peer overlay network
schemes. IEEE Communications Surveys and Tutorials, 7[1-4]:72–93, 2005.
33

[48] Dragos-Anton Manolescu. Workflow enactment with continuation and
future objects. In OOPSLA, pages 40–51. ACM, 2002. 55

[49] A. Martin, C. Fetzer, and A. Brito. Active replication at (almost)
no cost. In Proceedings of the 30th IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 21–30, 2011. 70

[50] R. Martins, P. Narasimhan, L. Lopes, and F. Silva. Lightweight
fault-tolerance for peer-to-peer middleware. In Proceedings of the 29th IEEE
Symposium on Reliable Distributed Systems (SRDS), pages 313–317, 2010.
70

[51] Nikola Milanovic and Miroslaw Malek. Current solutions for web
service composition. IEEE Internet Computing, 8[6]:51–59, 11 2004. Op-
phavsrett - Copyright IEEE Computer Society Nov 2004; Sist oppdatert -
2010-06-06; CODEN - IESEDJ. 9

[52] Thorsten Möller and Heiko Schuldt. A platform to support de-
centralized and dynamically distributed P2P composite OWL-S service exe-
cution. In Karl M. Göschka, Schahram Dustdar, Frank Leymann,
and Vladimir Tosic, editors, MW4SOC, ACM International Conference
Proceeding Series, pages 24–29. ACM, 2007. 13, 55

[53] Thorsten Möller and Heiko Schuldt. A platform to support de-
centralized and dynamically distributed P2P composite OWL-S service ex-
ecution. In Proceedings of the 2nd Workshop on Middleware for Service
Oriented Computing (MW4SOC), pages 24–29, 2007. 69

[54] Luc Moreau. The PCKS-machine: An abstract machine for sound evalu-
ation of parallel functional programs with first-class continuations. In Don-
ald Sannella, editor, ESOP, 788 of Lecture Notes in Computer Science,
pages 424–438. Springer, 1994. 56

[55] Peter Muth, Dirk Wodtke, Jeanine Weißenfels, Ange-
lika Kotz Dittrich, and Gerhard Weikum. From centralized work-
flow specification to distributed workflow execution. J. Intell. Inf. Syst.,
10[2]:159–184, 1998. 13, 54

153

REFERENCES

[56] Mangala Gowri Nanda, Satish Chandra, and Vivek Sarkar. De-
centralizing execution of composite web services. In John M. Vlissides
and Douglas C. Schmidt, editors, OOPSLA, pages 170–187. ACM, 2004.
13, 54

[57] Organization for the Advancement of Structured Information Standards
(OASIS). Web Services Business Process Execution Language (WS-BPEL)
Version 2.0, April 2007. 10, 15, 35, 36, 38, 87

[58] Cesare Pautasso, Thomas Heinis, and Gustavo Alonso. Autonomic
resource provisioning for software business processes. Information & Software
Technology, 49[1]:65–80, 2007. 54

[59] Chris Peltz. Web services orchestration and choreography. IEEE Com-
puter, 36[10]:46–52, 2003. 9

[60] Heorhi Raik. Service Composition in Dynamic Environments: From The-
ory to Practice. PhD thesis, University of Trento, 2012. 10

[61] Brian Randell. System structure for software fault tolerance. IEEE
Trans. Software Eng., 1[2]:221–232, 1975. 17, 18

[62] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M.
Karp, and Scott Shenker. A scalable content-addressable network. In
SIGCOMM, pages 161–172, 2001. 33

[63] Hajo A. Reijers. Design and Control of Workflow Processes: Business
Process Management for the Service Industry. Springer-Verlag, Berlin, Hei-
delberg, 2003. 10

[64] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale peer-to-peer systems.
In Middleware 2001, IFIP/ACM International Conference on Distributed
Systems Platforms Heidelberg, Germany, November 12-16, 2001, Proceed-
ings, pages 329–350, 2001. 33

[65] Bart Willem Schermer et al. Software agents, surveillance, and the
right to privacy: a legislative framework for agent-enabled surveillance. Lei-
den University Press, 2007. 21

[66] Fred B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Comput. Surv., 22[4]:299–319, Decem-
ber 1990. 18

154

REFERENCES

[67] Joerg Schneider, Barry Linnert, and Lars-Olof Burchard. Dis-
tributed workflow management for large-scale grid environments. In SAINT,
pages 229–235. IEEE Computer Society, 2006. 13, 55

[68] Christoph Schuler, Roger Weber, Heiko Schuldt, and Hans-
Jörg Schek. Scalable peer-to-peer process management - the OSIRIS ap-
proach. In ICWS, pages 26–34. IEEE Computer Society, 2004. 13, 33, 54,
69

[69] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek
Zawirski. Conflict-free replicated data types. In Xavier Défago,
Franck Petit, and Vincent Villain, editors, Proceedings of the 13th
International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS), 6976 of Lecture Notes in Computer Science, pages
386–400. Springer, 2011. 87

[70] Ion Stoica, Robert Morris, David R. Karger, M. Frans
Kaashoek, and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In SIGCOMM, pages 149–160, 2001.
33

[71] Nenad Stojnic and Heiko Schuldt. OSIRIS-SR: a scalable yet reliable
distributed workflow execution engine. In Proceedings of the 2nd ACM SIG-
MOD Workshop on Scalable Workflow Execution Engines and Technologies,
SWEET@SIGMOD 2013, New York, New York, USA, June 23, 2013, pages
3:1–3:12, 2013. 33, 69

[72] Robert E. Strom and Shaula Yemini. Optimistic recovery in dis-
tributed systems. ACM Trans. Comput. Syst., 3[3]:204–226, 1985. 18

[73] Andrew S. Tanenbaum and Maarten van Steen. Distributed Sys-
tems: Principles and Paradigms (2Nd Edition). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2006. 14

[74] Francesco Tiezzi. Specification and Analysis of Service-Oriented Appli-
cations. PhD thesis, Universita degli ‘ Studi di Firenze, April, 2009. 1

[75] Eneia Todoran and Nikolaos Papaspyrou. Continuations for parallel
logic programming. In PPDP, pages 257–267, 2000. 56

[76] Sipat Triukose, Zhihua Wen, and Michael Rabinovich. Measuring
a commercial content delivery network. In Proceedings of the 20th Inter-
national Conference on World Wide Web, WWW ’11, pages 467–476, New
York, NY, USA, 2011. ACM. 33

155

REFERENCES

[77] András Varga and Rudolf Hornig. An overview of the OMNeT++
simulation environment. In Sándor Molnár, John R. Heath, Olivier
Dalle, and Gabriel A. Wainer, editors, SimuTools, page 60. ICST,
2008. 72

[78] The World Wide Web Consortium (W3C). Web Services activity.
https://www.w3.org/2002/ws/. Accessed: 2016-04-11. 11

[79] The World Wide Web Consortium (W3C). Web Services glossary.
https://www.w3.org/TR/ws-gloss. Accessed: 2017-01-06. 2, 11

[80] Mathias Weske. Bussiness Process Management: Concepts, Languages,
Architectures. Springer, 2007. 10

[81] M. Wieland, K. Gorlach, D. Schumm, and F. Leymann. Towards
reference passing in web service and workflow-based applications. In Proceed-
ings of the 13th IEEE International Enterprise Distributed Object Computing
Conference (EDOC ’09), pages 109–118, 2009. 4

[82] Xinfeng Ye. Towards a reliable distributed web service execution engine.
In ICWS, pages 595–602. IEEE Computer Society, 2006. 13, 55

[83] Jin Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding
mashup development. Internet Computing, IEEE, 12[5]:44 –52, sept.-oct.
2008. 4, 12

[84] Weihai Yu. Decentralized orchestration of bpel processes with execution
consistency. In Advances in Data and Web Management, Joint International
Conferences, APWeb/WAIM 2009, pages 665–670. Springer-Verlag, 2009. 87

[85] Weihai Yu and Abul Ahsan Md Mahmudul Haque. Decentralised
web-services orchestration with continuation-passing messaging. Interna-
tional Journal of Web and Grid Services, 7[3]:304–330, 2011. 6, 69

[86] Zhe Zhang, Yu Gu, Fan Ye, Hao Yang, Minkyong Kim, Hui Lei,
and Zhen Liu. A hybrid approach to high availability in stream processing
systems. In Proceedings of IEEE 30th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 138–148, 2010. 70

[87] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Anthony D. Joseph,
and John Kubiatowicz. Exploiting routing redundancy via structured
peer-to-peer overlays. In 11th IEEE International Conference on Network
Protocols (ICNP 2003), 4-7 November 2003, Atlanta, GA, USA, pages 246–
257, 2003. 33

156

https://www.w3.org/2002/ws/
https://www.w3.org/TR/ws-gloss

	Contents
	List of Figures
	Nomenclature
	1 Introduction
	1.1 Web services as open services
	1.2 Service composition and service orchestration
	1.3 An evolution of web technology and open services
	1.4 Problem statement
	1.5 Summary of contribution
	1.6 Brief overview of approach
	1.7 Limitations
	1.8 Dissertation outline

	2 Background
	2.1 Composition of services
	2.2 Open web services
	2.3 Orchestration of open services
	2.4 Dencentralized services orchestration
	2.5 Challenges with decentralized services orchestration
	2.5.1 Fault at services
	2.5.2 Fault at orchestration elements

	2.6 Summary

	3 Approach Overview
	3.1 System model
	3.2 Continuation-passing messaging
	3.3 CPM by example
	3.4 Organization of an OA network
	3.5 Covering SPs
	3.6 Related work
	3.7 Summary

	4 CPM in Detail
	4.1 Messages
	4.2 Environment and contexts
	4.3 Commence and termination of orchestration
	4.4 Scopes
	4.5 Structural compositions
	4.6 Service operations
	4.7 Fault handling
	4.8 Dependency links
	4.9 Example
	4.9.1 Service installation
	4.9.2 Successful execution
	4.9.3 Rollback after a fault

	4.10 Related work
	4.11 Summary

	5 Replicated CPM
	5.1 Overview
	5.2 Selection of backup OAs
	5.3 Normal execution
	5.4 Handling unavailability of OAs
	5.5 Example
	5.5.1 Replication degree 1
	5.5.2 Replication degree 2

	5.6 Related work
	5.7 Summary

	6 Performance Evaluation
	6.1 Performance of different services orchestration approaches
	6.2 Performance of web mashups
	6.3 Performance of replicated CPM
	6.4 Summary

	7 Conclusion
	7.1 Contributions
	7.2 Limitations
	7.3 Future work

	Appendix: Publications
	References
	Blank Page
	Blank Page

