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ABSTRACT
This paper presents the implementation of an adaptive fading
multiplicative extended Kalman filter (AFMEKF), applied
to the problem of attitude estimation in the context of
quadrotors. The extended Kalman filter is adapted for use
with quaternions and made adaptive to account for inaccurate
measurement information. Simulations validating the filters
performance.
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I. INTRODUCTION

Aerial robotics has become one of the core fields in mobile
robotic research [1]. The most popular platform utilized
within this area of interest is the quadrotor. Often appreciated
for its high maneuverability, low cost, and simplicity the
platform consist of four rotor-motor assemblies attached to a
rigid cross-frame. The quadrotor platform has been subjected
to a range of applications over the last decade. Emerging
new categories of application are operations in near-Earth
environments such as close to structures, inside tunnels and
forests [1]. One example of such an application is disaster
relief inside collapsed structures, a type of operation that
may require aerobatic autonomous flight.
Making these platforms fully autonomous in such environ-
ments requires high quality state estimates. States such as
quadrotor position, velocity, attitude and angular velocity
are all required for successful autonomous operations [2].
Quadrotors are commonly equipped with a proprioceptive
sensor suite consisting of some global positioning system
(GPS) and an inertial measurement unit (IMU). Addition-
ally, for autonomous operations, the need for exterocep-
tive sensors such as vision systems, laser range finders
and acoustic sensors quickly arise, however at a cost of
more demanding computational requirements. Moreover, in
the aforementioned near-Earth environments, measurements
from the GPS system is often rendered unsatisfactory or
simply unavailable. Our work focuses on the challenge of
acquiring accurate high quality attitude estimates during
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aerobatic operations in GPS restricted environments without
the use of exteroceptive sensors.
Previous work on attitude estimation often involve the appli-
cation of some sensor fusion algorithm, which in the general
sense can be divided into two processes [3]; first estimation
of vehicle attitude from measurements, and secondly filtering
of the noisy measurements by the application of system
models. The most famous of such algorithms is the Kalman
filter [4], which provides the optimal estimate minimizing
the estimation error covariance for a linear system. The
extended Kalman filter (EKF) is a further extension of the
Kalman filter [5], [6], applying it to a first-order approxi-
mation of the underlying nonlinear system and evaluating
the approximation at the some state estimate [7]. As a
further development the multiplicative EKF (MEKF) was
introduced [8], allowing for multiplication to be used in the
measurement update. In [9] the authors derive an adaptive
fading EKF (AFEKF) for a fault-tolerant INS-GPS loosely
coupled system, where the filter calculates an innovation
measure, affected by unaccounted errors and unmodeled
dynamics, which then is used to improve the estimate.
Recent advances in the field of quadrotor attitude estima-
tion has seen the integration of the dynamic model of the
quadrotor into the estimators. In [10] it is shown that, due to
different aerodynamic effects including blade flapping, there
exists body-frame horizontal forces that are proportional
to the translational body frame velocity. In [?], this fact
is exploited in the construction of a novel state estimator
for quadrotors, utilizing an enhanced dynamic model of
the quadrotor inside the EKF framework, improved atti-
tude estimates along with drift free lateral and longitudinal
velocities is obtained. Similarly, in [11], a MEKF using
quadrotor dynamics is applied in combination with a graph
simultaneous localization and mapping algorithm to estimate
attitude and position. The authors of [12] provide efforts on
quantifying the improved state estimation that is achieved
using the dynamics equations in the state estimation scheme,
and their results suggest improved attitude estimates due to
the increased information available.
As shown in [13], accelerometers onboard quadrotors do not
explicitly measure the gravity vector. This is in contrast to
the common assumption of weak acceleration, i.e. the gravity
vector is approximated as the accelerometer measurement. In
flights near hover this assumption holds quite well, however
as it is noted in [14]; “...the accuracy of the estimated atti-
tude, provided by these methods, is far from satisfying when
the vehicle is subjected to important accelerations”. Methods
exist that estimate attitude during aggressive maneuvering,



most of which rely on complementary GPS measurements
of the linear velocity to improve the attitude estimate [15].
Notable exemptions can be found as the alternative method
described in [16], in which the authors present a method
utilizing a large number of accelerometers mounted in a
special configuration to measure the angular acceleration and
improve the attitude estimates.
In this paper, we focus on acquiring accurate attitude es-
timates during accelerated flight using only IMU measure-
ments. Taking inspiration from the AFEKF presented in [9]
and combining it with the MEKF framework we describe
the design, implementation, and verification of an adaptive
fading multiplicative extended Kalman filter (AFMEKF) for
real-time attitude estimation on a quadrotor. The main con-
tribution of this paper is the implementation of an adaptive
strategy in dealing with accelerated flight. This paper is
organized as follows; Section II present the essential prelim-
inaries as notation and the quaternion framework, while in
Section III the problem formulation is presented along with
essential sensor models. In Section IV the filter is derived,
including implementation notes, while Section V presentes
the quadrotor model derivation. Results from simulation are
presented in Section VI while a discussion on future work
is given in Section VII.

II. PRELIMINARIES

A. Notation and reference frames

Throughout this paper scalar values are denoted in normal
face, vectors in boldface while matrices are written in capital
boldface letters. The time derivative is denoted as ẋ = dx

dt , the
Euclidean norm is denoted by ‖·‖ and any estimated value
will be denoted by a hat, (̂·). Note that In×n denotes an
n×n identity matrix while 0n×m denotes a n×m matrix of
zeros. Vectors are decomposed in different reference frames
denoted by superscripts, where F b is the body frame, F tpp is
the propeller tip-path-plane and F n is the North-East-Down
(NED) frame which is assumed to be inertial. The rotation
matrix from F b to F n is denoted as Rnb ∈ SO(3), where

SO(3) = {R ∈ R3×3 : R>R = I3×3,det(R) = 1} (1)

is the special orthogonal group of order three. In this work
we use quaternions to parametrize SO(3), and the equivalent
attitude quaternion from F b to F n will be denoted as qn,b.
The angular velocity is denoted ωab,c, which is to say the
angular velocity of F c relative F b referenced in F a. For any
arbitrary vectors v1, v2 ∈ R3, we denote the cross-product
operator as S(v1)v2 = v1 × v2.

B. Attitude parametrization

The attitude of a rigid-body is represented by a 3 × 3
orthogonal matrix with unity determinant, i.e. the rotation
matrix, belonging to the special orthogonal group SO(3)
[17]. The orthogonality of the rotation matrix and the fact
that it consists of nine elements makes the rotation matrix
unsuitable for filter applications. The lowest dimensional
global non-singular representation of SO(3) possible is the
unit quaternion [17]. A quaternion can be defined as a

complex number with one real part η and three imaginary
parts ε = [ε1 ε2 ε3]> [18], and if the quaternion satisfy the
unity norm constraint it belongs to the set of unit quaternions

H ={q ∈ R4 : q = [η ε>]>, η ∈ R, ε ∈ R3, ‖q‖ = 1}. (2)

Adhering to the Hamilton quaternion convention and its
associated algebra, described in [19], the product of two
quaternions, q = [ηq ε

>
q ]> and p = [ηp ε

>
p ]>, is calculated

as
p⊗ q = T(p)q =

[
ηpηq − ε>p εq

ηpεq + ηqεp + εp × εq

]
(3)

where
T(p) =

[
ηp −ε>p
εp ηpI3x3 + S(εp)

]
. (4)

The quaternion norm is defined by

‖q‖ =
√

q⊗ q∗ =
√
η2 + ε21 + ε22 + ε23 (5)

where the quaternion conjugate is

q∗ =

[
η
−ε

]
(6)

If p and q both meet the unity-norm constraint, the quater-
nion resulting from their composition will also be unity-
norm. Finally the kinematics of the attitude quaternion can be
defined, in the case of one frame moving relative to another,
as

q̇n,b(t) =
1

2
qn,b(t)⊗ ωbn,b(t) (7)

where ωbn,b(t) ∈ R4 is the angular velocity, represented here
as a pure quaternion, i.e. a quaternion with zero real part.

III. PROBLEM FORMULATION

The attitude estimation problem is to determine the ori-
entation of a moving frame with respect to the inertial
reference frame. More precisely, suppose that at time t a
set of n(t) ∈ N vector measurements is available, defined
by the relation

vbmi(t)=q∗n,b(t)⊗ vnmi(t)⊗ qn,b(t)+υi(t), i=1,..., n(t) (8)

where vbmi(t) ∈ R3 is the vector measurements in F b,
vnmi(t) ∈ R3 is the related known reference vectors in
F n, and υi(t) is the measurement errors. Further consider
the attitude kinematics in (7) and that measurements of
the angular velocity of the body frame, ωbm(t) ∈ R3, is
available. Our task is to obtain an optimal estimate, q̂n,b(t),
of the vehicles attitude at any time t given vector and gyro
measurements, subject to unmodeled errors and disturbances.

A. Inertial sensors

The available gyroscope has the associated standard error
model [20], stated as

ωbm(t) = ωbn,b(t) + βg(t) + wg(t)
β̇g(t) = wb(t)

(9)

where βg(t) ∈ R3 is the gyroscope bias, wg(t) ∈ R3 is
the gyroscope measurement noise, and wb(t) ∈ R3 is a



Gaussian white noise process with zero-mean and variance
σ2
w, modeling the bias as a slowly time-varying disturbance.

Defining the combined gyroscope noise

w(t) =

[
wg(t)
wb(t)

]
(10)

with associated autocovariance

Q(t) = E{w(t)w(t)>} ≈ σ2
wI6×6 (11)

where E{·} denotes the expectation value. Two vector mea-
surements is provided by a standard IMU; i.e. measurements
from accelerometer and magnetometer. The latter measure
the inertial magnetic field expressed in body frame

vbm1(t) = q∗n,b(t)⊗ vnm1(t)⊗ qn,b(t) + υ1(t) (12)

where vnm1(t) ∈ R3 represent the Earth’s magnetic field mag-
nitude and direction, and υ1(t) ∈ R3 is the magnetometer
measurement noise. We assume that the magnetometer is
well calibrated in terms of hard and soft iron effects prior to
flight and that the IMU is mounted in the center of mass of
the vehicle. The accelerometer measure spesific force, i.e.

vbm2(t) = v̇b(t)− fbg(t) + υ2(t) (13)

where v̇b(t) ∈ R3 is the change in body velocity, fbg(t) ∈
R3 is the gravity vector in F b, and υ2(t) ∈ R3 is the
accelerometer measurement noise. Here we make the as-
sumption of weak acceleration mentioned previously, and the
measurement equation then becomes

vbm2(t) = −q∗n,b(t)⊗ vnm2(t)⊗ qn,b(t) + υ2(t) (14)

where vnm2(t) = fng (t) = [0 0 g]> with g being the gravity
constant. Both magnetometer and accelerometer measure-
ment noise can be gathered into one vector as

υ(t) =

[
υ1

υ2

]
(15)

which is assumed to be Gaussian white noise with zero-mean
and variance σ2

υ , where σ2
υ = [σ2

m1 σ
2
m2]>. The assosiated

autocovariance is given as

R(t) = E{υ(t)υ(t)>} ≈ σ2
υI6×6. (16)

All time-dependence of variables is, for brevity, not stated
explicitly from here on.

IV. MULTIPLICATIVE EKF

When designing a quaternion based EKF special care
must be taken with regards to the unit constraint on the
quaternion, since the construction may lead to a potential
singular covariance matrix and an unstable filter. The MEKF
approach for dealing with this problem is based on reducing
the dimension of the attitude representation so that three
parameters are used instead of four to describe the covariance
of the quaternion. The true attitude in the MEKF formalism
is represented as the quaternion product

q̄ = q̂⊗ δq(δε), (17)

where q̂ ∈ H is the estimated quaternion and δq(δε) ∈ H
is a quaternion representing the rotation from q̂ to the true
attitude q̄ ∈ H. The MEKF maintains the attitude error
δε ∈ R3, instead of the attitude, in the state estimate and
covariance. The attitude error never approaches a singularity
since it only represents small attitude errors and can be
constructed as

δq(δε) =

[√
1− δε>δε
δε

]
. (18)

A. Filter structure

A general model of a nonlinear system is set up using the
common state propagation and measurement equations as

ẋ = f(x,u) + Γw
y = h(x) + υ

(19)

where u is the input vector, Γ is the cross-correlation
matrix, while w and υ is the process and measurement noise
respectively. Standard MEKF procedure is divided into three
parts namely; measurements update, reset and time update
-cf. [21]. The measurement update is summarized as

K = P−H>[HP−H> + R]−1

x̂+ = x̂− + K[y− h(x̂−)]

P+ = (I−KH)P−(I−KH)> + KRK>
(20)

where x̂−, x̂+ ∈ Rm is the predicted and corrected state
estimate, containing the attitude error δε. The matrix K ∈
Rm×3n is the Kalman gain, P−,P+ ∈ Rm×m are the
predicted and corrected error covariance, and H ∈ R3×3n

is the Jacobian of the measurement equation h(·) ∈ R3n.
The reset operation eliminates the need to propagate two
representations of attitude by moving the attitude information
from δq(δε̂) to q̂,

q̂− = q̂+ ⊗ δq(δ̂ε)

δ̂ε = [0 0 0]>
(21)

Finally the time update is performed as

x̂− = f(x̂+,u)

P− = FP+F> + ΓQΓ>
(22)

where F ∈ Rm×m is the state transition matrix, i.e. the
Jacobian of the propagation equation f(·) ∈ Rm.

The model states are choosen as the vehicle attitude and
gyroscope bias

x = [q>n,b β
>]> (23)

and the model inputs given as the gyroscope measurements
u = ωbm. Deriving the filter we first introduce the nonlinear
equations associated with the true state of our system, x̄ =

[q̄>n,b β̄
>

]>. For simplicity we set ω̄ = u − β̄, and obtain
the nonlinear equations

˙̄x =

[
˙̄q>n,b
˙̄β

]
=

[
1
2 q̄⊗ ω̄

0

]
. (24)



As mentioned previously the MEKF filter state contains the
attitude error not the attitude itself, so the state is defined as

x = [δε> β>]>. (25)

The time-derivative of the attitude error is found by first
rearranging and then differentiating equation (17) as

˙δq(δε) = ˙̂q−1 ⊗ q̄ + q̂−1 ⊗ ˙̄q. (26)

Since we, in the discrete-time filter, do not time propagate
q̂ it can be treated as a constant between each sample. This
leads to

˙δq(δε) =

[
˙δη

δ̇ε

]
=q̂−1 ⊗ ˙̄q =

1

2
q̂−1 ⊗ q̄⊗ ω̄

=
1

2
δq(δε)⊗ ω̄

=
1

2
T(δq(δε))ω̄

(27)

where T(·) is given in equation (4). This then gives the
differential equation for δε as

δ̇ε =
1

2
[I3x3

√
1− δε>δε+ S(δε)]ω̄. (28)

Discretizing the systems nonlinear differential equations one
obtains

xk+1 = fk(xk,uk) + hΓkwk
yk = hk(xk) + υk

(29)

where h ∈ R>0 is the time step. By Euler’s discretizing
method and in terms of the filter state this becomes

fk(x̂k,uk) = x̂k + h

[
1
2 [u− β̂]

03x1

]
(30)

and the Jacobian is found to be

Fk=
∂fk
∂xk

∣∣∣∣
xk=̂xk

=I6x6 +h

[
− 1

2S(u− β̂) − 1
2 I3x3

03x3 03x3

]
. (31)

Further we define the measurement equations as

y =

[
vbm1

vbm2

]
=

[
δq∗
b̂,b
⊗ q̂∗n,b̂ ⊗ vnm1 ⊗ q̂n,b̂ ⊗ δqb̂,b

δq∗
b̂,b
⊗ q̂∗n,b̂ ⊗ vnm2 ⊗ q̂n,b̂ ⊗ δqb̂,b

]
. (32)

To derive the Jacobian for the measurement equations we
again use the fact that q̂ does not change during time
propagation. By defining the intermediate vector vb̂m in the
intermediate frame F b̂ as

vb̂mi = q̂∗n,b̂ ⊗ vnmi ⊗ q̂n,b̂ i = 1, 2 (33)

and expanding the terms in (32) by using (3) we obtain an
auxiliary derivative function by

V(δε, vb̂mi) =
∂

∂δε
{δq(δε)∗ ⊗ vb̂mi ⊗ δq(δε)}

=
∂

∂δε
{[(η2−δε>δε)I3×3 + 2δεδε>−2ηS(δε)]vb̂mi}

(34)

After differentiating and rearranging the terms one can find

V(δε, vb̂mi)= 2
√

1− δε>δεS(vb̂mi)

− 2√
1− δε>δε

S(vb̂mi)δεδε
>

+ 2vb̂>miδεI3x3 + 2δεvb̂>mi − 4vb̂miδε
>

(35)

which then can be used to define the Jacobian of the
measurement equation as

Hk =
∂hk
∂xk

∣∣
xk=x̂k

=

[
V(δε, vb̂m1) 03x3
V(δε, vb̂m2) 03x3

]
. (36)

B. Adaptive fading EKF

The adaptive fading EKF has been derived in [9]. The
innovation covariance is calculated as

Ck = E[ζkζ
>
k ] = HkP−k H>k + Rk (37)

with ζk = yk−hk(x̂−k ) being the innovation. The innovation
of the filter is affected by unaccounted errors such as
unknown fault bias, unmodeled dynamics and even unknown
initial condition. It is shown in [9] that any unaccounted
errors are directly involved in the computation of the inno-
vation, this means that the change of innovation covariance
can be used for an adaptive filter. The increased innovation
covariance can be estimated as

Ĉk =
1

M − 1

k∑
i=k−M+1

ζiζ
>
i (38)

where M ∈ N is a window size. The relation between Ck
and Ĉk is defined as Ĉk = αkCk, where αk ∈ R is used to
make the filter adaptive. In accelerated flight the assumption
of weak acceleration does not hold, resulting in corrupt mea-
surements with regards to the measurement equations and
an increased innovation covariance. This lack of information
can be compensated by decreasing the Kalman gain and thus
relying less on the measurement information. The standard
measurement update in (20) can then be altered by redefining
the Kalman gain calculation as

Kk =
1

αk
PkHk[HkPkH>k + Rk]−1. (39)

Calculating the innovation is done during the time update
(22), after the state is propagated ahead, given as

ζk = yk − hk(x̂k)

Ĉk =
1

M − 1

k∑
i=k−M+1

ζiζ
>
i

αk = max

{
1,

tr(C̄k)

tr(Ck)

} (40)

where tr(·) ∈ R indicate the trace function and max{·} ∈ R
is the function returning the largest value.



V. APPLICATION TO THE QUADROTOR PLATFORM

A. Quadrotor modelling
Extensive derivation of a quadrotor nonlinear dynamic

model can be found in [22], [23], [24]. In the following, we
briefly present the essential rigid-body equations in addition
to some of the dominant aerodynamic forces and how these
affect the sensor measurements. The F n frame is assumed
inertial and the origin of F b coincide with the center of
mass of the quadrotor. The quadrotor rigid-body equations
of motion are

ṗnn,b = qn,b ⊗ vb ⊗ q∗n,b (41)

v̇b = fbg − S(ωbn,b)vb− 1

m
qb,tpp⊗ ftppt ⊗ q∗b,tpp−

1

m
fbd (42)

q̇n,b =
1

2
qn,b ⊗ ωbn,b (43)

Jω̇bn,b = −S(ωbn,b)Jωbn,b + gba + τ b + τ bd (44)

where ṗnn,b ∈ R3 is the position vector from the origin of
F n to the origin of F b, vb ∈ R3 is the velocity vector in F b,
m ∈ R is the quadrotors mass, fbg = Rbnfng where fng ∈ R3 is
the inertial gravitational force, and J ∈ R3×3 is the inertia
matrix. The vector ftppt ∈ R3 is the tip-path-plane thrust
vector, i.e. the thrust vector that only has a component in
the z-direction. If the quadrotor is stationary and no wind is
present F tpp coincides with F b. The vector can be calculated
as

ftppt =

 0
0

CT ($2
1 +$2

2 +$2
3 +$2

4)

 (45)

where CT ∈ R is the thrust coefficient which can be
determined through static thrust tests [22] and $i ∈ R,
i = 1, 2, 3, 4, is the rotational velocity of the i’th rotor.
Due to blade flapping, a phenomenon thoroughly described
in helicopter literature -cf. [25], [26], the thrust vector
experiences a deflection from the body z-axis resulting in
forces in the body horizontal plane. The body frame moments
are also related to the rotor speeds of the motors and are
calculated as

τ b =

 CT l($4 −$2)
CT l($1 −$3)

CQ($1 −$2 +$3 −$4)

 (46)

where CQ ∈ R is the motor parameter relating the angular
velocity of the motor to the rotor torque and l ∈ R is the arm
length of the quadrotor. The vector gba ∈ R3 is the gyroscopic
moment of the rotors on the airframe, calculated as [27]

gba = −
4∑
i=1

(−1)i+1S(ωbn,b)Jp$i (47)

where Jp ∈ R3×3 is the moment of inertia of a rotor around
its axis and $i = [0 0 $i]

>. Finally we have the drag
forces associated with quadrotor flight, fbd ∈ R3, including,
among others, the rotor relative momentum drag and the
body relative parasitic drag -cf. [22]. The rotor relative drag
forces generate drag torques, τ bd ∈ R3, due to displacement
of the rotors.

Fig. 1. The UiTRotor platform
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Fig. 2. The simulated trajectory

VI. RESULTS

A. Simulations

In order to evaluate the filter performance a simulator was
set up in Matlab Simulink using the quadrotor dynamics
described in Section V-A and system parameters assosiated
with UCAS-LAB’s UiTRotor platform, shown in Figure
1. To test how well the filter performed, a trajectory was
designed and fed to a nonlinear controller. At first, the
quadrotor follows a slowly rising trajectory, it then swithces
to track an elevation variating semicircle before finally it
maneuvers to a fixed waypoint. The simulated trajectory
is shown in Figure 2. The initial attitude of the quadrotor
is qn,b = [1 0 0 0]>, and the gyroscope bias is set to
β = [0.001 0.001 0.001]>deg/s. The filter is initiated with
an initial state x̂0 = 01×6, the initial attitude q̂0 = 1√

4
I1×4,

window size M = 10, and initial error covariance P0 =
[0.1 0.1 0.1 0.01 0.01 0.01]>. The two vector measure-
ment have corresponding inertial reference vectors vnm1 =
[11348.7 1324.5 51768.5]>nT and vnm2 = [0 0 9.81]>m/s2,
and the measurement noise variance, in (16), has values
σ2
m1 = 4.5× 10−4 deg2 and σ2

m2 = 1.5× 10−3 deg2.
In order to evaluate the effect of the adaptive stage addition
to the MEKF we simulate two attitude estimators, with
and without adaptation. The error is quantazied as an error
quaternion, calculated as qe = q̂ ⊗ q̄∗, and for ease of
illustration the scalar part is adapted as η = 1−η. In Figure 3



Fig. 4. Error quaternions aggressive maneuver

the error quaternion for the two filters is presented along with
the innovation measure α associated with the AFMEKF. The
interesting part is after about 66 seconds when the quadrotor
switches to the fixed waypoint, resulting in an aggressive
maneuver. Clearly the innovation increases and as a result
the AFMEKF performs better than the non-adaptive MEKF.

Fig. 3. Upper: Error quaternion AFMEKF and MEKF. Lower: Innovation
measure

A closer look of the error quaternions during that aggres-
sive maneuver is presented in Figure 4.

VII. CONCLUSION AND FUTURE WORK

An adaptive fading multiplicative extended Kalman filter
has been implemented for the task of quadrotor attitude
estimation. Simulations show that in the case of large acceler-
ations, when the measured data is incomplete, the AFMEKF
has the ability to improve the state estimates. Future work
may include adding horizontal body velocity to the filter
state, which will improve attitude estimates.
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