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Abstract: With the increase of the concern from the publicéovironmental pollution and waste of
resources, the value recovery through reuse, repananufacturing and recycling from the end-of-use
(EOU) and end-of-life (EOL) products have becomereasingly important. Reverse logistics is the
process for capturing the remaining value from B@U and EOL products and also for the proper
disposal of the non-reusable and non-recyclables parwell-designed reverse logistics system will
yield both economic and environmental benefitstheodevelopment of an advanced decision-making
tool for reverse logistics system design is of gigant importance. The paper presents a novelimult
product multi-echelon stochastic programming maoaligh carbon constraint for sustainable reverse
logistics design under uncertainty. Compared witl previous stochastic optimization models in
reverse logistics system design, which mainly fesusn the expectation of the optimal value, this
paper, however, emphasizes on both optimal valpeaation and its reliability in decision-making.
Due to this reason, a multi-criteria scenario-bassdaverse solution method is developed basea on
latest research in order to obtain the optimaltsmiuwith high level of confidence. Later in thiager,
the application of the model and the augmentedtisolumethod is illustrated and the managerial
implications are discussed through the numericpegrment and sensitivity analysis. The result ef th
study shows that the model can be used for prayidiecision-makers with a deep insight into the
relationship between profit and carbon emissioruiregqnent, understanding and resolution of the
infeasibility caused by capacity limitation, theeusf flexible manufacturing system in reverse
logistics, and proper use of the government subessdy leverage in reverse logistics design.

Key word: reverse logistics; network design; optimizatiomcsiastic programming; sustainability;
uncertainty; scenario-based solution, risk averse

1. Introduction

Logistics and supply chain network design is a demgecision-making problem in operational
research, which aims mainly at determining thetiooa of different facilities and the material flow
and transportation strategy among those facilifle=e and Dong, 2009). Due to the complicated
nature of the logistics and supply chain networgigle problem, it has never lost its appeal to both
academic researchers and practitioners. In receatsy with the increasing focus on sustainable
development and circular economy, the value regofrem the end-of-use (EOU) and end-of-life
(EOL) products has been adopted by many enterpafiesver the globe due to the economic
incentives and stringent environmental regulatiem®rced. For example, the EU Directive 92/62/CE
has set a compulsory requirement for the manufiacf@ompanies to recover a percentage of the EOL,
EOU as well as the packaging materials from thekatgiGonzalez-Torre et al., 2004). Therefore, the
design of an economically efficient and sustainabherse logistics network has been increasingly
focused in the recent literature (Nikolaou et2013).
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Reverse logistics is the entire process for effettimanaging the material, information and cash
flow in order to re-generate value from EOU and Hfddducts through repair, reuse, remanufacturing,
recycling and re-introduction to the market, besjdealso involves the proper treatment of the-non
reusable and non-recyclable parts (Rogers and mitdbembke, 2001, Yu and Solvang, 2016a).
Reverse logistics network design is a long-termigiee at strategic level, and when the supply chain
network is configured, it could be extremely difficand costly to alter it. A well-planned reverse
logistics system will yield both economic and eowmimental benefits. However, an improperly
designed reverse logistics system may reduce thiegtility of the business while simultaneously
cause more serious environmental and/or socialémpaue to this reason, it is of great importaree t
develop the advanced methods for resolving the t®ogecision-making problem of reverse logistics
network design.

This paper formulates a new carbon-constrained enadkical model under stochastic environment
for sustainable reverse logistics network desigw, @n augmented multi-criteria scenario-based risk-
averse solution method is also developed for r@splthe model. The remainder of the paper is
organized as follows: Section 2 presents a compsbe literature review of the recent research
works in reverse logistics network design. Sectoformulates the stochastic optimization model.
Section 4 develops the augmented multi-criterianage-based risk-averse solution method based
upon the research work given by Soleimani et &l162. The existed problems of the original method
and the solution in the augmented method are ettplaiscussed in this section. Section 5 presents
the numerical experiment of the model and solutiegthod. Section 6 summaries some generic
managerial implications, i.e, the relationship bedw profit and carbon emission requirement, the use
of flexible manufacturing system in reverse logistiand proper use of the government subsidy as a
leverage, etc. Section 7 concludes the paper apbpes directions for future research.

2. Literaturereview

During the past decade, reverse logistics netweskgth problem has been extensively focused in
operational research and mathematical optimizati@emprehensive literature review are given in
Pokharel and Mutha (2009), Govindan et al. (20RAg)rawal et al. (2015), Mahaboob Sheriff et al.
(2012) and Govindan and Soleimani (2017), and fiteenperspectives of sustainable development and
uncertainties of decision-making, this paper presem brief overview of some of the recent
publications in this field.

The primary target of reverse logistics is the gatecovery form EOU and EOL products, so
economic benefit and sustainability have been witlimulated and emphasized in literature. Alumur
et al. (2012) propose a mixed integer programmangafmulti-period reverse logistics network design
problem. The model aims at maximizing the totalfipgagenerated in the reverse logistics system
through optimally locating different facilities anallocating the materials follows over several
continuous periods. Demirel et al. (2016) developiged integer linear programming for minimizing
the reverse logistics costs for recycling the E@higles in Turkey. Li and Tee (2012) formulate a
mathematical model for reverse logistics networkigie with the consideration of both formal and
informal channels. Sasikumar et al. (2010) forneulat mixed integer programming for reverse
logistics network design, and a case study of ttirekremanufacturing is given in the paper.

Alshamsi and Diabat (2017) formulate a multi-peritmtation-allocation model for reverse
logistics network design, and a genetic algorithsn developed for resolving the large-scale
optimization problems in an effective and efficieminner. Diabat et al. (2013b) combine both genetic
algorithm and artificial immune system in the op#ation problem of a product return system. Kumar
et al. (2017) develop a mixed integer model for imézing the profits generated in an integrated
forward-reverse logistics system on a multi-pedt@dis, and an evolutionary algorithm is developed
for resolving the optimization problem. Das and ®@tbury (2012) propose an optimization model for
the reverse logistic network design consideringdbiéection and recycling of multiple types of EOU
and EOL products. Zhou and Zhou (2015) formulat®st-minimization model for the design of a
multi-echelon reverse logistics network. DemireldaGdkcen (2008) propose a mathematical
programming for designing a remanufacturing system.
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Introduced in 2005 World Summit of the United Nasgp sustainability framework includes
economic, environmental and social dimensions (Ghapd Meindl, 2007). In order to account those
dimensions simultaneously, reverse logistics netwaesign becomes a complex decision-making
problem which involves several objectives or ciiteiSome research works focus on the optimal
tradeoff among those conflicting objectives or emd in decision-making. Diabat et al. (2013a)
formulate a bi-objective optimization model for tbptimal design of an integrated forward/reverse
logistics system, and the model aims at simultasigaminimizing the costs and G@missions. Yu
and Solvang (2016a) develop a bi-objective mixddgaer linear programming for reverse logistics
design considering both economic benefits and enmental impact, and in this paper, the
environmental impact is evaluated by carbon emissio

With the consideration of economic, environmentatl asocial sustainability, Govindan et al.
(2016a) investigates a multi-objective mixed integeogramming of the design of a multi-product
multi-period integrated forward/reverse logisticgstem. In this research, the environmental
sustainability is measured by both cost saving froaterial recovery and G@mission, while the
social sustainability is evaluated by four indicataegarding the welfare, responsibilities and
employment. Govindan et al. (2016b) formulated zZzyumathematical model for sustainable design
of reverse logistics system. The model aims at kamaously balancing the economic efficiency,
environmental impact and social benefits in a sogbde reverse logistics system, and a customized
multi-objective particle swarm optimization algdit is developed to find out the optimal solution.

In the real world, decision-making is seldom donthall parameters exactly known in advance,
but many important decisions have to be made eveagh the knowledge or information of some
parameters is limited at the point of decision-mgk{King and Wallace, 2012). Reverse logistics
network design is a long-term decision that invelgeeat uncertainties, so some literature focuses o
the uncertainty issues associated with reversatioginetwork design. Lee and Dong (2009) develop
a two-stage stochastic programming for designimgudti-period integrated forward-reverse logistics
system under demand uncertainties. El-Sayed €é2@10) formulate a stochastic optimization model
for the design of a multi-period forward-reversgistics network with the consideration of risk.
Ramezani et al. (2013) develop a multi-objectivecisastic optimization model for the optimal
planning of an integrated forward-reverse logistieswork, and the responsiveness and quality level
of the EOU and EOL products are accounted in tludeh Chu et al. (2010) propose a fuzzy chance-
constrained model for the design of a reverse fiogisystem for household appliances recovery.

Considering both forward and reverse directionthefsupply chain planning, De Rosa et al. (2013)
formulate a robust optimization model for the neteplanning under supply uncertainties. Roghanian
and Pazhoheshfar (2014) develop a stochastic prwgirag for minimizing the opening and operating
costs of a multi-period and multi-echelon reversgidtics system, and the capacities, customer
demands for recycled products, and quantity of E8Dd EOL products generated are considered as
stochastic parameters. Soleimani and Govindan {2@édvelop a multi-level multi-product two-stage
stochastic programming for reverse logistics nekwdesign with the consideration of the risk
minimization in the decision-making.

In some most recent literature, the consideratiobadh sustainability and uncertainty issues is
focused in reverse logistics network design. FE&poOn et al. (2017) investigate a stochastic
optimization model for the redesign of reverse dtigs system, and the model aims at simultaneously
balancing the economic, environmental and sociatasuability. Fonseca et al. (2010) formulate a
two-stage bi-objective stochastic programming mdwelthe facility location problem of reverse
logistics. The model aims at simultaneously miningzthe costs and obnoxious effect of the reverse
logistics system which is operated under unceresrdf the waste generation. Govindan et al. (2p16b
develop a fuzzy multi-objective mixed integer pramming for reverse logistics network design
considering economic, environmental and socialasngbility. Soleimani et al. (2017) formulate a
fuzzy multi-objective mathematical model for thesdm of a sustainable closed-loop supply chain,
and the model aims at maximizing the overall prafil satisfaction rate of customer demand while
simultaneously minimizing the missed working dagased by occupational accidents.
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Table 1 shows the literature classification. It baen shown from the literature review that many
previous research works in reverse logistics nétwdasign only focus on the economic performance,
but the other dimensions of sustainable developrnsendt emphasized, and this is further proved by
Govindan et al. (2015). There is no denying th¢ tiaat reverse logistics itself can be considered a
means to achieve circular economy and sustainadlelgpment through the value recovery from
EOU and EOL products; however, an improperly plahreverse logistics network may cause both
environment impact (e.g., excessive GHG emissiom® flong-distance and frequent transport (Sun,
2016), waste of resources and environmental potistfrom the implementation of low-tech recycling
technologies (Liu et al., 2008), etc.) and negaitifielence on the social sustainability (e.g, thsea
the health of the workers (Liu et al., 2008), thsda the local residents nearby the treatmenlitiasi
of hazardous materials (Yu and Solvang, 2016b),).eResides, some mathematical models for
sustainable reverse logistics network design ammdtated under deterministic environment, which
are incapable to deal with the uncertainties anketdluctuation.

The literature review shows there are very feveaesh works on reverse logistics network design
considering both uncertainty and sustainable issaied exceptions are only given in some recent
publications (Fonseca et al., 2010, Feit6-Cesp@i. e2017, Govindan et al., 2016b, Soleimani gt al
2017). Thus, there is a need to develop the addatad for a better decision-making of reverse
logistics system design under market fluctuatiod anstainable considerations. Furthermore, most
mathematical models developed under uncertain @mvient focus only on the expectation of the
objective value (e.g. min-cost, max-profit, et@fd the risk of decision-making or the reliabildf
the achievement of the value expectation is rat@kgn into account in reverse logistics network
design. This problem has been identified and resblsy a multi-criteria scenario-based solution
method developed in a latest research work (Solgireaal., 2016). However, the method has a
significant problem which may lead to sub-optimalusions.

In order to fill the literature gap, the paper fees on the following works:

» This paper formulates a novel two-stage stochasixed integer linear programming model
with carbon emission constraint for sustainablesres logistics network design. The model is
formulated based on a generic multi-product thidekn reverse logistics framework under
uncertainty of the generation of different types®U and EOL products, and the price of
recycled products and recovered energy.

* In addition to the contribution to the model foratibn, an augmented multi-criteria scenario-
based risk-averse solution method is also develop#us paper, and the method focuses on
both optimal value expectation and level of coniicke of the optimal result so that the
solution of the stochastic optimization problemmisre reliable. The problems existed in the
original solution method are explicitly discussed dixed in the augmented method.

* The proposed stochastic optimization model and amged solution method are tested with
experimental analysis with the changing parametdfarthermore, deep managerial
implications are obtained, and some of which, tlee, use of flexible manufacturing system,
economy of scale and role of government subsidy, ere discussed with mathematical
programming approach for reverse logistics netvemsign.



191 Table1 Literature review of some research works in revéogistics network design
Research works Network structure Criteria for decisnaking Product Period Parameter UncertaiApplication
Forward Reverse Economic Environmental Social Other Single Multiple  Single Multiple  Certain Uncertainapproach
Alumur et al. (2012) * * * * * - Case study
Demirel et al. (2016) * * * * * - Case study
Li and Tee (2012) * * * * * * - Numerical stly
Sasikumar et al. (2010) * * * * * - Case diu
Alshamsi and Diabat (2017) * * * 4 * - Castudy
Diabat et al. (2013b) * * * > * - Numericatudy
Kumar et al. (2017) * * * * * * - Numericaltady
Das and Chowdhury (2012) * * i * * - Numeaicstudy
Zhou and Zhou (2015) * * * * * - Case study
Demirel and Gokgen (2008) * * * & * * - Numieal study
Diabat et al. (2013a) * * * * ¥ * * - Case gy
Yu and Solvang (2016a) * * * * * * - Numeritatudy
Govindan et al. (2016a) * * * * * * * - Casstudy
Govindan et al. (2016b) * * * * * * Fuzzy Nuerical study
Lee and Dong (2009) * * * * * Stochastic  Nencal study
El-Sayed et al. (2010) * * * F * * Stochastic Numerical study
Ramezani et al. (2013) * * * * * * Stochasti Numerical study
Chu et al. (2010) * * * * * Fuzzy Numericatudy
Feitd-Cespon et al. (2017) * * * * * * Stoelstic  Case study
De Rosa et al. (2013) * * * * Robust Cadtady
Roghanian and Pazhoheshfar * * * * * Stochastic  Numerical study
(2014)
Fonseca et al. (2010) * * * * * StochasticCase study
Soleimani and Govindan * * * * * Stochastic Numerical study
(2014)
Soleimani et al. (2016) * * * * * * Stochasti Numerical and
case study
Soleimani et al. (2017) * * * * * * Fuzzy Nuerical study
Current study * * * * * * Stochastic Numericatudy

192
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3. Development of mathematical model

The proposed reverse logistics network structugivisn in Figure 1. As illustrated in the figurbet
reverse logistics network is comprised of the lamalection centers for EOU and EOL produdg, (
central collection centec), remanufacturing and recycling centpy), Energy recovery plant)( waste
treatment facility and the market), First, the EOU and EOL products are collectedhat local
collection centers which are located closely to ¢hstomers, and this first-level collection coulel b
either a spontaneous customer return of EOU aidddr products at the fixed depots or an organized
return service performed by the local waste managemompanies. Then, the locally collected EOU
and EOL products are sent to the central collectenters where they will be inspected and
disassembled for further distribution. The disaddeth parts will be sent for either
remanufacturing/recycling or for energy recovemptigh incineration/bio-chemical treatment, and the
non-reusable and non-recyclable parts will be f@rdisposal at landfill.

Energy Recovery (r)

Local collection (g) Central collection Remanufacturing/r
g and disassembly (c) . ecycling (p)

Market (m)

........................... »| Waste disposal (w)

Figure.1l Reverse logistics network.

In this paper, the objective of the reverse logisthetwork design is to maximize the profit
generated through value recovery of EOU and EQidycts, and the reverse logistics system is
subsidized in order to improve the profitabilitydaenthusiasm of the companies for the reuse,
recycling, remanufacturing and energy recovery GfUEand EOL products. The reverse logistics
network design problem is formulated as a stoohasitked integer programming, and the generation of
different types of EOU and EOL products, and theepof recycled products and recovered energy are
considered as uncertain parameters. Furthermoee, nibdel also considers the environmental
sustainability of the reverse logistics system, clhis constrained by the carbon emissions of the
reverse logistics activities.

It is a prerequisite that the locations of locdlamiion centers, markets for recycled products and
recovered energy, existing landfills for waste disd, and the candidate locations of central ciidliec
centers, recycling center, energy recovery plaadsyell as the relevant cost and carbon emissions
associated with facility operation and the trantgimm of EOU and EOL products are known.

The definition of sets, indices, parameters agisibn variables is first given as follows. Herein
the unit of the parameters are also suggestedliffeitent measures of units may be used in caskestu
(Feito-Cespon et al., 2017, Demirel et al., 20kdhdeca et al., 2010, Soleimani et al., 2016, Aluetur
al., 2012).

Set and indices:

G, g Generation points of EOU and EOL product

C,c Candidate locations of collection center

P,p Candidate locations of remanufacturing/recycling

plant

R, r Candidate locations of energy recovery plant



W, w
M, m
T, t
S, s

Parameters:
EP;t

Pen;,

Ppdy,

Subry, Subp,

E.E,F

Pocs, Poyt, Poyg

Po,,

Ctgee, Ctepes Ctere, Clewe, Ctpmes Clrme

Ruqgms

Otps Opr

MCpct, MCpye, MCpye, MCpy,
Q

EP,, EPy, EP., EP,

Etgee, Etepe, Eteres Etewes Etpmes Etrme

First-level decision variables
X3 X5, X3

Second-level decision variables
Qcdyy, dezsm Qens, Qwmy,

Waste disposal facilities

Markets of recycled product and recovered energy
Types of EOU and EOF product

Scenarios

Generation of product at locationg in scenarios
(unit/year)

Benefit from the energy recovery from one unit
productt at facilityr in scenarics ($/unit)

Benefit from the recycling of one unit productat
facility p in scenarics ($/unit)

Government subsidy for recovering or recycling one
unit product ($/unit)

Fixed operating cost for collection center, reaygli
plant and energy recovery plant ($/year)

Unit processing cost at collection center, recyglin
plant and energy recovery plant ($/unit)

Gate fee for landfilling one unit of EOU and/or EOL
product ($/unit)

Unit transportation cost of produttamong different
facilities ($/unit)

Required maximum equivalent carbon emissions of
the reverse logistics system in scenaifkg)

Conversion rate of produtat respective facilities

Planned capacity of respective facilities (unithyea

A very large number

Unit equivalent carbon emissions from the procegsin
of productt at respective facilities (kg/unit)

Unit equivalent carbon emissions from the
transportation of produttbetween respective facilities
(kg/unit)

Binary decision variable determining if a new fagil
will be opened at respective candidate locations in
scenarics

Amount of different types of EOU and EOL products
processed at respective facilities in scensfimits)
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240

241
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Qtgees Qtepes Qtire, Qtiwe, Qtyme, Qtime  Amount of different types of EOU and EOL products
transported between respective facilities in saerar
(units)

The objective of the proposed model is to maxintieetotal profit of the reverse logistics system.
As shown in Eq. (1), the total profit is determirtdthe total revenue generated and the overalt cos
for operating the system.

Maximize:

Profit=Revenue-Cost Q)

Eqgs. (2)-(4) calculate the total revenue of theers® logistics system, which includes the total
income obtained from selling the recycled produwntsl energy and the governmental subsidy. It is
noteworthy that the governmental subsidy is cruttalpromote the reuse, remanufacturing and
recycling of EOU and EOL products in some countsesas to improve the profitability of the
companies in reverse logistics system (Jia eR@lly, Cao et al., 2016). In addition, it is assurtined
the parts and components from EOU and EOL prodisisbe transformed into recycled products and
energy at a fixed rate.

Revenue=Income+Subsidy 2

Incomezz 2 Penj.Qen;, + 2 2 Ppd;.Qpd,, VS ES 3)
TER tET pEP teT

Subsidy=z Subr; z Qens; + z Subp, Z Qpdy, VsE€S (4)
teT TER teT pEP

Egs. (5)-(8) calculate the operating cost of theerge logistics system, which is comprised of fixed
cost, processing cost and transportation cost. Vitiemon-recyclable EOU and EOL products sent to
existing landfills, a gate fee will be charged detieg on the volume of the waste products.

Cost=Fixed operating cost + Processing cost+Tratedjmn cost (5)

Fixed operating costg F.X: + Z E X5 + 2 EX; VsE€eS (6)

cec pEP TER

Processing costg 2 Po,Qcdy; + 2 Z Poy,:Qpdy: + Z 2 Po,.Qen;;

c€EC teT pEP teT T€ER teT (7)

+ Z Po,Qwm;, VsE€ES

wWEW

Transportation cost% 2 2 CtgeeQtger + 2 2 Z CteptQtipe + Z Z 2 Ctert Qtor:

JEG ceC teT CEC pEP tET CECTER tET

+ Z Z Z Ctow:Qto: + Z Z Z CtymeQtyme (8)

ceC WweEW teT pPEP meEM teT

+ Z Z z CtrmeQts: VYSES

TER MEM teT
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The constraints of the model are formulated in E§%(24). Eq. (9) restricts that the reverse
logistics system should be able to handle all tB&JEand EOL products generated in the region through
all different scenarios.

E;t=Zthct,VgeG,VteT,vSeS ©)

ceC

Egs. (10)-(14) guarantee the flow balance at tidrakecollection center, remanufacturing/recycling
plants and energy recovery plants.

Qcdgy = Z Qt5c,VCEC,VEET,VSES (10)
geG
Qcdgy = 2 Qtépe + Z Qtire + Z Qti,;,VcECVtET,Vs€E€S a1)
peEP TER wEW
Qpdp, = z QtSpe, VP EP,VLET,VSES w2
cec
Qenﬁt=ZQt§rt,VreR,VteT,vSeS (13)
cec
mefv=20t§wt,vWeW,VteT,vSes (14)
cec

Egs. (15)-(16) ensure that the dissembled partscanmgponents from the EOU and EOL products
cannot be more than the respective recyclableamvezable fraction. It is noteworthy that the suim o
0ty and 9., may be greater than 100% for some products dutheofact that some parts and
components are suitable for both recycling andg@negcovery, and the model is capable to generate
the optimal allocation under different scenarios.

Z Qtipt < 0pQcdiy,Vc EC,VtET,VSES (15)
pPEP
Z Qts < 04Qcdi,Vc EC,VtET,VSES (16)

Tr€R

Egs. (17)-(20) restrict the maximum capacity oflexilon center, remanufacturing/recycling plant,
energy recovery plant and disposal site are nhateded.

QcdS, < MCp,,VcEC,VtET,VsES (17)
Qpd3e < MCpy,Vp € P,VtET,VSES (18)
Qensy < MCp,,Vr ER,VtE€T,VS €S (19)
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291

Qwms$, < MCp,,,Vw € W,V,Vs € S (20)

Egs. (21)-(23) restrict that the transportatiorEQIU and EOL products cannot happen from/to the
candidate locations which are not selected.

ZQtf;ctSX?Q,VCEC,VtET,VsES 1)
geG
ZthptSXSQ,VpEP,VtET,VsES (22)
cec
Z Qts, < X:Q,Vvr eR,VtET,Vs€S 23)
cec

Eq. (24) ensures that the carbon emission requitemdulfilled by the reverse logistics system.
The excessive carbon emissions all over the glalsebleen tremendously acknowledged as one of the
most important causes for climate change and glbaiing, so the requirement of carbon emissions
is formulated in this model in order to set a thoéd for the environmental performance of the reger
logistics system.

Ruqs,s = Z z EP..Qcdg; + z Z EP,.Qpdy, + z Z EP,:Qeny, + Z EP,Qwms,

CEC teT PEP teET TER tET wWEW

+ Z z Z Etge QtSe, + Z Z z EtepeQtipe + z z Z EtcreQtere

gEG ceC teT CEC pEP tET CECTER tET (24)

+ z z z Etcw:Qtowe + Z Z z EtymeQtpme

ceEC WEW teT PEP MEM teT

+ Z Z ZEtrthtﬁmt,Vs €S

TER MEM teT

In addition to the aforementioned constraints, fitgt-level decision variable¥?, X; andX; are
binary variables, which belongs to the se{®fl}, and second-level decision variab{gsl?,, Qpdy,,
Qengy, Qwmy,, Qtgce, Qtlpe, Qtore, Qtiye, Qtym: andQty,, are non-negative variables.

4. Solution Method

In stochastic optimization, the uncertainty issaas be formulated and tackled by two different
approaches. In the first approach, the uncertamtyescribed by the continuous distributed evens or
outcomes, while, in the other approach, a setsrdie scenarios is used to represent the undersain
In this paper, the uncertainties related to theegeion of EOU and EOL products, and the price of
recycled products and recovered energy are foredilas discrete scenarios, and a new multi-criteria
scenario-based solution method developed by Soteigtaal. (2016) is applied and further improved
into an augmented method to resolve the stochagtimization problem for reverse logistics network
design.

Due to its effectiveness and simplicity, scenaidgsdn solution method has been extensively used to
formulate the stochastic optimization problems iangn different industries (Soleimani et al., 2016,
Chen et al., 2002, Papavasiliou et al., 2011). Odsc idea for resolving a scenario-based stochasti
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optimization problem is not to find out the optinsdlution of an individual scenario, but it is to
determine the optimal solution through all the gulesscenarios. Therefore, the optimal solutioraof
scenario-based stochastic optimization problem ldhbe efficient while simultaneously with a great
level of confidence and reliability. The method eleyped by Soleimani et al. (2016) takes into actoun
of both issues, and the steps of the method ifiyoiigroduced as follows.

1. Scenario generationThe uncertainties related to the generation of EEdd EOL products,
and the price of recycled products and recoveretiggnare represented by several scenarios
generated logically and efficiently, and the styae and methods for scenario generation with
high representativeness are given by Kaut and \Wal2003), King and Wallace (2012) and
Kouwenberg (2001).

2. Finding out the candidate solutionsor each individual scenario, the stochastic dgttion
problem is converted into a deterministic optim@atproblem and can be resolved. The
optimal solutions of each individual scenario aomsidered the candidate solutions of the
stochastic optimization problem.

3. Testing the performance of the candidate solutitmeugh all possible scenarios-or
obtaining the optimal solution with a high levelaainfidence, each candidate solution is tested
with all the possible scenariol the test scenarios, the first-level decisionaldes (facility
locations and network configuration) of each caattidsolutions will remain the same, while
the second-level decision variables (volume prambsst each facility and transportation
strategy) are optimized with respect to differeimcéhe generation of EOU and EOL products,
and the price of recycled products and recoveredggn

4. Evaluating candidate solutionsthe performance of the candidate solutions throaigjithe
possible scenarios is evaluated through three atalis: Mean, standard deviation and the
reciprocal of coefficient of variation. The meanuised for evaluating the optimal objective
value of the candidate solution while standard aewn is used to measure the level of
confidence, and the reciprocal of coefficient ofiaton is used as the indicator to evaluate the
overall performance of each candidate solutioreims of both expected optimal value and the
reliability.

Standard deviation = (25)

o
Coefficient of variation CV = ; (26)

Egs. (25) and (26) are used for calculating stahdawiation and coefficient of variation, and more
introduction related to those concepts is provigedewontin (1966) and Brown (1998). With this
method, the objective is to obtain the optimal 8otuwith high profit and high level of confidencsg
the reciprocal of coefficient of variation is usedevaluate the performance of the candidate soisiti
The optimal solution is the one with the maximurfugeof the ratio of profit to the level of confiden

(ﬁ = g), which are evaluated by the mean &nd standard deviatiom), respectively. This means the

optimal solution of the reverse logistics netwodsign should be with high profit expectation (high
mean) while simultaneously be robust and reliablerder to ensure a high possibility to achieve the
expected profit (low standard deviation).

The advantage of this multi-criteria method is #maphasis on the minimization of risk and
decision-making with high reliability, because tHecision-making based only upon mean value
regarding fluctuations cannot be with high level ainfidence and reliability to deal with the
uncertainties (Ogryczak, 2000). As shown in theuFég2(A), solutions A and B are the candidate
solutions of the stochastic optimization problemotigh scenarios;, S,..., .. and it is assumed that
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the dispersion of the optimal values of the différecenarios follows normal distribution, so the
optimal values are spread within the rapge 3¢ (Hogg and Craig, 1995, Brownlee and Brownlee,
1965). In this example, solution A has a slightigher profit expectation compared with solutionsB,

it will be the optimal solution if the mean is thely indicator for evaluating the candidate solnti@s
performed in many previous research works (Soleiraad Govindan, 2014). However, it is obvious
that solution A has a larger standard deviation #v profit of different scenarios are broadly
distributed compared that with that in solutionThis data dispersion reflects a greater possilitity
solution A that the optimal profits in some sceosrwill vary sharply compared with the profit
expectation at the mean, and those are the weétrpaince scenarios which significantly hinder the
arrival of the optimal profitability of the reverdegistics system. With the help of the multi-crite
scenario-based solution approach developed by réaheiet al. (2016), this problem is resolved
through taking the reliability issue into decisimaking, and in this case, solution B will be the¢iropl
solution to the stochastic optimization problem tluéts smaller standard deviation. As shown in the
figure, even if the optimal profit expectation olution B is slightly weaker, but the more concated
data dispersion around the mean illustrates a higlel of confidence and reliability. This meahs t
optimal value achieved in different scenarios isargose to the expectation, and solution B hag@em
stable and robust performance especially in wealofeance scenarios.
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Figure.2 Schematic of the benefit and problems of the rauitéria scenario-based solution methfdl) Typical max-mean
and min-standard deviation probleif3) The problem of weak-reliable solutiofC) The incapability to resolve cost-
minimization problem(D) The problem of performance evaluation of risk/fglity with standard deviation.

The theoretical foundation of the multi-criteriaerario-based solution method is to find out the
optimal solution with high performance in both prand reliability, but the performance evaluation
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through the reciprocal of coefficient of varianseinappropriate and with several problems. Fibst, t
simplified division relationships between the mead standard deviation may lead to a weak-reliable
solution, which is a low profitable network configtion but with high reliability. As shown in Fig.
2(B), solution C has lower economic performancd, the reliability of the optimal profits through
different scenarios is extremely high, so it will §elected as the optimal solution with the evatuaft

Civ. However, it is obvious that the profit expectatiof solution A is better compared with solution C

even though the weak-performance scenario is araveTherefore, it is not a good choice to combine
the profit expectation and reliability in a simid division relationship for performance evaluatad a
stochastic optimization problem.

There is also another problem caused by the pesiocen evaluation with the reciprocal of
coefficient of variation. The indicator e# aims at maximizing the mean for improving the eteé

profit while simultaneously minimizing standard agion for improving the reliability. However, the
focus of many mathematical models developed inipusvwresearch works for reverse logistics network
design is to minimize the overall costs (Diabatlet 2013a, Govindan et al., 2016b, Kannan et al.,
2012, Yu and Solvang, 2016a, Demirel and GokceA820emirel et al., 2016), and the simplified
division relationship is not able to generate thénoal solution of the cost-minimization problemedu
to the same convergence direction of the mean tamtard deviation. As shown in Figure 2(C),
solution E (lower mean and lower standard deviatimay has similar performance as solution D

(higher mean and higher standard deviation) with ghrformance evaluation by the indicato%}of

However, it is obvious that solution E has a loexgpected cost with a higher reliability, so it shiolbe
much better than solution D, and this cannot bHectfd through the simplified division relationship

In addition to the problem with performance evahmtthe measurement of risk/reliability with
standard deviation may lead to inappropriate mamelgaterpretations, because standard deviation is
an absolute measurement of data dispersion, whkidheavily affected by the mean. Figure 2(D)
presents an example including two solutions (A Btb a stochastic optimization problem. The mean
of the two solutions vary significantly, but theustlard deviation is the same, so solutions A and F
should be at the same level of risk/reliability. wéwer, from the perspective of statistic theorg th
probability of data dispersion around the meariffer@nt with respect to the different magnitudeev
if they have the same standard deviation (Barlo@r Broschan, 1996). As shown in the figure, the
optimal solution in the weak-performance scenadbsolution F deviates from its mean in more
percentage due to its smaller mean, and this tefleanore spread date dispersion. Therefore, it is
preferred to use a relative measurement to evathatdevel of risk/reliability in the multi-criteai
scenario-based solution method for stochastic epdition problems.

In order to resolve the aforementioned problems, tthulti-criteria scenario-based risk-averse
solution method is further developed into an augegmethod in this paper, and figure 3 illustrakes
procedures of the solution method. First, the altsomeasurement of risk/reliability with standard
deviation is replaced by the relative measuremedata dispersion by coefficient of variation, ahts
enables meaningful comparisons between two or mwagnitude of variation with different means

(Green et al., 1993). Then, the performance evaluaf candidate solutions with the indicator;lgis

replaced by the new indicators based upon a narethliveighted-sum formula that has been
extensively used in combining several differentecbiye functions in the multi-objective optimizatio
problems (Sheu, 2007, Sheu, 2008, Yu and Solvadithd). The benefit of weighted-sum method in
resolving multi-objective optimization is its singty (Marler and Arora, 2004), and it also enaliles
interaction between objective performance measuneindicator and subjective allocation of weights
in order to find out the optimal solutions undeffatent circumstances. Therefore, the normalized
weighted-sum method is used to combine the perfoce@&valuations of the mean and coefficient of
variation for comparing the different candidateusohs in an effective manner.
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Generation of tested scenarios

The tested scenarios of the stochastic are first generated:
e Represents a large variety of future events
e Computationally manageable

L

Determination of the candidate solutions

Based upon the scenarios generated, the stochastics optimization
problem becomes several mixed integer programming problems,
and the optimal solutions of each scenario are candidate solutions.

¥

Calculation of the performance indicators

SI)EPIPUER) PUE SOLIEUIIS JO UONRIIUIS)

The candidate solutions are tested with all scenarios and the
indicators for performance evaluation are calculated:

N
e Mean: p ===

e Standard deviation: ¢ = \f;Z;":,(.r; —u)?

e Coefficient of variation: CV = E

¥

Performance evaluation

The performance of each candidate solution is evaluated:
e  Evaluation indicator is calculated
e Different weight combinations are tested in order to
determine the most appropriate one (Pairwise comparison
with wemean + wee” = 1)

Max-profit problems Min-cost problems
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Figure.3 Augmented multi-criteria scenario-based risk-aeslution method.

The normalized weighed-sum method formulated in®@d%(32) is capable to resolve both profit-
maximization and cost-minimization problems. EQY)( (29), (31) and (32) are used to evaluate the
performance of a profit-maximization problem, whidgs. (28), (30), (31) and (32) are applied in the
performance measurement of a cost-minimizationlprobHereinPerf.mean perf.mean perfCV,
wtmean and WtV represent the performance measurement value aightwef the mean and
coefficient of variation in both profit-maximizatioand cost minimization problem&lean™*,
Mean™™ CV™a% andCV ™" are the maximum and minimum values of the meancaedficient of
variation throughout all the candidate solutions Mean®®"% and CV°“4- represent the mean and
coefficient of variation of each candidate solutioespectively. In the performance evaluation ef th
mean and coefficient of variation of each candidstdution, the benchmark is their maximum
difference determined by the respective maximum mimdmum values throughout all the candidate
solutions, and those are the denominators in E2§3:(81). The numerators of those equations reveal
how far the candidate solution deviates from thst lselution throughout all the candidates, and the
numerator equals to 0 when the candidate solutiam the best performance. The benchmark
denominators are used to normalize the performawakiation of the mean and coefficient of variation
due to their different measures of units, e f. 13"/ Perf. ¢4 andPerf.tV can then be combined
in a weighted-sum for the decision-making. The @atteé solution with the smallest weighted-sum is
the optimal solution, which means the performarfcin@® mean and coefficient of variation is close to
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the best performance across all the candidatei@adutThis method can effectively resolve the weak-
reliable problem through distributing a larger Weitp Perf.ne%"/Perf.m:" so that the importance
of the performance in profit/cost expectation Wil dramatically improved. On the other hand, when
the mean of the candidate solutions are slighffemintiated from each other, a larger weight vwél
given toPerf.cV in order emphasize the reliability in the decisinaking.

Evaluation indicatqp,, = Wt™*" Perf. et + Wt Perf.cV 27)(
Evaluation indicatgy;,, = Wt™¢%"Perf.meem+ Wt perf.tV 28)(
mean Mean™®* — Mean®*"% (
Perf-max = Mean™ax — Meanmin 29)
Meancand. _ Meanmin
Perf nedt = , 30)(
Mean™ax — Mean™"
CVcand. _ Cvmin (
cv _
Perf. = cymax _ Cvmin 31)

cvV _ (
wemean 4 Wi =1 32)

From the discussion above, the augmented mulér@iscenario-based risk-averse solution method
can effective resolve the problems of the origmathod, and it also provides the decision-maketis wi
more flexibility between the profitability (or cagtand reliability in reverse logistics network ides
under stochastic environment.

5. Experimental analysis
5.1 Numerical experiment

In order to illustrate the application of the stastic optimization model and the effectivenessef t
augmented multi-criteria scenario-based risk-aveadation method, a numerical experiment of a mid-
sized problem is tested. The reverse logisticesyshcludes two types of EOU and EOL products (A
and B), fifteen generation points, eight candidatations for central collection center, five catale
locations for recycling/remanufacturing plant, dive candidate locations for energy recovery plémt.
the numerical experiment, the generated volumecangersion fractions of products A and B, and the
cost parameters related to the facility operatind #ansportation are generated based upon uniform
distribution, as shown in Table 2.

Table 2 Parameters of the numerical experiment

Parameters Uniform distribution

Product A Product B
Generation of EOU and EOL producPg,) 4000-6000 2000-6000
Fixed cost of central collection centéf)( 0.8-1.5 million 0.8-1.5 million
Unit processing cost at central collection cenker.{) 50-80 50-80
Fraction can be remanufactured and recyalieg) ( 50% 40%
Fraction can be sent for energy recovery. X 30% 40%
Fixed cost of recycling/remanufacturing plaf)( 1.2-2 million 1.2-2 million
Unit processing cost at recycling/remanufacturitgpPo,.) 100-200 100-200
Unit profit at recycling/remanufacturing plamdy,) 500-1000 200-400
Fixed cost of energy recovery plaft) 1.5-2 million 1.5-2 million
Unit processing cost at energy recovery pl&at.{) 200-300 200-300
Unit profit at energy recovery plarkén;;) 500-1000 300-500
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Government subsidy for treating one unit prodSabt;, Subp,) 200-300 100-200
Gate fee at landfill for disposing one unit prod(i,,) 50-100 50-100
Unit transportation cost€{yc;, Ctepes Cteres Clewes Ctpmes Ctrme) 50-200 50-200

Some assumptions are made in the numerical exparimeorder to maintain a high rationality.
First, the capacity is directly proportional to tlireed costs of each facility, because more equigme
and personnel are required for an increased cgp&stond, the unit carbon emissions are inversely
proportional to the variable processing costs aadsportation costs due to the fact that more money
has to be invested for improving the technologdieaé! in order to reduce the carbon emissions (Wang
et al., 2011). Multipliers generated randomly ie ttertain intervals are used to estimate the valties
those parameters in the numerical experiment.h&ligarameters used in the numerical experiment are
given in the supplementary file.

After the parameters have been given, eleven tesiasios are generated in a logically sensible and
computationally efficient manner. In accordancenwiite scenario generation performed in Soleimani et
al. (2016), we first define three benchmark sceisamamely, best-case scenario, worst-case scenario
and basic scenario. In the best-case scenarioupper limits of the parameter intervals of the
generation of EOU and EOL products, price of reegcproducts and recovered energy are used
(EF;,=6,000,EP;,=6,000,Pen;,=1,000,Pen;,=400,Ppd;,=1,000,Ppd,,=500), while in the worst-
case scenario, the lower limits of them are rea¢figg, =4,000,EP;,=2,000,Pen7,=500,Pen;,=200,
Ppd;,=500,Ppd,,=300). In the basic scenario, the mean valueseobtbchastic parameters are used
(EP;3=5,000,EP;;,=4,000,Pen;,=750,Pen;,=300,Ppdy,=750,Ppd,,=400). Then, we generate two
scenarios of each stochastic parameter on bottiygoside and negative side around the mean. With

the combination of different scenarios of the stmtic parameters, eight different test scenaries ar
generated as shown in Figure 4.
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Figure.4 Scenario tree related to the numerical experiment.

5.2 Result and discussion
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The model is coded and computed with Lingo 15.0ndpation package on a personal computer
with Intel Core i5-6400T 2.20GHz processor and 8 i3&mory under Window 10 operating system,
and the carbon emissions requirement is not takensiccount in the initial stage. Each test scenari
first resolved independently as a mixed integeimaipation problem, and less than 10 s computation
time needed to find out the optimal solution offeatdependent scenario due to the small size of the
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problem. The profit, carbon emissions and faciigyection of each candidate solution is given iblda
3, and Figures 4 and 5 illustrate the compositicth@ profit and carbon emissions.

Scenario-based solution method is a powerful aficiezit approach to solve stochastic optimization
problem, and it is of great importance to genemgipropriate scenarios to represent the fluctuate
situations. The increase of scenarios generatedhanas a better representation of the uncertaintly, b
the benefit of doing this seems quite limited white required computational time will increased
significantly (Pishvaee et al., 2009, El-Sayedlgt2®10). Therefore, in this numerical experimeng,
aims at generating sufficient test scenarios tectiffely represent the uncertainty while simultarsp
accounting the computational efficiency. As shownTable 3, the mean value of all the candidate
solutions is 39,775,718, and 5 scenarios haverbggtformance while the other scenarios have lower
performance, which presents a fair distributiorboth optimistic and pessimistic expectations of the
market fluctuation. Throughout all the candidatkigsons, the highest profit is 75,439,570 obtaia¢d
best-case scenario and the lowest profit is 12/A8bachieved at worst-case scenario, and the iange
159% of the mean value. When the extreme benchisegkarios are excluded, the highest profit
becomes 56,168,960 achieved at scenario 8 andothestl profit becomes 24,621,660 obtained at
scenario 1, and the range becomes 79% of the maae.vlhis proves the diversification of the
generated scenarios. Taking into account of theeafentioned discussion, the diversification and fai
distribution of optimistic and pessimistic expeitatcan prove the test scenarios generated cover a
large variety of the market fluctuations.

Table 3 Profit, carbon emissions and facility selectioreath candidate solution (results are normalizediviging by1d)

Scenario Profit (19 Carbon emissions Network configuration
(10

Collection Recycling Recovery
Best-case 7544 27454 1,2,4,6,7,8 2,4,5 3,2,
Basic 3724 20284 1,2,4,6,7 4,5 2,3,5
Worst-case 1208 13047 1,2,6,7 4,5 3,5
sl 2462 15570 2,4,6,7,8 3,4 3,4
s2 3506 15192 1,2,6,7,8 3,4 4,5
s3 3397 15718 2,5,6,7,8 4,5 3,4
s4 4387 15614 1,2,6,7,8 4,5 2,4
sb 3098 22502 2,4,6,7,8 2,3,4 1,34
s6 4510 22825 1,2,4,6,7,8 2,3,4 2,4,5
s7 4299 22567 2,4,6,7,8 1,4,5 1,34
s8 5617 22405 2,4,6,7,8 1,4,5 2,4,5

It is shown from Table 3 that the carbon emissimd facility selection vary in different scenarios.
In general, more facilities have to be opened guataied with the increase of EOU and EOL products
generated, and this will increase the overall castbcarbon emissions of the reverse logisticenyst
As illustrated in Figures 5 and 6, the change eftttal costs and carbon emissions is similas. #i$o
observed that the government subsidy generallygasgs with the increase of EOU and EOL recycled
and recovered, while the revenue and profit are hésavily affected by the prices of the recycled
products and recovered energy. For example, inasike, even if the generation of EOU and EOL
products is high, but the profitability is heaviéynd negatively affected by the low price for the
recycled products and recovered energy, and tlak dosts for operating the reverse logistics system
are more than the revenue it generates. In this the government subsidy plays an important role i
compensating and promoting the reverse logistitsites. Furthermore, it is also observed that the
facility operation takes more share in the ovecabts, while the transportation of EOU and EOL
products has a more important role in the carbois®ans of the reverse logistics system.
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Figure5 Comparison of the revenue, profit and cost compisnef the candidate solutions (results are norradliby
dividing by1d).
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Figure.6 Comparison of the total emissions, facility emisi@nd transport emissions of the candidate scenémesults are
normalized by dividing by1%.

The objective of the stochastic programming isitd but the optimal solution with the best profit
expectation and high reliability, so each candidalation is tested through all the scenarios gerdr
The facility selection of the candidate solutiontlie fixed, but the allocation of EOU and EOL
products and transportation strategy will be chdngith respect to the changing parameters, and the
problem becomes therefore a linear optimizatiobiem and can be resolved within 5 s. In total, 121
rounds of calculation are performed, and the resydtesented in Table 4.

It is noteworthy that some candidate solutions geyse infeasible solutions in some test scenarios
due to the insufficient capacities of the selediesti-level facilities. For instance, the overadipacities
of the central collection centers selected in adaugi solution 1 for products A and B are 86,296 and
136,561, respectively, and this leads to infeassiol@tion in the best-case scenario at which 90,000
capacities for each type of product is required.otder to resolve this problem, two types of
adjustments can be done either to reduce the sdexel or to increase the facility capacity. Wiitle
first option, the facility capacity will remain tleame, but Eq. (9) should be relaxed to allow tG&JE
and EOL products may not be totally treated, asvshin Eq. (34), while in this case, another
objective (Eq. (33)) should also be introduced rdeo to maximize the EOU and EOL products
treated with the limited capacity. The reformulatie given as follows, which becomes a bi-objective
model focusing on the tradeoff between profit aadvise level under carbon constraint. Further, a
penalty may also be incorporated into the firseobye function in order to account the influende o
the reduced service level (King and Wallace, 2012).

0Obj1 = max Profit, Egs. (1-(8), Vs € S
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The other option to treat the infeasibility is tociease the capacity of facility without the
compromise on the service level of reverse logistigstem. In this example, we adopt this option to
treat the problem and perform reasonable compan$ohe candidate solutions, and the increase on
facility capacity is to fulfill the requirement fdhe treatment of EOU and EOL products with the
minimum adjustment of the original planning. In #idd, it is also observed from the infeasible
solutions that the violation of the capacity coaistr is usually caused by one product. For instance
the network configuration determined in the basensrio is not able to handle the EOU and EOL
products in the best-case scenario due to theficisumt capacity. In this scenario, the violatioh o
capacity constraint is only caused by product Awdwer on the other hand, excessive capacity is
planned for product B. Thus, from strategic perspecthe increase on facility capacity may also
interpreted as the capacity conversion betweerréifit products without incurring additional costs,
i.e., the uses of flexible manufacturing system.

Table 4 Performance of the candidate solutions througthaltest scenarios (results are normalized bylidigiby1d)

Scenarios Candidate solutions

c-1 c-2 c-3 c-4 c-5 c-6 c-7 c-8 c-basic c-best orswv
sl 2462 2302 2374 2222 2401 2139 2137 1936 2180 2074 318 2
s2 3342 3506 3249 3368 3154 3252 2928 3126 3179 3001 3154
s3 2946 2812 3397 3248 3000 2740 3249 3048 3208 3026 3347
s4 3833 4012 4247 4387 3747 3814 3999 4135 4158 3918 4168
s5 1870 2005 2146 1664 3098 2839 2832 2565 2414 2816 1664
s6 2896 3488 3172 3025 4211 4510 3889 4269 3830 4080 2579
s7 2426 2596 3248 2767 3800 3540 4299 4040 3523 4065 2772
s8 3452 4079 4274 4128 4913 5199 5347 5617 4938 5299 3687
Basic 2908 3158 3362 2918 3431 3463 3437 35253724 3524 3154
Best 4372 4830 5043 4606 6886 7325 7287 7506 62777544 4529
Worst 945 966 1056 1041 716 721 727 798 1003 707 1208
Mean 2859 3069 3234 3034 3578 3595 3648 3688 3494 3641 2962
Standard 895 1036 1048 1055 1463 1629 1622 1716 1339 1678 4 95
deviation
Cv 31.32% 33.78% 32.43% 34.78% 40.89% 45.31% 44.46%54%6 38.32% 46.09% 32.21%

As shown in Table 4, each candidate solution remtssthe best profit expectation in its own
scenario. The best profit expectation through b# test scenarios is 36,877,352 achieved with
candidate solution 8, while the worst expectedipi®f28,591,958 obtained with candidate solution 1
However, considering the reliability issue, cantkdsolution 1 outperforms other candidate solutions
with the smallest value on both standard deviasind coefficient of variation. The gap between the
best and worst performance on the profit expecatadad reliability are 29% and 49%, and this
illustrates the performance of the candidate smhgtivaries significantly under market fluctuation.
Due to the large gap of the expected profit, thdopmance evaluation of the candidate solutions
should prioritize the profit expectation in orderavoid the weak-reliable solutions. Therefore esalV
weight combinations with incrementait™¢%" from 0.5 are tested, and the weight combination of
wtmean=0.7 and¥/t*"=0.3 is used for the performance evaluation in tlisierical experiment.
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Comparison of standard deviatiq&) Performance evaluation Witjg; (D) Performance evaluation with the weighted sum.

The performance of the candidate solutions is ewatlithrough botlc%; and weighted sum and the
result is shown in Figure 7. As shown in the figurandidate solution 1 is the optimal solution give
by the evaluatorciv, and the candidate solutions 2, 3 and 4 obtainiéd lewer generation of EOU

and EOL have better performance due to their cudstg performance in reliability. However, when
the weighted sum is used for performance measutecemdidate solution 5 becomes the best choice,
and the candidate solutions 6, 7 and 8 obtaineld mgher generation of EOU and EOL have better
performance due to their better profit expectatid®emparing the candidate solutions 1 and 5, it is
observed that candidate solution 1 has slightljebgtrofit expectation in scenarios 1, 2, 4 andstvor
case, but candidate solution 5 has much betteoqpeaihce in the other scenarios particularly when th
generation of EOU and EOL products is high. Thesetgd profit, total revenue, subsidy, total system
operating costs, facility costs and transportatimsts through all the test scenarios in candidate
solutions 1, 5 and basic are compared and illestret Figure 8.

As shown in the figure, candidate solution 1 fosusa the efficiency of the reverse logistics
system, which has less facility selected and tbéitiacosts and transportation costs are much fowe
than that in the other scenarios. The benefit isf letwork structure is to have a high efficienogl a
utilization of facilities especially when the geaton of EOU and EOL products is relatively low.
However, even if candidate solution 1 has the reffgtient network configuration and most reliable
performance across all the test scenarios, it shoofl be considered as the optimal solution dutsto
much lower profit expectation, and the incapabidityd less profitability in dealing with the increds
amount of EOU and EOL products.
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Figure.8 Comparison of candidate solutions 1 and 5 throalgjlthe scenariogesults are normalized by dividing
by1(%): (A) Profit expectation(B) Total revenuefC) Subsidy;(D) Total costs(E) Facility costs{F) Transportation costs.

On the other hand, candidate solution 5 has mutteriqgerformance when the generation of EOU
and EOL products is high, but when the generatidow, the expected profit is slightly lower due to
the increased costs for operating more facilitied the waste of capacity. Furthermore, comparing
with other candidate solutions obtained from thenstios with high generation of EOU and EOL
products, candidate solution 5 has better perfocmamthe reliability, which guarantees a higheele
of confidence to achieve the expected profit. Thoees based on the discussion, candidate solution 5
determined by the weighted sum is the optimal swiutand this proves the effectiveness of the
augmented solution method for resolving stochaxgitamization problem.

Furthermore, the performance of the basic scensidso presented in the figure, and this can be
considered as the optimal solution of a determmpgbblem. As can be seen in Figure.8(A), theiprof
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expectation is better than that in candidate smhuti in most scenarios. This reveals that, eveagho
many argues stochastic programming has much beteiormance in decision-making under
uncertainty (King and Wallace, 2012), the effeatiess may not be better than a deterministic médel i
the value expectation and level of risk are not liod in an appropriate way for performance
evaluation.

5.3 Mode sensitivity

In this paper, we are interested in how the canmmuirement will affect the reverse logistics
network design, so five sensitivity analysis arafqgrened with the gradually increased carbon
emission requirement by 10%, 20%, 30%, 40% and $8%pectively. With the increased requirement
on the carbon emissions of reverse logistic systaore infeasible solutions are found due to the
capacity constraint, especially when the candidatetions calculated in low generation scenaries ar
applied in the high generation scenarios. In otddrave a reasonable and meaningful comparison, the
capacity constraints are relaxed accordingly onrdhevant facilities which cause infeasible solntip
and also the rule of minimum adjustment of thelitggdlan is applied when the relaxation is needed.

It is observed the limited facility capacities déine most significant bottleneck to fulfill the carb
emission requirements and to achieve a bettertpbilfty of the reverse logistics system, so anothe
two scenarios are tested with the relaxation otctygacity constraints, say, the facilities are bpto
deal with the increased amount of EOU and EOL prtxltHowever, more money has to be invested
to purchase more equipment and recruit more pees@onas to improve the capacities of the facdjtie
so the fixed costs are increased by 100% and 2008bei tested problems, respectively. Therefore,
seven different problems with changing parametergyanerated and tested, and totally 847 rounds of
calculation are performed in the sensitivity analys

Table 4 The optimal solution and network configuratioreath test problem (results are normalized by digidliy1d)

Test problems with changing parametersin ~ Optimal Network configuration
sensitivity analysis solution

Collection Recycling Recovery
Capacitated problem without requirement on  ¢c-5 2,4,6,7,8 2,3, 4 1,3,4
carbon emissions
Capacitated problem with requirement of 10% c-7 1,2,4,6,8 1,4,5 1,3,4
reduction on carbon emissions
Capacitated problem with requirement of 20% c-4 1,2,3,8 4,5 2,4
reduction on carbon emissions
Capacitated problem with requirement of 30% c-4 1,2,3,8 4,5 2,4
reduction on carbon emissions
Capacitated problem with requirement of 40% c-7 1,2,3,6,8 1,4,5 1,3,4
reduction on carbon emissions
Capacitated problem with requirement of 50% c-3 1,2,3,7,8 1,5 3,4
reduction on carbon emissions
Uncapacitated problem with 100% increase on c-5/c-best/c- 2,6 4 3
fixed facility costs (Uncapacitated s1) basic
Uncapacitated problem with 200% increase on c-1/c-best/c- 6 4 3
fixed facility costs (Uncapacitated s2) basic

Table 4 shows the optimal solution and networkfigmnation of each test problem, and it is
observed the optimal solution and network configaraare by no means identical with the change of
carbon emission requirement and capacity constrigtires 9 and 10 present the comparison of the
average cost expectation and average carbon ensssfahe test problems. As shown in Figure 9,
when the requirement on the reduction of carborsgioms increases from 10% to 30%, the decrease
on the average profit expectation of the revergestiws is extremely slight (0.4%, 1.2% and 2%)isTh
reveals the implementation of the carbon emissiequirement at this range will improve the
environmental performance without compromising greeonomic benefits. However, the average
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expected profit reduces sharply by 20% and 54.5%mthe carbon emissions requirement increases
to 40% and 50%. This provides decision-makers withear relationship between the profitability and
environmental sustainability of the reverse logstystem, and it also provides the referencehior t
policy-making on the carbon emission requirements.
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Figure.9 Average profit expectation over the incrementajuieement for the reduction of carbon emissionsuite are
normalized by dividing by19.
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Figure.10 Comparison of the basic capacitated problem andpauited scenarios 1 and 2 (results are normaliged
dividing by1d): (A) Average profit expectatiolfB) Average carbon emissions.

Figure 10 shows the comparison of the two uncap&citsceanrios. As shown in the Figure 9(A),
the average profit expectation increases by 4.1#% ¥00% increase on the fixed facility costs, while
it is decreased by 8.4% with 200% increase onfittezl facility costs. This illustrates the larger
facilities with more investment will improve the@wmic performance of the reverse logistics system
only when the increase of the investment for ficikxpansion is maintained at a proper level,
otherwise, the profitability will be negatively affted. Figure 9(B) shows the average carbon
emissions reduce by 11.9% and 20.6% in the teblgmts, respectively. This illustrates that openning
a smaller number of facilities with large capadgtyanother way to reduce the carbon emissions from
the reverse logistics activities. Aslo, the ressiiows the facility expansion may improve both
economic and environmental performance of the sevéwgistis system, and the upper limit of the
increased investment can be suggested to the aeeigkers from the analysis.
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Figure.11 Comparison of the optimal solutions with respecthie changing parameters in the sensitivity aimalyssults are
normalized by dividing by1d: (A) Profit expectation(B) Total revenue(C) Subsidy;(D) Total costs(E) Facility costs(F)
Transportation costs.

Figures 11 and 12 illustrate the comparions of dpgmal solutions of the test problems with
respect to the expected profit, total revenue,idybtotal costs, facility costs, transportatiorsts and
carbon emissions related to the facility operationd transportation through all the scenarios. As
shown in figures, the total revenue and subsidyugin all the scenarios change slightly in the diffe
test problems, but the total costs change drantigtiwith the changing carbon emission requriement
and capacity restriction. The more stringent rezqagnt on the reduction of carbon emissions leads to
higher costs particularly when 40% and 50% requémrsiare applied, and this is the main reason for
the weak economic performance in those two scehalids observed that the change of the total
system operating costs and carbon emissions i®ddysboth facility operation and transportation of



675
676
677
678
679

680
681
682
683
684
685
686
687

688

689
690
691

692
693
694
695
696
697
698
699
700
701
702
703

704
705
706
707
708
709
710
711

EOU and EOL products. Compared with facility operata more sharper change can be observed on
the transportation in both costs and carbon emissiand this reveals the change of product allogati
and transportation strategies with respect to wiffe network configuaration has significant
importance in determining both economic and envirental performance of the reverse logistics
system.

In general, as observed from the sensitivity amglythe reduction on carbon emissions of the
reverse logistics system are determined by botlhityacperation and transportation of EOU and EOL
products. Compared with facility operation, thengjgortation strategy plays a more important role in
reducing carbon emissions, and this also leadsstwagper increase on the transportation costseof th
reverse logistics system. When the range of theinement on carbon emission reduction is ho more
than 30%, the negative influence on the profitabiif the reverse logistics system is extremelghd|i
but with the implementation of more stringent reguient, the negative impact becomes significant.
The model can help decision-makers with the evialnaif different regulatory mechanisms.
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Figure.12 Comparison of the optimal solutions with respedtie changing parameters in the sensitivity amalyssults are
normalized by dividing by1®: (A) Carbon emissions from the facility operatior{8) Carbon emissions from the
transportation.

We are also interested in the role played by theegonent subsidy in determining the profitability
of the reverse logistics system, so the ratio tfsily/profit of the optimal solutions through atlet
scenarios in each test problem is calculated amdpaced, as shown in Table 5. The ratio of
subsidy/profit illustrates the relative importancethe subsidy in the overal profit of the reverse
logistics system, and if the ratio is more thars lggn 100%, that means the profit is contributgd b
both the suplus of the reverse logistics systertal(tieevenue minus total costs) and government
subsidy. If the ratio equals to 100%, that meamstttial revenue equals to the total costs, and the
profit of the reverse logstics system is total cbated by the government subsidy. If the rationsre
than 100%, that means the total costs is highen tha total revenue obtainted from selling the
recycled products and recovered energy, and theredwegstics system is not profitable without the
government subsidy, so in this case, the governrsebsidy plays an extemely important role to
promote the reuse, recycling and recovery of EOEB@L products.

As shown in Table 5, the government subsidy is g to gaurantee the economic benefits for
the companies in the reverse logistics system edpem the bad economies. In general, when the
generation of EOU and EOL products are high, tlditpof the reverse logistics system is contributed
by both surplus and government subsidy, while npamrgion in the profit is taken by the government
subsidy when the generation of EOU and EOL is Iewthermore, with the increased requriement on
the reduction of carbon emissions, the ratio ofsgiydprofit increases gradually through all the
scenarios, and this reveals that the governmemsidyuplays a more important role in maintaining the
profitability of the reverse logistics system whée carbon emission requirement is implemented. In
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addtion, the contribution of government subsidythie uncapacitated sceanrios is relatively smaller
compared with that in other test problems partitylevhen the fixed facility costs are increased by
100%, and this shows a better profitatbility of theerse logistics system.

Table5 Ratio of subsidy/profit of the optimal solutionsatigh all the scenarios in sensitivity analysis

Test problems with Scenarios
changing parameters in
sensitivity analysis

sl s2 s3 s4 s5 s6 s7 s8 best basic  worst

Capacitated problem 100% 76% 80% 64% 103% 76% 84% 65% 51% 83% 294%
without requirement on

carbon emissions

Capacitated problem with  115% 85% 75% 61% 119% 85% 77% 61% 49% 85% 319%
requirement of 10%

reduction on carbon

emissions

Capacitated problem with 126% 85% 80% 61% 119% 81% 79% 61% 49% 85% 323%
requirement of 20%

reduction on carbon

emissions

Capacitated problem with  139% 85% 86% 61% 119% 77% 81% 60% 50% 86% 328%
requirement of 30%

reduction on carbon

emissions

Capacitated problem with  194%  125% 100% 76% 214% 121% 106% 79% 57% 118%
requirement of 40%

reduction on carbon

emissions

Capacitated problem with  2993% 202% 157% 108% 630% 164% 163% 100% 117% 211%
requirement of 50%

reduction on carbon

emissions

Uncapacitated problem 93% 75% 75% 66% 96% 81% T77% 67% 47% 78% 208%
with 100% increase on

fixed facility costs

(Uncapacitated s1)

Uncapacitated problem 109% 91% 85% 74% 113% 93% 88% 75% 51% 89% 306%
with 200% increase on

fixed facility costs

(Uncapacitated s2)

6. Managerial Implication

One of the most important strategic decisions ireerse logistics system is to determine the
network structure in terms of the number and locetiof facilities and the transportation strategy,
which has significant influence on the long-terrofitability and environmental sustainability. Tlésa
complicated decision-making problem due to the rixabetween the economic benefits and
environmental impact, and the uncertainties cailmedarket fluctuations. This research focuses on
sustainable reverse logistics network design ustierhastic environment, and the optimal solution
emphasizes both profit expectation and reliabilifurthermore, the model is tested with seven
scenarios with different carbon emissions consti@icapacity constraint.

From the numerical experiment and sensitivity asialythe compulsory requirement is an effective
way to reduce the carbon emissions from the revegistics system, but this will negatively affelae
profitability due to the increased system operatogts. Further, the network configuration varies
significantly with the changing carbon requiremewtlso, the size of planned facilities can affdes t
network configuration, profitability and carbon esibns of the reverse logistics system. Due to the
economy of scale from the larger facilities, bottormic and environmental performance of the
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reverse logistics system may be improved if theeiase of investment for facility expansion and
aggregate transportation is maintained at a prépeal. In addition, government subsidy plays an
important role in determining the profitability tfe reverse logistics. When a stringent requirernant
carbon emission is implemented or the generatioB@f) and EOL products is low and the facilities
are not fully used, government subsidy significardbmpensates the loss from the high costs for
operating the reverse logistics system.

Considering the generic nature of reverse logisietsvork design, some managerial implications
are summarized as follows.

First of all, when the generation of EOU and EObdurcts is high, the capacity of reverse
logistics system may not be able to deal withradlwaste products generated. The decision-
maker has to determine either to reduce the setsied or to have more investment on
capacity expansion. It is a wise choice for decishaker to consider the future capacity
expansion at the initial stage of the reverse tmgisietwork design.

In a multi-product reverse logistics system, thalation of the capacity constraint may be
caused by one or some of products, but for ther gifwelucts, the waste or insufficient use
of capacity may be observed. Thus, another effectind efficient way to resolve the
capacity limitation is to improve the flexibilityf ahe facilities in order to enable the
conversion of capacity of different products. Tloaeept of flexible manufacturing system
has been well introduced and extensively appliedha forward supply chain, but the
implementation in the reverse logistics system khalso be focused so that the flexibility
and resource utilization can be dramatically impahv

In general, the inclusion of carbon requirement mesylt in a decrease on the profitability
of reverse logistics system. In order to balan@ @bonomic benefits and environmental
impact, government subsidy may be used as an impoldverage for compensating the
economic loss from the carbon requirement. For @@nthe rate of government subsidy
may be optimally changed with the changing requéeinon the carbon emissions, and the
model is able to support this decision.

7. Conclusion

In this paper, we develop a stochastic optimizatiomdel for network design of a multi-
product multi-echelon carbon-constrained reverggstics system. The stochastic optimization
problem is resolved with an augmented multi-crétestenario-based risk-averse solution method,
which guarantees a well profit expectation withightevel of confidence and reliability. In order
to show the application of the model, numerical egkpent with the changing constraints on
carbon emission requirement and facility capadty] some deep managerial implications are
drawn from the analysis of the results. The maintrdoution of the research is summarized as
follows.

* We develop a new stochastic optimization modelréwerse logistics network design
with the consideration of both economic benefitd anvironmental impact.

* We develop an augmented multi-criteria scenarie@tha@®lution risk-averse method
based upon the result of a latest research, andghrthe use of normalized weighed
sum in decision-making, the problems existed, weak-reliable solution, inability to
solve the cost-minimization problem, etc., can fiectively resolved with the
augmented method.

 We use the augmented multi-criteria scenario-basdgtion method to resolve the
stochastic optimization problem, which emphasizeth lihe optimal value and the
reliability to achieve the optimal value.

* We get deep managerial implications from the nucaérexample and sensitivity
analysis, i.e., the relationship between profit agatbon emission requirement,
understanding and resolution of the infeasibiliysed by capacity limitation, the use
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of flexible manufacturing system in reverse logistiproper use of the government
subsidy as a leverage, etc. Furthermore, the manbhgaplications are obtained in a
stochastic environment, and this will improve tlediability and robustness of the
decision-making under market fluctuation.

For future development of the research, some stiggesare given. First, the environmental
sustainability is only evaluated by carbon emissjand more environmental indicators, i.e., water
pollution, land pollution, etc. should be includedhe model formulation. Besides, the social atpec
of sustainability, i.e., employment, working enviroent, etc., should be also accounted in the
sustainable reverse logistics design, as discusgdsovindan et al. (2016b) and Feito-Cespon et al.
(2017). Second, a further research should be taketleveloping a systematic framework in order to
suggest the weight combination or the range of lteigmbination with respect to the variation of the
mean. For example, when the variation of the befilevand worst value of the mean is 45%, a
suggested range of weight combination should be ediately suggested for the performance
evaluation. This will significantly improve the efftiveness and efficiency of the augmented multi-
criteria scenario-based risk-averse solution mefoodtochastic optimization problems. Last but not
the least, the capacity conversion of differentetypf products achieved by flexible manufacturing
system in reverse logistics should be focused arilidr discussed in order to improve both economic
and environmental sustainability.
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Highlights:

We develop a new stochastic optimization model for reverse logistics network design
with the consideration of both economic benefits and environmental impact.

We develop an augmented multi-criteria scenario-based solution risk-averse method
based upon the result of alatest research, and through the use of normalized weighed
sum in decision-making, the problems existed, i.e., weak-reliable solution, inability to
solve the cost-minimization problem, etc., can be effectively resolved with the
augmented method.

We use the augmented multi-criteria scenario-based solution method to resolve the
stochastic optimization problem, which emphasi zes both the optimal value and the
reliability to achieve the optimal value.

We get deep managerial implications from the numerical example and sensitivity
analysis, i.e., the relationship between profit and carbon emission requirement,
understanding and resolution of the infeasibility caused by capacity limitation, the use
of flexible manufacturing system in reverse logigtics, proper use of the government
subsidy as aleverage, etc. Furthermore, the managerial implications are obtained in a
stochastic environment, and this will improve the reliability and robustness of the
decision-making under market fluctuation.
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