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Abstract: With the increase of the concern from the public for environmental pollution and waste of 11 

resources, the value recovery through reuse, repair, remanufacturing and recycling from the end-of-use 12 

(EOU) and end-of-life (EOL) products have become increasingly important. Reverse logistics is the 13 

process for capturing the remaining value from the EOU and EOL products and also for the proper 14 

disposal of the non-reusable and non-recyclable parts. A well-designed reverse logistics system will 15 

yield both economic and environmental benefits, so the development of an advanced decision-making 16 

tool for reverse logistics system design is of significant importance. The paper presents a novel multi-17 

product multi-echelon stochastic programming model with carbon constraint for sustainable reverse 18 

logistics design under uncertainty. Compared with the previous stochastic optimization models in 19 

reverse logistics system design, which mainly focuses on the expectation of the optimal value, this 20 

paper, however, emphasizes on both optimal value expectation and its reliability in decision-making. 21 

Due to this reason, a multi-criteria scenario-based risk-averse solution method is developed based on a 22 

latest research in order to obtain the optimal solution with high level of confidence. Later in this paper, 23 

the application of the model and the augmented solution method is illustrated and the managerial 24 

implications are discussed through the numerical experiment and sensitivity analysis. The result of the 25 

study shows that the model can be used for providing decision-makers with a deep insight into the 26 

relationship between profit and carbon emission requirement, understanding and resolution of the 27 

infeasibility caused by capacity limitation, the use of flexible manufacturing system in reverse 28 

logistics, and proper use of the government subsidy as a leverage in reverse logistics design. 29 

 30 

Key word: reverse logistics; network design; optimization; stochastic programming; sustainability; 31 

uncertainty; scenario-based solution, risk averse 32 

 33 

1. Introduction 34 

Logistics and supply chain network design is a complex decision-making problem in operational 35 

research, which aims mainly at determining the locations of different facilities and the material flows 36 

and transportation strategy among those facilities (Lee and Dong, 2009). Due to the complicated 37 

nature of the logistics and supply chain network design problem, it has never lost its appeal to both 38 

academic researchers and practitioners. In recent years, with the increasing focus on sustainable 39 

development and circular economy, the value recovery from the end-of-use (EOU) and end-of-life 40 

(EOL) products has been adopted by many enterprises all over the globe due to the economic 41 

incentives and stringent environmental regulations enforced. For example, the EU Directive 92/62/CE 42 

has set a compulsory requirement for the manufacturing companies to recover a percentage of the EOL, 43 

EOU as well as the packaging materials from the market (Gonzalez-Torre et al., 2004). Therefore, the 44 

design of an economically efficient and sustainable reverse logistics network has been increasingly 45 

focused in the recent literature (Nikolaou et al., 2013).   46 
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Reverse logistics is the entire process for effectively managing the material, information and cash 47 

flow in order to re-generate value from EOU and EOL products through repair, reuse, remanufacturing, 48 

recycling and re-introduction to the market, besides, it also involves the proper treatment of the non-49 

reusable and non-recyclable parts (Rogers and Tibben‐Lembke, 2001, Yu and Solvang, 2016a). 50 

Reverse logistics network design is a long-term decision at strategic level, and when the supply chain 51 

network is configured, it could be extremely difficult and costly to alter it. A well-planned reverse 52 

logistics system will yield both economic and environmental benefits. However, an improperly 53 

designed reverse logistics system may reduce the profitability of the business while simultaneously 54 

cause more serious environmental and/or social impact. Due to this reason, it is of great importance to 55 

develop the advanced methods for resolving the complex decision-making problem of reverse logistics 56 

network design. 57 

This paper formulates a new carbon-constrained mathematical model under stochastic environment 58 

for sustainable reverse logistics network design, and an augmented multi-criteria scenario-based risk-59 

averse solution method is also developed for resolving the model. The remainder of the paper is 60 

organized as follows: Section 2 presents a comprehensive literature review of the recent research 61 

works in reverse logistics network design. Section 3 formulates the stochastic optimization model. 62 

Section 4 develops the augmented multi-criteria scenario-based risk-averse solution method based 63 

upon the research work given by Soleimani et al. (2016). The existed problems of the original method 64 

and the solution in the augmented method are explicitly discussed in this section. Section 5 presents 65 

the numerical experiment of the model and solution method. Section 6 summaries some generic 66 

managerial implications, i.e, the relationship between profit and carbon emission requirement, the use 67 

of flexible manufacturing system in reverse logistics, and proper use of the government subsidy as a 68 

leverage, etc. Section 7 concludes the paper and proposes directions for future research. 69 

2. Literature review 70 

During the past decade, reverse logistics network design problem has been extensively focused in 71 

operational research and mathematical optimization. Comprehensive literature review are given in 72 

Pokharel and Mutha (2009), Govindan et al. (2015), Agrawal et al. (2015), Mahaboob Sheriff et al. 73 

(2012) and Govindan and Soleimani (2017), and from the perspectives of sustainable development and 74 

uncertainties of decision-making, this paper presents a brief overview of some of the recent 75 

publications in this field.  76 

The primary target of reverse logistics is the value recovery form EOU and EOL products, so 77 

economic benefit and sustainability have been widely formulated and emphasized in literature. Alumur 78 

et al. (2012) propose a mixed integer programming for a multi-period reverse logistics network design 79 

problem. The model aims at maximizing the total profits generated in the reverse logistics system 80 

through optimally locating different facilities and allocating the materials follows over several 81 

continuous periods. Demirel et al. (2016) develop a mixed integer linear programming for minimizing 82 

the reverse logistics costs for recycling the EOL vehicles in Turkey. Li and Tee (2012) formulate a 83 

mathematical model for reverse logistics network design with the consideration of both formal and 84 

informal channels. Sasikumar et al. (2010) formulate a mixed integer programming for reverse 85 

logistics network design, and a case study of truck tire remanufacturing is given in the paper.  86 

Alshamsi and Diabat (2017) formulate a multi-period location-allocation model for reverse 87 

logistics network design, and a genetic algorithm is developed for resolving the large-scale 88 

optimization problems in an effective and efficient manner. Diabat et al. (2013b) combine both genetic 89 

algorithm and artificial immune system in the optimization problem of a product return system. Kumar 90 

et al. (2017) develop a mixed integer model for maximizing the profits generated in an integrated 91 

forward-reverse logistics system on a multi-period basis, and an evolutionary algorithm is developed 92 

for resolving the optimization problem. Das and Chowdhury (2012) propose an optimization model for 93 

the reverse logistic network design considering the collection and recycling of multiple types of EOU 94 

and EOL products. Zhou and Zhou (2015) formulate a cost-minimization model for the design of a 95 

multi-echelon reverse logistics network. Demirel and Gökçen (2008) propose a mathematical 96 

programming for designing a remanufacturing system.  97 
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Introduced in 2005 World Summit of the United Nations, sustainability framework includes 99 

economic, environmental and social dimensions (Chopra and Meindl, 2007). In order to account those 100 

dimensions simultaneously, reverse logistics network design becomes a complex decision-making 101 

problem which involves several objectives or criteria. Some research works focus on the optimal 102 

tradeoff among those conflicting objectives or criteria in decision-making. Diabat et al. (2013a) 103 

formulate a bi-objective optimization model for the optimal design of an integrated forward/reverse 104 

logistics system, and the model aims at simultaneously minimizing the costs and CO2 emissions. Yu 105 

and Solvang (2016a) develop a bi-objective mixed integer linear programming for reverse logistics 106 

design considering both economic benefits and environmental impact, and in this paper, the 107 

environmental impact is evaluated by carbon emissions.  108 

With the consideration of economic, environmental and social sustainability, Govindan et al. 109 

(2016a) investigates a multi-objective mixed integer programming of the design of a multi-product 110 

multi-period integrated forward/reverse logistics system. In this research, the environmental 111 

sustainability is measured by both cost saving from material recovery and CO2 emission, while the 112 

social sustainability is evaluated by four indicators regarding the welfare, responsibilities and 113 

employment. Govindan et al. (2016b) formulated a fuzzy mathematical model for sustainable design 114 

of reverse logistics system. The model aims at simultaneously balancing the economic efficiency, 115 

environmental impact and social benefits in a sustainable reverse logistics system, and a customized 116 

multi-objective particle swarm optimization algorithm is developed to find out the optimal solution.  117 

In the real world, decision-making is seldom done with all parameters exactly known in advance, 118 

but many important decisions have to be made even though the knowledge or information of some 119 

parameters is limited at the point of decision-making (King and Wallace, 2012). Reverse logistics 120 

network design is a long-term decision that involves great uncertainties, so some literature focuses on 121 

the uncertainty issues associated with reverse logistics network design. Lee and Dong (2009) develop 122 

a two-stage stochastic programming for designing a multi-period integrated forward-reverse logistics 123 

system under demand uncertainties. El-Sayed et al. (2010) formulate a stochastic optimization model 124 

for the design of a multi-period forward-reverse logistics network with the consideration of risk. 125 

Ramezani et al. (2013) develop a multi-objective stochastic optimization model for the optimal 126 

planning of an integrated forward-reverse logistics network, and the responsiveness and quality level 127 

of the EOU and EOL products are accounted in this model. Chu et al. (2010) propose a fuzzy chance-128 

constrained model for the design of a reverse logistics system for household appliances recovery. 129 

Considering both forward and reverse directions of the supply chain planning, De Rosa et al. (2013) 130 

formulate a robust optimization model for the network planning under supply uncertainties. Roghanian 131 

and Pazhoheshfar (2014) develop a stochastic programming for minimizing the opening and operating 132 

costs of a multi-period and multi-echelon reverse logistics system, and the capacities, customer 133 

demands for recycled products, and quantity of EOU and EOL products generated are considered as 134 

stochastic parameters. Soleimani and Govindan (2014) develop a multi-level multi-product two-stage 135 

stochastic programming for reverse logistics network design with the consideration of the risk 136 

minimization in the decision-making.  137 

In some most recent literature, the consideration of both sustainability and uncertainty issues is 138 

focused in reverse logistics network design. Feitó-Cespón et al. (2017) investigate a stochastic 139 

optimization model for the redesign of reverse logistics system, and the model aims at simultaneously 140 

balancing the economic, environmental and social sustainability. Fonseca et al. (2010) formulate a 141 

two-stage bi-objective stochastic programming model for the facility location problem of reverse 142 

logistics. The model aims at simultaneously minimizing the costs and obnoxious effect of the reverse 143 

logistics system which is operated under uncertainties of the waste generation. Govindan et al. (2016b) 144 

develop a fuzzy multi-objective mixed integer programming for reverse logistics network design 145 

considering economic, environmental and social sustainability. Soleimani et al. (2017) formulate a 146 

fuzzy multi-objective mathematical model for the design of a sustainable closed-loop supply chain, 147 

and the model aims at maximizing the overall profit and satisfaction rate of customer demand while 148 

simultaneously minimizing the missed working days caused by occupational accidents.   149 
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Table 1 shows the literature classification. It has been shown from the literature review that many 150 

previous research works in reverse logistics network design only focus on the economic performance, 151 

but the other dimensions of sustainable development is not emphasized, and this is further proved by 152 

Govindan et al. (2015). There is no denying the fact that reverse logistics itself can be considered as a 153 

means to achieve circular economy and sustainable development through the value recovery from 154 

EOU and EOL products; however, an improperly planned reverse logistics network may cause both 155 

environment impact (e.g., excessive GHG emissions from long-distance and frequent transport (Sun, 156 

2016), waste of resources and environmental pollutions from the implementation of low-tech recycling 157 

technologies (Liu et al., 2008), etc.) and negative influence on the social sustainability (e.g, threats to 158 

the health of the workers (Liu et al., 2008), threats to the local residents nearby the treatment facilities 159 

of hazardous materials (Yu and Solvang, 2016b), etc.). Besides, some mathematical models for 160 

sustainable reverse logistics network design are formulated under deterministic environment, which 161 

are incapable to deal with the uncertainties and market fluctuation. 162 

 The literature review shows there are very few research works on reverse logistics network design 163 

considering both uncertainty and sustainable issues, and exceptions are only given in some recent 164 

publications (Fonseca et al., 2010, Feitó-Cespón et al., 2017, Govindan et al., 2016b, Soleimani et al., 165 

2017). Thus, there is a need to develop the advanced tool for a better decision-making of reverse 166 

logistics system design under market fluctuation and sustainable considerations. Furthermore, most 167 

mathematical models developed under uncertain environment focus only on the expectation of the 168 

objective value (e.g. min-cost, max-profit, etc.), and the risk of decision-making or the reliability of 169 

the achievement of the value expectation is rarely taken into account in reverse logistics network 170 

design. This problem has been identified and resolved by a multi-criteria scenario-based solution 171 

method developed in a latest research work (Soleimani et al., 2016). However, the method has a 172 

significant problem which may lead to sub-optimal solutions.  173 

In order to fill the literature gap, the paper focuses on the following works: 174 

• This paper formulates a novel two-stage stochastic mixed integer linear programming model 175 

with carbon emission constraint for sustainable reverse logistics network design. The model is 176 

formulated based on a generic multi-product three-echelon reverse logistics framework under 177 

uncertainty of the generation of different types of EOU and EOL products, and the price of 178 

recycled products and recovered energy. 179 

• In addition to the contribution to the model formulation, an augmented multi-criteria scenario-180 

based risk-averse solution method is also developed in this paper, and the method focuses on 181 

both optimal value expectation and level of confidence of the optimal result so that the 182 

solution of the stochastic optimization problem is more reliable. The problems existed in the 183 

original solution method are explicitly discussed and fixed in the augmented method. 184 

• The proposed stochastic optimization model and augmented solution method are tested with 185 

experimental analysis with the changing parameters. Furthermore, deep managerial 186 

implications are obtained, and some of which, i.e., the use of flexible manufacturing system, 187 

economy of scale and role of government subsidy, etc., are discussed with mathematical 188 

programming approach for reverse logistics network design. 189 

 190 
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Table 1 Literature review of some research works in reverse logistics network design 191 

Research works Network structure Criteria for decision-making Product Period Parameter Uncertain 
approach 

Application 
Forward Reverse Economic Environmental Social Other Single Multiple Single Multiple Certain Uncertain 

Alumur et al. (2012)  * *     *  * *  - Case study 
Demirel et al. (2016)  * *    *   * *  - Case study 
Li and Tee (2012)  * * *   *   * *  - Numerical study 
Sasikumar et al. (2010)  * *    *   * *  - Case study 
Alshamsi and Diabat (2017)  * *    *  *  *  - Case study 
Diabat et al. (2013b)  * *    *  *  *  - Numerical study 
Kumar et al. (2017) * * *    *   * *  - Numerical study 
Das and Chowdhury (2012)  * *     * *  *  - Numerical study 
Zhou and Zhou (2015)  * *    *  *  *  - Case study 
Demirel and Gökçen (2008) * * *     * *  *  - Numerical study 
Diabat et al. (2013a) * * * *    * *  *  - Case study 
Yu and Solvang (2016a)  * * *    * *  *  - Numerical study 
Govindan et al. (2016a) * * * * *   *  * *  - Case study 
Govindan et al. (2016b)  * * * *  *   *  * Fuzzy Numerical study 
Lee and Dong (2009)  * *     *  *  * Stochastic Numerical study 
El-Sayed et al. (2010) * * *    *   *  * Stochastic Numerical study 
Ramezani et al. (2013) * * *   *  * *   * Stochastic Numerical study 
Chu et al. (2010)  * *    *   *  * Fuzzy Numerical study 
Feitó-Cespón et al. (2017)  * * * *   * *   * Stochastic Case study 
De Rosa et al. (2013)  * *    *   *  * Robust Case study 
Roghanian and Pazhoheshfar 
(2014) 

 * *     * *   * Stochastic Numerical study 

Fonseca et al. (2010)  * *  *   * *   * Stochastic Case study 
Soleimani and Govindan 
(2014) 

 * *     * *   * Stochastic Numerical study 

Soleimani et al. (2016) * * *     *  *  * Stochastic Numerical and 
case study 

Soleimani et al. (2017) * * *  *   *  *  * Fuzzy Numerical study 
Current study  * * *    * *   * Stochastic Numerical study 

  192 
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3. Development of mathematical model 193 

The proposed reverse logistics network structure is given in Figure 1. As illustrated in the figure, the 194 

reverse logistics network is comprised of the local collection centers for EOU and EOL products (g), 195 

central collection center (c), remanufacturing and recycling center (p), energy recovery plant (r), waste 196 

treatment facility and the market (m). First, the EOU and EOL products are collected at the local 197 

collection centers which are located closely to the customers, and this first-level collection could be 198 

either a spontaneous customer return of EOU and/or EOL products at the fixed depots or an organized 199 

return service performed by the local waste management companies. Then, the locally collected EOU 200 

and EOL products are sent to the central collection centers where they will be inspected and 201 

disassembled for further distribution. The disassembled parts will be sent for either 202 

remanufacturing/recycling or for energy recovery through incineration/bio-chemical treatment, and the 203 

non-reusable and non-recyclable parts will be sent for disposal at landfill.   204 

 205 

Figure.1 Reverse logistics network. 206 

In this paper, the objective of the reverse logistics network design is to maximize the profit 207 

generated through value recovery of  EOU and EOL products, and the reverse logistics system is 208 

subsidized in order to improve the profitability and enthusiasm of the companies for the reuse, 209 

recycling, remanufacturing and energy recovery of EOU and EOL products. The reverse logistics 210 

network design problem is formulated as a stochastic mixed integer programming, and the generation of 211 

different types of EOU and EOL products, and the price of recycled products and recovered energy are 212 

considered as uncertain parameters. Furthermore, the model also considers the environmental 213 

sustainability of the reverse logistics system, which is constrained by the carbon emissions of the 214 

reverse logistics activities.  215 

It is a prerequisite that the locations of local collection centers, markets for recycled products and 216 

recovered energy, existing landfills for waste disposal, and the candidate locations of central collection 217 

centers, recycling center, energy recovery plants, as well as the relevant cost and carbon emissions 218 

associated with facility operation and the transportation of EOU and EOL products are known.   219 

  The definition of sets, indices, parameters and decision variables is first given as follows. Herein, 220 

the unit of the parameters are also suggested, but different measures of units may be used in case studies 221 

(Feitó-Cespón et al., 2017, Demirel et al., 2016, Fonseca et al., 2010, Soleimani et al., 2016, Alumur et 222 

al., 2012).   223 

 224 

Set and indices: 

G, g Generation points of EOU and EOL product 

C, c Candidate locations of collection center 

P, p Candidate locations of remanufacturing/recycling 
plant 

R, r Candidate locations of energy recovery plant 
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W, w Waste disposal facilities 

M, m Markets of recycled product and recovered energy 

T, t Types of EOU and EOF product 

S, s Scenarios 

  

Parameters: �����  Generation of product t at location g in scenario s 
(unit/year) ������  Benefit from the energy recovery from one unit 
product t at facility r in scenario s ($/unit) �	
���  Benefit from the recycling of one unit product t at 
facility p in scenario s ($/unit) �
���, �
�	� Government subsidy for recovering or recycling one 
unit product t ($/unit) ��,	��,	�� Fixed operating cost for collection center, recycling 
plant and energy recovery plant ($/year) ����,	����, ���� Unit processing cost at collection center, recycling 
plant and energy recovery plant ($/unit)  ��� Gate fee for landfilling one unit of EOU and/or EOL 
product ($/unit) �����,	�����, �����,	�����, �����, ����� Unit transportation cost of product t among different 
facilities ($/unit) �
�����  Required maximum equivalent carbon emissions of 
the reverse logistics system in scenario s (kg) ���, ��� Conversion rate of product t at respective facilities ��	��, ��	��, ��	��, ��	� Planned capacity of respective facilities (unit/year) � A very large number ����, ����, ����,	��� Unit equivalent carbon emissions from the processing 
of product t at respective facilities (kg/unit) �����, �����, �����,	�����, �����,	����� Unit equivalent carbon emissions from the 
transportation of product t between respective facilities 
(kg/unit) 

  

First-level decision variables ���,���,��� Binary decision variable determining if a new facility 
will be opened at respective candidate locations in 
scenario s 

  

Second-level decision variables ��
��� , �	
��� , ������ , � !��  Amount of different types of EOU and EOL products 
processed at respective facilities in scenario s (units) 
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ACCEPTED MANUSCRIPT������ , ������ , ������ , ������ , ������ , ������  Amount of different types of EOU and EOL products 
transported between respective facilities in scenario s 
(units) 

 225 

The objective of the proposed model is to maximize the total profit of the reverse logistics system. 226 

As shown in Eq. (1), the total profit is determined by the total revenue generated and the overall costs 227 

for operating the system. 228 

 229 

Maximize: 230 Profit=Revenue-Cost (1) 

 231 

Eqs. (2)-(4) calculate the total revenue of the reverse logistics system, which includes the total 232 

income obtained from selling the recycled products and energy and the governmental subsidy. It is 233 

noteworthy that the governmental subsidy is crucial to promote the reuse, remanufacturing and 234 

recycling of EOU and EOL products in some countries so as to improve the profitability of the 235 

companies in reverse logistics system (Jia et al., 2017, Cao et al., 2016). In addition, it is assumed that 236 

the parts and components from EOU and EOL products can be transformed into recycled products and 237 

energy at a fixed rate. 238 

 239 Revenue=Income+Subsidy (2) 

Income=99������ �������∈;�∈< +99�	
��� �	
����∈;�∈= 				∀? ∈ � (3) 

Subsidy=9�
���9�������∈<�∈; +9�
�	�9�	
����∈=�∈; 				∀? ∈ � (4) 

 240 

Eqs. (5)-(8) calculate the operating cost of the reverse logistics system, which is comprised of fixed 241 

cost, processing cost and transportation cost. When the non-recyclable EOU and EOL products sent to 242 

existing landfills, a gate fee will be charged depending on the volume of the waste products.  243 

 244 

Cost=Fixed operating cost + Processing cost+Transportation cost (5) 

Fixed operating cost=9������∈@ +9������∈= +9������∈< 				∀? ∈ � (6) 

Processing cost=99������
����∈;�∈@ +99�����	
����∈;�∈= +99�����������∈;�∈<+ 9 ���� !���∈A 				∀? ∈ � 
(7) 

Transportation cost=999������������∈;�∈@�∈B +999������������∈;�∈=�∈@ +999������������∈;�∈<�∈@+9 9 9�����������
�∈;�∈A�∈@ +9 9 9�����������

�∈;�∈C�∈=+9 9 9�����������
�∈;�∈C�∈< 				∀? ∈ � 

(8) 
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The constraints of the model are formulated in Eqs. (9)-(24). Eq. (9) restricts that the reverse 246 

logistics system should be able to handle all the EOU and EOL products generated in the region through 247 

all different scenarios.  248 

 249 ����� =9�������∈@ , ∀E ∈ F, ∀� ∈ G, ∀? ∈ � (9) 

 250 

Eqs. (10)-(14) guarantee the flow balance at the central collection center, remanufacturing/recycling 251 

plants and energy recovery plants.  252 

 253 ��
��� = 9�������∈B , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (10) 

��
��� =9�������∈= +9�������∈< + 9 ������
�∈A , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (11) 

�	
��� =9�������∈@ , ∀	 ∈ �, ∀� ∈ G, ∀? ∈ � (12) 

������ =9�������∈@ , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (13) 

� !�� =9������
�∈@ , ∀ ∈ H,∀� ∈ G, ∀? ∈ � (14) 

 254 

Eqs. (15)-(16) ensure that the dissembled parts and components from the EOU and EOL products 255 

cannot be more than the respective recyclable or recoverable fraction. It is noteworthy that the sum of 256 ���  and  ���  may be greater than 100% for some products due to the fact that some parts and 257 

components are suitable for both recycling and energy recovery, and the model is capable to generate 258 

the optimal allocation under different scenarios. 259 

 260 9�������∈= ≤ �����
��� , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (15) 

9�������∈< ≤ �����
��� , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (16) 

 261 

Eqs. (17)-(20) restrict the maximum capacity of collection center, remanufacturing/recycling plant, 262 

energy recovery plant and disposal site are not exceeded.   263 

 264 ��
��� ≤ ��	�� , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (17) �	
��� ≤ ��	�� , ∀	 ∈ �, ∀� ∈ G, ∀? ∈ � (18) ������ ≤ ��	�� , ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (19) 
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 265 

Eqs. (21)-(23) restrict that the transportation of EOU and EOL products cannot happen from/to the 266 

candidate locations which are not selected.   267 

 268 9�������∈B ≤ ����, ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (21) 

9�������∈@ ≤ ����, ∀	 ∈ �, ∀� ∈ G, ∀? ∈ � (22) 

9�������∈@ ≤ ����, ∀� ∈ �, ∀� ∈ G, ∀? ∈ � (23) 

 269 

Eq. (24) ensures that the carbon emission requirement is fulfilled by the reverse logistics system. 270 

The excessive carbon emissions all over the globe has been tremendously acknowledged as one of the 271 

most important causes for climate change and global warming, so the requirement of carbon emissions 272 

is formulated in this model in order to set a threshold for the environmental performance of the reverse 273 

logistics system. 274 

 275 �
����� ≥99������
����∈;�∈@ +99�����	
����∈;�∈= +99�����������∈;�∈< + 9 ���� !���∈A+999������������∈;�∈@�∈B +999������������∈;�∈=�∈@ +999������������∈;�∈<�∈@+9 9 9�����������
�∈;�∈A�∈@ +9 9 9�����������

�∈;�∈C�∈=+9 9 9�����������
�∈;�∈C�∈< , ∀? ∈ � 

(24) 

 276 

In addition to the aforementioned constraints, the first-level decision variables ���, ��� and ��� are 277 

binary variables, which belongs to the set of K0, 1N, and second-level decision variables ��
��� , �	
��� , 278 ������ , � !�� , ������ ,  ������ , ������ , ������ , ������  and ������  are non-negative variables.  279 

4. Solution Method 280 

In stochastic optimization, the uncertainty issues can be formulated and tackled by two different 281 

approaches. In the first approach, the uncertainty is described by the continuous distributed evens or 282 

outcomes, while, in the other approach, a set of discrete scenarios is used to represent the uncertainties. 283 

In this paper, the uncertainties related to the generation of EOU and EOL products, and the price of 284 

recycled products and recovered energy are formulated as discrete scenarios, and a new multi-criteria 285 

scenario-based solution method developed by Soleimani et al. (2016) is applied and further improved 286 

into an augmented method to resolve the stochastic optimization problem for reverse logistics network 287 

design.  288 

Due to its effectiveness and simplicity, scenario-based solution method has been extensively used to 289 

formulate the stochastic optimization problems in many different industries (Soleimani et al., 2016, 290 

Chen et al., 2002, Papavasiliou et al., 2011). The basic idea for resolving a scenario-based stochastic 291 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
optimization problem is not to find out the optimal solution of an individual scenario, but it is to 292 

determine the optimal solution through all the possible scenarios. Therefore, the optimal solution of a 293 

scenario-based stochastic optimization problem should be efficient while simultaneously with a great 294 

level of confidence and reliability. The method developed by Soleimani et al. (2016) takes into account 295 

of both issues, and the steps of the method is briefly introduced as follows. 296 

1. Scenario generation: The uncertainties related to the generation of EOU and EOL products, 297 

and the price of recycled products and recovered energy are represented by several scenarios 298 

generated logically and efficiently, and the strategies and methods for scenario generation with 299 

high representativeness are given by Kaut and Wallace (2003),  King and Wallace (2012) and 300 

Kouwenberg (2001).   301 

2. Finding out the candidate solutions: For each individual scenario, the stochastic optimization 302 

problem is converted into a deterministic optimization problem and can be resolved. The 303 

optimal solutions of each individual scenario are considered the candidate solutions of the 304 

stochastic optimization problem.  305 

3. Testing the performance of the candidate solutions through all possible scenarios: For 306 

obtaining the optimal solution with a high level of confidence, each candidate solution is tested 307 

with all the possible scenarios. In the test scenarios, the first-level decision variables (facility 308 

locations and network configuration) of each candidate solutions will remain the same, while 309 

the second-level decision variables (volume processed at each facility and transportation 310 

strategy) are optimized with respect to difference in the generation of EOU and EOL products, 311 

and the price of recycled products and recovered energy. 312 

4. Evaluating candidate solutions: The performance of the candidate solutions through all the 313 

possible scenarios is evaluated through three indicators: Mean, standard deviation and the 314 

reciprocal of coefficient of variation. The mean is used for evaluating the optimal objective 315 

value of the candidate solution while standard deviation is used to measure the level of 316 

confidence, and the reciprocal of coefficient of variation is used as the indicator to evaluate the 317 

overall performance of each candidate solution in terms of both expected optimal value and the 318 

reliability. 319 

 320 

Standard deviation	O = P1Q9(ST − V)XY
TZ[  (25) 

Coefficient	of	variation	�] = OV (26) 

 321 

Eqs. (25) and (26) are used for calculating standard deviation and coefficient of variation, and more 322 

introduction related to those concepts is provided in Lewontin (1966) and Brown (1998). With this 323 

method, the objective is to obtain the optimal solution with high profit and high level of confidence, so 324 

the reciprocal of coefficient of variation is used to evaluate the performance of the candidate solutions. 325 

The optimal solution is the one with the maximum value of the ratio of profit to the level of confidence 326 

(
[�^ = _̀

), which are evaluated by the mean (V) and standard deviation (O), respectively. This means the 327 

optimal solution of the reverse logistics network design should be with high profit expectation (high 328 

mean) while simultaneously be robust and reliable in order to ensure a high possibility to achieve the 329 

expected profit (low standard deviation).  330 

The advantage of this multi-criteria method is the emphasis on the minimization of risk and 331 

decision-making with high reliability, because the decision-making based only upon mean value 332 

regarding fluctuations cannot be with high level of confidence and reliability to deal with the 333 

uncertainties (Ogryczak, 2000). As shown in the Figure 2(A), solutions A and B are the candidate 334 

solutions of the stochastic optimization problem through scenarios s1, s2,…, sn. and it is assumed that 335 
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the dispersion of the optimal values of the different scenarios follows normal distribution, so the 336 

optimal values are spread within the range V a 3O (Hogg and Craig, 1995, Brownlee and Brownlee, 337 

1965). In this example, solution A has a slightly higher profit expectation compared with solution B, so 338 

it will be the optimal solution if the mean is the only indicator for evaluating the candidate solutions as 339 

performed in many previous research works (Soleimani and Govindan, 2014). However, it is obvious 340 

that solution A has a larger standard deviation and the profit of different scenarios are broadly 341 

distributed compared that with that in solution B. This data dispersion reflects a greater possibility in 342 

solution A that the optimal profits in some scenarios will vary sharply compared with the profit 343 

expectation at the mean, and those are the weak-performance scenarios which significantly hinder the 344 

arrival of the optimal profitability of the reverse logistics system. With the help of the multi-criteria 345 

scenario-based solution approach developed by Soleimani et al. (2016), this problem is resolved 346 

through taking the reliability issue into decision-making, and in this case, solution B will be the optimal 347 

solution to the stochastic optimization problem due to its smaller standard deviation. As shown in the 348 

figure, even if the optimal profit expectation of solution B is slightly weaker, but the more concentrated 349 

data dispersion around the mean illustrates a higher level of confidence and reliability. This means the 350 

optimal value achieved in different scenarios is more close to the expectation, and solution B has a more 351 

stable and robust performance especially in weak-performance scenarios.  352 

 353 

 

(A) 
 

(B) 

 

(C) 
 

(D) 

Figure.2 Schematic of the benefit and problems of the multi-criteria scenario-based solution method: (A) Typical max-mean 354 

and min-standard deviation problem; (B) The problem of weak-reliable solution; (C) The incapability to resolve cost-355 

minimization problem; (D) The problem of performance evaluation of risk/reliability with standard deviation.   356 

The theoretical foundation of the multi-criteria scenario-based solution method is to find out the 357 

optimal solution with high performance in both profit and reliability, but the performance evaluation 358 
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through the reciprocal of coefficient of variance is inappropriate and with several problems. First, the 359 

simplified division relationships between the mean and standard deviation may lead to a weak-reliable 360 

solution, which is a low profitable network configuration but with high reliability. As shown in Fig. 361 

2(B), solution C has lower economic performance, but the reliability of the optimal profits through 362 

different scenarios is extremely high, so it will be selected as the optimal solution with the evaluator of 363 [�^. However, it is obvious that the profit expectation of solution A is better compared with solution C 364 

even though the weak-performance scenario is arrived at. Therefore, it is not a good choice to combine 365 

the profit expectation and reliability in a simplified division relationship for performance evaluation of a 366 

stochastic optimization problem.  367 

There is also another problem caused by the performance evaluation with the reciprocal of 368 

coefficient of variation. The indicator of 
[�^ aims at maximizing the mean for improving the expected 369 

profit while simultaneously minimizing standard deviation for improving the reliability. However, the 370 

focus of many mathematical models developed in previous research works for reverse logistics network 371 

design is to minimize the overall costs (Diabat et al., 2013a, Govindan et al., 2016b, Kannan et al., 372 

2012, Yu and Solvang, 2016a, Demirel and Gökçen, 2008, Demirel et al., 2016), and the simplified 373 

division relationship is not able to generate the optimal solution of the cost-minimization problem due 374 

to the same convergence direction of the mean and standard deviation. As shown in Figure 2(C), 375 

solution E (lower mean and lower standard deviation) may has similar performance as solution D 376 

(higher mean and higher standard deviation) with the performance evaluation by the indicator of 
[�^. 377 

However, it is obvious that solution E has a lower expected cost with a higher reliability, so it should be 378 

much better than solution D, and this cannot be reflected through the simplified division relationship.   379 

In addition to the problem with performance evaluation, the measurement of risk/reliability with 380 

standard deviation may lead to inappropriate managerial interpretations, because standard deviation is 381 

an absolute measurement of data dispersion, which is heavily affected by the mean. Figure 2(D) 382 

presents an example including two solutions (A and F) to a stochastic optimization problem. The mean 383 

of the two solutions vary significantly, but the standard deviation is the same, so solutions A and F 384 

should be at the same level of risk/reliability. However, from the perspective of statistic theory, the 385 

probability of data dispersion around the mean is different with respect to the different magnitude even 386 

if they have the same standard deviation (Barlow and Proschan, 1996). As shown in the figure, the 387 

optimal solution in the weak-performance scenarios of solution F deviates from its mean in more 388 

percentage due to its smaller mean, and this reflects a more spread date dispersion. Therefore, it is 389 

preferred to use a relative measurement to evaluate the level of risk/reliability in the multi-criteria 390 

scenario-based solution method for stochastic optimization problems. 391 

In order to resolve the aforementioned problems, the multi-criteria scenario-based risk-averse 392 

solution method is further developed into an augmented method in this paper, and figure 3 illustrates the 393 

procedures of the solution method. First, the absolute measurement of risk/reliability with standard 394 

deviation is replaced by the relative measurement of data dispersion by coefficient of variation, and this 395 

enables meaningful comparisons between two or more magnitude of variation with different means 396 

(Green et al., 1993). Then, the performance evaluation of candidate solutions with the indicator of 
[�^ is 397 

replaced by the new indicators based upon a normalized weighted-sum formula that has been 398 

extensively used in combining several different objective functions in the multi-objective optimization 399 

problems (Sheu, 2007, Sheu, 2008, Yu and Solvang, 2016a). The benefit of weighted-sum method in 400 

resolving multi-objective optimization is its simplicity (Marler and Arora, 2004), and it also enables the 401 

interaction between objective performance measurement indicator and subjective allocation of weights 402 

in order to find out the optimal solutions under different circumstances. Therefore, the normalized 403 

weighted-sum method is used to combine the performance evaluations of the mean and coefficient of 404 

variation for comparing the different candidate solutions in an effective manner. 405 

 406 
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 407 

Figure.3 Augmented multi-criteria scenario-based risk-averse solution method. 408 

The normalized weighed-sum method formulated in Eqs.(27)-(32) is capable to resolve both profit-409 

maximization and cost-minimization problems. Eqs. (27), (29), (31) and (32) are used to evaluate the 410 

performance of a profit-maximization problem, while Eqs. (28), (30), (31) and (32) are applied in the 411 

performance measurement of a cost-minimization problem. Herein, cdef.hijhdik, cdef.hlkhdik, cdef.mn, 412 H���op  and H�@q  represent the performance measurement value and weight of the mean and 413 

coefficient of variation in both profit-maximization and cost minimization problems. ��r��os , 414 ��r��Tp, �]�os and �]�Tp are the maximum and minimum values of the mean and coefficient of 415 

variation throughout all the candidate solutions, and ��r��opt. and  �]�opt. represent the mean and 416 

coefficient of variation of each candidate solution, respectively. In the performance evaluation of the 417 

mean and coefficient of variation of each candidate solution, the benchmark is their maximum 418 

difference determined by the respective maximum and minimum values throughout all the candidate 419 

solutions, and those are the denominators in Eqs. (29)-(31). The numerators of those equations reveal 420 

how far the candidate solution deviates from the best solution throughout all the candidates, and the 421 

numerator equals to 0 when the candidate solution has the best performance. The benchmark 422 

denominators are used to normalize the performance evaluation of the mean and coefficient of variation 423 

due to their different measures of units, and cdef.hijhdik/cdef.hlkhdik and cdef.mn can then be combined 424 

in a weighted-sum for the decision-making. The candidate solution with the smallest weighted-sum is 425 

the optimal solution, which means the performance of the mean and coefficient of variation is close to 426 
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the best performance across all the candidate solutions. This method can effectively resolve the weak-427 

reliable problem through distributing a larger weight to cdef.hijhdik/cdef.hlkhdik so that the importance 428 

of the performance in profit/cost expectation will be dramatically improved. On the other hand, when 429 

the mean of the candidate solutions are slightly differentiated from each other, a larger weight will be 430 

given to cdef.mn in order emphasize the reliability in the decision-making. 431 

 432 

Evaluation indicator�os = H���opcdef.hijhdik+H�@qcdef.mn 
(

27) 

Evaluation indicator�Tp = H���opcdef.hlkhdik+H�@qcdef.mn 
(

28) 

cdef.hijhdik= ��r��os −��r��opt.��r��os −��r��Tp  
(

29) 

cdef.hlkhdik= ��r��opt. −��r��Tp��r��os −��r��Tp  
(

30) 

cdef.mn= �]�opt. − �]�Tp�]�os − �]�Tp  
(

31) 

H���op +H�@q = 1 
(

32) 

 433 

From the discussion above, the augmented multi-criteria scenario-based risk-averse solution method 434 

can effective resolve the problems of the original method, and it also provides the decision-makers with 435 

more flexibility between the profitability (or costs) and reliability in reverse logistics network design 436 

under stochastic environment.  437 

5. Experimental analysis  438 

5.1 Numerical experiment 439 

In order to illustrate the application of the stochastic optimization model and the effectiveness of the 440 

augmented multi-criteria scenario-based risk-averse solution method, a numerical experiment of a mid-441 

sized problem is tested. The reverse logistics system includes two types of EOU and EOL products (A 442 

and B), fifteen generation points, eight candidate locations for central collection center, five candidate 443 

locations for recycling/remanufacturing plant, and five candidate locations for energy recovery plant. In 444 

the numerical experiment, the generated volume and conversion fractions of products A and B, and the 445 

cost parameters related to the facility operation and transportation are generated based upon uniform 446 

distribution, as shown in Table 2.  447 

 448 

Table 2 Parameters of the numerical experiment 449 

Parameters Uniform distribution 
 Product A Product B 
Generation of EOU and EOL products (����� ) 4000-6000 2000-6000 
Fixed cost of central collection center (��) 0.8-1.5 million 0.8-1.5 million 
Unit processing cost at central collection center (����) 50-80 50-80 
Fraction can be remanufactured and recycled (���) 50% 40% 
Fraction can be sent for energy recovery (���) 30% 40% 
Fixed cost of recycling/remanufacturing plant (��) 1.2-2 million 1.2-2 million 
Unit processing cost at recycling/remanufacturing plant (����) 100-200 100-200 
Unit profit at recycling/remanufacturing plant (�	
��� ) 500-1000 200-400 
Fixed cost of energy recovery plant (��) 1.5-2 million 1.5-2 million 
Unit processing cost at energy recovery plant (����) 200-300 200-300 
Unit profit at energy recovery plant (������ ) 500-1000 300-500 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Government subsidy for treating one unit product (�
���, �
�	�) 200-300 100-200 
Gate fee at landfill for disposing one unit product (���) 50-100 50-100 
Unit transportation costs (�����,	�����, �����,	�����, �����, �����) 50-200 50-200 

 450 

Some assumptions are made in the numerical experiment in order to maintain a high rationality. 451 

First, the capacity is directly proportional to the fixed costs of each facility, because more equipment 452 

and personnel are required for an increased capacity. Second, the unit carbon emissions are inversely 453 

proportional to the variable processing costs and transportation costs due to the fact that more money 454 

has to be invested for improving the technological level in order to reduce the carbon emissions (Wang 455 

et al., 2011). Multipliers generated randomly in the certain intervals are used to estimate the values of 456 

those parameters in the numerical experiment. All the parameters used in the numerical experiment are 457 

given in the supplementary file. 458 

After the parameters have been given, eleven test scenarios are generated in a logically sensible and 459 

computationally efficient manner. In accordance with the scenario generation performed in Soleimani et 460 

al. (2016), we first define three benchmark scenarios, namely, best-case scenario, worst-case scenario 461 

and basic scenario. In the best-case scenario, the upper limits of the parameter intervals of the 462 

generation of EOU and EOL products, price of recycled products and recovered energy are used 463 

(���o� =6,000, ���u� =6,000, ����o� =1,000, ����u� =400, �	
�o� =1,000, �	
�u� =500), while in the worst-464 

case scenario, the lower limits of them are reached (���o� =4,000, ���u� =2,000, ����o� =500, ����u� =200, 465 �	
�o� =500, �	
�u� =300). In the basic scenario, the mean values of the stochastic parameters are used 466 

(���o� =5,000, ���u� =4,000, ����o� =750, ����u� =300, �	
�o� =750, �	
�u� =400). Then, we generate two 467 

scenarios of each stochastic parameter on both positive side and negative side around the mean. With 468 

the combination of different scenarios of the stochastic parameters, eight different test scenarios are 469 

generated as shown in Figure 4. 470 

 471 

 472 

Figure.4 Scenario tree related to the numerical experiment. 473 

 474 

5.2 Result and discussion 475 

The model is coded and computed with Lingo 15.0 optimization package on a personal computer 476 

with Intel Core i5-6400T 2.20GHz processor and 8 GB memory under Window 10 operating system, 477 

and the carbon emissions requirement is not taken into account in the initial stage. Each test scenario is 478 

first resolved independently as a mixed integer optimization problem, and less than 10 s computation 479 

time needed to find out the optimal solution of each independent scenario due to the small size of the 480 
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problem. The profit, carbon emissions and facility selection of each candidate solution is given in Table 481 

3, and Figures 4 and 5 illustrate the composition of the profit and carbon emissions.  482 

Scenario-based solution method is a powerful and efficient approach to solve stochastic optimization 483 

problem, and it is of great importance to generate appropriate scenarios to represent the fluctuate 484 

situations. The increase of scenarios generated may have a better representation of the uncertainty, but 485 

the benefit of doing this seems quite limited while the required computational time will increased 486 

significantly (Pishvaee et al., 2009, El-Sayed et al., 2010). Therefore, in this numerical experiment, we 487 

aims at generating sufficient test scenarios to effectively represent the uncertainty while simultaneously 488 

accounting the computational efficiency. As shown in Table 3, the mean value of all the candidate 489 

solutions is 39,775,718, and 5 scenarios have better performance while the other scenarios have lower 490 

performance, which presents a fair distribution of both optimistic and pessimistic expectations of the 491 

market fluctuation. Throughout all the candidate solutions, the highest profit is 75,439,570 obtained at 492 

best-case scenario and the lowest profit is 12,085,710 achieved at worst-case scenario, and the range is 493 

159% of the mean value. When the extreme benchmark scenarios are excluded, the highest profit 494 

becomes 56,168,960 achieved at scenario 8 and the lowest profit becomes 24,621,660 obtained at 495 

scenario 1, and the range becomes 79% of the mean value. This proves the diversification of the 496 

generated scenarios. Taking into account of the aforementioned discussion, the diversification and fair 497 

distribution of optimistic and pessimistic expectation can prove the test scenarios generated cover a 498 

large variety of the market fluctuations.  499 

 500 

Table 3 Profit, carbon emissions and facility selection of each candidate solution (results are normalized by dividing by104) 501 

Scenario Profit (104) Carbon emissions 
(104) 

Network configuration 

   Collection Recycling Recovery 
Best-case 7544 27454 1, 2, 4, 6, 7, 8 2, 4, 5 1, 2, 3, 5 
Basic 3724 20284 1, 2, 4, 6, 7 4, 5 2, 3, 5 
Worst-case 1208 13047 1, 2, 6, 7 4, 5 3, 5 
s1 2462 15570 2, 4, 6, 7, 8 3, 4 3, 4 
s2 3506 15192 1, 2, 6, 7, 8 3, 4 4, 5 
s3 3397 15718 2, 5, 6, 7, 8 4, 5 3, 4 
s4 4387 15614 1, 2, 6, 7, 8 4, 5 2, 4 
s5 3098 22502 2, 4, 6, 7, 8 2, 3, 4 1, 3, 4 
s6 4510 22825 1, 2, 4, 6, 7, 8 2, 3, 4 2, 4, 5 
s7 4299 22567 2, 4, 6, 7, 8 1, 4, 5 1, 3, 4 
s8 5617 22405 2, 4, 6, 7, 8 1, 4, 5 2, 4, 5 

 502 

It is shown from Table 3 that the carbon emissions and facility selection vary in different scenarios. 503 

In general, more facilities have to be opened and operated with the increase of EOU and EOL products 504 

generated, and this will increase the overall costs and carbon emissions of the reverse logistics system. 505 

As illustrated in Figures 5 and 6, the change of the total costs and carbon emissions is similar. It is also 506 

observed that the government subsidy generally increases with the increase of EOU and EOL recycled 507 

and recovered, while the revenue and profit are also heavily affected by the prices of the recycled 508 

products and recovered energy. For example, in scenario 5, even if the generation of EOU and EOL 509 

products is high, but the profitability is heavily and negatively affected by the low price for the 510 

recycled products and recovered energy, and the total costs for operating the reverse logistics system 511 

are more than the revenue it generates. In this case, the government subsidy plays an important role in 512 

compensating and promoting the reverse logistics activities. Furthermore, it is also observed that the 513 

facility operation takes more share in the overall costs, while the transportation of EOU and EOL 514 

products has a more important role in the carbon emissions of the reverse logistics system.     515 

 516 
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 517 

Figure.5 Comparison of the revenue, profit and cost compenents of the candidate solutions (results are normalized by 518 

dividing by104). 519 

 520 

Figure.6 Comparison of the total emissions, facility emisions and transport emissions of the candidate scenarios (results are 521 

normalized by dividing by104). 522 

The objective of the stochastic programming is to find out the optimal solution with the best profit 523 

expectation and high reliability, so each candidate solution is tested through all the scenarios generated. 524 

The facility selection of the candidate solution is the fixed, but the allocation of EOU and EOL 525 

products and transportation strategy will be changed with respect to the changing parameters, and the 526 

problem becomes therefore a linear optimization problem and can be resolved within 5 s. In total, 121 527 

rounds of calculation are performed, and the result is presented in Table 4.  528 

It is noteworthy that some candidate solutions may cause infeasible solutions in some test scenarios 529 

due to the insufficient capacities of the selected first-level facilities. For instance, the overall capacities 530 

of the central collection centers selected in candidate solution 1 for products A and B are 86,296 and 531 

136,561, respectively, and this leads to infeasible solution in the best-case scenario at which 90,000 532 

capacities for each type of product is required. In order to resolve this problem, two types of 533 

adjustments can be done either to reduce the service level or to increase the facility capacity. With the 534 

first option, the facility capacity will remain the same, but Eq. (9) should be relaxed to allow the EOU 535 

and EOL products may not be totally treated, as shown in Eq. (34), while in this case, another 536 

objective (Eq. (33)) should also be introduced in order to maximize the EOU and EOL products 537 

treated with the limited capacity. The reformulation is given as follows, which becomes a bi-objective 538 

model focusing on the tradeoff between profit and service level under carbon constraint. Further, a 539 

penalty may also be incorporated into the first objective function in order to account the influence of 540 

the reduced service level (King and Wallace, 2012).   541 

     542 v�w1 = maxProfit, Eqs. (1)-(8), ∀? ∈ �  
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v�w2 = max99∑ �������∈@������∈;�∈B , ∀? ∈ � (3
3) 

Subject to:   ����� ≥9�������∈@ , ∀E ∈ F, ∀� ∈ G, ∀? ∈ � (34
) 

Eqs. (10)-(24)  

 543 

The other option to treat the infeasibility is to increase the capacity of facility without the 544 

compromise on the service level of reverse logistics system. In this example, we adopt this option to 545 

treat the problem and perform reasonable comparison of the candidate solutions, and the increase on 546 

facility capacity is to fulfill the requirement for the treatment of EOU and EOL products with the 547 

minimum adjustment of the original planning. In addition, it is also observed from the infeasible 548 

solutions that the violation of the capacity constraint is usually caused by one product. For instance, 549 

the network configuration determined in the basic scenario is not able to handle the EOU and EOL 550 

products in the best-case scenario due to the insufficient capacity. In this scenario, the violation of 551 

capacity constraint is only caused by product A, however on the other hand, excessive capacity is 552 

planned for product B. Thus, from strategic perspective, the increase on facility capacity may also 553 

interpreted as the capacity conversion between different products without incurring additional costs, 554 

i.e., the uses of flexible manufacturing system.  555 

 556 

Table 4 Performance of the candidate solutions through all the test scenarios (results are normalized by dividing by104) 557 

Scenarios Candidate solutions 
 c-1 c-2 c-3 c-4 c-5 c-6 c-7 c-8 c-basic c-best c-worst 

s1 2462 2302 2374 2222 2401 2139 2137 1936 2180 2074 2318 
s2 3342 3506 3249 3368 3154 3252 2928 3126 3179 3001 3154 
s3 2946 2812 3397 3248 3000 2740 3249 3048 3208 3026 3347 
s4 3833 4012 4247 4387 3747 3814 3999 4135 4158 3918 4168 
s5 1870 2005 2146 1664 3098 2839 2832 2565 2414 2816 1664 
s6 2896 3488 3172 3025 4211 4510 3889 4269 3830 4080 2579 
s7 2426 2596 3248 2767 3800 3540 4299 4040 3523 4065 2772 
s8 3452 4079 4274 4128 4913 5199 5347 5617 4938 5299 3687 
Basic 2908 3158 3362 2918 3431 3463 3437 3525 3724 3524 3154 
Best 4372 4830 5043 4606 6886 7325 7287 7506 6277 7544 4529 
Worst 945 966 1056 1041 716 721 727 798 1003 707 1208 
Mean 2859 3069 3234 3034 3578 3595 3648 3688 3494 3641 2962 
Standard 
deviation  

895 1036 1048 1055 1463 1629 1622 1716 1339 1678 954 

CV 31.32% 33.78% 32.43% 34.78% 40.89% 45.31% 44.46% 46.54% 38.32% 46.09% 32.21% 

 558 

As shown in Table 4, each candidate solution represents the best profit expectation in its own 559 

scenario. The best profit expectation through all the test scenarios is 36,877,352 achieved with 560 

candidate solution 8, while the worst expected profit is 28,591,958 obtained with candidate solution 1. 561 

However, considering the reliability issue, candidate solution 1 outperforms other candidate solutions 562 

with the smallest value on both standard deviation and coefficient of variation. The gap between the 563 

best and worst performance on the profit expectation and reliability are 29% and 49%, and this 564 

illustrates the performance of the candidate solutions varies significantly under market fluctuation. 565 

Due to the large gap of the expected profit, the performance evaluation of the candidate solutions 566 

should prioritize the profit expectation in order to avoid the weak-reliable solutions. Therefore, several 567 

weight combinations with incremental H���op from 0.5 are tested, and the weight combination of 568 H���op=0.7 and H�@q=0.3 is used for the performance evaluation in this numerical experiment. 569 
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(D) 

Figure.7 Performance of the candidate solutions through all the test scenarios: (A) Comparison of mean value; (B) 571 

Comparison of standard deviation; (C) Performance evaluation with 
[�^; (D) Performance evaluation with the weighted sum.   572 

The performance of the candidate solutions is evaluated through both 
[�^ and weighted sum and the 573 

result is shown in Figure 7. As shown in the figure, candidate solution 1 is the optimal solution given 574 

by  the evaluator  
[�^, and the candidate solutions 2, 3 and 4 obtained with lower generation of EOU 575 

and EOL have better performance due to their outstanding performance in reliability. However, when 576 

the weighted sum is used for performance measurement, candidate solution 5 becomes the best choice, 577 

and the candidate solutions 6, 7 and 8 obtained with higher generation of EOU and EOL have better 578 

performance due to their better profit expectations. Comparing the candidate solutions 1 and 5, it is 579 

observed that candidate solution 1 has slightly better profit expectation in scenarios 1, 2, 4 and worst-580 

case, but candidate solution 5 has much better performance in the other scenarios particularly when the 581 

generation of EOU and EOL products is high. The expected profit, total revenue, subsidy, total system 582 

operating costs, facility costs and transportation costs through all the test scenarios in candidate 583 

solutions 1, 5 and basic are compared and illustrated in Figure 8.   584 

As shown in the figure, candidate solution 1 focuses on the efficiency of the reverse logistics 585 

system, which has less facility selected and the facility costs and transportation costs are much lower 586 

than that in the other scenarios. The benefit of this network structure is to have a high efficiency and 587 

utilization of facilities especially when the generation of EOU and EOL products is relatively low. 588 

However, even if candidate solution 1 has the most efficient network configuration and most reliable 589 

performance across all the test scenarios, it should not be considered as the optimal solution due to its 590 

much lower profit expectation, and the incapability and less profitability in dealing with the increased 591 

amount of EOU and EOL products.  592 

 593 
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(E) 

 

(F) 

Figure.8 Comparison of candidate solutions 1 and 5 through all the scenarios (results are normalized by dividing 594 

by104): (A) Profit expectation; (B) Total revenue; (C) Subsidy; (D) Total costs; (E) Facility costs; (F) Transportation costs.  595 

On the other hand, candidate solution 5 has much better performance when the generation of EOU 596 

and EOL products is high, but when the generation is low, the expected profit is slightly lower due to 597 

the increased costs for operating more facilities and the waste of capacity. Furthermore, comparing 598 

with other candidate solutions obtained from the scenarios with high generation of EOU and EOL 599 

products, candidate solution 5 has better performance in the reliability, which guarantees a higher level 600 

of confidence to achieve the expected profit. Therefore, based on the discussion, candidate solution 5 601 

determined by the weighted sum is the optimal solution, and this proves the effectiveness of the 602 

augmented solution method for resolving stochastic optimization problem.  603 

Furthermore, the performance of the basic scenario is also presented in the figure, and this can be 604 

considered as the optimal solution of a deterministic problem. As can be seen in Figure.8(A), the profit 605 
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expectation is better than that in candidate solution 1 in most scenarios. This reveals that, even though 606 

many argues stochastic programming has much better performance in decision-making under 607 

uncertainty (King and Wallace, 2012), the effectiveness may not be better than a deterministic model if 608 

the value expectation and level of risk are not combined in an appropriate way for performance 609 

evaluation.       610 

 611 

5.3 Model sensitivity 612 

In this paper, we are interested in how the carbon requirement will affect the reverse logistics 613 

network design, so five sensitivity analysis are performed with the gradually increased carbon 614 

emission requirement by 10%, 20%, 30%, 40% and 50%, respectively. With the increased requirement 615 

on the carbon emissions of reverse logistic system, more infeasible solutions are found due to the 616 

capacity constraint, especially when the candidate solutions calculated in low generation scenarios are 617 

applied in the high generation scenarios. In order to have a reasonable and meaningful comparison, the 618 

capacity constraints are relaxed accordingly on the relevant facilities which cause infeasible solutions, 619 

and also the rule of minimum adjustment of the facility plan is applied when the relaxation is needed.  620 

It is observed the limited facility capacities are the most significant bottleneck to fulfill the carbon 621 

emission requirements and to achieve a better profitability of the reverse logistics system, so another 622 

two scenarios are tested with the relaxation of the capacity constraints, say, the facilities are capable to 623 

deal with the increased amount of EOU and EOL products. However, more money has to be invested 624 

to purchase more equipment and recruit more personnel so as to improve the capacities of the facilities, 625 

so the fixed costs are increased by 100% and 200% in the tested problems, respectively. Therefore, 626 

seven different problems with changing parameters are generated and tested, and totally 847 rounds of 627 

calculation are performed in the sensitivity analysis.    628 

 629 

Table 4 The optimal solution and network configuration of each test problem (results are normalized by dividing by104) 630 

Test problems with changing parameters in 
sensitivity analysis 

Optimal 
solution 

Network configuration 

  Collection Recycling Recovery 
Capacitated problem without requirement on 
carbon emissions 

c-5 2, 4, 6, 7, 8 2, 3, 4 1, 3, 4 

Capacitated problem with requirement of 10% 
reduction on carbon emissions 

c-7 1, 2, 4, 6, 8 1, 4, 5 1, 3, 4 

Capacitated problem with requirement of 20% 
reduction on carbon emissions 

c-4 1, 2, 3, 8 4, 5 2, 4 

Capacitated problem with requirement of 30% 
reduction on carbon emissions 

c-4 1, 2, 3, 8 4, 5 2, 4 

Capacitated problem with requirement of 40% 
reduction on carbon emissions 

c-7 1, 2, 3, 6, 8 1, 4, 5 1, 3, 4 

Capacitated problem with requirement of 50% 
reduction on carbon emissions 

c-3 1, 2, 3, 7, 8 1, 5 3, 4 

Uncapacitated problem with 100% increase on 
fixed facility costs (Uncapacitated s1) 

c-5/c-best/c-
basic 

2, 6 4 3 

Uncapacitated problem with 200% increase on 
fixed facility costs (Uncapacitated s2) 

c-1/c-best/c-
basic 

6 4 3 

 631 

 Table 4 shows the optimal solution and network configuration of each test problem, and it is 632 

observed the optimal solution and network configuration are by no means identical with the change of 633 

carbon emission requirement and capacity constraint. Figures 9 and 10 present the comparison of the 634 

average cost expectation and average carbon emissions of the test problems. As shown in Figure 9, 635 

when the requirement on the reduction of carbon emissions increases from 10% to 30%, the decrease 636 

on the average profit expectation of the reverse logistics is extremely slight (0.4%, 1.2% and 2%). This 637 

reveals the implementation of the carbon emission requirement at this range will improve the 638 

environmental performance without compromising great economic benefits. However, the average 639 
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expected profit reduces sharply by 20% and 54.5% when the carbon emissions requirement increases 640 

to 40% and 50%. This provides decision-makers with a clear relationship between the profitability and 641 

environmental sustainability of the reverse logistics system, and it also provides the reference for the 642 

policy-making on the carbon emission requirements.  643 

 644 

 645 

Figure.9 Average profit expectation over the incremental requirement for the reduction of carbon emissions (results are 646 

normalized by dividing by104). 647 

 648 

 

(A) 

 

(B) 

Figure.10 Comparison of the basic capacitated problem and uncapacited scenarios 1 and 2 (results are normalized by 649 

dividing by104): (A) Average profit expectation; (B) Average carbon emissions. 650 

Figure 10 shows the comparison of the two uncapacitated sceanrios. As shown in the Figure 9(A), 651 

the average profit expectation increases by 4.1% with 100% increase on the fixed facility costs, while 652 

it is decreased by 8.4% with  200% increase on the fixed facility costs. This illustrates the larger 653 

facilities with more investment will improve the economic performance of the reverse logistics system 654 

only when the increase of the investment for facility expansion is maintained at a proper level, 655 

otherwise, the profitability will be negatively affected. Figure 9(B) shows the average carbon 656 

emissions reduce by 11.9% and 20.6% in the test problems, respectively. This illustrates that openning 657 

a smaller number of facilities with large capacity is another way to reduce the carbon emissions from 658 

the reverse logistics activities. Aslo, the result shows the facility expansion may improve both 659 

economic and environmental performance of the reverse logistis system, and the upper limit of the 660 

increased investment can be suggested to the decision-makers from the analysis.      661 

 662 
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(E) 

 

(F) 

Figure.11 Comparison of the optimal solutions with respect to the changing parameters in the sensitivity analysis (results are 663 

normalized by dividing by104): (A) Profit expectation; (B) Total revenue; (C) Subsidy; (D) Total costs; (E) Facility costs; (F) 664 

Transportation costs.  665 

Figures 11 and 12 illustrate the comparions of the optimal solutions of the test problems with 666 

respect to the expected profit, total revenue, subsidy, total costs, facility costs, transportation costs, and 667 

carbon emissions related to the facility operation and transportation through all the scenarios. As 668 

shown in figures, the total revenue and subsidy through all the scenarios change slightly in the differet 669 

test problems, but the total costs change drametically with the changing carbon emission requriement 670 

and capacity restriction. The more stringent requirement on the reduction of carbon emissions leads to 671 

higher costs particularly when 40% and 50% requirements are applied, and this is the main reason for 672 

the weak economic performance in those two scenarios. It is observed that the change of the total 673 

system operating costs and carbon emissions is caused by both facility operation and transportation of 674 
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EOU and EOL products. Compared with facility operation, a more sharper change can be observed on 675 

the transportation in both costs and carbon emissions, and this reveals the change of product allocation 676 

and transportation strategies with respect to different network configuaration has significant 677 

importance in determining both economic and environmental performance of the reverse logistics 678 

system.  679 

In general, as observed from the sensitivity analysis, the reduction on carbon emissions of the 680 

reverse logistics system are determined by both facility operation and transportation of EOU and EOL 681 

products. Compared with facility operation, the transportation strategy plays a more important role in 682 

reducing carbon emissions, and this also leads to a sharper increase on the transportation costs of the 683 

reverse logistics system. When the range of the requirement on carbon emission reduction is no more 684 

than 30%, the negative influence on the profitability of the reverse logistics system is extremely slight, 685 

but with the implementation of more stringent requirement, the negative impact becomes significant. 686 

The model can help decision-makers with the evaluation of different regulatory mechanisms. 687 

 688 

 

(A) 

 

(B) 

Figure.12 Comparison of the optimal solutions with respect to the changing parameters in the sensitivity analysis (results are 689 

normalized by dividing by104): (A) Carbon emissions from the facility operations; (B) Carbon emissions from the 690 

transportation.  691 

We are also interested in the role played by the government subsidy in determining the profitability 692 

of the reverse logistics system, so the ratio of subsidy/profit of the optimal solutions through all the 693 

scenarios in each test problem is calculated and compared, as shown in Table 5. The ratio of 694 

subsidy/profit illustrates the relative importance of the subsidy in the overal profit of the reverse 695 

logistics system, and if the ratio is more than less than 100%, that means the profit is contributed by 696 

both the suplus of the reverse logistics system (total revenue minus total costs) and government 697 

subsidy. If the ratio equals to 100%, that means the total revenue equals to the total costs, and the 698 

profit of the reverse logstics system is total contributed by the government subsidy. If the ratio is more 699 

than 100%, that means the total costs is higher than the total revenue obtainted from selling the 700 

recycled products and recovered energy, and the revere logstics system is not profitable without the 701 

government subsidy, so in this case, the government subsidy plays an extemely important role to 702 

promote the reuse, recycling and recovery of EOU and EOL products. 703 

As shown in Table 5, the government subsidy is important to gaurantee the economic benefits for 704 

the companies in the reverse logistics system especially in the bad economies. In general, when the 705 

generation of EOU and EOL products are high, the profit of the reverse logistics system is contributed 706 

by both surplus and government subsidy, while more portion in the profit is taken by the government 707 

subsidy when the generation of EOU and EOL is low. Furthermore, with the increased requriement on 708 

the reduction of carbon emissions, the ratio of subsidy/profit increases gradually through all the 709 

scenarios, and this reveals that the government subsidy plays a more important role in maintaining the 710 

profitability of the reverse logistics system when the carbon emission requirement is implemented. In 711 
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addtion, the contribution of government subsidy in the uncapacitated sceanrios is relatively smaller 712 

compared with that in other test problems particularly when the fixed facility costs are increased by 713 

100%, and this shows a better profitatbility of the reverse logistics system.   714 

 715 

Table 5 Ratio of subsidy/profit of the optimal solutions through all the scenarios in sensitivity analysis   716 

Test problems with 
changing parameters in 
sensitivity analysis 

Scenarios 

 s1 s2 s3 s4 s5 s6 s7 s8 best basic worst 
Capacitated problem 
without requirement on 
carbon emissions 

100% 76% 80% 64% 103% 76% 84% 65% 51% 83% 294% 

Capacitated problem with 
requirement of 10% 
reduction on carbon 
emissions 

115% 85% 75% 61% 119% 85% 77% 61% 49% 85% 319% 

Capacitated problem with 
requirement of 20% 
reduction on carbon 
emissions 

126% 85% 80% 61% 119% 81% 79% 61% 49% 85% 323% 

Capacitated problem with 
requirement of 30% 
reduction on carbon 
emissions 

139% 85% 86% 61% 119% 77% 81% 60% 50% 86% 328% 

Capacitated problem with 
requirement of 40% 
reduction on carbon 
emissions 

194% 125% 100% 76% 214% 121% 106% 79% 57% 118%  

Capacitated problem with 
requirement of 50% 
reduction on carbon 
emissions 

2993% 202% 157% 108% 630% 164% 163% 100% 117% 211%  

Uncapacitated problem 
with 100% increase on 
fixed facility costs 
(Uncapacitated s1) 

93% 75% 75% 66% 96% 81% 77% 67% 47% 78% 208% 

Uncapacitated problem 
with 200% increase on 
fixed facility costs 
(Uncapacitated s2) 

109% 91% 85% 74% 113% 93% 88% 75% 51% 89% 306% 

 717 

6. Managerial Implication 718 

One of the most important strategic decisions in a reverse logistics system is to determine the 719 

network structure in terms of the number and locations of facilities and the transportation strategy, 720 

which has significant influence on the long-term profitability and environmental sustainability. This is a 721 

complicated decision-making problem due to the balance between the economic benefits and 722 

environmental impact, and the uncertainties caused by market fluctuations. This research focuses on 723 

sustainable reverse logistics network design under stochastic environment, and the optimal solution 724 

emphasizes both profit expectation and reliability. Furthermore, the model is tested with seven 725 

scenarios with different carbon emissions constraint or capacity constraint.  726 

From the numerical experiment and sensitivity analysis, the compulsory requirement is an effective 727 

way to reduce the carbon emissions from the reverse logistics system, but this will negatively affect the 728 

profitability due to the increased system operating costs. Further, the network configuration varies 729 

significantly with the changing carbon requirements. Also, the size of planned facilities can affect the 730 

network configuration, profitability and carbon emissions of the reverse logistics system. Due to the 731 

economy of scale from the larger facilities, both economic and environmental performance of the 732 
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reverse logistics system may be improved if the increase of investment for facility expansion and 733 

aggregate transportation is maintained at a proper level. In addition, government subsidy plays an 734 

important role in determining the profitability of the reverse logistics. When a stringent requirement on 735 

carbon emission is implemented or the generation of EOU and EOL products is low and the facilities 736 

are not fully used, government subsidy significantly compensates the loss from the high costs for 737 

operating the reverse logistics system. 738 

Considering the generic nature of reverse logistics network design, some managerial implications 739 

are summarized as follows. 740 

• First of all, when the generation of EOU and EOL products is high, the capacity of reverse 741 

logistics system may not be able to deal with all the waste products generated. The decision-742 

maker has to determine either to reduce the service level or to have more investment on 743 

capacity expansion.  It is a wise choice for decision-maker to consider the future capacity 744 

expansion at the initial stage of the reverse logistics network design.  745 

• In a multi-product reverse logistics system, the violation of the capacity constraint may be 746 

caused by one or some of products, but for the other products, the waste or insufficient use 747 

of capacity may be observed. Thus, another effective and efficient way to resolve the 748 

capacity limitation is to improve the flexibility of the facilities in order to enable the 749 

conversion of capacity of different products. The concept of flexible manufacturing system 750 

has been well introduced and extensively applied in the forward supply chain, but the 751 

implementation in the reverse logistics system should also be focused so that the flexibility 752 

and resource utilization can be dramatically improved.  753 

• In general, the inclusion of carbon requirement may result in a decrease on the profitability 754 

of reverse logistics system. In order to balance the economic benefits and environmental 755 

impact, government subsidy may be used as an important leverage for compensating the 756 

economic loss from the carbon requirement. For example, the rate of government subsidy 757 

may be optimally changed with the changing requirement on the carbon emissions, and the 758 

model is able to support this decision. 759 

 760 

7. Conclusion 761 

In this paper, we develop a stochastic optimization model for network design of a multi-762 

product multi-echelon carbon-constrained reverse logistics system. The stochastic optimization 763 

problem is resolved with an augmented multi-criteria scenario-based risk-averse solution method, 764 

which guarantees a well profit expectation with a high level of confidence and reliability. In order 765 

to show the application of the model, numerical experiment with the changing constraints on 766 

carbon emission requirement and facility capacity, and some deep managerial implications are 767 

drawn from the analysis of the results. The main contribution of the research is summarized as 768 

follows. 769 

• We develop a new stochastic optimization model for reverse logistics network design 770 

with the consideration of both economic benefits and environmental impact. 771 

• We develop an augmented multi-criteria scenario-based solution risk-averse method 772 

based upon the result of a latest research, and through the use of normalized weighed 773 

sum in decision-making, the problems existed, i.e., weak-reliable solution, inability to 774 

solve the cost-minimization problem, etc., can be effectively resolved with the 775 

augmented method. 776 

• We use the augmented multi-criteria scenario-based solution method to resolve the 777 

stochastic optimization problem, which emphasizes both the optimal value and the 778 

reliability to achieve the optimal value.  779 

• We get deep managerial implications from the numerical example and sensitivity 780 

analysis, i.e., the relationship between profit and carbon emission requirement, 781 

understanding and resolution of the infeasibility caused by capacity limitation, the use 782 
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of flexible manufacturing system in reverse logistics, proper use of the government 783 

subsidy as a leverage, etc. Furthermore, the managerial implications are obtained in a 784 

stochastic environment, and this will improve the reliability and robustness of the 785 

decision-making under market fluctuation. 786 

For future development of the research, some suggestions are given. First, the environmental 787 

sustainability is only evaluated by carbon emissions, and more environmental indicators, i.e., water 788 

pollution, land pollution, etc. should be included in the model formulation. Besides, the social aspects 789 

of sustainability, i.e., employment, working environment, etc., should be also accounted in the 790 

sustainable reverse logistics design, as discussed by Govindan et al. (2016b) and Feitó-Cespón et al. 791 

(2017). Second, a further research should be taken for developing a systematic framework in order to 792 

suggest the weight combination or the range of weight combination with respect to the variation of the 793 

mean. For example, when the variation of the best value and worst value of the mean is 45%, a 794 

suggested range of weight combination should be immediately suggested for the performance 795 

evaluation. This will significantly improve the effectiveness and efficiency of the augmented multi-796 

criteria scenario-based risk-averse solution method for stochastic optimization problems. Last but not 797 

the least, the capacity conversion of different types of products achieved by flexible manufacturing 798 

system in reverse logistics should be focused and further discussed in order to improve both economic 799 

and environmental sustainability.  800 
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Highlights: 

• We develop a new stochastic optimization model for reverse logistics network design 
with the consideration of both economic benefits and environmental impact. 

• We develop an augmented multi-criteria scenario-based solution risk-averse method 
based upon the result of a latest research, and through the use of normalized weighed 
sum in decision-making, the problems existed, i.e., weak-reliable solution, inability to 
solve the cost-minimization problem, etc., can be effectively resolved with the 
augmented method. 

• We use the augmented multi-criteria scenario-based solution method to resolve the 
stochastic optimization problem, which emphasizes both the optimal value and the 
reliability to achieve the optimal value.  

• We get deep managerial implications from the numerical example and sensitivity 
analysis, i.e., the relationship between profit and carbon emission requirement, 
understanding and resolution of the infeasibility caused by capacity limitation, the use 
of flexible manufacturing system in reverse logistics, proper use of the government 
subsidy as a leverage, etc. Furthermore, the managerial implications are obtained in a 
stochastic environment, and this will improve the reliability and robustness of the 
decision-making under market fluctuation. 
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GTT A B

1 3446 7716

2 4137 5785

3 1744 5190

4 4010 5386

5 4354 3515

6 3110 7866

7 4853 6596

8 2448 7111

9 4895 7762

10 2839 6260

11 3894 5892

12 1969 3428

13 1322 4848

14 4972 3847

15 2825 6485

Total 50818 87687

3455624

Sorting FC VC CAC CQ CR EMSC

Candidate A B A B A B A B A B

1 835406 68 58 17464.16 26139.85 0.5 0.4 0.6 0.5 147.0588 172.4138

2 967775 57 69 12631.88 28096.44 0.5 0.4 0.6 0.5 175.4386 144.9275

3 1294303 59 73 24499.54 51438.19 0.5 0.4 0.6 0.5 169.4915 136.9863

4 934621 72 58 23057.1 33625.79 0.5 0.4 0.6 0.5 138.8889 172.4138

5 1044252 60 58 13829.81 22075.49 0.5 0.4 0.6 0.5 166.6667 172.4138

6 828307 51 66 14865 26760.94 0.5 0.4 0.6 0.5 196.0784 151.5152

7 960029 51 76 21310.24 29430.65 0.5 0.4 0.6 0.5 196.0784 131.5789

8 828923 65 71 14431.55 18647.45 0.5 0.4 0.6 0.5 153.8462 140.8451

Recycling FT VT CAT PFC SUBC EMST

Candidate A B A B A B A B A B

1 1720394 123 172 12795.43 30013.99 788 268 300 105 162.6016 116.2791

2 1307807 172 138 8796.637 17699.86 962 312 300 105 116.2791 144.9275

3 1886380 160 174 12501.98 34388.71 902 335 300 105 125 114.9425

4 1352402 122 163 15381.88 25235.82 986 303 300 105 163.9344 122.6994

5 1845360 129 156 16513.67 25277.74 786 207 300 105 155.0388 128.2051

Disposal VD PD EMSD CAD

A B A B A B A B

1 64 97 0 0 312.5 206.1856 30000 50000

Recovery FR VR CAR PFR SUBR EMSR

Candidate A B A B A B A B A B

1 1638332 292 209 10948.15 10866.58 544 470 300 119 342.4658 478.4689

2 1659473 240 245 10680.78 16452.56 541 430 300 119 416.6667 408.1633

3 1506705 246 235 16308.2 12598.79 935 398 300 119 406.5041 425.5319

4 1863060 281 248 23190.44 18558.85 959 375 300 119 355.8719 403.2258

5 1653003 247 253 19131.44 13451.4 587 443 300 119 404.8583 395.2569

Collection 1 2 3 4 5 6 7 8 Collection 1 2 3 4 5 6 7 8

GenerationA B A B A B A B A B A B A B A B GenerationA B A B A B A B A B A B A B A B

1 198 149 89 53 163 166 55 166 110 51 62 89 136 180 159 154 1 50.50505 134.2282 561.7978 754.717 122.6994 240.9639 909.0909 240.9639 363.6364 784.3137 645.1613 449.4382 367.6471 166.6667 125.7862 324.6753

2 50 71 115 162 194 163 147 200 117 60 166 60 148 176 183 130 2 400 563.3803 260.8696 123.4568 257.732 122.6994 340.1361 200 427.3504 333.3333 120.4819 833.3333 337.8378 170.4545 163.9344 153.8462

3 173 77 154 83 64 100 93 195 102 98 57 128 61 76 133 111 3 173.4104 649.3506 259.7403 602.4096 312.5 400 322.5806 102.5641 392.1569 408.1633 350.8772 390.625 491.8033 657.8947 375.9398 360.3604

4 198 184 100 163 144 187 103 126 148 114 169 152 166 77 116 82 4 151.5152 217.3913 400 122.6994 277.7778 213.9037 194.1748 158.7302 202.7027 350.8772 177.5148 197.3684 120.4819 519.4805 258.6207 609.7561

5 191 181 131 73 195 141 113 152 183 88 176 189 119 153 108 178 5 104.712 110.4972 229.0076 273.9726 102.5641 283.6879 176.9912 263.1579 218.5792 340.9091 113.6364 264.5503 336.1345 196.0784 462.963 224.7191

6 122 83 58 107 136 172 180 176 142 113 189 75 132 135 186 194 6 245.9016 481.9277 517.2414 186.9159 220.5882 290.6977 111.1111 113.6364 281.6901 265.4867 105.8201 533.3333 378.7879 148.1481 107.5269 206.1856

7 95 159 57 61 149 200 60 107 132 80 102 169 189 200 135 109 7 315.7895 188.6792 350.8772 819.6721 201.3423 100 333.3333 373.8318 378.7879 250 490.1961 295.858 211.6402 150 148.1481 366.9725

8 133 175 166 72 83 101 152 61 112 55 58 188 134 117 149 121 8 150.3759 114.2857 180.7229 277.7778 361.4458 396.0396 328.9474 491.8033 178.5714 363.6364 517.2414 212.766 223.8806 341.8803 134.2282 247.9339

9 168 87 186 176 89 134 183 103 121 121 131 119 52 127 134 148 9 119.0476 344.8276 268.8172 284.0909 337.0787 149.2537 109.2896 291.2621 247.9339 165.2893 152.6718 420.1681 961.5385 393.7008 373.1343 337.8378

10 106 62 106 171 142 137 130 98 76 50 94 141 57 133 122 192 10 188.6792 806.4516 377.3585 116.9591 211.2676 291.9708 384.6154 510.2041 263.1579 600 531.9149 212.766 701.7544 150.3759 245.9016 208.3333

11 133 125 165 194 160 178 191 70 84 65 144 94 58 55 76 161 11 75.18797 400 303.0303 154.6392 250 168.5393 157.0681 428.5714 595.2381 307.6923 208.3333 212.766 517.2414 545.4545 657.8947 124.2236

12 121 76 188 167 157 126 136 195 98 84 173 99 81 163 58 98 12 247.9339 526.3158 159.5745 299.4012 191.0828 396.8254 220.5882 153.8462 408.1633 476.1905 173.4104 303.0303 617.284 306.7485 517.2414 510.2041

13 69 131 188 70 88 125 102 78 67 60 170 58 174 150 60 162 13 434.7826 381.6794 212.766 714.2857 454.5455 160 392.1569 512.8205 298.5075 833.3333 235.2941 689.6552 229.8851 333.3333 833.3333 123.4568

14 157 156 136 125 95 116 189 129 195 54 136 71 194 62 83 53 14 127.3885 320.5128 147.0588 320 421.0526 258.6207 211.6402 387.5969 102.5641 370.3704 294.1176 704.2254 257.732 483.871 240.9639 754.717

15 157 144 61 172 139 80 176 181 130 63 149 113 61 148 93 197 15 127.3885 208.3333 491.8033 290.6977 359.7122 500 170.4545 165.7459 307.6923 476.1905 201.3423 353.9823 819.6721 202.7027 430.1075 203.0457

TC2 Recycling 1 2 3 4 5 EMS2 Recycling 1 2 3 4 5

Collection A B A B A B A B A B Collection A B A B A B A B A B

1 194 149 158 110 82 101 83 122 69 104 1 51.54639 201.3423 126.5823 363.6364 609.7561 396.0396 361.4458 327.8689 434.7826 384.6154

2 145 116 163 102 188 196 67 75 149 129 2 206.8966 431.0345 245.3988 392.1569 265.9574 255.102 746.2687 266.6667 335.5705 310.0775

3 175 98 83 173 141 111 94 126 130 81 3 57.14286 306.1224 481.9277 231.2139 354.6099 360.3604 212.766 317.4603 153.8462 370.3704

4 113 58 122 116 52 167 52 104 60 91 4 265.4867 689.6552 327.8689 431.0345 769.2308 179.6407 961.5385 384.6154 666.6667 549.4505

5 190 174 182 159 176 145 200 122 170 115 5 52.63158 114.9425 274.7253 251.5723 284.0909 206.8966 250 245.9016 117.6471 260.8696

6 98 129 51 194 125 186 58 93 147 154 6 306.1224 387.5969 784.3137 103.0928 160 107.5269 344.8276 322.5806 340.1361 129.8701

7 193 138 58 186 144 104 55 189 53 188 7 103.6269 144.9275 862.069 161.2903 138.8889 288.4615 727.2727 264.5503 943.3962 159.5745

8 177 184 144 55 91 129 88 147 63 166 8 169.4915 108.6957 138.8889 363.6364 549.4505 387.5969 340.9091 340.1361 317.4603 120.4819
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TC3 Disposal 1 EMS3 Disposal

Collection A B Collection A B

1 169 62 1 177.5148 806.4516

2 179 121 2 167.5978 247.9339

3 60 147 3 166.6667 136.0544

4 144 152 4 208.3333 131.5789

5 52 178 5 192.3077 112.3596

6 175 88 6 57.14286 454.5455

7 66 77 7 454.5455 519.4805

8 113 151 8 176.9912 264.9007

TC4 Recovery 1 2 3 4 5 EMS4 Recovery 1 2 3 4 5

Collection A B A B A B A B A B Collection A B A B A B A B A B

1 145 125 130 55 122 154 145 182 161 51 1 137.931 400 153.8462 545.4545 409.8361 324.6753 137.931 274.7253 310.559 588.2353

2 193 118 117 104 186 59 128 50 67 71 2 51.81347 169.4915 256.4103 288.4615 268.8172 847.4576 156.25 800 298.5075 422.5352

3 94 196 55 153 108 157 161 106 166 68 3 319.1489 204.0816 363.6364 196.0784 185.1852 318.4713 124.2236 283.0189 180.7229 294.1176

4 117 181 65 55 71 98 177 61 128 155 4 256.4103 165.7459 461.5385 727.2727 704.2254 510.2041 282.4859 655.7377 234.375 129.0323

5 169 113 187 133 120 111 159 51 60 110 5 177.5148 442.4779 267.3797 300.7519 416.6667 450.4505 314.4654 980.3922 666.6667 363.6364

6 166 159 120 61 66 110 123 200 146 106 6 60.24096 125.7862 166.6667 655.7377 454.5455 272.7273 243.9024 100 342.4658 283.0189

7 134 107 108 59 110 109 125 82 102 126 7 74.62687 373.8318 370.3704 677.9661 363.6364 183.4862 400 365.8537 196.0784 396.8254

8 111 62 105 102 163 112 58 111 52 158 8 270.2703 322.5806 190.4762 392.1569 122.6994 357.1429 344.8276 180.1802 576.9231 126.5823


