Preference Weighting of Health State Values: What Difference Does It Make, and Why?

Admassu N. Lamu, MA, MPhil¹, Thor Gamst-Klaussen, MA¹, Jan Abel Olsen, PhD¹²

¹Department of Community Medicine, University of Tromsø, Tromsø, Norway; ²Centre for Health Economics, Monash University, Clayton, VIC 3800, Australia

ABSTRACT

Background: Most patient-reported outcome measures apply a simple summary score to assess health-related quality of life, whereby equal weight is normally assigned to each item. In the generic preference-based instruments, utility weighting is essential whereby health state values are estimated through preference elicitation and complex algorithms. Objectives: To examine the extent to which preference-weighted value sets differ from unweighted values in the five-level EuroQol five-dimensional questionnaire and the 15D instrument, on the basis of a comprehensive data set from six member countries of the Organisation for Economic Co-operation and Development, each with a representative healthy sample and seven disease groups (N = 7933). Methods: Construct validities were examined. The level of agreement between preference-weighted and unweighted values was also assessed using intraclass correlation coefficient (ICC), Bland-Altman plots, and reduced major axis regression. Results: The performances of preference-weighted and unweighted measures were comparable with regard to convergent and known-group validities for each instrument. Although unweighted values in the five-level EuroQol five-dimensional questionnaire differ considerably from the preference-weighted values at the individual level, the discrepancy is minimal at the group level with a mean difference of 0.023. The ICC (0.96) and the Bland-Altman plot also suggest strong overall agreement. For the 15D, both the ICC (0.99) and the Bland-Altman plot revealed almost perfect agreement, with a negligible mean difference of ~0.001. Results from the reduced major axis regression also showed small bias. Conclusions: Overall, preference weighting has minimal effect if the unweighted values are anchored on the same scale as the preference-weighted value sets.

Keywords: EQ-5D-5L, 15D, health-related quality of life, preference weighting.

Copyright © 2017, International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc.

Introduction

A wide range of instruments has been developed to measure patient-reported outcomes, often by use of a summary score to indicate the degree of disease severity [1]. Most of these instruments assign equal weight to each dimension or item included, that is, every health dimension and each level change are assumed to have equal importance. Furthermore, these instruments do not account for how people value a health state improvement relative to how they value lifetime gains.

Generic preference-based instruments are different. They were designed to enable comparisons of the effectiveness of competing health care programs in economic evaluations [2,3]. Because effectiveness can be in terms of both improved health and prolonged life, the health-related quality-of-life gains are made commensurable with lifetime gains, using a scale that accounts for people’s trade-offs between quality and quantity of life. Furthermore, reflecting economists’ attention to the preferences of affected parties, these instruments also seek to account for importance weighting of the included health dimensions. The distinct features of these preference-based instruments are that they 1) use a generic health state descriptive system designed to apply across all health conditions and 2) provide an indirect means of obtaining preference weights. Hence, respondents are assigned a health state value on the basis of their responses to a health state questionnaire, and prespecified preference weights obtained from other populations are then applied [4]. The focus on utility represents a key element, in that the class of cost-effectiveness analyses on the basis of these instruments is referred to by a specific term—cost-utility analyses.

The most widely used health state utility instrument is the EuroQol five-dimensional questionnaire (EQ-5D), followed by the six-dimensional health state short form, the health utilities index, and the 15D. Together, these four instruments are found in around 95% of applied cost-utility studies [5]. Furthermore, a
review of 1663 studies using preference-based instruments published between 2005 and 2010 found that the EQ-5D had been applied in 63% of these studies [6]. In addition to their different descriptive systems, these instruments apply different preference elicitation methods: the visual analogue scale (VAS) or the choice-based methods of time trade-off (TTO), standard gamble, and discrete-choice experiments (DCEs). Furthermore, different scoring algorithms are used. Consequently, different instruments produce different preference weights [7,8].

Several researchers have questioned the complex algorithms used to create preference weights [9-11]. Richardson et al. [12] suggest that differences in preference weights are primarily via their effect on the measurement scales. Although each preference-based measure was developed on a unit scale of 0 to 1, their actual scales differ: the original English value set for the EQ-5D has a scale length of 1.594 (i.e., from −0.594 to 1), whereas the six-dimensional health state short form has a scale length of 0.699 (i.e., 0.301 to 1). The aim of this study was to examine what difference it makes to assign preference-weighted values to health states, as compared with the unweighted values obtained when summary scores are converted onto a 0 to 1 scale. Given that some preference-based instruments include negative values, reflecting that the most inferior health states are considered worse than being dead, parts of the discrepancy between preference-weighted and unweighted values are explained by scale length differences. Hence, a key issue is to make scale-adjusted comparisons to determine how much of the observed discrepancy is due to scale length differences, and how much is attributable to the importance weighting of health dimensions.

This article examines two preference-based instruments, the five-level EQ-5D (EQ-5D-5L) and the 15D, that are contrasting in terms of both their descriptive system and their valuation methods. The EQ-5D-5L has the most condensed descriptive system, including only five dimensions: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression [13]. In the construction of the new EQ-5D-5L, the original dimensional structure was retained, but it now includes five levels of severity (no problems, slight problems, moderate problems, severe problems, and unable to/extreme problems) [14]. The 15D describes health along 15 dimensions (mobility, vision, hearing, breathing, sleep, eating, speech, bladder/bowel function, usual activities, mental function, discomfort/pain, depression, distress, vitality, and sexual activity), each with five levels, giving a combination of more than 30.5 billion (≈517) possible health states [15].

As for valuation methods, in the 15D, subjects were asked to rank the dimensions and the levels within each dimension according to their relative importance using a 0 to 100 VAS scale, in which 100 was assigned to the most important dimension or level, and 0 was assigned if a dimension or level was not considered important at all [15]. The EQ-5D-5L tariff considered here is the latest version, which is based on an English population sample. It applies a combination of TTO and DCE tasks, which makes explicit trade-offs between quality and quantity of life, with scales that go below 0 [16].

Data and Methods

Data
Data were obtained from the Multi-Instrument Comparison (MIC) study, which is based on an online survey administered in Australia, Canada, Germany, Norway, the United Kingdom, and the United States by a global panel company, CINT Australia Pty Ltd. [17]. The personal and medical details recorded by the panel company were used to recruit individuals from a “healthy group” (N = 1760) and from seven major chronic disease groups (N = 6173). Quotas on age, sex and education were used to obtain a demographically representative sample of “healthy” respondents, defined by the absence of chronic disease and a VAS score of at least 70 on overall health. Quotas were also applied to obtain a target number of respondents in each disease group: arthritis, asthma, cancer, depression, diabetes, hearing loss and heart problems.

In addition to the MIC data set, the full set of the EQ-5D-5L health states (N = 55 = 3125) was used to explore the degree of agreement between preference-weighted and unweighted values. For the 15D, however, all analyses were based on the MIC data set because it is problematic to use the 30.5 billion full set of 15D health states. For the purpose of comparing preference-weighted and unweighted values in both the EQ-5D-5L and the 15D in terms of construct validity, four variables were considered: two variables (VAS and standard of living) correspond to the full sample (N = 7933) and the other two (diabetes 39 [D-39] and the Kessler Psychological Distress Scale [K10]) were taken from the included “disease groups.” The D-39 and K10 were chosen because they were relatively more inter-related with both the EQ-5D-5L and the 15D dimensions.

Preference-Weighted Scoring Approach for the EQ-5D-5L and the 15D

The EQ-5D-5L

Health states defined by the EQ-5D-5L may eventually be converted to a single summary index by applying scores from a standard set of values (preferences) derived from general population samples [18]. In this study, the value set for the EQ-5D-5L is derived from the stated preference data of 996 members of the English general public, for which a hybrid model combining a composite TTO approach and DCE tasks was used for its direct elicitation [16]. The minimum value for the worst health state (“the pits”) was −0.281, giving a scale length of 1.281 (i.e., from −0.281 to 1).

The 15D

The 15D tariff was generated using a set of preference weights elicited from several representative samples of the Finnish adult population [15]. Respondents were asked to assign the relative importance for 15D dimensions on a 0 to 100 scale, in which 100 was assigned to the most important dimension. Then, the importance of all other dimensions was assessed in relation to this most important dimension. Similarly, importance weights for levels within each dimension were produced on a 0 to 100 scale, in which the most desirable level (level 1) was assigned 100 and the desirability of all other levels was assessed in relation to level 1. In addition to the five levels, the states of “unconscious” and “dead” were also valued for each dimension. The preference weights were scaled on a 0 to 1 range, in which 0 represented “dead” and 1 represented “no problems on any dimension,” and with no health state worse than being dead. The weights were obtained by using a rating scale (i.e. VAS) and then combined using a simple additive model. Hence, the 15D value set is not based on preferences that reflect the trade-offs between quality and quantity of life gains.

The Unweighted Scoring Approach

On the basis of the instruments’ summary scores, unweighted health state values are developed, with each dimension assigned equal importance and each level change assigned the same weight. First, item scores are set equal to the rank order of the
reverse-coded response (so that higher values correspond with better health), and summed to obtain a summary score Xi for each health state i. Then, Xi is constrained to the 0 to 1 range to obtain unweighted values Vi, using a unity-based normalization equation as follows:

$$V_i = \frac{X_i - X_{\min}}{X_{\max} - X_{\min}},$$

(1)

where X_{\min} and X_{\max} are the summary scores obtained when the response to every item of the instrument is at its minimum (worst) and maximum (best) level, respectively. For instance, because of reverse coding, a health state 11232 on the EQ-5D-5L becomes 55434, and hence Xi for this health state is 21 (i.e., $5 + 5 + 4 + 3 + 4$). Again, because of reverse coding of the worst health state 55555 into 11111 and vice versa, X_{\min} is 5 $(1 + 1 + 1 + 1 + 1)$ and X_{\max} is 25 $(5 + 5 + 5 + 5 + 5)$. Therefore, the unweighted value for the health state 11232 on the 0 to 1 scale is 0.80, that is, $(21-5)/(25-5)$. According to this scale, the unweighted EQ-5D-5L has 20 possible values with an interval of 0.05 (1/20) between successive values, whereas unweighted 15D has 60 different possible values with an interval of 0.0167 (1/60).

Equation 1 gives a simple unweighted value on a 0 to 1 scale without adjustment to the scale of the preference-weighted tariffs. Nevertheless, to enable comparisons on the same scale, we perform a simple linear transformation onto the same scale as the weighted utility range, that is, -0.281 to 1, for the EQ-5D-5L. This is achieved by using the minimum-maximum normalization approach described by Han et al. [19], which preserves the relationships among the original data values.

$$V'_i = \frac{X_i - X_{\min}}{X_{\max} - X_{\min}} \times (X_{\max} - X_{\min}) + X_{\min} = V_i(\text{range}) + X_{\min},$$

(2)

where X_{\min} and X_{\max} are, respectively, the minimum and maximum possible values on the preference-weighted tariffs, and V'_i represents the unweighted values on the same scale as the preference-weighted scale.

For instance, the algorithm for computing the V'_i for the health state 11232 of the EQ-5D-5L on the -0.281 to 1 scale is $V'_i = V_i(\text{range}) + X_{\min} = 0.80 \times (1.00 - (-0.281)) + (-0.281) = 0.744$. With this linearly transformed scale, the interval between successive values of V'_i becomes 0.064 (1/20) for the EQ-5D-5L. For the 15D, the preference-weighted anchor is anchored on a 0 to 1 scale, which coincides with the scale in Equation 1 and hence no linear transformation is needed.

Both V_i and V'_i obtained in Equations 1 and 2 refer to equally weighted (or unweighted) values. Nevertheless, although Equation 1 represents a 0 to 1 scale, the V'_i in Equation 2 accounts for a scale range including negative values. Consequently, preferences for the trade-off between gains in quality and in quantity of life (the scaling issue) are indirectly reflected in it, and any difference from its preference-weighted counterpart is only the nonequal importance weighting depending on which health dimensions a given quality gain will occur. Hence, when comparing preference-weighted and unweighted values, Equation 2 adjusts for the parts of these discrepancies that reflect scale differences.

Statistical Analysis

Convergent validity

To determine the extent to which the preference-weighted and unweighted values are related to other measures of similar construct, convergent validity was examined by comparing them to the scores reported on the VAS for the total sample ($N = 7933$), and to the D-39 (subsample, $N = 924$) using Spearman rank order correlations. The D-39 is a disease-specific instrument for diabetic patients which has 39 items, each with a 7-response level ranging from 1 (not affected at all) to 7 (extremely affected) [20]. It covers five dimensions: energy and mobility (15 items), diabetes control (12 items), anxiety and worry (4 items), social burden (5 items), and sexual functioning (3 items). Each attribute was reverse-coded and the total score on each domain was linearly transformed to a 0 to 1 scale, with 0 indicating the worst and 1 the best possible health state. Convergent validity with the D-39 subscales was also assessed. We expected strong correlations between the VAS and the preference-weighted as well as the unweighted values. As for D-39, we expected high correlations with “energy and mobility” as well as “anxiety and worry” subscales (because both the EQ-5D-L and the 15D dimensions cover these subscales).

Known-group validity

A known-group validity was tested to examine the discriminative validity of the preference-weighted and unweighted values for each instrument. The present standard of living (very good, good, poor, and very poor) was used as a reference for the whole sample. In addition, the K10 was used as an anchor in the group of patients suffering from depression ($N = 917$). Following Jorm et al. [21], the K10 was recategorized into four severity levels: likely to be well (10–19), mild (20–29), moderate (30–39), and severe (40–50). Subjects with poorer health status and standard of living were hypothesized to have lower scores. The Kruskal-Wallis test and relative efficiency (RE) were used to explore the known-group validity of preference-weighted and unweighted values for both the EQ-5D-5L and the 15D. The RE statistic is defined as the ratio of either chi-squared statistics or squared t statistics [11]. Here, RE is given as the ratio of chi-square (χ^2) of preference-weighted and unweighted values. An RE value greater than 1 implies that the preference-weighted tariff has more power in discriminating between meaningfully different groups, and the converse is true for an RE value of less than 1.

Level of agreement

The degree of agreement between preference-weighted and unweighted values was assessed on the basis of the intraclass correlation coefficient (ICC) [22], Bland-Altman plots [23], and reduced major axis (RMA) regression for each instrument. The ICC was constructed on the basis of a two-way mixed effects model with absolute agreement, and a single measure of ICC was calculated. The Bland-Altman analysis involves computing the mean and the difference between measurement methods for each subject in the sample. It reports the population mean difference between the two methods, and the 95% limits of agreement that provide a limit within which 95% of the variability between the methods will lie. RMA is used to detect bias between two measures [24]. Its slope provides an estimate of the amount of systematic bias. The results of RMA are reported graphically to visualize how the level of agreement between preference-weighted and unweighted values differs with scale length. All statistical analyses were conducted using Stata version 14.1 (StataCorp, College Station, TX).

Results

Convergent and Known-Group Validity

There is evidence of convergent validity of preference-weighted and unweighted values for each instrument (the EQ-5D-5L and the 15D) with both VAS and D-39 scores (Table 1). The rank correlation between the VAS and the preference-weighted and unweighted measures of each instrument was high (0.60 and higher). Similarly, all Spearman rank order coefficients for the preference-weighted and unweighted values with the five D-39
domains were significant \((P < 0.001)\). Correlations were the highest for the energy and mobility domain \((0.70\) and higher), as expected. Relatively high correlations were also found with the anxiety and worry dimension. The unweighted measures demonstrate similar performance in terms of convergent validity compared with the preference-weighted scores in both the EQ-5D-5L and the 15D.

Both preference-weighted and unweighted measures of the EQ-5D-5L and the 15D give evidence of known-group validity in detecting significant \((P < 0.001)\) differences between the known-group variables (standard of living and depression, K10) \((\text{Table 2})\).

The preference-weighted EQ-5D-5L appears to be more effective in discriminating both groups with RE significantly more than 1, that is, when standard of living is used \((\text{RE} = 1.05; 95\% \text{ CI} 1.030–1.071)\) and when K10 is applied \((\text{RE} = 1.14; 95\% \text{ CI} 1.055–1.227)\). Preference-weighted 15D appears to have less discriminating power as compared with its unweighted counterpart in both comparison groups with RE significantly less than 1 \((\text{Table 2})\).

Agreement between Preference-Weighted and Unweighted Values

The Spearman correlation between preference-weighted and unweighted EQ-5D-5L is very high, indicating a good degree of association \((\text{Table 3})\). The scale of the instrument, however, influences the level of agreement. For instance, our results reveal a substantial agreement for the EQ-5D-5L \((\text{ICC} = 0.96; 95\% \text{ CI} 0.931–0.969)\) when the preference-weighted and unweighted values are given on the same scale. If unweighted values are anchored on the 0 to 1 scale, the agreement is weaker, particularly when the full set of health states \((5^5 = 3125)\) is used instead of the MIC data set, that is, ICC rises from 0.76 to 0.92 with adjustment in the scale of unweighted values \((\text{results for the full set of health states are not reported here})\).

Similarly, the Bland-Altman plots shown in Figure 1 suggest that the preference-weighted and unweighted values of EQ-5D-5L have a high level of agreement at the group level. The mean difference is similar \((\text{about 0.02})\) when the MIC data set is considered, irrespective of whether unweighted values are adjusted to the preference-weighted scale. When we consider the 3125 possible health state combinations in the EQ-5D-5L descriptive system, the mean difference is 0.03 \((95\% \text{ CI} 0.029 to 0.035)\) for the adjusted scale, and −0.11 \((95\% \text{ CI} –0.112 to –0.105)\) for the unadjusted one. Thus, the mean bias is more than tripled if we do not adjust for the difference in the scales. The RMA regression depicted in Figure 2 demonstrates similar results, with the slope closer to 1 and the intercept closer to 0 when scale-adjusted unweighted values are used.

Despite a small overall mean difference between preference-weighted and unweighted EQ-5D-5L, a large interindividual difference is evident. The lower and upper 95\% limits of agreement for the EQ-5D-5L are −0.085 \((95\% \text{ CI} –0.087 to –0.083)\) and 0.131 \((95\% \text{ CI} 0.129 to 0.133)\), respectively. The corresponding limits of agreement for the full set of health states are −0.124 \((95\% \text{ CI} –0.129 to –0.119)\) and 0.188 \((95\% \text{ CI} 0.183 to 0.193)\). The Bland-Altman plot for the EQ-5D-5L \((\text{Fig. 1A})\) indicates some systematic variation at the lower end of the scale, which is likely because there are relatively large utility decrements associated with levels 4 and 5 on the pain/discomfort and anxiety/depression dimensions. For the EQ-5D-5L, 7.41\% of the observations lie outside these limits of agreement.

Table 2 – Tests for known-group validity of preference-weighted and unweighted values for the EQ-5D-5L and the 15D.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Kruskal-Wallis test statistics</th>
<th>RE (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted (\chi^2_{(3)})</td>
<td>Unweighted (\chi^2_{(3)})</td>
</tr>
<tr>
<td>EQ-5D-5L</td>
<td>1367.80</td>
<td>1301.71</td>
</tr>
<tr>
<td>SOL</td>
<td>275.07</td>
<td>241.07</td>
</tr>
<tr>
<td>K10</td>
<td>1495.03</td>
<td>1614.4</td>
</tr>
<tr>
<td>15D</td>
<td>313.49</td>
<td>347.52</td>
</tr>
<tr>
<td>SOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2\), chi-square statistic with 3 degrees of freedom; CI, bootstrapped 95\% confidence interval \((\text{with 1000 iterations})\); EQ-5D-5L, five-level EuroQol five-dimensional questionnaire; K10, Kessler Psychological Distress Scale; RE, relative efficiency; SOL, standard of living.

* \(P < 0.001\).
As for the 15D, the Spearman rank correlation is very high ($\rho = 0.99$), and so is the agreement between preference-weighted and unweighted distributions. The ICC (0.99; $P < 0.001$), which measures the absolute agreement, suggests a nearly perfect agreement. In a pairwise comparison between preference-weighted and unweighted 15D, the mean difference is negligible at the group level (-0.001 with 95% CI -0.002 to 0.001). The 95% limits of agreement depicted in Figure 1 are 0.038 (95% CI 0.039 to 0.037) and 0.036 (95% CI 0.035 to 0.037), indicating a small difference even at the individual level (Table 3). Only 5.9% observations lie outside these limits of agreement. The RMA regression results reported in Figure 2 also reveal little bias between preference-weighted and unweighted 15D.

Discussion

We have examined the effect of preference weighting in two instruments, the EQ-5D-5L and the 15D, in terms of validity and the level of agreement. The results reveal that the preference-weighted and the unweighted measures for each instrument were strongly correlated with the VAS and the D-39, and each measure was able to discriminate differences between known groups. Nevertheless, although the unweighted EQ-5D-5L revealed slightly poor known-group validity, the unweighted 15D showed better performance as compared with the preference-weighted version. With respect to agreement between preference-weighted and unweighted values, a simple comparison of the mean values in the EQ-5D-5L for the whole population generally reveals a small discrepancy. Although the mean difference is negligible at the group level, the individual difference between weighted and unweighted values is modest in the 15D. Nevertheless, the EQ-5D-5L, the most widely used instrument, showed a considerable discrepancy at the individual level.

Previous studies suggest that greater reliability and validity might be achieved by simply using unweighted values rather than the increasingly complex algorithm of utility weights [4,25,26]. For instance, Prieto and Sacristán [10] argued that the weighting system in the preference-based instruments does not indicate a substantial difference in the final score from that of the unweighted values for the three-level EQ-5D (EQ-5D-3L). Similarly, Wilke et al. [11] found no difference in sensitivity to change between weighted and unweighted values, although the weighted values better discriminate between disease groups.

Table 3 – Agreement between preference-weighted and unweighted values for the EQ-5D-5L and the 15D.

<table>
<thead>
<tr>
<th>Measures of agreement</th>
<th>EQ-5D-5L</th>
<th>15D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unadjusted scale (0 to 1)</td>
<td>Adjusted scale (−0.281 to 1)</td>
</tr>
<tr>
<td>ICC†</td>
<td>0.939</td>
<td>0.956</td>
</tr>
<tr>
<td>(95% CI of ICC)</td>
<td>(0.916 to 0.954)</td>
<td>(0.931 to 0.969)</td>
</tr>
<tr>
<td>Spearman rank correlation, ρ†</td>
<td>0.982</td>
<td>0.982</td>
</tr>
<tr>
<td>(95% CI for ρ)</td>
<td>(0.981 to 0.983)</td>
<td>(0.981 to 0.983)</td>
</tr>
<tr>
<td>Mean difference (SE)</td>
<td>−0.022 (0.001)</td>
<td>−0.023 (0.001)</td>
</tr>
<tr>
<td>(95% CI for mean difference)</td>
<td>(−0.022 to −0.020)</td>
<td>(−0.023 to −0.024)</td>
</tr>
<tr>
<td>Lower limits of agreement</td>
<td>−0.136</td>
<td>−0.085</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(−0.138 to −0.134)</td>
<td>(−0.087 to −0.083)</td>
</tr>
<tr>
<td>Upper limits of agreement</td>
<td>0.094</td>
<td>0.131</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(0.092 to 0.096)</td>
<td>(0.129 to 0.133)</td>
</tr>
</tbody>
</table>

CI, confidence interval; EQ-5D-5L, five-level EuroQol five-dimensional questionnaire; ICC, intraclass correlation coefficient; ρ (rho), Spearman rank correlation (which is not affected by linear transformation of unweighted values); SE, standard error.

† No scale difference between preference-weighted and unweighted 15D.

* P < 0.001.

Fig. 1 – BA plots of agreement between preference-weighted and unweighted values for the EQ-5D-5L and the 15D. Note: Line of perfect average agreement (green), observed average agreement (blue), and the upper and lower 95% limits of agreement (red). Note that mean difference and the upper and lower 95% limits of agreement with 95% confidence intervals are summarized in Table 3. BA, Bland-Altman; EQ-5D-5L, five-level EuroQol five-dimensional questionnaire.
and the unweighted values provide a greater test-retest reliability for the EQ-5D-3L and the health utilities index-3. In similar vein, our results reveal that preference weighting produces a small difference when the unweighted values are adjusted to the same scale as the preference-weighted values in the EQ-5D-5L, at least at the group level.

Although the scale length reflects preferences over quality versus quantity, there are two different theoretical reasons to expect discrepancies between preference-based values and the simplified scale-adjusted values presented in this article. First, there is nothing to suggest why people should have identical preference weights on qualitatively different dimensions. The study on which the English EQ-5D-5L value set is based shows that the last two dimensions (pain/discomfort and anxiety/depression) have higher preference weights than do the first three dimensions (mobility, self-care, and usual activities). The sum of the weights of the first three dimensions is about the same as that of the last two dimensions [16]. Second, health state utility instruments are descriptive systems as opposed to a Likert scale with identical intervals between numbers. Hence, the drop in utility from one level to the next level down reflects the severity differences associated with the words used. The English value set for the EQ-5D-5L reveals clear nonlinearities along all dimensions with around half of the total utility decrement occurring between levels 3 and 4 [15].

It is interesting to compare preference-weighted and unweighted values at the individual level, because the theoretical arguments for the use of preference weights are technically valid at the individual level [3]. Our result indicates a clear discrepancy in the EQ-5D-5L at the individual level with the width of the 95% limits of agreement equal to 0.216 for the MIC dataset and 0.312 for the full set of health states. For population mean, however, the adjusted unweighted values appear to give results similar to the preference-weighted tariffs (with mean difference closer to 0.02). This difference is much lower than the clinically important difference (0.074) reported for the EQ-5D-3L [27].

The range of the instrument scale is crucial in the comparison between preference-weighted and unweighted values. The preference-based health-related quality-of-life instruments were developed with the intention that utilities are measured on a cardinal scale of 0 to 1, with 0.00 representing being dead and 1.00 perfect health. States worse than being dead are accounted for by assigning negative values. For example, the effective scale length for the EQ-5D-5L is 1.281 (i.e., from −0.281 to 1). Nevertheless, on the unweighted scale, because of the normalizing of the summary scores, it is never possible to go below 0. Obviously, this scale difference accounts mainly for the difference between preference-weighted and unweighted values. For instance, the level of agreement between preference-weighted and unweighted values rises substantially after adjusting for the scale differences (i.e., ICC rises from 0.76 to 0.92) when the full set of health states is considered. The corresponding change in ICC, however, is quite small (Table 3) with the MIC data set that comprises health states that people actually experience. This is

Fig. 2 – RMA as a measure of agreement between preference-weighted and unweighted measures for the EQ-5D-5L and the 15D. RMA (blue) line serves as a summary of the center of the data. EQ-5D-5L, five-level EuroQol five-dimensional questionnaire; PC, line of perfect concordance (red) along which preference-weighted values equal unweighted values; RMA, reduced major axis.
mainly because most of the respondents (more than 80%) did not experience health state combinations with high severity level (level 4/5 on any dimension). In general, the differences between preference-weighted and unweighted values arise primarily because of scale effects brought up by the methodological approach used to construct preference weights [10]. Preference weights also determine the measurement scale of an instrument [12], which has an impact on the calculation of quality-adjusted life-year and hence the results of cost-utility analyses.

With regard to the 15D, our results reveal only a negligible difference between a preference-weighted and an unweighted value. The overall mean difference is close to 0 (−0.001). This mean difference is by far lower than the generic minimum important changes (0.015) reported for the 15D scores [28]. One possible explanation could be related to the similarity of the scale range. The worst possible health state (the “pits”) has a value of 0 for both preference-weighted and unweighted scales. Furthermore, the 15D has many dimensions that allow for a large number of health state combination (515), which leads to the compression of weights [12]. Thus, in the absence of scale length difference, preference weighting that involves mere relative importance brings a small difference. Note that unlike the choice-based techniques, the rating scale (VAS) is not a utility instrument because respondents are not requested to sacrifice anything (life-years or risk of death). Therefore, given such minimal effect of assigning different importance weighting to the various levels of the 15D dimensions, a simple linear transformation of its summary scores (Equation 1) might suffice or even be superior to preference-weighted tariffs.

This study highlights the implications of scale differences arising from different preference weighting algorithms and valuation techniques. This is particularly relevant for understanding the observed discrepancies in health state utility gains produced by different value sets, such as for the EQ-5D-5L. We have presented a simplified scale-adjusted unweighted model that assigns equal weight to each dimension, as well as equal weight to each one-level change. Further research is needed to develop models that account for the observed discrepancies in health state utility gains produced by different value techniques. This is particularly relevant for understanding the observed differences for two health state utility measures: EQ-5D and SF-6D. Qual Life Res 2015;24:63–79.

Acknowledgments

We thank Jeff Richardson for his contribution in generating the idea behind this article and Gang Chen for his valuable comments.

Source of financial support: Data collection for this study was funded by a grant from the Australian National Health and Medical Research Council (grant no. 1006334), whereas the Norwegian arm was funded by the University of Tromsø. The Research Council of Norway funded the preparation of the manuscript (grant no. 221452).

REFERENCES