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Krasimira Aleksandrova11, Antonia Trichopoulou5,12,13, Pagona Lagiou5,12, Phlippos Orfanos5,12,
Domenico Palli13, Sabina Sieri14, Rosario Tumino15, Fulvio Ricceri16,17, Salvatore Panico18,
H B(as) Bueno-de-Mesquita19,20,21, Petra H Peeters22,23, Elisabete Weiderpass24,25,26,27, Cristina Lasheras28,
Catalina Bonet Bonet29, Elena Molina-Portillo30,31, Miren Dorronsoro32, José Marı́a Huerta31,33, Aurelio
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Background: Copper and zinc are essential micronutrients and cofactors of many enzymatic reactions that may be involved in
liver-cancer development. We aimed to assess pre-diagnostic circulating levels of copper, zinc and their ratio (Cu/Zn) in relation to
hepatocellular carcinoma (HCC), intrahepatic bile duct (IHBD) and gall bladder and biliary tract (GBTC) cancers.

Methods: A nested case–control study was conducted within the European Prospective Investigation into Cancer and Nutrition
cohort. Serum zinc and copper levels were measured in baseline blood samples by total reflection X-ray fluorescence in cancer
cases (HCC n¼ 106, IHDB n¼ 34, GBTC n¼ 96) and their matched controls (1:1). The Cu/Zn ratio, an indicator of the balance
between the micronutrients, was computed. Multivariable adjusted odds ratios and 95% confidence intervals (OR; 95% CI) were
used to estimate cancer risk.

Results: For HCC, the highest vs lowest tertile showed a strong inverse association for zinc (OR¼ 0.36; 95% CI: 0.13–0.98,
Ptrend¼ 0.0123), but no association for copper (OR¼ 1.06; 95% CI: 0.45–2.46, Ptrend¼ 0.8878) in multivariable models. The
calculated Cu/Zn ratio showed a positive association for HCC (OR¼ 4.63; 95% CI: 1.41–15.27, Ptrend¼ 0.0135). For IHBC and GBTC,
no significant associations were observed.

Conclusions: Zinc may have a role in preventing liver-cancer development, but this finding requires further investigation in other
settings.

Hepatocellular carcinoma (HCC) and intrahepatic bile duct
(IHBC) cancers are two subtypes of liver cancer, where HCC is
the most common (Page et al, 2014). The prognosis for liver cancer
is poor with overall mortality to incidence rate reaching 95%,
making it the second deadliest cancer worldwide (Globocan, 2012).
Main known risk factors for liver cancers include hepatitis
infection, aflatoxin exposure, heavy alcohol intake, smoking, body

fatness and non-alcoholic fatty liver disease (NAFLD; Gomaa et al,
2008; Augustine and Fong, 2014). In addition to the established
factors, chronic inflammatory and oxidative pathways may be
involved in liver-cancer development as a consequence of free
radical damage to hepatocytes (Bishayee, 2014).

Zinc and copper are essential micronutrients whose levels are
controlled by their rate of absorption in the intestine and excretion

*Correspondence: Dr M Jenab; E-mail: jenabm@iarc.fr
43These authors contributed equally to this work.

Received 25 August 2016; revised 6 December 2016; accepted 4 January 2017; published online 2 February 2017

r 2017 Cancer Research UK. All rights reserved 0007 – 0920/17

FULL PAPER

Keywords: copper; zinc; hepatocellular carcinoma; prospective cohort; nested case–control study; cancer risk factors

British Journal of Cancer (2017) 116, 688–696 | doi: 10.1038/bjc.2017.1

688 www.bjcancer.com | DOI:10.1038/bjc.2017.1

mailto:jenabm@iarc.fr
http://www.bjcancer.com


with bile (Hotz et al, 2003; Iakovidis et al, 2011; Osredkar, 2011).
The richest food sources of zinc and copper include meat, shellfish,
offal, seeds and nuts, whole grains, beans and chocolate (Ma and
Betts, 2000). Both zinc and copper are cofactors for many
enzymatic reactions, including the copper–zinc-dependent super-
oxide dismutase (Cu/Zn-SOD) with antioxidant functions that
requires adequate zinc and copper to support cellular defence
systems against reactive oxygen species (ROS; Osredkar, 2011). It is
suspected that the disruption of copper–zinc homoeostasis and
overproduction of ROS may lead to DNA damage, protein
modification and possibly to cancer development (Osredkar,
2011). Although copper deficiency may diminish Cu/Zn-SOD
activity and impair antioxidant defences (Aigner et al, 2015), at
high levels copper may exhibit toxic effects, particularly in the liver
where it is stored (Iakovidis et al, 2011). Excess circulating copper
in relation to zinc has been shown to increase lipid peroxidation
and deplete glutathione (GSH) reserves in rat liver (Ozcelik et al,
2003).

A disruption of zinc and/or copper homoeostasis has been
observed in different stages of liver diseases (Sawa, 1990; Hyun
et al, 1992; Lin et al, 2006; Guo et al, 2013) and was linked to
altered production of carrier proteins for these micronutrients in
response to inflammatory signals or because of impaired liver
synthesis (Deshmukh et al, 1985; Brown et al, 2004). In fact,
information from case–control studies indicates higher circulating
copper and lower zinc levels in patients with hepatitis C (Ko et al,
2005) and liver cirrhosis (Rahelic et al, 2006; Nangliya et al, 2015).
Additional evidence suggests a link between hepatitis C infection
and higher antioxidant enzyme Cu/Zn-SOD activity which has also
been observed to be high in liver biopsies of NAFLD patients (Ko
et al, 2005; Perlemuter et al, 2005). Both of these disorders are
related to oxidative stress and inflammatory pathways (Satapati
et al, 2015; Piciocchi et al, 2016) and are risk factors for liver
cancers (Augustine and Fong, 2014). Specific to liver cancers, two
case–control studies have reported decreased levels of zinc and
increased levels of copper and Cu/Zn ratio in patients with gall
bladder carcinoma (Gupta et al, 2005) and HCC (Poo et al, 2003).
The only existing evidence in a prospective setting, the Shanghai
Women’s Health Study and the Shanghai Men’s Health Study,
found no significant liver-cancer risk associations (Ma et al, 2017).
But the study was based on dietary zinc and copper intake
estimates which are likely to have considerable measurement
errors. A prospective study based on biomarkers of copper and
zinc status is lacking in the current literature.

In this case–control study nested within a large prospective
multicentre cohort, we measured baseline circulating levels of these
two microelements and related them to the later incidence of
cancers located within the liver (HCC, IHBC) and the anatomically
related cancers of the gall bladder and biliary tract (GBTC).
Additional understanding on possible underlying mechanisms of
liver-cancer development may provide greater insight into
prevention strategies and modifiable determinants.

MATERIALS AND METHODS

Study design and participants. The European Prospective
Investigation into Cancer and Nutrition (EPIC) study is a
multicentre prospective cohort study from 23 centres in 10
European countries (Denmark, France, Germany, Greece, Italy,
The Netherlands, Norway, Spain, Sweden, and the United Kingdom)
(Riboli and Kaaks, 1997). Between 1992 and 2000 over 520 000
men and women were recruited for whom socio-demographic,
dietary (using validated country-specific food frequency ques-
tionnaires), lifestyle, anthropometric data and biological samples
(from approximately 80% participants) were collected at baseline.

Samples from all countries are stored in � 196 1C liquid nitrogen
at the International Agency for Research on Cancer (IARC, Lyon,
France), except Denmark (at � 150 1C under nitrogen vapour) and
Sweden (� 80 1C freezers). Written informed consent was
collected from all participants. Approval for the EPIC study was
obtained from the IARC Ethical Review Committee and the
relevant Ethical Review Boards of the participating institutions.

Cancer incidence and case ascertainment. For this specific
analysis, determination of cancer incidence is complete up to
December 2006, conducted by record linkage with regional cancer
registries. Exceptions are France, Germany and Greece where a
combination of methods was used (health insurance records,
contacts with cancer and pathology registries, active follow-up) and
is complete up to June 2010.

Cases were identified according to the 10th revision of the
International Statistical Classification of Diseases, Injury and
Causes of Death (ICD10) and the 2nd edition of the International
Classification of Diseases for Oncology (ICD-O-2). HCC was
defined as C22.0. GBTC were defined as tumours in the gall
bladder (C23.9), extrahepatic bile ducts (C24.0), ampulla of Vater
(C24.1) and biliary tract (C24.8 and C24.9). IHBD were defined as
C22.1. For each identified case, the histology and the methods used
for diagnosis were reviewed and metastatic cases or other types of
primary liver cancer were excluded. In detail, from all recruited
cohort participants, 23 818 subjects with prevalent cancer other
than non-melanoma skin cancer, 4380 with incomplete follow-up
data or missing information on the date of diagnosis, 6192 with
missing dietary information, 60 with missing lifestyle information,
and 9596 who were at the top or bottom 1% of the distribution of
the ratio of reported energy intake to energy requirement, and 78
with metastasis in the liver or ineligible histology code were
excluded from the above classifications, which were conducted on
477 206 eligible participants.

Nested case–control study design. The present analyses are based
on a nested case–control subset of the EPIC cohort (for full
description see (Trichopoulos et al, 2011)), and include 106 HCC
subjects with available biological samples from seven out of ten
European countries participating in EPIC (excluding France,
Sweden and Norway). Additional analyses were conducted for 34
IHBC and 96 GBTC cases. Each case was matched to a cohort
participant who was free of cancer and alive at the time of
diagnosis of the case. Control subjects were matched (1:1) using
incidence density sampling from all cohort members by: age at
blood collection (±1 year), sex, study centre, time of the day
at blood collection (±3 h), fasting status at blood collection
(o3, 3–6, and 46 h); among women, additionally by menopausal
status (pre-, peri-, and postmenopausal), and hormone replace-
ment therapy use at time of blood collection (yes/no).

Laboratory assays. Duplicate samples of 20 ml of serum were
analysed at Charité University Medical School (Berlin, Germany)
in a bench-top total reflection X-ray fluorescence (TXRF)
spectrometer (Picofox S2, Bruker Nano GmbH, Berlin, Germany),
as described earlier (Hughes et al, 2016). Fluorescence of copper
and zinc were determined from the emission spectrograms, and the
concentrations were determined in relation to a gallium standard
added as internal calibrator. The Seronorm Trace Elements Serum
L-2 (LOT 0903107, SERO AS, Billingstad, Norway) was used as
standard to verify recovery of copper and zinc within the reference
concentrations. Samples for which the coefficient of variation (CV)
was higher than 10% (n¼ 24 and 39 for copper and zinc,
respectively) were re-analysed. Two serum samples of known
concentration per each biomarker were used as controls in each
plate. Inter-plate CVs were computed and evaluated using
GraphPad Prism 6.01 (La Jolla, CA, USA). The coefficients were
9% for copper and 6.9% for zinc.
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The present analysis made secondary use of existing biomarker
measurements of hepatitis infection status (measured by HBsAg
and anti-HCV assays), inflammatory marker high sensitivity CRP
(hsCRP), alpha-fetoprotein (AFP), liver function biomarkers
(gamma-glutamyltransferase, GGT; alanine aminotransferase,
ALT; aspartate aminotransferase, AST; alkaline phosphatase,
ALP; total bilirubin and albumin) available for a subset of
participants. Circulating levels of these biomarkers at recruitment
were previously determined using standard protocols at the Centre
de Biologie République laboratory, Lyon, France, as described
elsewhere (Stepien et al, 2016b). Measurements of amino acids for
the calculation of the Fischer’s ratio (ratio of branched chain
(isoleucine, leucine, valine) to aromatic (phenylalanineþ tyrosine)
amino acids; a clinical indicator of severity of liver dysfunction
(Ishikawa, 2012) was formerly performed using a targeted
metabolomics approach (Biocrates Life Sciences, Innsbruck,
Austria), as previously detailed (Stepien et al, 2016a).

Statistical analyses. Comparisons of the baseline subject char-
acteristics for continuous variables were conducted with the t-test
for continuous and Fisher’s exact test for categorical variables other
than the matching factors. The Cu/Zn ratio was computed by
dividing the concentration of copper by that of zinc. Crude and
sex-, country- and fasting status-adjusted general linear models
(GLM) were used to compare biomarker levels among controls by
each potential confounder category. Threshold for the Fischer’s
ratio median category was based on median values for control
subjects for each cancer subsite.

Conditional logistic regression models were used to calculate
odds ratios (OR) and 95% confidence intervals (95% CI) for
baseline serum copper (per 25 mg dl� 1), zinc (per 20 mg dl� 1) and
Cu/Zn levels (per 0.33 unit), as an approximation of a standard
deviation (1 s.d.) increase, in relation to risk of HCC, IHBC and
GBTC separately. Categorical analyses for HCC and GBTC were
conducted by tertiles of copper, zinc and Cu/Zn ratio. Thirds were
defined using sex-specific tertile cut-points in the distribution of
concentrations in control participants for each cancer subsite. Sex-
specific categories were used because of an apparent heterogeneity
of circulating levels between men and women and limited power
for sub-group analyses based on low sample size, particularly of
women. Crude models were conditioned on the matching criteria
(model 1). Multivariable models were additionally adjusted for the
following a priori selected confounders: body mass index (BMI),
physical activity, alcohol intake at recruitment, lifetime alcohol
intake pattern, smoking status, highest level of attained education
(model 2; see Table 1 for additional information). Other potential
confounders were considered but not kept in the model because
they did not modify risk estimates by more than 10%, including
daily intakes of: meat and meet products, fruits, nuts and seeds,
legumes, cereal products, fish and shellfish, coffee, and self-
reported diabetes status at baseline. For HCC, a third model was
also applied with additional adjustment for hepatitis B/C infection
status (model 3). Additional analyses were performed with
model 2, adjusting additionally also for: the liver function score,
the Fischer’s ratio category (see footnotes f and g in Table 1,
respectively, both of which are indicative of possible liver
impairment/damage), diabetes status, inflammatory marker
hsCRP and circulating albumin levels, which is the carrier
protein for zinc in the circulation and whose production may be
altered in the event of liver impairment. Cut-offs for categories of
hsCRP and albumin were 3 mg l� 1 and 34 g l� 1, respectively, as
previously employed (Stepien et al, 2016b). To maintain all
subjects in the analyses, a category of missing data was created for
all the additional variables. Sensitivity analyses excluding the
missing category were performed. Restricted cubic spline curves
were constructed to visualise the dose–response association
between biomarker levels and IHBC and GBTC risk. Minimum

value for all participants was chosen as a reference and three
knots were employed. The OR (95% CI) are presented on log10
scale in relation to continues values of the biomarkers (mg dl� 1

or units).
As an attempt to control for potential reverse causation, subjects

with a short follow-up of o2 years after blood collection were
excluded. As hepatitis infection, an established risk factor for liver
cancers may alter liver function and hence circulating copper and
zinc levels, additional sensitivity analyses were performed by
excluding hepatitis positive subjects. Sub-group analyses based on
hepatitis negative subjects were conducted using continuous
unconditional logistic regression models adjusted for sex, country
and age at recruitment. Additional sensitivity analyses were
performed excluding samples from Denmark and Sweden, where
bio-sample storage conditions differed from those at the IARC
biobank.

Analyses were conducted using SAS version 9.2 (SAS Institute,
Cary, NC, USA). All statistical tests were two-sided and P-values
o0.05 were considered statistically significant.

RESULTS

Baseline characteristics. Anthropometric and lifestyle character-
istics by HCC status are displayed in Table 1. More HCC cases
were current smokers (P¼ 0.0054) and former alcohol drinkers
(P¼ 0.0025), had abnormal liver function tests (P¼ 0.005),
belonged to lower median for the Fischer’s ratio (p0.0001),
indicating possible impairment of their liver functions, and had
higher Cu/Zn ratio (P¼ 0.0001). Five HCC cases had zinc levels in
the range of deficiency (below 70 mg dl� 1), none were copper
deficient (o63 mg dl� 1) and 10 cases had low albumin levels
(o34 g l� 1). Results for GBTC and IHBC are presented in
Supplementary Table 1; there were no significant differences
between cases and controls. For the levels of copper, zinc
and their ratio by matching factors and potential confounder
categories see Supplementary Table 2. In brief, in the GLM sex,
country and fasting status- adjusted models zinc levels
were significantly different among education level, physical
activity, and hepatitis and diabetes status categories. Both
copper and its ratio to zinc varied between smoking, physical
activity, hsCRP categories, but only the Cu/Zn ratio was
different among categories of liver function indices (score and
the Fischer’s ratio).

Associations with HCC risk. Associations between zinc, copper
and Cu/Zn ratio with HCC risk are shown in Table 2. Higher
serum zinc levels were inversely associated with HCC risk in crude
(model 1, OR¼ 0.39; 95% CI: 0.19–0.81 for 3rd vs 1st tertile,
Ptrend¼ 0.0072) and multivariable adjusted models (model 2,
OR¼ 0.36; 95% CI: 0.13–0.98 for 3rd vs 1st tertile, Ptrend¼ 0.0123).
Each 20 mg dl� 1 increase in circulating zinc was associated with
45% (OR¼ 0.55; 95% CI: 0.39–0.78) and 47% (OR¼ 0.53; 95% CI:
0.33–0.84) lower HCC risk in models 1 and 2, respectively.
For copper, no significant associations were observed with
HCC risk in any of the analytic models. For the Cu/Zn, the third
tertile was significantly associated with increased HCC risk
compared with the reference category (model 1: OR¼ 4.75; 95%
CI: 1.86, 12.12, Ptrend¼ 0.0029; model 2: OR¼ 4.63; 95% CI: 1.41,
15.27, Ptrend¼ 0.0135). Each 1 s.d. increase of Cu/Zn ratio was
associated with higher HCC risk (model 1: OR¼ 2.29; 95% CI:
1.52, 3.46; model 2: OR¼ 2.53; 95% CI: 1.44, 4.46). Further
adjustment for hepatitis status (model 3) attenuated the strength
of effects and associations lost statistical significance in the top
category (Table 2). Additional adjustment of the model 2 for the
liver function score, the Fischer’s ratio, hsCRP, diabetes status
and albumin (for zinc) categories resulted in similar findings
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as obtained from the hepatitis adjusted model 3 (Supplementary
Table 3). Exclusion of missing categories for the above variables
did not modify the findings.

Additional analyses on the associations between zinc and copper
and IHBC and GBTC risks are presented in Supplementary
Figure 1. For these cancer sites, no statistically significant
associations were observed for any of the biomarkers measured.
Exclusion of the two countries that did not store their samples in
IARC (n¼ 15 and 12 case–control sets for HCC and GBTC,
respectively) did not change the risk estimates.

Sensitivity analyses. In sensitivity analyses, exclusion of cases and
matched controls (n¼ 19 case-sets) with a follow-up period of o2
years did not significantly modify the findings in continuous

analyses (model 2 for zinc: OR¼ 0.60; 95% CI: 0.36, 1.02 and
Cu/Zn ratio: OR¼ 7.80; 95% CI: 1.07, 56.84, Supplementary
Table 4A). For copper, null associations were observed (OR¼ 1.00;
95% CI: 0.66, 1.51). Similar risk estimates were obtained after
exclusion of 68 subjects with o4 years of follow-up, although these
analyses are based on low number of subjects (n¼ 72 case-sets)
(data not shown).

Restricting these analyses to hepatitis negative participants
(44 cases, 66 controls, not matched, Supplementary Table 4B), we
observed a statistically significantly higher risk of HCC per 1 s.d.
increase for Cu/Zn ratio (OR¼ 2.23; 95% CI: 1.17, 4.29) and no
apparent change in the magnitude of the effect estimates for zinc
(OR per 20 mg dl� 1¼ 0.55; 95% CI: 0.29, 1.02) and copper (OR per
25 mg dl� 1¼ 1.15; 95% CI: 0.73, 1.83) in fully adjusted model.

Table 1. Baseline demographic and lifestyle characteristics of hepatocellular carcinoma (HCC) cases and their matched controls in
the case–control study nested within European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

Cases (N¼106)
Matched controls

(N¼106) P*
Men, N (%)a 73 (68.9) —

Age at blood collection (years),a mean±s.d. 60.3±7.6 —

Follow-up from blood collection (years), median (5, 95%) 6.5 (0.7, 12.1) —

Body, mass index (BMI; kg m�2), mean±s.d. 27.6±4.2 28.3±4.40 0.5801

Physical activity (mets), mean±s.d. 87.4±55.3 86.2±49.1 0.2197

Education (n, %)c

None/primary 54 (50.9) 55 (51.9) 0.3851
Technical/professional 31 (29.3) 21 (19.8)
Secondary 5 (14.2) 8 (7.6)
University or higher 15 (14.2) 19 (17.9)

Smoking status (n, %)d

Never smokers 32 (30.2) 49 (46.2) 0.0054
Former smokers 33 (31.1) 36 (34.0)
Current smokers 40 (37.7) 20 (18.9)

Alcohol intake pattern (N, %)
Never drinkers 8 (7.6) 9 (8.5) 0.0025
Former drinkers 19 (17.9) 3 (2.8)
Drinkers only at recruitment 4 (3.8) 7 (6.6)
Always drinkers 75 (70.8) 87 (82.1)

Hepatitis infection (n, %)e

Yes 26 (24.5) 4 (3.8) 7.1� 10� 6

No 44 (41.5) 66 (62.3)

Diabetes status (N, %)f

Yes 15 (14.2) 8 (7.6) 0.1818
No 82 (77.4) 89 (84.0)

Liver function score, N (%)b,g

0 22 (20.8) 56 (52.8) 0.005
1 47 (44.3) 14 (13.2)

Fischer’s ratio, N (%)h

p2.98 78 (73.6) 41 (38.7) o0.0001
42.98 27 (25.5) 58 (54.7)

Baseline serum biomarker levels, mean±s.d.
Copper (Cu; md dl�1) 140.6±27.5 136.6±26.1 0.5857
Zinc (Zn; md dl� 1) 104.6±21.2 113.6±18.5 0.1695
Cu/Zn Ratio 1.39±0.38 1.22±0.26 0.0001
Albuminb (g l� 1) 41.4±2.9 38.7±4.1 0.0051
C-reactive proteinb (hsCRP; mg l�1) 7.32±12.32 3.01±3.39 o0.0001

aMatching factor.
bNumber of cases plus controls with missing variable value: n¼ 74; cut-off for categorical analyses: albumin¼ 34 g l� 1, hsCRP¼ 3 mg l� 1.
cNumber of cases plus controls with missing/not specified information: n¼ 4.
dNumber of cases plus controls with missing information: n¼ 2.
eNumber of cases plus controls with missing information: n¼ 72.
fSelf-reported at baseline, number of cases plus controls with missing information value: n¼ 18.
gOn the basis of abnormal liver function tests, 0 if none were above the clinical threshold (ALT455 U l� 1, AST434 U l� 1, GGT men 464 U l� 1, GGT women436 U l� 1, ALP4150 U l� 1,
albumino34 g l� 1, total bilirubin420.5mmol l� 1; based on the values provided by the laboratory).
hNumber of cases plus controls with missing variable value: n¼ 8.
Missing values were not excluded from percentage calculations, thus the sum of percents across sub-groups may not add up to 100%. *P-value estimated based on independent sample t-test
or Fisher’s exact test. Categorical variables are presented as numbers (percentages). Continuous variables are presented as mean±standard deviations (s.d.).
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In crude models adjusted only for the matching factors, zinc was
significantly negatively (OR¼ 0.56; 95% CI: 0.35, 0.90) and Cu/Zn
ratio positively (OR¼ 2.45; 95% CI: 1.49, 4.05) associated with
HCC, whereas for copper the association was not significant
(OR¼ 1.35; 95% CI: 0.92, 1.98).

DISCUSSION

In this prospective study we observed an inverse association
between circulating levels of zinc with risk of development of HCC,
but not IHBC nor GBTC. The association with HCC may not be
fully independent of hepatitis status or extent of liver dysfunction.
Although higher copper levels were not associated with risk of
hepatobiliary cancers, its increased levels in relation to zinc
demonstrated a positive HCC risk association. To our knowledge
this is the first prospective investigation on these associations to
date.

The possible roles of zinc and copper in development of cancers
at several anatomical sites have been previously explored in
experimental settings (Theophanides and Anastassopoulou, 2002;
Franklin and Costello, 2009). A meta-analysis of six case–control
studies predominantly conducted among Asian populations which
showed that an imbalance between circulating levels of copper and
zinc may be associated with bladder cancer development (Mao and
Huang, 2013) was in line with our findings. Differences in the
Cu/Zn ratio have also been noted comparing blood and tissue
samples in malignant vs benign ovarian (Lightman et al, 1986) and
lung (Diez et al, 1989) tumours. Other data from a small French
cohort study (Leone et al, 2006) and the US NHANES study
(Wu et al, 2004) also suggest an association between high
circulating levels of copper and lower zinc with cancer mortality.
A prospective cohort from Iran indicated an inverse association
between dietary zinc and non-linear tend for copper with
oesophageal cancer risk (Hashemian et al, 2015).

Zinc is thought to have an important role in development and
progression of chronic liver diseases and HCC (Costello and
Franklin, 2014). Lower circulating zinc levels have been observed
in these disorders (Costello and Franklin, 2014), possibly due to
impaired hepatic function and lower production of albumin, the

carrier protein for zinc (Brown et al, 2004). Our observed zinc-
HCC association was attenuated by statistical adjustment for
hepatitis status, liver function markers, and albumin levels,
particularly at the top tertile. This suggests that liver dysfunction
and hepatitis infection may have a confounding or mediating effect
on zinc-HCC risk association. For this reason, the potential of
reverse causality in our observations cannot be completely ruled
out, despite the prospective nature of our study and our lag
analyses suggesting consistent associations. However, it is well
established that zinc has numerous important physiologic and
metabolic roles. Its functions in antioxidant pathways are central to
its purported cancer protective effects (Osredkar, 2011). In
addition, clinical studies of zinc supplementation indicate that it
also acts to improve gut barrier function, decrease pro-inflamma-
tory cytokine production and improve liver function in patients
with liver diseases (Mohammad et al, 2012). This implies that
maintenance of adequate zinc levels may be an important factor to
support hepatocytes from cancer development in patients with
underlying liver disease, but this needs to be confirmed in further
studies.

In our study, copper was not directly associated with HCC
development, but its level in relation to zinc (i.e. a higher Cu/Zn
ratio) was strongly associated with increased HCC risk. This
observation is likely to be derived more from the influence of zinc
in calculation of the ratio. Nevertheless, copper itself has important
metabolic roles whose impairment is relevant to cancer develop-
ment. For example, excess copper may be pro-oxidative and pro-
inflammatory (Bo et al, 2008), particularly in the liver where it is
stored (Perlemuter et al, 2005). Data from animal studies show that
copper excess, imbalanced by lower zinc level, increases lipid
peroxidation and depletes GSH reserves (Ozcelik et al, 2003)
suggesting a pro-oxidative effect. Interestingly, in the present study
circulating copper was significantly increased in those with higher
hsCRP levels, a marker of chronic inflammation, suggesting that
higher serum copper is linked to inflammatory processes. Such
processes may in turn activate production of ceruloplasmin, the
copper carrier protein (Deshmukh et al, 1985), thus increasing its
availability to bind copper within hepatocytes to release it to
circulation. Liver disease progression and concomitant hepatocyte
destruction can also cause the release of copper from the liver into
the circulation by the damaged cells (Osredkar, 2011). However, as

Table 2. The association for hepatocellular carcinoma (HCC) risk with zinc, copper and their ratio for tertiles and in continuous
models

Tertile 1 Tertile 2 Tertile 3
Reference OR (95% CI) OR (95% CI) Ptrend OR (95% CI)

Zinc (Zn, lg dl�1) Per 20 lg dl�1

No. of cases/controls 59/36 21/35 26/35 106/106
Model 1 1.00 0.33 (0.16, 0.70) 0.39 (0.19, 0.81) 0.0072 0.55 (0.39, 0.78)
Model 2 1.00 0.18 (0.06, 0.51) 0.36 (0.13, 0.98) 0.0123 0.53 (0.33, 0.84)
Model 3 1.00 0.20 (0.06, 0.65) 0.50 (0.16, 1.61) 0.1029 0.62 (0.38, 1.03)

Copper (Cu, lg dl�1) Per 25 lg dl�1

No. of cases/controls 32/36 31/34 43/36 106/106
Model 1 1.00 1.06 (0.55, 2.02) 1.38 (0.70, 2.71) 0.3184 1.22 (0.90, 1.64)
Model 2 1.00 1.00 (0.42, 2.36) 1.06 (0.45, 2.46) 0.8878 1.23 (0.84, 1.79)
Model 3 1.00 0.94 (0.36, 2.46) 1.02 (0.39, 2.64) 0.9449 1.26 (0.83, 1.92)

Cu/Zn ratio Per 0.33 units
No. of cases/controls 16/35 40.36 50/35 106/106
Model 1 1.00 3.22 (1.36, 7.65) 4.75 (1.86, 12.12) 0.0029 2.29 (1.52, 3.46)
Model 2 1.00 2.35 (0.86, 6.43) 4.63 (1.41, 15.27) 0.0135 2.53 (1.44, 4.46)
Model 3 1.00 1.90 (0.63, 5.80) 3.41 (0.92, 12.65) 0.0698 2.20 (1.21, 3.98)

OR and 95% CI estimated by conditional logistic regression conditioned on the matching factors (model 1) and additional adjustments in models 2 and 3. Continues estimates are based on
values close to 1 standard deviation of relevant exposure. Cut-off values for categories: zinc—male (p105.6, 4105.6–119.2, 4119.2), female (p105.9, 4105.9–121, 4121). Copper—male
(p116.3, 4116.3–135.6, 4135.6), female (p144.2, 4144.2–162.3, 4162.3). Cu/Zn ratio- male (p1.02, 41.02–1.22, 41.22), female (p1.20, 41.20–1.54, 41.54). Model 1: matching factors: age at
blood collection (±1 year), sex, study centre, time of the day at blood collection (±3 h), fasting status at blood collection (o3, 3–6, and 46 h); among women, additionally by menopausal status
(pre-, peri-, and postmenopausal), and hormone replacement therapy use at time of blood collection (yes/no). Model 2: model 1þ smoking status (categorical), baseline (continuous, g d� 1)
and lifetime alcohol intake pattern (categorical), education (categorical), body mass index (BMI, continuous kg m� 2), and physical activity (PA, mets). Model 3: model 2þplus hepatitis status.
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copper was not associated with HCC in our prospective study, it
seems unlikely that this mechanism is an early event in liver
tumorigenesis.

It is well recognised that copper to zinc ratio has a significant
role in oxidative stress (Osredkar, 2011). The ratio has been
previously studied as a measure of susceptibility or progression
for a range of neurological, developmental and metabolic
disorders, including diabetes and cardiovascular disease
(Osredkar, 2011). The Cu/Zn ratio has been observed to be
elevated in patients with hepatitis, liver cirrhosis or HCC, and
appears to be correlated with the severity of liver disease
(Nakayama et al, 2002; Lin et al, 2006). The role of Cu/Zn-
SOD, whose functions are dependent on the adequate presence of
both copper and zinc, is to catalyse ROS degradation originating
from metabolic pathways to less reactive compounds, which are
then removed by other antioxidant enzymes such as GSH
peroxidase, thus reducing oxidative stress (Johnson and Giulivi,
2005). Maintenance of adequate copper to zinc status is
important for supporting anti-oxidative functions of Cu/Zn-
SOD and protection from damage.

The gall bladder, bile ducts and biliary tract are anatomically
related to liver and liver metabolism. Excess body copper and zinc,
are excreted with bile (Iakovidis et al, 2011; Osredkar, 2011),
potentially exposing the biliary system to these microelements.
However, copper and zinc status is highly regulated and excess
levels are not common (Osredkar, 2011), suggesting low exposure
of GBTC in the population studied. Although there is some
existing evidence that gall bladder cancer patients have decreased
serum zinc, increased copper and increased Cu/Zn ratio compared
with healthy controls (Shukla et al, 2003; Gupta et al, 2005) our
observations did not show any associations with development of
GBTC or IHBD tumours. This may be indicative of no aetiological
role for these micronutrients, but it may also be a consequence of
our low sample size for these rarer tumours. In our previous study
a pro-inflammatory cytokine, interleukin 6 that was linked to
hypozincemia in a mouse model (Liuzzi et al, 2005), was also
positively associated with HCC, but not other hepatobiliary cancers
risk (Aleksandrova et al, 2014).

Despite being the second most common cause of death
worldwide, indicating the need of more research to better
understand its aetiology, liver cancer is relatively uncommon in
more developed world regions with age-standardised rates of o10
per 100 000, compared with 420 in East and South-East Asia
(Globocan, 2012). For this reason the main limitation of this study
conducted on European populations was a relatively small sample
size, especially with regard to the less prevalent type of liver cancer,
IHBC. We also have no information on evolution of the
biomarkers or lifestyle/dietary changes during the follow-up.
Oxidative stress has been linked to initiation and progression of
cancers (Hjelmeland and Zhang, 2016). Whether oxidative stress-
related malignant changes are a consequence or a cause of
underlying liver diseases, and specifically of HCC, still needs to be
clearly established. Another limitation of the study is that we have
measurements of total zinc and copper and cannot differentiate
between bound and free forms; both free circulating zinc and
copper represent the biologically active forms (Walshe, 2003;
Twomey et al, 2005; Maret, 2013). Also, serum zinc and copper are
only short-term biomarkers of status. However, given lack of gold
standard to measure zinc and copper status, their serum levels are
considered useful biomarkers (de Benoist et al, 2007; Harvey et al,
2009). Importantly, potential residual confounding with smoking
and alcohol consumption cannot be discounted, nor can the
possibility of reverse causality given the long term nature of HCC
development and role of the liver in metabolism of these
micronutrients. The strengths of our study include its prospective
design, being conducted in separate labs with personnel blinded to
the clinical identity of the samples and possibility to study early

differences in biomarker status years before cancer diagnosis. In
addition, availability of additional measures and information on
liver-cancer associated disorders (diabetes, hepatitis B and C
infection), indices of liver function (liver function tests, Fischer’s
ratio) and inflammation status (hsCRP), and detailed information
on relevant lifestyle factors, including body size, alcohol intake and
smoking, allowed us to explore multiple factors in relation to
biomarker levels, although this information was not available for
all case-sets.

In conclusion, this study indicates an inverse association
between pre-diagnostic zinc but not copper levels and HCC risk.
Copper imbalance in relation to zinc concentration was in turn
positively associated with HCC risk. If these results are confirmed
in other prospective cohort studies and different population
groups, they would suggest that maintenance of adequate
circulating levels of zinc and copper may have an important role
in preventing development of liver cancer.

Data availability. For information on how to submit an applica-
tion for gaining access to EPIC data and/or bio-specimens,
please follow the instructions at http://epic.iarc.fr/access/index.php.
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