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ABSTRACT

As apex predators, polar bears (Ursus maritimus) are among the most heavily polluted 

organisms in the Arctic. In addition to this anthropogenic stressor, climate warming has been 

shown to negatively affect their body condition, reproductive output and survival. Among 

potential underlying physiological mechanisms, thyroid hormones (THs), which control 

thermoregulation, metabolism and reproduction, can be affected by a variety of both natural 

and anthropogenic factors. While THs have been extensively used as proxies for pollution 

exposure in mammals, including polar bears, there is a lack of knowledge of their natural 

variations. In this context, we examined seasonal variations in body condition and circulating 

TH concentrations in free-ranging female polar bears. Females with variable reproductive 

status (i.e., solitary, with cubs of the year or with yearlings) were sampled from locations with 

contrasted sea ice conditions. Furthermore, we studied THs in relation to levels of organo-

halogenated contaminants. As predicted, solitary females were in better condition than 

females caring for offspring, especially in spring. In addition, TH levels were lower in autumn 

compared to spring, although this seasonal effect was mainly observed in solitary females. 

Finally, the negative relationships between organochlorine and perfluoroalkyl substances and 

some THs suggest a possible alteration of homeostasis of THs. Since the latter relationships 

were only observed during spring, we emphasize the importance of considering the ecological 

factors when using THs as proxies for pollution exposure. Yet, the combined effects of 

natural and anthropogenic stressors on THs might impair the ability of polar bears to adapt to 

ongoing climate changes.

Key-words: Breeding status; Climate change; Fasting; Organochlorines; Perfluoroalkyl 

substances.

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



3

FUNDING SOURCES

This study was supported by the Research Council of Norway (grant 216568/E10 to H.R) and 

by the Norwegian Polar Institute. Fieldwork in Svalbard was carried out under permit from 

the Governor of Svalbard.

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177



4

1. INTRODUCTION

As Arctic top predators, polar bears (Ursus maritimus) show among the highest 

concentrations of organo-halogenated contaminants (OHCs) (Letcher et al., 2010). Although 

levels of polychlorinated biphenyls (PCBs) and organic chlorinated pesticides (OCPs) 

generally have decreased in the Arctic biota over the past decades, brominated flame 

retardants (BFRs) (e.g. polybrominated diphenyl ethers, PBDEs) show variable trends in 

Arctic wildlife populations (Dietz et al., 2013a, 2013b; Muir et al., 2013; Andersen et al., 

2015). Among the perfluoroalkyl substances (PFAS), which are quantitatively the major 

contaminant group in polar bear plasma, concentrations of perfluorooctane sulfonate (PFOS) 

have decreased during recent decades whereas trends for perfluoroalkyl carboxylates (PFCAs) 

are more variable (Muir et al., 2013; Riget et al., 2013). Overall, subpopulations of polar 

bears from the European Arctic are among the most contaminated polar bear subpopulations 

within the circumpolar Arctic (Andersen et al., 2001; Verreault et al., 2005; Muir et al., 2006; 

McKinney et al., 2011). In addition to a high OHC exposure, polar bears are also amongst the 

most vulnerable species to climate change (Laidre et al., 2008; Kovacs et al., 2011). Indeed, 

the Arctic sea ice, which provides them a platform to hunt seals (Derocher et al., 2004), mate 

and reach denning areas, has been substantially declining over the past decades (Kinnard et 

al., 2011; Stroeve and Notz, 2015). Climate warming, through earlier spring sea ice break up 

and extended duration of ice-free periods, is therefore expected to present energetic 

challenges to polar bears by either restraining them to land (i.e., limiting their access to seals) 

or forcing energy costly migrations to find ice (Durner et al., 2009). In particular, the Barents 

Sea subpopulation is subject to more pronounced loss of habitat compared to most other 

subpopulations (Durner et al., 2009; Laidre et al., 2015; Stern and Laidre, 2016). This trend is 

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236



5

predicted to continue over the next decades and lead to up to a 50% loss of optimal habitat for 

this subpopulation by the end of the 21st century (Durner et al., 2009).

Several OHCs are known to have endocrine disruptive properties (Gore et al., 2015) 

and thyroid hormones (THs) have been widely used as biomarkers of pollutant exposure in 

marine mammals (Jenssen, 2006; Routti et al., 2008) and polar bears in particular (Braathen et 

al., 2004; Knott et al., 2011; Villanger et al., 2011a; Gabrielsen et al., 2015). THs have 

ubiquitous roles, controlling thermoregulation, metabolism and reproduction (McNabb, 

1995). They are synthesized in the thyroid gland and thyroxine (T4), the predominant form of 

THs, is transformed to tri-iodothyronine (T3), the most bioactive form of THs, by deiodinases 

in peripheral tissues (McNabb, 1995). THs are transported by carrier proteins in the plasma 

and act via TH receptors (Hulbert, 2000). Given the multiple functions of THs, early-life 

exposure to TH disrupting chemicals may lead to neurocognitive deficits (Porterfield 1994; 

Brouwer et al., 1998; Zoeller et al., 2002). These irreversible changes can have long-term 

health effects at the individual level and ultimately at the population level through reduced 

survival and reproductive success (Jenssen 2006).

As outlined by Rosa et al. (2007) and references therein, TH variability within a 

species can be triggered by a variety of both extrinsic (e.g. season, contaminant load) and 

intrinsic factors (such as nutritional status, reproductive state, health condition). 

Paradoxically, very little is known about natural seasonal variations in TH levels of polar 

bears. To our knowledge, only one study has investigated seasonal variation of THs in polar 

bears (Leatherland and Ronald, 1981), a study performed in captivity. THs likely vary 

seasonally in free-ranging polar bears as they accumulate and lose massive fat depots 

following the fluctuations in accessibility of their prey throughout their life cycle (Ramsay 

and Stirling, 1988). For most bears, the peak feeding period occurs in spring and fasting 

begins in summer when sea ice has retreated. Polar bears therefore spontaneously undergo 
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fasting periods that can be sustained for up to 8 months in pregnant females whose fast is 

concomitant with gestation and lactation (Polischuk et al., 2001). Nevertheless, data on the 

condition of polar bears during ice-free periods are still scarce. Studies examining 

relationships between OHCs and TH levels in polar bears have often been restricted to one 

single sampling season. Namely, while free-ranging polar bears were mostly sampled during 

the spring season (Braathen et al., 2004; Knott et al., 2011), samples for a study using 

harvested individuals were collected during the winter season (Gabrielsen et al., 2015). There 

is a clear lack of studies investigating the role of ecological factors on the disruptive potential 

of OHCs on THs. The combined effects of natural and anthropogenic stressors (i.e., climate 

change and endocrine disruptors, respectively) (Jenssen, 2006) on the homeostasis of THs 

remain therefore to be documented.

In this context, the current study aimed at examining the seasonal variations in plasma THs in 

relation to body condition, fasting state (using plasma urea to creatinine ratio, UCR (Derocher 

et al., 1990; Cattet, 2000)) and plasma OHC concentrations (PCBs, hydroxy (OH)-PCBs, 

OCPs, PBDEs and PFAS) in adult female polar bears from the Barents Sea. We restricted our 

sampling effort to catching sexually mature free-ranging females to avoid gender-specific 

differences in physiology and/or behaviour; for example, sex and age differences in TH levels 

were reported in polar bears (Braathen et al., 2004; Knott et al., 2011). We sampled females 

with variable reproductive status (i.e., solitary, with cubs of the year or with yearlings) over 

two seasons (spring and autumn) and two years (2012 and 2013). Polar bears usually mate 

from March to May, but the implantation is delayed until October (Derocher et al., 1992). In 

Svalbard, pregnant females go into dens, give birth at the end of December/early January but 

do not emerge from the den before early April (Lønø, 1970). We have recently shown, using 

the same polar bears, that temporal and spatial retreat of sea ice was related to lower body 

condition and consequently higher OHC concentrations (Tartu et al., 2017). In the present 
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study, we further investigated factors affecting body condition. We hypothesize that solitary 

females are in better condition compared to females with offspring and that the seasonal 

difference is particularly pronounced in females with cubs of the year that undergo the most 

extended fast during winter. We also expected seasonal variations in plasma THs and UCR 

with lower levels in autumn, reflecting a lower metabolism and a fasting state, respectively. 

Finally, based on the knowledge that plasma levels of lipophilic OHCs measured in the same 

females were overall lower in autumn compared to spring (Tartu et al., 2017), we anticipated 

seasonal variations in thyroid disrupting effects of OHCs. Our results are further discussed in 

the context of the relevance of using THs as biomarkers of pollution exposure in fasting 

marine mammals. 

2. MATERIAL AND METHODS

2.1 Field sampling

This study was restricted to female polar bears from the Barents Sea subpopulation that were 

sampled in April and September 2012 and 2013. Females were individually marked with ear 

tags and tattoos so they could be identified upon recaptures. The 112 samples collected (N=33 

in April 2012, N=24 in September 2012, N=29 in April 2013 and N=26 in September 2013) 

represented 78 females with 26 of them being captured more than once (more specifically, 1 

female was caught 4 times, 6 females were caught 3 times, and 19 females were caught 

twice). Weather and sea ice conditions often differ largely among areas in Svalbard, 

restricting choices of sampling areas. Females were thus opportunistically sampled 

throughout the Svalbard archipelago with the search effort largely depending on external 

factors. Females were immobilized by remote injection of a dart containing the drug Zoletil ® 

100 (Virbac, France), fired from a helicopter (Eurocopter AS350 Écureuil). Following 
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immobilization, a vestigial premolar tooth was extracted and subsequently used to estimate 

the age of females (Calvert and Ramsay, 1998; Christensen-Dalsgaard et al., 2010). Blood 

was collected from the femoral vein using heparinised collecting tubes (kept on ice and in the 

dark) and centrifuged within 10 h (3500 rpm, 10 minutes). Plasma was frozen and stored at -

20ºC and subsequently used to assess thyroid hormone, urea and creatinine concentrations as 

well as OHC levels (see below).

Body mass (BM) of females was obtained, to the nearest kg, by suspending them on a 

stretcher from two spring hanging scales (see Table 1). As one female could not be weighed, 

we estimated its body mass using morphometric measurements (i.e., axillary girth and dorsal 

straight-line body length) following Derocher and Wiig (2002). For all females, dorsal 

straight-line body length (SL) measures the straight line above the bear (lying in sternal 

recumbency) from the tip of the nose to the tip of the last tail vertebra. Body condition index 

(BCI) was thereafter calculated using the following formula described for polar bears by 

Cattet et al. (2002): BCI=(lnBM-3.07 x lnSL+10.76) / (0.17+0.009 x lnSL). BCI was 

expressed in arbitrary units with lower values indicating poorer body condition (see Table 1). 

Immobilization and handling procedures followed standard protocols (Stirling et al., 1989; 

Derocher and Wiig, 2002) and were approved by the National Animal Research Authority 

(NARA), Norway.

Mature females (4 to 28 years) were classified in three groups according to their breeding 

status: solitary (i.e., alone or together with a male in spring), with 1 or 2 cubs of the year 

(COY; cubs younger than 1 year old) or with 1 or 2 yearlings (YRL; cubs aged between 1 and 

2 years). Among recaptures, only two females lost their cubs between spring and autumn of 

the same year, one female lost two cubs from one spring to the next and two females lost one 

cub from one autumn to the next. 
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Based on observed displacements recorded by marked individuals of the Barents Sea 

subpopulation (Lone et al., 2013) as well as sea ice characteristics, we categorized three 

sampling zones (Figure 1). For instance, sea ice is less extended and has a lower density along 

the West coast of Svalbard compared to the East coast (Vinje and Kvambekk, 1991; Hop et 

al., 2000). In contrast, the South-East area of Svalbard (i.e. Barentsøya and Edgeøya) 

experiences the largest amplitude of sea ice retreat during summer (Vinje and Kvambekk, 

1991; Hop et al., 2000). Bears caught in the remainder of the archipelago, i.e. Nordaustlandet, 

along the North-East and southern coasts of Spitsbergen (the largest island of the Svalbard 

archipelago), frequently move among all regions (J. Aars, unpublished data), and we therefore 

pooled them into a third group. Consequently, we divided our sampling area into 3 main 

sampling zones: North-West (NW), South-East (SE) and North-East/South-West (NESW) 

(Figure 1).

 

2.2  Plasma thyroid hormones (THs) and urea to creatinine ratio (UCR)

Concentrations of THs in plasma (total tri-iodothyronine, TT3; free tri-iodothyronine, FT3; 

total thyroxine, TT4; free thyroxine, FT4) were simultaneously measured at the Department 

of Biology, Norwegian University of Science and Technology (NTNU, Trondheim, Norway). 

Concentrations were determined by radioimmunoassay (RIA) using commercially available 

125I RIA kits with antibody-coated tubes developed for humans (Coat-A-Count, Diagnostic 

Product Corporation, Los Angeles, CA, USA) and validated on polar bear plasma using 

parallelism tests (Braathen et al., 2004; Bytingsvik, 2012; Gabrielsen et al., 2015). The 

radioactivity in the samples was counted on a gamma counter (Cobra Auto- Gamma; Packard 

Instrument Company, Dowers Grove, IL, USA).

TT3 and FT3 assays were run in duplicate (using 100 µl of plasma per replicate) while TT4 

and FT4 were run in triplicate (using 25 and 50 µl per replicate, respectively). For standard 
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reference material and samples run multiple times, the intra-assay variation was 5.33 % for 

TT3 (N=9), 6.19 % for FT3 (N=6), 4.26% for TT4 (N=9), and 2.40 % for FT4 (N=8) and the 

inter-assay variation was 7.14 % for TT3 (N=21), 10.66 % for FT3 (N=11), 10.06 % for TT4 

(N=30), and 8.08 % for FT4 (N=26). TT4 and TT3 concentrations are expressed in nmol/L, 

and FT4 and FT3 concentrations in pmol/L (see Table 1). The analytical sensitivity was 0.11 

nmol/L for TT3, 0.31 pmol/L for FT3, 3.22 nmol/L for TT4 and 0.13 pmol/L for FT4. Eleven 

samples had FT3 concentrations below the limit of detection (LOD) and were randomly 

assigned the arbitrary value of 0.005 pg/ml (or 0.00768 pmol/L). 

Analysis of plasma urea (mmol/L) and creatinine (µmol/L) concentrations was performed 

using a dry clinical-chemical analyser, Reflotron® (Model IV, Boehringer-Mannheim GmhB, 

Mannheim, Germany) (Tartu et al., 2017; in revision). Plasma was thawed in the dark prior to 

analysis and samples were analysed in duplicates or triplicates when a high variance was 

observed between duplicates. The mean of the duplicates or triplicates was used for the 

statistical analysis. LOD was 3.33 mmol/l for urea and 44.50 µmol/l for creatinine. The urea 

to creatinine ratio (UCR) was thereafter calculated. 

2.3 Contaminant levels

Plasma OHC analyses (ng/g wet weight concentrations) were performed at the Laboratory of 

Environmental Toxicology at The Norwegian University of Life Sciences in Oslo (NMBU), 

Norway, see Tartu et al. (2017) and references therein for details on the analyses of 

chlorinated and brominated compounds. Thirty eight organochlorine compounds were 

measured among which 18 congeners of PCBs (CB-99, -105, -118, -128, -137, -138, -153, -

156, -157, -170, -180, -183, -187, -189, -194, -196, -206 and -209), 6 congeners of OCPs 

(oxychlordane, trans-nonachlor, alpha-, beta-hexachlorocyclohexanes (α-, β-HCH), 

hexachlorobenzene (HCB), p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE)), 4 congeners 
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of PBDEs (BDE-47, -99, -100, -153) and 10 phenolic compounds (4-OH-CB107, 4’-OH-

CB130, 3’-OH-CB138, 4-OH-CB146, 4’-OH-CB159, 4’-OH-CB172, 3’-OH-CB180, 4-OH-

CB187, 6-OH-BDE-47 and pentachlorophenol). In addition, 8 congeners of PFAS were 

analysed among which 2 perfluoroalkyl sulfononates (PFSAs) including perfluorooctane 

sulfonate (PFOS ) and perfluorohexane sulfonate (PFHxS) and 6 perfluoroalkylcarboxylates 

(PFCAs) including perfluorooctanoate (PFOA), perfluorononanoate (PFNA), 

perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnDA), fluorododecanoate (PFDoDA) 

and perfluorotridecanoate (PFTrDA). See Grønnestad et al. (2017) and Tartu et al. (2017; in 

revision) for details on the analyses.

2.4 Statistical analyses

Statistical analyses were conducted using R version 3.2.3 (R Core Team, 2016). Generalized 

linear mixed models (GLMMs; using the R-package nlme version 3.1.128; Pinheiro et al., 

2015) were first used to test for the effects of sampling location (North West; South East or 

the North East South West diagonal), year (2012 or 2013), season (spring or autumn) and 

breeding status (solitary, with COYs or with YRLs) on body mass, BCI and plasma UCR and 

female ID was used as a random factor to account for the repeated measurements (among 

seasons and/or years). We performed an automated model selection (dredge function in 

MuMIn-package version 1.15.6; Barton, 2016) on a global model including 10 biologically 

relevant response variables applied as fixed factors (sampling location + season + year + 

breeding status + sampling location:season + sampling location:year + sampling 

location:status + season:year + season:status + year:status) and female ID as a random factor 

(Table 2). Thereafter, we used GLMMs with physiologically relevant fixed factors such as 

season, status, BCI and UCR (and their 2-way interactions) as predictors for variations in 

plasma thyroid hormone concentrations (TT3, FT3, TT4 and FT4). Model selection was based 
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on 10 biologically relevant models (Table 3). For all GLMMs, we used an information-

theoretic approach (Burnham and Anderson, 2004) based on Akaike’s information criterion 

corrected for small sample size (AICc, R-package AICcmodavg version 2.0.3, Mazerolle, 

2015) to select the best GLMMs. The best model was taken to be the one with the smallest 

AICc, and/or the most parsimonious, i.e., other models with ΔAICc < 2 and lower k. 

We used redundancy analysis (RDA, R-package vegan version 2.4.0; Oksanen et al., 2016) to 

explore the relationships between THs (response variables) and contaminant levels 

(explanatory variables) with season and status as catagorical factors. RDA is an extraction 

method that summarizes linear relationships between components of response variables that 

are "redundant" with a set of explanatory variables (Legendre and Anderson, 1999). Finally, 

GLMMs were used to examine the relationships between the THs and OHCs selected by the 

RDA analysis using female ID as a random factor. All OHC concentrations were log 

transformed for the GLMMs.

Only OHCs that were detected in more than 70% of the females were included in the 

statistical analyses. Compounds whose values were below LOD were assigned half of the 

LOD value. Due to inter-correlations among the organic contaminants, we used the sum (∑) 

of 16 PCBs (∑16PCBs: CB-99, -105, -118, -137, -138, -153, -156, -157, -170, -180, -183, -

187, -189, -194, -206 and -209), ∑4OCPs (oxychlordane, trans-nonachlor, β-HCH, HCB), 

∑8OH-PCBs (4-OH-CB107, 4’-OH-CB130, 3’-OH-CB138, 4-OH-CB146, 4’-OH-CB159, 4’-

OH-CB172, 3’-OH-CB180, 4-OH-CB187), ∑2PBDEs (BDE-47, -153) and ∑8PFAS (PFHxS, 

PFOS, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA) in the analyses. 

Finally, we used diagnostic plots of residuals to check that the model assumptions were met 

(i.e., constant variance between residuals). When an interaction term was significant, we 

disregarded the effects of the main factors on the response variable and we used the least 
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squares means (LSM) method (lsmeans function in Lsmeans package; Lenth, 2015) to 

identify significantly different terms in a biologically relevant frame. 

3. RESULTS

3.1 Influence of physiological and ecological factors on body mass, body condition 

and plasma urea to creatinine ratio

For each response variable, the five most competitive models are presented in Table 2. Body 

mass was influenced by the status of females (F2,31=9.36, p=0.0007) with females with COYs 

being 26 kg (95% CI, [-38; -14]) lighter than solitary females during spring while females 

with YRLs were only 14 kg (95% CI, [-28; 1]) lighter compared to the latter group (see Table 

1). However, because of large inter-individual variations in females’ body mass, season only 

marginally influenced body mass (F1,31=3.66, p=0.06) with females being 9 kg heavier in 

autumn compared to spring (regardless of their breeding status) (95% CI, [-1; 19]). 

Nevertheless, when restricting our analyses to females caught both during spring and autumn 

of the same year (N=32 occurrences including one female caught 4 times), we observed a 

highly significant effect of season (i.e., time) with females being on average 29 kg (95% CI, 

[17;49]) heavier in September compared to April (GLMM: Status: F2,12=2.19, p=0.15; Season: 

F1,12=24.98, p=0.0003; Status × Season: F2,12=0.61, p=0.56). 

BCI, which is a more accurate indicator of condition than body mass, was influenced 

by sampling location (GLMM: F2,28=9.97, p=0.0005) and year (F1,28=5.39, p=0.03) in addition 

to season (F1,28=11.37, p=0.002) and status (F2,28, p=0.002) (Figure 2). Females sampled in 

the North West of Svalbard showed poorer body condition (as expressed by lower BCI 

values) than females sampled in other areas of the archipelago (LSM: NW-SE: p=0.02; NW-

NWSE: p=0.0001; NESW-SE: p=0.21). Moreover, BCI was lower in females with COYs 
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compared to solitary females (95% CI, [-0.81; -0.28]) while it did not differ between the two 

other groups (LSM: COYs-YRLs: p=0.22; solitary-YRLs: p=0.22). Finally, BCI was greater 

in autumn compared to spring (95% CI, [0.19; 0.72]) but lower in 2013 compared to 2012 

(95% CI, [-0.48;-0.03]) regardless of the breeding status (see Table 1). 

Plasma UCR was significantly influenced by season (F1,33=21.54, p<0.0001) with UCR 

values lower in autumn compared to spring (95% CI, [-1.03; -0.40], see Table 1) reflecting a 

fasting state in autumn. 

3.2 Effects of season and breeding status on thyroid hormone levels

Plasma concentrations of THs measured in the current study (see Table 1) were in accordance 

with those reported in previous studies using the same methodology (Skaare et al., 2001; 

Braathen et al., 2004; Knott et al., 2011; Villanger et al., 2011a; Gabrielsen et al., 2015). 

The five highest ranked models explaining plasma TH concentrations are given in Table 3. 

TT3 and FT3 plasma concentrations were affected by season (TT3: F1,29=58.38, p<0.0001; 

FT3: F1,29=46.84, p<0.0001), breeding status (TT3: F2,29=7.82, p=0.002; FT3: F2,29=6.85, 

p=0.004) and their interaction (TT3: F2,29=8.11, p=0.002; FT3: F2,29=6.26, p=0.005) (Table 3). 

While plasma TT3 and FT3 concentrations in females measured during autumn were 

comparable in all females, regardless of their status (LSM: solitary-COYs: TT3: p=0.97, FT3: 

p=0.99; solitary-YRLs: TT3: p=0.99, FT3: p=0.85; COYs-YRLs: TT3: p=0.96, FT3: p=0.86), 

levels observed during spring were higher in solitary females compared to females with 

offspring (TT3: 95% CI, [-0.51; -0.21] in females with COYs and [-0.55; -0.18] in females 

with YRLs; FT3: 95% CI, [-0.99; -0.39] in females with COYs and [-0.93; -0.22] in females 

with YRLs) (Table 1). Indeed, plasma TT3 and FT3 in solitary females were also higher 

during spring than autumn (95% CI, [0.39; 0.66], and 95% CI, [0.69; 1.26], respectively; 

Table 1). However, in females with offspring (regardless of the age of the cub), plasma TT3 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826



15

or FT3 levels did not differ between spring and autumn (LSM: TT3: Spring-autumn in 

females with COYs: p=0.09, Spring-autumn in females with YRLs: p=0.11; FT3: Spring-

autumn in females with COYs: p=0.10, Spring-autumn in females with YRLs: p=0.16). TT4 

and FT4 plasma concentrations were significantly affected by the season and decreased from 

spring to autumn for all females (95% CI, [-9.80; -5.69], and 95% CI, [-3.57; -1.96], 

respectively) (Table 1). 

3.3 Relationships between thyroid hormones and contaminant levels 

The plasma concentrations of contaminants (ng/g wet weight concentration) were as follows: 

∑16PCBs: 39.98 ± 3.84, ∑4OCPs: 7.39 ± 0.50, ∑8OH-PCBs: 65.14 ± 3.45, ∑2PBDEs: 0.18 ± 

0.01, ∑8PFAS: 352.64 ± 15.99 (∑2PFSAs: 264.35 ± 12.45; ∑6PFCAs: 88.28 ± 3.86). 

The RDA model was highly significant (Monte-Carlo permutation test, 999 replicates, 

p=0.001). The RDA correlation triplot indicated that only TT3 and FT3 could be negatively 

related to plasma ∑16PCBs, ∑4OCPs and ∑8PFAS (Figure A in supplementary information). 

We therefore selected the latter OHCs for further mixed model analyses to check whether 

these contaminant groups were significant predictors for TT3 and FT3 plasma concentrations. 

However, since the sample scores were separated by season (Figure A), we examined the 

above-described TH-OHC relationships separately in spring and autumn. While both TT3 and 

FT3 were negatively related to ∑16PCBs (TT3: F1,54=14.92, p=0.008; FT3: F1,54=26.54, 

p=0.002; Figures 3A and 4A, respectively) and ∑4OCPs (TT3: F1,54=12.43, p=0.01; FT3: 

F1,54=15.65, p=0.007; Figures 3B and 4B, respectively) in spring, none of these relationships 

were significant during autumn (data not shown, GLMM, 0.13<p<0.95; Figures 3C-D and 

4D-E). In addition, FT3 was negatively related to ∑8PFAS in spring (F1,54=7.74, p=0.03; 

Figure 4C) but not in autumn (F1,40=2.81, p=0.13; Figure 4F). 
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4. DISCUSSION

While examining the levels and patterns of OHCs is beyond the scope of this study, Tartu et 

al. (2017; in revision) investigated the main sources of variation in plasma lipophilic 

pollutants, phenolic compounds and PFAS for the females included in the present study. They 

reported that while body condition followed by diet were the most important drivers for 

concentrations of the highly lipophilic OHCs, breeding status was a significant predictor of 

concentrations of the less lipophilic OHCs (Tartu et al., 2017). In addition, they showed that 

diet was the most important predictor of PFAS concentrations with females feeding on high 

trophic level sea ice-associated prey being the most exposed to PFAS (Tartu et al., in 

revision). 

This study documents seasonal and spatial variations in body condition and TH 

concentrations in three reproductive groups of free-ranging female polar bears in relation to 

pollution exposure. As expected, solitary females were overall in better condition than 

females caring for offspring and significantly so compared to females with cubs of the year, 

especially in spring. We also reported lower TH levels in autumn compared to spring, 

although this seasonal effect was mainly observed in solitary females. Finally, we highlighted 

season dependent possible alterations of the thyroid homeostasis (especially FT3) by PCBs, 

OCPs and PFAS. 

4.1 Effects of sampling location on body condition

While body mass did not differ significantly between sampling locations, BCI revealed that 

females caught in the North-West were in poorer condition than females caught in other areas 

of the Svalbard archipelago (Figure 2). The spatial differences in body condition could be 

explained by the variations in sea ice conditions that accordingly appeared more clearly in the 
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South compared to the North West, since sea ice did not appear before late winter in the fjords 

of North Spitsbergen these years (Prop et al., 2015). Nevertheless, it is not only challenging to 

compute a parameter describing local sea ice extent but also very difficult to interpret its 

biological relevance for polar bears, such as the optimal sea ice cover needed for hunting. For 

example, the reduction of sea ice extent and duration have somewhat unknown consequences 

for the foraging behaviour of polar bears on ringed seals (Phoca hispida), and their primary 

prey (Stirling et al., 2007). Moreover, because of different hunting skills or experience of 

individuals (Stirling, 1974), identical sea ice condition can result in large inter-individual 

differences in fat store accumulation (i.e., body condition) of bears coming ashore once the 

sea ice melts (see Dyck and Kebreab, 2009). Yet, in our study based on the same females we 

reported diet variations among sampling areas based on carbon, nitrogen and lipid sources 

further highlighting diet specialization over a small geographic scale such as Svalbard (Tartu 

et al., 2016). The results of that study indicate that both NW and SE females ingest a larger 

proportion of terrestrial prey. Inter-individual differences were even larger in SE females who 

experienced the largest amplitude of sea ice retreat during summer (Tartu et al., 2016). 

Alternatively, another not mutually exclusive hypothesis to account for the spatial variation in 

BCI, at least in spring, could be the result of our population being composed of individuals 

with contrasted spatial behaviour: a pelagic and a near-shore ecotype (Mauritzen et al., 2001; 

2002). Although a previous study based on telemetry movements of collared individuals 

suggested that pelagic females (with large home ranges) were located farther south than near-

shore females (with smaller home ranges), it showed no differences in body mass between 

both groups (Olsen et al., 2003). Further studies should investigate differences in body 

condition between females of each ecotype.
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4.2 Effects of breeding status and season on body condition

Overall and as predicted, both body mass and BCI tended to be poorer in females raising 

offspring (cubs or yearlings) compared to solitary females. These differences were expectedly 

significant during spring between solitary females and females with COYs that were caught 

shortly after den emergence (i.e., after sustaining a long fast).

We also highlighted seasonal variation in body mass and BCI indicating that females were 

leaner in spring compared to autumn. Previous estimations of body condition of polar bears 

sampled at different months of the year showed that while body condition was following an 

ascending phase in spring (feeding state) and a descending phase in autumn (fasting state), 

individuals exhibited yet lower BCI values in spring compared to autumn (Cattet, 2000). 

Accordingly, the lower UCR levels observed during autumn indicated that more females were 

in a fasting state in autumn compared to spring. 

4.3 Effects of breeding status and season on thyroid hormone levels

The current study highlighted an effect of breeding status of females on their TH levels with 

solitary females exhibiting on average higher levels than females with offspring. We also 

reported seasonal variations in plasma concentrations of THs, which were overall higher in 

spring compared to autumn, although not observed for all groups. The reason for the observed 

seasonal differences is likely a combination of different factors. First, these variations could 

be interpreted as the result of females being in a fasting state in autumn, which is associated to 

decreased TH levels in black bears (Ursus americanus; Azizi et al., 1979; Tomasi et al., 

1998). In addition, these differences could also be attributed to seasonal variations in 

environmental cues such as photoperiod and temperature, which can trigger physiological and 

endocrine changes. For example, because of the involvement of THs in thermoregulation 

(McNabb, 1992), colder spring temperatures could result in higher TH levels. Nevertheless, as 
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indicated by the significant interaction between season and breeding status, the season effect 

was mainly driven by the solitary females while the breeding status effect was only observed 

in spring (at least for TT3 and FT3). Indeed, solitary females showed significantly 1) higher 

TH levels than females with offspring and 2) higher TH levels in spring compared to autumn. 

On the other hand, plasma TH concentrations of females with COYs or YRLs were less 

affected by season or status. Based on these results, seasonal variation in abiotic factors alone 

cannot explain the lack of fluctuations between seasons in TH levels in these latter two 

groups. Females with COYs during spring could also show lower levels of THs than solitary 

females as a result of having recently sustained a longer and more energetically demanding 

fast compared to the other two groups. However, this is not fully supported by our data. 

Indeed, we showed no significant differences in TH levels between females with COYs and 

females with YRLs despite differences in BCI observed between both groups. 

The influence of breeding status on TH could also be the result of TH and 

reproductive endocrine systems being intimately intricated (Nakao et al., 2008). For example, 

decreases in T3 serum levels were reported in lactating Crioula Lanada Serrana ewes 

compared to non-lactating females (Colodel et al., 2010). Milk production in nursing female 

polar bears could therefore explain the lower TT3 and FT3 plasma concentrations observed in 

this group compared to solitary females. Nevertheless, this scenario is no longer valid in 

autumn when plasma TT3 and FT3 were similar in all females. Alternatively, our results 

could be interpreted as solitary females showing the highest TH levels during spring as a 

consequence of estrous (i.e., receptive state), inducing a different hormonal state compared to 

anestrous females caring for young (Haave et al., 2003). Accordingly, plasma T3 was shown 

to decrease during the luteal phase of estrous of ewes (Peeters et al., 1989). 
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4.4 Anthropogenic drivers of thyroid hormone variations

The reported relationships between circulating concentrations of THs and contaminants 

suggest possible alterations of the THs homeostasis by organochlorines (PCBs and OCPs) and 

PFAS. Our results showed that in spring both TT3 and FT3 were negatively associated with 

Σ16PCBs and Σ4OCPs while only FT3 was negatively related to Σ8PFAS. T3 (TT3 and FT3) 

therefore appeared to be the main hormone being influenced by OHCs further suggesting that 

T3 could be more sensitive than the other examined THs (T4) (Braathen et al., 2004; Debier 

et al., 2005). As T3 is the active hormone and FT3 represents the biologically available 

fraction, this may be of concern for the polar bear health. Accordingly, previous studies on 

mammals reported negative relationships between plasma concentrations of FT3 and PCBs in 

Svalbard female polar bears with COYs (Braathen et al., 2004), grey seal pups (Halichoerus 

grypus; Sørmo et al., 2005) and beluga whales (Delphinapterus leucas; Villanger et al., 

2011b). Moreover, a study on pregnant women reported low levels of FT3 and TT3 in women 

with high blood concentrations of PFUnDA and PFDA, respectively, compared to women 

with low blood concentrations of these compounds (Berg et al., 2015). On the other hand, 

while Routti et al. (2010) found positive relationships between FT3 and OH-PCBs in ringed 

seals, Bytingsvik (2012) reported no significant relationships between FT3 nor TT3 and any 

of the examined OHCs, including PCBs and PFAS, in polar bear cubs. 

While few studies consider physiological and environmental factors when reporting the 

endocrine disruptive potential of OHCs on THs, these factors can contribute to explain the 

discrepancies found between studies. In the current study, we report negative TH-OHC 

relationships in spring, but none of these relationships was significant in autumn. This 

emphasizes that environmental factors such as season can act as confounding factors. A non-

mutually exclusive alternative explanation to contrasting TH-OHC relationships among and 
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within studies could be due to TH concentrations responding non-monotonously to OHC 

concentrations (Calabrese and Baldwin, 2003). Langer et al. (2007) examined TH and PCB 

concentrations in human serum and found inverse dose-dependent relationships between 

PCBs and FT4 and PCBs and TT3 at low doses, but positive dose-dependent relationships at 

higher doses (U-shaped dose-response). In the present study, contrasting seasonal variations 

in pollutant levels were highlighted with plasma concentrations of PCBs, OCPs and PBDEs 

being higher in spring compared to autumn, at least in 2013 (Tartu et al., 2017). Moreover, 

plasma PFNA and PFDA concentrations were higher in fasting females, a nutritional state that 

is more commonly observed during autumn (Tartu et al., in revision). Based on our 

observation that negative relationships between THs and OHCs were only observed in spring, 

our results therefore support a possible non-monotonous dose-response relationship linking 

PCBs, pesticides and PFAS to THs in polar bears. In addition, previous studies highlight that 

the reproductive status of female polar bears affected the TH-OHC relationships with negative 

relationships between TT4:TT3 and ΣPCBs in females with offspring but not in solitary 

females (Braathen et al., 2004). Similarly, correlations between p,p’-DDE and TT3 were 

negative in nursing polar bears but positive in solitary female bears (Villanger et al., 2011a).

4.5 Conclusions and implications

We reported variations in body condition and THs of female polar bears in relation to 

ecological factors. The partial mismatch between fluctuations in body condition and THs 

between groups does not suggest any direct relationship between both traits. It is nonetheless 

important to be aware of these spatial and temporal endogenous physiological changes since 

THs have been widely used as biomarkers of pollutant exposure in marine mammals (Jenssen, 

2006; Routti et al., 2008) and polar bears in particular (Braathen et al., 2004; Knott et al,. 

2011; Villanger et al., 2011a). The current study highlights possible alterations of THs by 
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OHCs and pinpoints contrasting relationships between THs and OHCs in relation to 

environmental factors such as season. We therefore emphasize the need to control for 

ecological factors when inferring about possible causative relationships between THs and 

contaminant exposure to avoid, or at least limit, the confounding effects of seasonal 

physiological processes. The combined effects of natural and anthropogenic stressors (i.e., 

climate change and endocrine disruptors, respectively) (Jenssen, 2006) on the homeostasis of 

THs remain however to be documented as it might impair the ability of individuals to adapt to 

ongoing climate changes (Jenssen et al., 2015).
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FIGURES

Figure 1. Division of our sampling area into three main zones: North-West, South-East and 

North-East/South-West (NESW) diagonal of Svalbard (Norway). Each dot represents the 

sampling of a female polar bear (112 samples representing 78 females). 
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Figure 2. Boxplot illustrating body condition index (arbitrary units) according to sampling 

location (North-West, North-East/South-East diagonal or South-East of Svalbard) and season 

(spring in light grey and autumn in dark grey) in female polar bears (n=112) sampled in 

Svalbard in 2012 and 2013. On the plot, boxes are delimited by the 25th (lower bar) and 75th 

(upper bar) percentiles with the median represented by the thick horizontal line. Dots outside 

boxes illustrate potential outliers. 
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Figure 3. Relationships between plasma concentration of total triiodothyronine (TT3) and 

plasma sum of polychlorinated biphenyls (∑16PCBs) in A/ spring and C/ autumn and, between 

TT3 and plasma sum of organic chlorinated pesticides (∑4OCPs) in B/ spring and D/ autumn 

in female polar bears sampled in Svalbard in 2012-2013. The dots are the partial residuals, the 

solid line is the parameter estimate and the grey area represents its 95% confidence interval. 

Plasma concentrations of ∑16PCBs and ∑4OCPs are log transformed.
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Figure 4. Relationships between plasma concentration of free triiodothyronine (FT3) and 

plasma sum of polychlorinated biphenyls (∑16PCBs) (A/ spring; D/ autumn), plasma sum of 

organic chlorinated pesticides (∑4OCPs) (B/ spring; E/ autumn) and, plasma sum of 

perfluoroalkyl substances (∑8PFAS) (C/ spring; F/ autumn) in female polar bears sampled in 

Svalbard in 2012-2013. The dots are the partial residuals, the solid line is the parameter 

estimate and the grey area represents its 95% confidence interval. Plasma concentrations of 

∑16PCBs, ∑4OCPs and ∑8PFAS are log transformed.
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SUPPLEMENTARY INFORMATION

Figure A. Correlation triplot from redundancy analysis (RDA) illustrating the relationships 

between plasma concentrations of ∑16PCB, ∑4OCPs, ∑2PBDEs, ∑8OH-PCBs, ∑8PFAS*, 

season, status, plasma concentrations of free and total triiodothyronine (FT3 and TT3, 

respectively) and thyroxine (FT4 and TT4, respectively). Female polar bears sampled in 

Svalbard in spring and autumn 2012-2013. 

* sum (∑) of 16 PCBs (∑16PCBs: CB-99, -105, -118, -137, -138, -153, -156, -157, -170, -180, 

-183, -187, -189, -194, -206 and -209), ∑4OCPs (oxychlordane, trans-nonachlor, β-HCH, 

HCB), ∑2PBDEs (BDE-47, -153), ∑8OH-PCBs (4-OH-CB107, 4’-OH-CB130, 3’-OH-CB138, 

4-OH-CB146, 4’-OH-CB159, 4’-OH-CB172, 3’-OH-CB180, 4-OH-CB187), and ∑8PFAS 

(PFHxS, PFOS, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA). 



Table 1. Mean (± standard error; SE), range, median and 95% confidence interval (CI)   of body 

mass, body condition and plasma concentrations of urea creatinine ratio (UCR), total and free 

triiodothyronine (TT3 and FT3) and total and free thyroxine (TT4 and FT4). The sample size (N) 

is indicated for each variable.
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Table 2. List of the five most competitive models that explain body mass, body condition index 

(BCI) and plasma urea creatinine ratio (UCR) in relation to season, breeding status, year and 

sampling location.  All models (linear mixed models) include female identity as a random factor. 

The best model (in bold) was selected based on the lowest number of parameters (K) combined 

with a difference in AICc values between the “best” model and the model at hand (ΔAICc) below 

2. 

Response Model K Log likelihood AICc ΔAICc
Body mass Sampling area + Season + Status + Sampling area:Season 10 -524.00 1070.17 0
(kg) Sampling location + Season + Status 8 -526.63 1070.66 0.48

Sampling location + Season + Status + Year + Sampling location:Season 11 -523.30 1071.25 1.07
Season + Status 6 -529.38 1071.57 1.40
Sampling location + Season + Status + Sampling location:Season 9 -526.07 1071.9 1.72

BCI Sampling location + Season + Status + Year + Sampling location:Year 11 -92.80 210.24 0
Sampling location + Season + Status + Year 9 -95.30 210.36 0.11
Sampling location + Season + Status + Year + Sampling location:Season + Sampling location:Year13 -90.48 210.68 0.43
Sampling location + Season + Status + Year + Season:Year 10 -94.40 210.98 0.73
Sampling location + Season + Status + Year + Sampling location:Year + Season:Year 12 -91.96 211.06 0.82

UCR Season 4 -100.96 210.46 0
Season + Year + Season:Year 6 -98.92 210.98 0.52
Season + Year 5 -100.50 211.80 1.34
Season + Status 6 -99.60 212.33 1.88
Season + Status + Year + Season:Year 8 -97.34 212.68 2.22



Table 3. List of candidate models to explain plasma concentrations of thyroid hormones (TT3, 

FT3, TT4 and FT4) in relation to season, breeding status, plasma urea creatinine ratio (UCR) and 

body condition index (BCI).  All models (linear mixed models) include female identity as a random 

factor. The five most competitive models are presented for each response variable. The selected 

model (in bold) is the one with a null ΔAICc.  ΔAICc is the difference in AICc between each 

candidate model and the model with the lowest AICc.

Candidate models

1- Season
2- Breeding status
3- Season + Breeding status + Season:Breeding status
4- Season + Breeding status
5- BCI
6- UCR
7- BCI + UCR + BCI:UCR
8- BCI + UCR
9- Breeding status + UCR
10- Breeding status + UCR + Breeding status:UCR
11- Null model

Response Model K Log likelihood AICc ΔAICc
TT3 Season + Status + (Season:Status) 8 -3.25 23.89 0.00

Season + Status 6 -11.22 35.23 11.34
Season 4 -17.97 44.31 20.42
Status + UCR 6 -23.18 59.17 35.28
Status + UCR + (Status:UCR) 8 -21.35 36.22 36.22

FT3 Season + Status + (Season:Status) 8 -78.84 175.08 0.00
Season + Status 6 -85.04 182.89 7.81
Season 4 -91.18 190.73 15.65
Status + UCR 6 -93.99 200.78 25.70
Status + UCR + (Status:UCR) 8 -93.97 30.28 30.28

TT4 Season 4 -345.07 698.51 0.00
Season + Status + (Season:Status) 8 -340.96 699.32 0.80
Season + Status 6 -344.66 702.12 3.61
UCR 4 -356.57 721.52 23.01
BCI + UCR 5 -356.56 723.70 25.19

FT4 Season 4 -238.11 484.6 0
Season + Status + (Season:Status) 8 -234.00 485.42 0.82
Season + Status 6 -237.68 488.17 3.57
UCR 4 -248.40 505.18 20.58
BCI + UCR + (BCI:UCR) 6 -246.70 506.22 21.62



HIGHLIGHTS 

 We assessed circulating thyroid hormones (TH) in 112 female polar bear samples.

 We reported seasonal variations in THs in relation to breeding status of females.

 TH levels were lower in autumn compared to spring, especially in solitary females.

 THs were negatively related to some contaminants in spring but not in autumn. 




