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Abstract 

Vitamin D is hydroxylated in the liver and kidneys to its active form, which can bind to the vitamin D 

receptor (VDR). The VDR is present in a wide variety of different cells types and tissues and acts as a 

transcription factor. Although activation of the VDR is estimated to regulate expression of up to 5 % 

of the human genome, our study is the first analysing gene expression after supplementation in more 

than 10 subjects.  

Subjects of a randomized controlled trial (RCT) received either vitamin D3 (n = 47) in a weekly dose 

of 20,000 IU or placebo (n = 47) for a period of three to five years. For this study, blood samples for 

preparation of RNA were drawn from the subjects and mRNA gene expression in blood was 

determined using microarray analysis. 

The two study groups were similar regarding gender, age, BMI and duration of supplementation, 

whereas the mean serum 25-hydroxyvitamin D (25(OH)D) level as expected was significantly higher 

in the vitamin D group (119 versus 63 nmol/L). When analysing all subjects, nearly no significant 

differences in gene expression between the two groups were found. However, when analysing men 

and women separately, significant effects on gene expression were observed for women. Furthermore, 

when only including subjects with the highest and lowest serum 25(OH)D levels, additional vitamin D 

regulated genes were disclosed. Thus, a total of 99 genes (p<0.05, log2 fold change≥|0.2|) were found 

to be regulated, of which 72 have not been published before as influenced by vitamin D. These genes 

were particularly involved in the interleukin signalling pathway, oxidative stress response, apoptosis 

signalling pathway and gonadotropin releasing hormone receptor pathway. Thus, our results open the 

possibility for many future studies. 
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1. Introduction 

Vitamin D is fat-soluble and generated in the skin upon UV-radiation, but can also be obtained 

through the diet. It is well established that vitamin D plays a major role in calcium homeostasis and 

bone mineralization, and that insufficient vitamin D intake can lead to skeletal diseases like rickets in 

children and osteomalacia in adults [1]. Several cross-sectional studies have found correlations 

between vitamin D deficiency and autoimmune diseases, different cancer types, infections, 

cardiovascular diseases, depression, mortality and obesity [2-7]. Nevertheless, the role and functions 

of vitamin D in the human body are not yet fully understood [8]. Vitamin D insufficiency or 

deficiency is estimated to be a widespread pandemic [9] affecting approximately 40% of the European 

population [10]. However, these data are of very variable quality hence estimations might by highly 

biased [11]. 

After generation in the skin upon UV-radiation, vitamin D is hydroxylated in the liver to 25-

hydroxyvitamin D (25(OH)D), which is the storage form of vitamin D and target for analyzing a 

person’s vitamin D status. Next to diet and sun exposure, adiposity, age, skin colour, genetic and 

epigenetic factors account for differences in 25(OH)D levels [12]. 25(OH)D is further hydroxylated in 

the kidneys to its active form 1,25-dihydroxyvitamin D (1,25(OH)2D), which can bind to the vitamin 

D receptor (VDR). Due to its lipophilic character, 1,25(OH)2D is able to pass through biological 

membranes, hence gene regulation by vitamin D does not require additional signal transduction steps 

as those known for hydrophilic signalling molecules, such as peptide hormones, growth factors and 

cytokines [13]. 

The VDR is present in a wide variety of different cells types and tissues, and is a member of the 

nuclear receptor superfamily, known to modulate gene expression by oscillating between on and off 

states. VDR acts as a transcription factor and its activation is estimated to regulate expression of up to 

5 % of the human genome [14], with more than 200 genes estimated to be primary vitamin D targets 

[15]. Depending on the presence or absence of its ligand, the VDR does not only activate but can also 

repress gene transcription [16]. Effects of the VDR actions on cell cycling, regulation of growth, 

proliferation, differentiation, apoptosis, immune system and signalling processes [17] have been 

reported. Anti-proliferative effects of 1,25(OH)2D have been demonstrated in a wide variety of cancer 

cell lines, including those from prostate, breast, and colon [18]. Furthermore, several studies using 

chromatin immunoprecipitation combined with high throughput sequencing (ChIP Seq) have reported 

more than 20,000 genomic VDR binding sites in different human cell lines [19-22]. Many of these are 

not overlapping, indicating a cell type specific effect of vitamin D. Those studies enable an insight into 

the diversity and impact of vitamin D on the human transcriptome. Despite the limited knowledge 

about the effect of vitamin D on the transcriptome, studies analyzing the gene expression in humans in 

intervention studies are sparse. To our knowledge there is so far only one pilot study, an RCT 
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including eight subjects where the effects of supplementation with vitamin D 400 IU versus 2,000 IU 

daily for 2 months during the winter were compared on transcriptomic level [23]. 

The objective of our study was therefore to determine the effect of vitamin D supplementation on the 

global transcriptomic profile in a larger number of study participants who had received weekly 

supplementation with 20,000 IU vitamin D3 or placebo over a long period.  
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2. Material and Methods 

2.1 Design of the study 

The subjects included in the present study all participated in the RCT ”Prevention of type 2 diabetes 

with vitamin D supplementation in subjects with reduced glucose tolerance” that was performed from 

March 2008 till May 2015. The design of the main study has been described in detail before [24, 25].   

In short, subjects with impaired fasting glucose (IFG) (serum glucose 6.0 – 6.9 mmol/L) and/or 

impaired glucose tolerance (IGT) (fasting serum glucose <7.0 mmol/L and 2-hour value 7.8 – 11.0 

mmol/L at oral glucose tolerance test (OGTT) with 75 g glucose) were included. Subjects with 

primary hyperparathyroidism, granulomatous disease, history of urolithiasis, cancer diagnosed in the 

past five years, unstable angina pectoris, myocardial infarction or stroke in the past year were 

excluded. Pregnant or lactating women, or women of fertile age with no use of contraception, were not 

included.  

All visits were performed at the Clinical Research Unit at the University Hospital of North Norway. 

Fasting blood samples and OGTT were performed annually for a period of five years. Height and 

weight were measured wearing light clothing. At the first visit the subjects were randomized (non-

stratified) in a 1:1 ratio to one capsule vitamin D (cholecalciferol 20,000 IU (Dekristol; Mibe, Jena, 

Germany)) per week or an identical looking placebo capsule containing arachis oil (Hasco-Lek, 

Wroclaw, Poland). New medication was supplied every sixth month and unused capsules returned and 

counted. The subjects were not allowed to take vitamin D supplements (including cod liver oil) 

exceeding 400 IU per day.  

If at the annual OGTT the fasting blood glucose was >6.9 mmol/L and/or the 2-h value >11.0 mmol/L 

the subject was considered to have T2DM, thus ending their participation in the study, and thereafter 

retested (if necessary) and followed by their general practitioner. From November 2012 HbA1c ≥6.5 

% was also included as an additional/alternative diagnostic criterion in accordance with the WHO 

report from 2011. In addition, if diagnosed elsewhere with T2DM between visits in the study, 

participation was terminated. As part of the safety monitoring, serum calcium levels were checked at 

each six months visit. 

Subjects who developed persistent hypercalcemia (serum calcium >2.55 mmol/L), and subjects who 

developed renal stones, or symptoms compatible with renal stones were excluded from the study. One 

subject in the vitamin D group had a serum calcium levels of 2.63 and 2.64 mmol/L at two time points 

and was therefore excluded from the study. Two subjects in the vitamin D group and one in the 

placebo group had serum calcium values in the range 2.56 – 2.61 mmol/L that normalized at second 

testing, hence the subjects continued in the study. In the initial protocol, subjects who during the study 

were diagnosed with cancer, coronary infarction, unstable angina pectoris, or stroke, were excluded 
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from the study too. From October 2011 this was changed to exclusion of subjects who during the study 

developed serious disease making it difficult or impossible to attend scheduled visits.  

For the present study, subjects who were to come to an annual visit were informed by letter about the 

sub-study with the consent form enclosed. At the visit they were asked if they wanted to participate, 

and if so, signed the consent form. In addition, fasting blood samples were drawn in PAXgene Blood 

RNA tubes (PreAnalytiX), which provide immediate stabilization of intracellular RNA, for later 

determination of RNA expression. The samples were stored at -70 ̊C until RNA isolation and analysis 

at the end of the present sub-study.   

To keep all investigators blinded, all data were sent directly to the Hospital’s Research Department 

were the data files were merged and coupled to the randomization code. The Research Department 

then sent the final file without person identification to the principal investigator (R.J.). 

The study was approved by the Norwegian Medicines Agency (EUDRACTNR – 2007-002167-27) 

and by the Regional Committee for Medical Research Ethics (REK NORD 2012/626). The trial is 

registered at ClinicalTrials.gov (NCT01771380).   

 

2.2 Analysis 

Serum samples for determination of 25(OH)D were frozen until analyzed in batch by an in-house LC-

MS/MS at the Department of Medical Biochemistry, University Hospital of North Norway [24].  

 

2.3 RNA preparations 

Total RNA was isolated from whole blood using the PAXgene Blood RNA Isolation system (Qiagen), 

and according to the manufacturer's protocol (Qiagen). RNA quantity and purity was assessed by 

using the NanoDrop ND-1000 spectrophotometer (ThermoFisher Scientific, Wilmington, Delaware, 

USA). The Experion automated electrophoresis system (BioRad, Hercules, CA, USA) and the RNA 

StdSens Analysis Kit was used to evaluate RNA integrity, according to the instruction manual. RNA 

samples were kept at −70°C until further use. RNA samples with RIN >1.8 were used for further 

analysis.  

 

2.4 Gene Expression Analysis  

mRNA gene expression was analyzed at a certified Illumina platform at NTNU Genomics Core 

Facility, Trondheim, Norway. Briefly, RNA was amplified with Ambion`s Illumina® TotalPrep RNA 

amplification kit (Cat #AMIL 1791) using 150 ng of total RNA as input material. Incorporation of 
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biotin-labeled nucleotides was performed overnight (14 hours) at 37 ˚C in vitro transcription (IVT) 

amplification that. cRNA was quantified using the  NanoDrop ND-1000 (NanoDrop, Wilmington, 

USA), and cRNA integrity was determined by electrophoresis using the Experion Bioanalyzer 

(BioRad). A total of 750 ng of biotin-labeled cRNA was hybridized to IlluminaHumanHT-12 v.4 

expression bead chip (Illumina®). Beadchips were scanned with Illumina BeadArray Reader. 

Numerical results were extracted with Bead Studio v3.0.19.0 without any normalization or 

background subtraction.  

 

2.5 Statistics and Data evaluation 

Comparisons between the groups were performed with Student´s t-test or chi-square test (p<0.05).  

Microarray data analysis was performed using the freely available software R (r-project.org). Raw 

files where quantile normalized including variance stabilization and background correction using the 

Bioconductor lumi package (Bioconductor.org). Probes were mapped to gene symbol and genome 

position using the Bioconductor illuminaHumanv4.db package 

(http://bioconductor.org/packages/release/data/annotation/html/illuminaHumanv4.db.html). Probes 

with a log2 expression below 7 were removed from the dataset, as the expression level was considered 

too low to discriminate from background. Descriptive statistics using STATA MP13, were used for 

comparison of participant groups. Gene expression differences between comparison groups were 

analyzed using the Limma package (Bioconductor.org). Differentially expressed genes were tested for 

over-represented pathways with the GO hyperGTest algorithm in Kegg 

(“http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html”). The data are deposited and 

accepted in GEO under accession number GSE94138 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94138).   

Enriched genesets were created using Limma differentially regulated probes as input to the 

Bioconductor GOstats hyperGTest function. Enriched genesets with a p<0.05 were kept. Principal 

component analysis (PCA) and Partial least squares regression (PLS) [26] were applied on the data in 

order to visualize the data structure and look for potential outlier samples (https://cran.r-

project.org/web/packages/mixOmics/index.html). Gene Set Enrichment Analysis (GSEA) was 

performed using the R statistical package (http://www.broad.mit.edu/gsea/). Gene Set Enrichment 

Analysis (GSEA) is a computational method that determines whether an defined set of genes shows 

statistically significant, concordant differences between two biological states [27]. PANTHER (Protein 

Analysis through Evolutionary Relationships) Classification System version 10.0 

(http://pantherdb.org/) was used for pathway analysis and to classify regulated genes according to their 

biological function (p<0.05 was considered statistically significant). PANTHER is designed to classify 

proteins and their genes in order to facilitate high-throughput analysis [28].  
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3. Results and discussion 

3.1 Background variables 

For the present sub-study, 115 subjects were invited and 94 accepted the invitation, 47 in the vitamin 

D group and 47 in the placebo group.   

The two groups did not differ significantly in terms of gender, age, BMI and duration of intervention. 

There were more smokers among the vitamin D group, but the difference was not statistically 

significant. At inclusion in the main study the mean serum 25(OH)D levels were similar and as 

expected, at inclusion in the present sub-study the mean serum 25(OH)D levels were significantly 

higher in the vitamin D group than the placebo group (119.4 ± 29.1 nmol/L versus  63.4 ± 18.6 nmol/L 

(p<0.001) (Table 1). 

Table 1: Background data of the study participants (n=94)   
 Vitamin D group Placebo group 
 All  

n = 47 

Men  

n = 29 

Women  

n = 18 

All  

n = 47 

Men  

n = 35 

Women  

n = 12 

Women/Men [%] 38.3/61.7 0/100 100/0 25.5/74.5 0/100 100/0 

Age at inclusion in present 

sub-study [years] 

61.0  

(± 8.5) 

61.0  

(± 7.7) 

61.1 

(± 9.9) 

62.3 

(± 8.6) 

61.0  

(± 8.1) 

65.8  

(± 9.4) 

BMI at inclusion in present 

sub-study [kg/m2] 

29.0  

(± 3.8) 

28.8  

(± 3.8) 

29.3 

(± 3.9) 

28.90 

(± 3.9) 

29.5  

(± 3.0) 

27.1  

(± 5.4) 

Duration of intervention 

[month] 

50.6  

(± 8.4) 

49.1  

(± 9.5) 

52.9 

(± 5.9)  

49.8 

(± 9.7) 

47.4  

(± 9.8) 

56.7 

(±5.5) 

Serum 25(OH)D at inclusion 

in main study [nmol/L] 

61.4  

(± 27.4)  

61.4 

(± 31.3) 

61.5 

(± 20.4) 

61.9 

(± 19.2) 

59.4  

(± 16.3) 

69.1  

(± 25.3) 

Serum  25(OH)D at inclusion 

in present sub-study [nmol/L] 

119.5*  

(± 29.1) 

119.6** 

(± 28.7) 

119.3*** 

(± 30.6) 

63.4* 

(± 18.6) 

62.6** 

(± 19.9) 

65.7***  

(± 14.8) 

Smoking status at inclusion in 

present sub-study [%] 

21.3 20.7 22.2 8.5 5.7 16.7 

*,**, *** Student´s t-test (p<0.01)  

 

3.2 Gene expression levels in the two study groups  

The clinical trial included pre-diabetic subjects, but there was no effect on the gene expression in 

terms of different HbA1c levels of the patients (data not shown). This goes along with the previously 

published results of the main study, which did not show a protective effect of vitamin D 

supplementation on the onset of type 2 diabetes [24, 25]. Multivariate data analysis were performed in 

order to quality assure the gene expression data, and to evaluate if the data were able to separate 
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between subjects receiving vitamin D and those receiving placebo. In a principal component analysis 

(PCA) women and men could be separated upon their gene expression but no major grouping of the 

two study groups (vitamin D and placebo) was visible. A partial least square regression analysis (PLS) 

using serum 25(OH)D levels revealed no further separation between the two groups (data not shown). 

Although no clear grouping effects were seen, when looking at individual genes, 141 were found to be 

regulated by vitamin D (p<0.05) with log2 fold changes between |0.04| and |0.40|. In order to quality 

assure the data we filtered for genes with a log2 fold change of minimum |0.2|, which resulted in five 

downregulated genes: Formyl peptide receptor 2 (FPR2), CD52 molecule (CD52), interleukin 1 

receptor type 2 (IL1R2), G protein subunit gamma 10 (GNG10) and folate receptor 3 gamma 

(FOLR3). Ribosomal protein S26 (RPS26) was the only upregulated gene. Out of these six genes 

significantly changed between the vitamin D and the placebo group, only two are to our knowledge 

published previously as regulated in context with vitamin D (GNG10 [29, 30] and RPS26 [31]). All 

other regulated genes we found had a log2 fold change of less than |0.2|. Nevertheless could also small 

changes in gene expression have profound physiological effects. One explanation for the low number 

of regulated genes could be the high baseline serum 25(OH)D levels in both study groups (~ 61 

nmol/L), which indicated that the subjects at inclusion already had a sufficient serum 25(OH)D level, 

hence a benefit of additional supplementation might be rather unlikely. Furthermore, we were 

comparing the mRNA levels of two study groups with each other and not the personal change of each 

subject due to vitamin D supplementation since we just had one sample of each person after long time 

intervention and not at baseline. This could yield reduced statistical power and leave individual 

changes undetected. Another explanation could be the long intervention time, which could reduce the 

prominence of the gene expression response to vitamin D supplementation. Additionally, detecting 

small changes in the mRNA is challenging with microarrays, and might be especially so in blood, as 

its composition is underlying very fast changes and is sensitive to all kind of environmental changes 

[32].     

3.2.1 Effect of gender 

Next, we analyzed women and men separately in order to explore if gender could influence the effect 

of vitamin D on global gene expression. Male participants of both study groups did not separate in 

either PCA or PLS (Figure 1A and 1B), but there was a grouping for female participants in PCA 

(Figure 1C) which became more obvious when looking at the corresponding PLS (Figure 1D). For the 

PLS plots the serum 25(OH)D levels were used as the scoring criteria. The plots indicated an effect of 

the 25(OH)D level for both men and women, as participants with lower 25(OH)D levels often grouped 

together with the placebo group, while participants with high 25(OH)D levels grouped separately. It is 

important to mention, that the female or male vitamin D group did not differ significantly from the 

corresponding placebo group in terms of physiological characteristics other than serum 25(OH)D level 

at inclusion in the sub-study (Table 1). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 

Figure 1: Multivariate data analysis of microarray data from subject after vitamin D (red) or placebo (blue) 
supplementation. The size of the data spots correlates with the 25(OH)D level. (A) PCA women, (B) PCA men, 
(C) PLS regression women, and (D) PLS regression men. 25(OH)D level was used as the scoring vector for PLS 
analysis. In both female and male PCA, principle component 1 (PC1) accounted for more than 90% of explained 
variance.     
 

In sum, 58 genes were regulated in men but 3.2 times more (n=185) in women (p<0.05) 

(supplementary information). After filtering with a log2 fold change of minimum |0.2|, one gene 

remained regulated in men (interleukin 1 receptor, type II) while 51 remained regulated in women 

(Tables S2 and S3, supplementary information). Hereby, we could detect for the first time a stronger 

effect of vitamin D supplementation on gene expression in women when compared to men. An 

explanation for the differences between women and men might be the in general different serum DBP 

level between the genders [33], caused most probably by an estrogen-dependent DBP synthesis [34]. 

Hence, women have higher DBP concentrations and higher serum 25(OH)D concentrations [35] and 
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when embracing also our findings, we assume a possible more important role of vitamin D or more 

complex regulation mechanisms in women than in men. In order to investigate the regulated genes 

closer, we performed both pathway analysis and Gene Set Enrichment Analysis (GSEA). 

Pathway analysis and analysis of biological processes of the 51 regulated genes in women revealed an 

influence of vitamin D on the interleukin signaling pathway and on genes involved in regulation of 

sequence-specific DNA binding transcription factor activity, hemopoiesis, B cell mediated immunity 

and regulation of translation (Table 2). 

 Table 2: Panther analysis of the 51 regulated genes in women (n=30) 
 Hits 

(48) 
Expected 
Hits 

Fold 
Enrichment 

P-value 

PANTHER Pathways     
Interleukin signaling pathway (P00036) 2 0.22  > 5 2.13E-02 
PANTHER GO-Slim Biological Process     
Regulation of sequence-specific DNA 
binding transcription factor activity 
(GO:0051090) 

1 0.03  > 5 3.40E-02 

Hemopoiesis (GO:0030097) 2 0.26  > 5 2.77E-02 
B cell mediated immunity (GO:0019724) 2 0.33  > 5 4.21E-02 
Regulation of translation (GO:0006417) 2 0.34  > 5 4.60E-02 
 

The GSEA of the female data set indicated a major effect of vitamin D supplementation on the 

immune system, but also on the establishment and/or maintenance of the chromatin architecture, 

transcription coactivator activity, microtubule cytoskeleton and phosphatidylinositol signaling system 

(Table S3, supplementary information).  

In sum, 51 vitamin D dependent regulated genes in women could be identified (p<0.05, log2 fold 

change≥|0.2|) of which 38 have to our knowledge not been reported before as regulated upon vitamin 

D supplementation and thus are interesting for further research on the effect of vitamin D in the human 

body. For example, the Fas apoptotic inhibitory molecule 3 (FAIM3) was upregulated upon vitamin D 

supplementation in women. FAIM3 is playing an important role in inflammatory autoimmune 

responses and protects against death receptor-induced apoptosis by modulating the receptors function 

[36]. Another example is the observed downregulation of Charcot-Leyden crystal galectin (CLC). This 

gene is expressed in a variety of tissues and body fluids and is a known marker for allergic 

inflammation in asthma and allergic rhinitis. However, the role and function of CLC is not entirely 

understood [37].    

3.2.2 Effect of serum 25(OH)D level for detection of vitamin D dependent changes 

In another sub-analysis we wanted to investigate if focusing on the subjects with the lowest versus 

subjects with the highest serum 25(OH)D levels would reveal further effects on the gene expression. 

For this analysis we included the 20 participants with the lowest (“Bottom 20”, serum 25(OH)D 27 - 
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59 nmol/L) and the 20 participants with the highest (“Top 20”, serum 25(OH)D 122 – 204 nmol/L) 

serum 25(OH)D level at inclusion in this sub-study. This number was chosen, as all subjects in the 

Bottom 20 group received placebo and the group’s average 25(OH)D level is insufficient according to 

the Institute of Medicine [38], while all subjects in the Top 20 group received vitamin D.  

Analysis of the background data revealed no significant differences between the study groups except 

their serum 25(OH)D levels at inclusion in the present sub-study (Table 3).  

Table 3: Background data of the study participants (n=40) with Bottom 20 and Top 20 serum 25(OH)D levels  
 Bottom 20 

 

Top 20 

Women/Men [%] 15/85 40/60 

Age at inclusion in present sub-study 

[years] 

61 (± 10) 63 (± 9.2) 

BMI at inclusion in present sub-

study [kg/m2] 

34.3 (± 2.7) 36.1 (± 4.7) 

Duration of intervention [month] 50.6 (± 9.6) 51.5 (± 7.8) 

Serum 25(OH)D at inclusion in main 

study [nmol/L] 

54.4 (± 14.3)  67.9 (± 36.6) 

Serum  25(OH)D at inclusion in 

present sub-study [nmol/L] 

47.4 (± 10.6)* 145.4 (± 22.1)* 

Smoking at inclusion in present sub-

study  [%] 

10 30 

* Student´s t-test (p<0.01)  

 

Interestingly, the expression of 198 mRNAs was differently regulated between these two groups 

(p<0.05) (supplementary information). This nearly seven times increase compared to the analysis of 

all 94 subjects supports the hypothesis that a vitamin D threshold exists, above which additional 

supplementation may not have a major effect [38]. PLS analysis showed clustering of the two study 

groups (Figure 2), which could not be observed previously when considering all 94 patients (as 

mentioned in 3.2).   
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Figure 2: Partial-least-square regression analysis of the gene expression data of the 20 subject with the highest 

25(OH)D level after vitamin D supplementation (red) and the 20 subject with the lowest 25(OH)D level after 

placebo supplementation (blue). The size of the data spots correlates with the 25(OH)D level. Circles represent 

female participants and squares male participants. Serum 25(OH)D level was used as the PLS scoring vector.   

 

For further evaluation, we filtered the data with a log2 fold change of minimum |0.2| and used the 

resulting 41 genes (Figure S4 and S5, supplementary information) for analysis of pathways and 

biological processes (Table 4). To our knowledge, 30 of these genes have not been published before in 

gene expression studies after vitamin D intervention. As an example, ornithine decarboxylase 

antizyme 1 (OAZ1) was upregulated in participants with high serum 25(OH)D levels. It has been 

recently reported that OAZ1 display tumor suppressor activities and has anti-proliferative effects, and 

influences on cell differentiation and apoptosis [26].  As another example, Granzyme H (GZMH) was 

downregulated in those with high serum 25(OH)D. Granzymes have different proteolytic specificities 

and are potentially able to initiate cell death in tumor and virally infected cells, but so far the biologic 

functions of GZMH in immune defense cells is hardly understood. In recent studies a high level of 

GZMH has been found in natural killer cells [39].  

Functional analysis of the regulated genes could reveal an influence of vitamin D on three different 

pathways: oxidative stress response, apoptosis signaling pathway and gonadotropin releasing hormone 

receptor. Oxidative stress and defective apoptotic processes have been related to several severe 

diseases in humans like cancer, autoimmune and inflammatory diseases. An influence of vitamin D on 

both pathways has been implied [40-43], but its role is not fully understood.  

Gonadotropin releasing hormone receptor plays a major role in controlling the follicular growth, 

ovulation, corpus luteum maintenance and spermatogenesis, and has been found in cancers of the 
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reproduction system like breast, ovary, endometrium and prostate [44]. In that context it is interesting 

to note that vitamin D has been suggested to have an influence on fertility and reproduction as VDR 

and vitamin D metabolizing enzymes were found in reproductive tissues of both women and men [45].   

The list of biological processes, which were affected differently in the two study groups, furthermore 

confirmed the results of our analysis in women, which showed a major effect of vitamin D on the 

immune system:  

 
Table 4: Panther analysis of the 41 regulates genes between the Bottom 20 and Top 20 group (n=40) 
 Hits  Expected 

Hits 
Fold 
Enrichment 

P-value 

PANTHER Pathways     
Oxidative stress response (P00046) 1 0.05 > 5 4.81E-02 
Apoptosis signaling pathway (P00006) 2 0.21 > 5 1.88E-02 
Gonadotropin releasing hormone receptor 
pathway (P06664) 

3 0.41 > 5 8.04E-03 

PANTHER GO-Slim Biological Process     
Protein methylation (GO:0006479) 1 0.03 > 5 2.52E-02 
Negative regulation of apoptotic process 
(GO:0043066) 

2 0.17 > 5 1.31E-02 

Natural killer cell activation (GO:0030101) 2 0.18 > 5 1.42E-02 
B cell mediated immunity (GO:0019724) 2 0.26 > 5 2.75E-02 
Regulation of phosphate metabolic process 
(GO:0019220) 

2 0.32 > 5 4.20E-02 

Immune response (GO:0006955) 5 0.95 > 5 2.42E-03 
Translation (GO:0006412) 4 0.79 > 5 7.99E-03 
Immune system process (GO:0002376) 11 2.54 4.33 2.62E-05 
Apoptotic process (GO:0006915) 4 1 4 1.74E-02 
Cell death (GO:0008219) 4 1.03 3.9 1.89E-02 
Death (GO:0016265) 4 1.03 3.87 1.93E-02 
Response to stimulus (GO:0050896) 12 3.96 3.03 3.29E-04 
Protein metabolic process (GO:0019538) 11 4.91 2.24 7.11E-03 
Regulation of biological process 
(GO:0050789) 

10 5.2 1.92 2.83E-02 

 

In summary, we performed gene expression analysis of whole blood samples from 94 participants with 

prediabetes after supplementation with vitamin D or placebo. The method of testing transcriptomic 

differences in whole blood does not take tissue specific actions of vitamin D into account, but has the 

advantage of using peripheral blood as an easily accessible surrogate tissue. The method thereby is of 

importance to detect and analyze the effects of vitamin D on pathways and biological processes, and 

could be used to develop and apply a biomarker detection platform. The samples were drawn during a 

five years lasting RCT with the main goal to evaluate the influence of vitamin D on glucose 

metabolism and development of type 2 diabetes. At the time of publication, these results were by far 

the largest RCT on vitamin D supplementation in individuals with prediabetes [24, 25], and also our 

gene expression analysis is as of today the largest conducted after vitamin D supplementation in 

humans.  
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We could not separate the vitamin D receiving group form the placebo group with PCA and PLS 

analysis when all 94 study participants were taken into consideration. Indeed, there were just five 

mRNAs down-regulated and one up-regulated in the vitamin D group compared to the placebo group 

(p<0.05, log2 fold change ≥|0.2|). However, sub-group analysis could reveal an effect of vitamin D on 

the gene expression in humans, which was stronger in women than in men, and also more evident 

when separately evaluating the subjects with the lowest versus the highest serum 25(OH)D levels. A 

total number of 99 gene (p<0.05, log2 fold change≥|0.2|) were found to be regulated by vitamin D, out 

of which 72 have not been published before. However, since these effects were only seen in sub-group 

analysis of the pre-diabetic study population, they will be subjects for future studies.  

In particular, vitamin D showed an influence on the interleukin signaling pathway, oxidative stress 

response, apoptosis signaling pathway and gonadotropin releasing hormone receptor pathway. In 

addition, on genes involved in regulation of sequence-specific DNA binding transcription factor 

activity, hemopoiesis, B cell mediated immunity and regulation of translation, as well as the immune 

system, establishment and/or maintenance of the chromatin architecture, transcription coactivator 

activity, microtubule cytoskeleton and phosphatidylinositol signaling system.  
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