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Abstract

Identifying optimal dosing of antibiotics has proven challenging—some antibiotics are most

effective when they are administered periodically at high doses, while others work best

when minimizing concentration fluctuations. Mechanistic explanations for why antibiotics

differ in their optimal dosing are lacking, limiting our ability to predict optimal therapy and

leading to long and costly experiments. We use mathematical models that describe both

bacterial growth and intracellular antibiotic-target binding to investigate the effects of fluctu-

ating antibiotic concentrations on individual bacterial cells and bacterial populations. We

show that physicochemical parameters, e.g. the rate of drug transmembrane diffusion and

the antibiotic-target complex half-life are sufficient to explain which treatment strategy is

most effective. If the drug-target complex dissociates rapidly, the antibiotic must be kept con-

stantly at a concentration that prevents bacterial replication. If antibiotics cross bacterial cell

envelopes slowly to reach their target, there is a delay in the onset of action that may be

reduced by increasing initial antibiotic concentration. Finally, slow drug-target dissociation and

slow diffusion out of cells act to prolong antibiotic effects, thereby allowing for less frequent

dosing. Our model can be used as a tool in the rational design of treatment for bacterial infec-

tions. It is easily adaptable to other biological systems, e.g. HIV, malaria and cancer, where

the effects of physiological fluctuations of drug concentration are also poorly understood.

Author Summary

In this era of rising concerns about antibiotic resistance, the rational design of optimal anti-
biotic treatment regimens remains an important unrealized goal. At this time, the charac-
teristics of antibiotic treatment regimens (e.g. dosing levels, treatment duration, route of
administration) are determined largely based on costly in vivo experiments. The sheer
number of possible dosing strategies that must be tested contributes to the delay and cost
of the development of new drugs and may limit the feasibility of finding optimal regimen
characteristics. Here, we demonstrate how modeling the chemical kinetics of drug-target
binding can identify the best time-concentration profile of antibiotics. Using both analyti-
cal approaches and numerical simulations, we find that the physicochemical characteristics
of drug-target binding are sufficient to explain the pharmacodynamics of commonly used
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antibiotics such as ampicillin, isoniazid and tetracycline. In practical terms, our models can
be used as a tool in the rational design of treatment for bacterial infections. Because of the
generality of drug-target binding kinetics, these approaches may also be adapted to other
diseases where the effects of physiological fluctuations of drug concentration are also poorly
understood, such as HIV, malaria and cancer.

Introduction

The rise of antibiotic resistance underlines the need for employing existing antibiotics pru-
dently. Although antibiotic dosing regimens have been investigated for more than half a cen-
tury [1], we do not yet have a sufficient understanding of the link between drug dosing and
bacterial killing to design rational treatment strategies [2, 3]. Even for antibiotic regimens that
have been standard of care, substantial improvements in dosing levels [4], treatment frequency
[5] and treatment duration[6–8] have been made decades after their introduction. Most exper-
imental and some clinical studies investigate antibiotic concentrations at a constant or at an
average concentration. However, drug concentration at target tissues can fluctuate substan-
tially over time. These fluctuations can influence the effectiveness of treatment, with the
importance of such fluctuations differing substantially between classes of antibiotics [9].

Three alternative descriptions of effective antibiotic concentration are commonly used (so-
called pharmacokinetic drivers): i) the total concentration integrated over a given time interval
(area under the curve, AUC), ii) the peak concentration (Cmax) or iii) the time during which
the concentration exceeds a specific threshold (time above MIC, TC>MIC, Fig 1A). For some
drugs Cmax correlates best with bacterial clearance [10], for example in clinical trials with isoni-
azid [11]. Even once-weekly dosing was slightly superior to daily dosing for the novel TB drug
bedaquiline when holding total drug administration constant [12]. For rifampicin [13] and
quinolones, the total amount of drug [14] appears to be the best predictor of treatment success.
For beta-lactams, the time above the minimal inhibitory concentration (MIC) correlates best
with bacteriological response [2]. For some antibiotics, such as tetracycline, antibacterial
action depends on both TC>MIC and AUC [10]. Each of these three measures of exposure
(AUC, Cmax and TC>MIC) would be optimized by employing different dosing strategies, for
example by using large intermittent doses to increase Cmax or by employing extended release
formulations to increase TC>MIC [15].

A clear mechanistic understanding of antibiotic pharmacodynamics has not yet been achieved,
and this lack of knowledge is a major obstacle for the design of rational treatment regimens.
Treatment strategies for bacterial infections (e.g. dose levels, dosing frequency, and duration of
therapy) are usually developed based on pharmacodynamic and pharmacokinetic data collected
through expensive in vitro and in vivo studies [9, 16–18]. Specifically, the question of which phar-
macokinetic driver governs antibiotic efficacy has to be determined experimentally with hollow-
fiber systems or animal models [11, 19, 20]. This experimental information in turn can be incor-
porated into mathematical models [21], but to our knowledge there is no mathematical model
that can guide these experiments.

Thus, the development of models that can inform optimal dosing strategies from data col-
lected in early phases of antibiotic development could speed the drug development process
and help to identify promising compounds that should be prioritized [22]. Here, we extend a
modeling framework [23] that integrates bacterial population biology with the intracellular
reaction kinetics of antibiotic-target binding to investigate how the kinetics of drug-target
binding affect bacterial response to fluctuating antibiotic concentrations. We find that the
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physicochemical characteristics of drug action predict differences in antibiotic pharmacody-
namics at fluctuating concentrations and correlate well with observed data.

Results

Using three models that incorporate complexity and realism in a stepwise fashion (Fig 1), we
consider how reaction kinetics govern the expected bacterial responses to antibiotics. First, we
use a simple model that considers only drug-target binding to explore the general principles of
antibiotic-target reaction kinetics. Then, we use more complex models to simulate the action
of two specific antibiotics, ampicillin and tetracycline, under a range of different dosing strate-
gies. We assess which physicochemical characteristics of these two drugs explain their distinct
pharmacodynamic behavior and evaluate how an understanding of these physicochemical
characteristics can inform more effective dosing regimens.

Model 1: General Principles of Antibiotic-Target Reaction Kinetics

In this section, we will employ Model 1, which allows us to focus exclusively on the kinetics of
antibiotic-target binding A + TÑ AT (Model 1, Eqs (1–5)). Using this framework, we first
explore the relationship of the MIC with physicochemical parameters. We then investigate the
factors that may cause a delay in the bacterial response to antibiotics after initial exposure and
factors that may extend these responses after antibiotics are withdrawn.

MIC defined by physicochemical parameters

Recommended antibiotic dosage varies widely depending on the employed antibiotic and the
targeted pathogen. It is therefore difficult to compare antibiotic action in terms of absolute
concentrations. Typically, all measures of antibiotic efficacy are defined relative to the MIC of
the specific bacteria/drug pair (Cmax/MIC, AUC/MIC and TC>MIC) to circumvent this prob-
lem. To be able to use a modeling framework based on physicochemical characteristics of drug
action, it is therefore useful to define the MIC based on physicochemical properties [23]. In
the simplest case, when we assume a constant antibiotic concentration in this framework, the
MIC depends on two parameters: the drug target affinity (KD) and the threshold of bound tar-
get (fc) at which the net growth of a bacterial population is zero (Eq (3)). Fig 2A illustrates the
expected MIC according to Eq (3) which depends on drug target affinity KD and the critical
threshold fc. The absolute concentration of antibiotic at MIC rises with the threshold occupied
target required for bacterial suppression (fc). Given any threshold level of target occupancy,
drugs with a higher binding affinity (lower KD) will require smaller concentrations to prevent
bacterial growth (lower MIC).

Fig 1. Schematic overview of descriptors of effective drug concentration and the used models. (A).
This graph shows the in vivo concentration profile after drug ingestion in arbitrary units. Three descriptors are
commonly used to predict efficacy: The time above a specific threshold, commonly the MIC (dashed line,
TC>MIC), the peak concentration (Cmax), or the area under the curve (AUC, hatched area). (B) Overview of the
used models. Model 1 (upper panel) only follows the extracellular antibiotic concentration, bound and unbound
target molecules and assumes that the antibiotic concentration remains constant over time during the period of
administration. Model 2 (middle panel) allows for fluctuating antibiotic concentrations and a diffusion barrier
between antibiotic molecules outside the cell and their intracellular targets. Model 3 (lower panel) incorporates
the reproduction of target molecules through bacterial replication and considers unspecific binding of the
antibiotic.

doi:10.1371/journal.pcbi.1005321.g001
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Onset of antibiotic action

Classical models of antibiotic pharmacodynamics typically assume that the antibiotic concen-
tration at any time point determines the net bacterial growth rate at that same time point. This
assumes both that the antibiotic acts instantaneously and that previous antibiotic exposure
has no continuing influence on bacterial growth. In reality, however, there is typically a delay
between initial exposure and antibiotic effect and there may also be post-antibiotic period in
which bacterial growth remains suppressed even after the antibiotic is removed from the extra-
cellular space. Here we use our modeling framework to understand how the onset and end of
antibiotic action are affected by the physicochemical properties of drug-target binding. We use
the reaction kinetics of drug target binding (Eq (4)) to show the dynamics when the antibiotic
is applied at a concentration slightly above MIC (1.01 x MIC). We use this concentration for

Fig 2. Delay to onset of antibiotic action depends on turnover rate and target occupancy at MIC. (A) A
definition of the MIC based on physicochemical characteristics. This graph shows the expected MIC in mol/L
(based on Eq (3), y-axis) as a function of target occupancy at MIC (fc, x-axis). The colors indicate different
affinities of drug target binding (KD). Blue: KD = 10−7 M, yellow: KD = 10−6 M, green: KD = 10−5 M. (B) This graph
illustrates the time course of drug-target reaction (based on Eq (4)) for various parameter sets and a fixed
antibiotic concentration just above MIC (1.01 x MIC). Dotted lines: Slow turnover rate of antibiotic-target binding
with half-life of drug-target complex tbound = 1h 55 min (kr = 10−4). Solid lines: Fast turnover rate of antibiotic-
target binding with half-life of drug-target complex tbound = 11.5 min (kr = 10−3). The colors indicate different
target occupancies at MIC. Red: fc = 90%, Dark blue: fc = 50%, Yellow: fc = 10%. The grey lines at 90%, 50%
and 10% indicate the fc, the threshold of bound target required to kill/inactivate the cell. The light blue solid and
dotted vertical lines indicate when the fast and slow reactions reach the fc, i.e. the time of onset of the antibiotic
action (tonset).

doi:10.1371/journal.pcbi.1005321.g002
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illustration purposes because at this concentration, the critical fraction of binding fc is reached
in finite time, but never substantially exceeds this threshold. (The influence of higher concen-
trations is explored in Fig 3.)

The different scenarios in Fig 2B illustrate the time course of drug-target binding at the
same concentration relative to the MIC, but different absolute antibiotic concentrations. From
the limited number of studies in which antibiotic-target dissociation rates have been directly

Fig 3. The benefit of high drug concentrations depends on the velocity with which the reaction reaches
equilibrium. These graphs show the dependence of the onset of antibiotic action as measured in time required for
reaching the threshold fc on the drug concentration in fold-MIC. It is based on Eq (5). (A) Illustration of scenarios with
different thresholds fc with a constant drug target half-life tbound of 36.5 min (kr = 10−3.5). Blue: fc = 10%, yellow: fc =
50%, green: fc = 90%. (B) Illustration of scenarios with different drug target half-lives tbound with a constant threshold
fc = 50%. Blue: tbound = 11.5 min (kr = 10−3), yellow: tbound = 36.5 min (kr = 10−3.5), green: tbound = 1h 55min (kr = 10−4).

doi:10.1371/journal.pcbi.1005321.g003
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measured, we assume that these rates range between 10−3/s and 10−4/s [24, 25]. Slower turn-
over of drug-target binding (i.e. a longer half-life of the drug-target complex) is associated
with a delayed onset of action (compare Fig 2B dotted to solid lines).

Surprisingly, we find that the system approaches equilibrium more quickly when fc is
higher. This effect can be explained as follows: The absolute antibiotic concentration at
MIC rises sharply with the threshold fc, and can map to very different absolute drug con-
centrations (see Fig 2A). Initially, only the forward reaction is relevant when a negligible
amount of target is bound and proceeds with the rate kf[A][T0] (i.e. as the product of for-
ward reaction rate, antibiotic concentration and target molecule concentration). Under
conditions where the antibiotic concentration is held constant, the equilibrium fraction

of bound target [A] is given by âATäeq à
âAä

âAäáKD
and asymptotically approaches 1. Therefore,

the velocity of the reaction increases more quickly than the fraction of bound target at equi-
librium. This produces a paradoxical finding: when dosing antibiotics at the same levels
relative to their respective MIC, those that require a high threshold of bound target to be
effective are expected to act more quickly (Fig 2B).

The delay until an antibiotic is effective depends on many physiological and biochemical
factors. Since this model focuses on the reaction kinetics alone (ignoring diffusion barriers and
concentration gradients), Model 1 provides a lower bound for the expected delay until onset of
antibiotic action. Even here, for reasonable parameter settings, we find that even this delay can
extend for several hours. One potential approach for speeding antibiotic-target binding and
reducing delay to onset of action is to increase antibiotic exposure through higher dosing.
Lower thresholds and slower turnover are associated with delays until antibiotic action; these
effects can be overcome by increasing the drug concentration (Fig 3). The light blue solid and
dotted vertical lines in Fig 2B indicate when the fast and slow reactions reach the fc, i.e. the
time of onset of the antibiotic action (tonset), and can be compared to the blue and green lines
in Fig 3B at 1.01MIC. When the antibiotic-target reaction equilibrates slowly, a high dose of
antibiotic is especially beneficial and minimizes the opportunity for additional bacterial repli-
cation events prior to onset of antibiotic action.

End of antibiotic action

Bacterial growth often remains suppressed after the antibiotic concentration drops below
the MIC (i.e. the post-antibiotic effect). This effect occurs because drug-target complex dis-
sociation is not instantaneous. Therefore, high drug concentrations that saturate the target
beyond the threshold required for antibiotic action fc may have additional benefits if they
extend bacterial suppression beyond the time that the antibiotic concentration exceeds the
MIC.

We use our model to identify the conditions in which high antibiotic concentrations are
expected to prolong antibiotic action. For simplicity, for these simulations we assume that at
the time of antibiotic withdrawal, 99.9% of the target is bound and that the antibiotic concen-
tration both inside and outside of the bacterial cell immediately drops to zero. Under these
assumptions, Eq (1) can be simplified and the unbinding of the antibiotic corresponds to a
simple exponential decay. Fig 4 illustrates the expected dissociation of the drug-target complex
for antibiotics with different half-lives tbound. When the threshold required for antibiotic action
fc is very high, the antibiotic stops working very rapidly and the length of the post-antibiotic
effect is brief and relatively insensitive to the half-life of the drug-target complex. Conversely,
when there is both a low threshold and a slow turnover time of drug-target binding, the post-
antibiotic period may last for several hours.

Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005321 January 6, 2017 7 / 28



Model 2: Onset and End of Antibiotic Action Determine
Pharmacodynamic Properties of Ampicillin and Isoniazid

Next, we investigate the dynamics of drug target binding under different dosing regimens. We
use ampicillin as an example, because a large body of literature describes the time-dependent
action of beta-lactam antibiotics, both in experimental models as well as in patients [26–30]. In
addition, the reaction kinetics of drug-target binding are relatively well established. To investi-
gate the generality of our findings, we then simulate the reaction kinetics of isoniazid, a pro-
drug that accumulates in the bacterial cell.

Model 2a: Ampicillin

Beta-lactams acetylate penicillin-binding proteins (PBPs, the target molecules), and thereby
inhibit cell wall synthesis. The acetylation of PBPs consumes beta-lactams, and therefore the
drug-target reaction is not reversible. However, PBPs are constantly de-acetylated and the
effects of the antibiotic are therefore reversible. The kinetics of PBP acetylation and de-acetyla-
tion as well as target occupancy at MIC have been determined experimentally (Table 1). In sin-
gle cell experiments, ampicillin has no detectable sub-MIC activity (S1 Fig) so we assume that
antibiotic is effective only while the fraction of bound antibiotic exceeds fc.

To explore whether TC>MIC, AUC or Cmax are the best predictors of antibiotic efficacy, we
model three simplified dosing strategies: i) an idealized bolus injection where the drug concen-
tration immediately reaches its peak and then declines exponentially, ii) a hypothetical phar-
macokinetic curve where the antibiotic concentration is maintained just above the MIC (1.01x
MIC) for the same length of time>MIC as in i) and then falls instantaneously to 0, and iii) a
curve of similar shape to ii) that retains the same area under the curve as i) (see Fig 5A). In ii),
the time above MIC is identical to i) but we eliminate the excess binding that occurs because of

Fig 4. Turnover rate and target occupancy at MIC determine end of antibiotic action. This graph illustrates
the time course of drug-target dissociation after 99.9% of the target was bound according to an exponential decay
âAT ä
âAT äáâTä à 99:9 e�kr t. Blue: tbound = 11.5 min (kr = 10−3), yellow: tbound = 36.5 min (kr = 10−3.5), green: tbound = 1h 55min

(kr = 10−4). The grey lines at 90%, 50% and 10% illustrate when the fraction of bound target falls below a particular
threshold fc.

doi:10.1371/journal.pcbi.1005321.g004
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the initial high peak in i). In iii), the AUC is the same as in i) but instead of the high peak con-
centration, there is a significantly prolonged TC>MIC. In other words, all graphs in the middle
column of Fig 5 have the same time > MIC as those in the left column, and all graphs in the
right column have the same AUC as those in the left column.

First, we investigate whether our modeling framework can reproduce the time-dependent
action of beta-lactams based on the known physicochemical characteristics of the drug and
its target. Fig 5A shows numerical simulations of Eq (6) using experimentally determined

Table 1. Parameters and references.

Target Antibiotic Parameter Value References

Ribosome - Copy #/cell 55000
[~104−105]

[31–33]

Tetracycline KD
a) 1.1–3.2 x 10−6

M
[34]

kf
b) 3 x 105 M-1 s-1 [35]

kr = KD x kf
c) 0.33–0.96 s-1

fc 0.98 [23]

p 1.2 x 10−2 s-1 [23]

Penicillin binding proteins
(PBPs)

- Copy #/cell ~ 2500 ± 120 [36, 37]

Ampicillind) Irreversible

kf 130 ± 1 M-1 s-1 [25]

Deacetylation rate (ka) 1 x 10−4 s-1 [25]

fc 0.954 [38]

p Location outside cytosol- assumption:
no diffusion barrier

enoyl acyl carrier protein
reductase (inhA) e

Isoniazid (all values for M.
tuberculosis)

rate of drug activation (INH +NAD
-> INH-NAD)8)

1.8 x 10−6 s-1 [39]

KD 10−7 M [40]

kf = kr/ KD 2.8 x 103 M-1

s-1
[24][24][24][24]

kr 2.8 x 10−4 s-1 [41]

fc 0.6 [23]

h (length M.tb) 3 um [42]

R (width M.tb) 0.35 um [42]

L (thickness cell wall M.tb) 15 nm [43]
f Dw (diffusion coefficient through

M.tb cell wall)
1�10−10 dm2s-1 [44, 45]

aTetracycline binds reversibly to six sites in the ribosome. However, one primary target site binds most strongly and is most responsible for inhibition of

translation [34, 46, 47]. For 70S particles, the equilibrium constant KD for this site is in the range of 1.1–3.2 μM, depending on Mg2+ concentration.
bThe apparent association rate of tetracycline (summing over several binding sites) to the ribosome was estimated to be ~3 x 105 M-1 s-1 [35]. For simplicity,

we assume here that the primary binding site alone is responsible for antimicrobial activity and its association rate is equal the apparent association rate.
cThe dissociation rate was to our knowledge never directly measured, and we calculated it from the KD and the association rate.
dBinding rates for PBP1a are given. In Staphylococcus aureus, the binding rates did not differ substantially between different classes of PBPs, so we

assume that the binding rates are equal for all PBPs [38].
eFor both InhA and the drug-activating enzyme, KatG, the number of molecules per cell is unknown. Instead, we chose the average number of proteins in E.

coli cells from [48].
f The flux throughout the cell wall is J à �Dw @âCä

@x
⇡ � Dw

L
âCä

e
� âCä

i

� �
; and the permeability p is: p à Dw

L

A

Vi

1
sec

� �
where A is the cell surface and Vi the

intracellular volume.

doi:10.1371/journal.pcbi.1005321.t001
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Fig 5. Biochemical properties shape antibiotic pharmacodynamics. These graphs show the expected dynamics of antibiotic-target reaction
according to model 2 with all parameters adapted to ampicillin except stated. The x-axes show the time after initiation of antibiotic therapy in hours, the y-
axes the current antibiotic concentration in fold MIC (black, left side) and the % bound target (violet, right side). Note that the y-axis is on a logarithmic
scale. The green line shows the antibiotic concentration outside and the red inside the cell (both refer to the y-axis on the left), the violet line shows the
amount of bound target (refers to y-axis on the right). The grey area indicates that either the antibiotic concentration is below MIC or the fraction of bound
target is below the inhibitory threshold fc. The dotted vertical lines indicate beginning and end of antibiotic action. Graphs in the first column depict bolus
injections with an initial antibiotic concentration of 50MIC and a half-life of 1h. The second column shows a hypothetical dosing regimen with a constant
concentration just above the MIC (1.01 MIC) that has the same TC>MIC as in the first column. The third column shows a hypothetical dosing regimen with
a constant concentration just above the MIC (1.01 MIC) that has the equivalent area under the curve (AUC) as in the first column. Note the different
timescale in the third column. (A) Biochemical properties are sufficient to explain time-dependent action of beta-lactams. The graphs show drug-target
binding expected based on physicochemical characteristics of ampicillin drug-target binding from the literature (Table 1). (B) Area under the curve is best
predictor of antibiotic action for equilibration times in the range of hours. We introduced a diffusion barrier of p = 10-4s-1 while all other parameters remain
as in (A). (C) Peak concentration is best predictor of drug action when equilibration is slow. We introduced a stronger diffusion barrier of p = 10-5s-1 while
all other parameters remain as in (A).

doi:10.1371/journal.pcbi.1005321.g005
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parameters (see Table 1). Note that this equation includes diffusion across the bacterial cell
envelope. However, penicillin-binding proteins are either located in the cell envelope or in
case of gram-negatives in the periplasm, and we therefore assume here that the diffusion bar-
rier to the target is negligible. We adapted Eq (6) to describe the consumption of beta-lactams
during target acetylation by dropping the backward reaction term kr[AT] for the differential
equation describing the intercellular antibiotic [A]i. For all three dosing strategies, antibiotic
action starts immediately after the drug concentration rises above MIC and stops as soon as
the drug concentration falls below MIC, i.e. increasing the AUC alone without increasing
TC>MIC does not change antibiotic action substantially (compare Fig 5A left and right panel).
This is in accordance with the observation that the efficacy of beta-lactams strongly depends
on the time above MIC. Taken together, we can reproduce time-dependent action of beta-lac-
tams solely based on reaction kinetics. The high threshold required for activity as well as the
extracellular location of the target lead to a fast onset of drug action as the antibiotic concentra-
tion rises above the MIC and a nearly immediate end of antibiotic action as the antibiotic con-
centration drops below the MIC. To illustrate the different dynamics of bolus injections and
constant dosing, we visualize time course of ampicillin action for a bolus injection in S1 Movie
(Fig 5A, left panel) and for a constant concentration in S2 Movie (Fig 5A, middle panel).

Beta-lactams are the antibiotic class for which time-dependent action is most widely
accepted, and we can reproduce their time-dependent action with our model. This suggests
that physicochemical characteristics may be responsible for this behavior. For most other
antibiotic classes, antibacterial efficacy is better correlated with AUC or Cmax [13, 14]. We
hypothesized that alteration in specific physicochemical parameters could generate AUC and
Cmax-dependent action. To investigate this hypothesis, we modified the parameters for ampi-
cillin one at a time to determine whether, through such parameter modification, we could
reproduce AUC and Cmax-dependent action. Because antibiotic treatments are usually given
over several days and the time between individual doses is typically in the range of hours, we
first investigated parameter changes that produce an equilibration time of several hours. For
example, if the drug must diffuse across a cell envelope with a diffusion rate of p = 10−4 /s, this
leads to a half-life of free intracellular drug of 1h 55min. Fig 5B shows a comparison of the
same dosing strategies as used for the upper panel (Fig 5A) with this additional diffusion bar-
rier. With such a strong diffusion barrier the antibiotic concentration inside the cell also
remains above MIC after a bolus injection of 50x MIC for several hours because antibiotic
molecules are retained within the cell. Consequently, the activity after such a bolus administra-
tion can be extended by several hours (Fig 5B). However, the diffusion barrier also delays the
onset of antibiotic action. This delay is dependent on the antibiotic concentration, the left
panel of Fig 5B shows a delay of 14 minutes while the right panel shows a delay of 13h. This is
because the equilibration of intra- and extracellular concentration is slower when there are
smaller differences between the concentrations outside and inside the bacterial cell. If the
antibiotic dose is only slightly above MIC, >10h are required to reach the threshold for inhibi-
tion fc (Fig 5B, right panel). Thus, a dosing strategy with an equivalent time>MIC as the 50x
MIC bolus administration will never achieve bacterial suppression, while a dose with an equiv-
alent area under the curve is approximately 5.4 times more effective than the bolus injection
(bolus injection: antibacterial activity from 14min to 11h9min, constant concentration with
same MIC: activity from 13h to 71.5h). S2 Fig shows the dynamics when keeping Cmax con-
stant but varying the drug half-life. Again, we would expect beta-lactam action to start imme-
diately and end immediately when the drug falls below MIC; however, for an antibiotic with
a substantial diffusion barrier, we would expect delays until the onset and cessation of drug
action.
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This behavior is not limited to slow equilibration rates due to diffusion barriers. Earlier, we
identified two parameters that affect the onset and the end of antibiotic action: target occu-
pancy at MIC (fc) and the half-life of the drug-target complex (tbound). A long exposure to
ampicillin at MIC is expected to result in a target saturation that just reaches the critical thresh-
old fc = 95.4% [38] at equilibrium. After withdrawal of the drug, the target saturation would
immediately fall below this critical threshold and the antibiotic would no longer be active. The
duration of antibiotic action might be extended with higher drug concentrations since this
would produce higher target saturation and lead to a longer delay until the fraction bound tar-
get falls below the critical threshold fc. However, increasing the target saturation at the begin-
ning from 95.4% to 99.9% is expected to extend the action of ampicillin only by about 9

minutes (0:999 lnÖfcÜ
�kr

). On the other hand, if the critical threshold fc was 10% instead of 95.4%,

achieving a target saturation of 99.9% would extend the expected time of antibiotic action by
over 6h. Similarly, if the rate of de-acetylation is decreased 10-fold (kr = 10−5), the expected
duration of antibiotic action after achieving a target saturation of 99.9% is extended by over
1.5h. Changing both parameters to values that result in equilibration rates in the range of
hours leads to the same qualitative behavior as when the equilibration rate is in the range of
hours because of a diffusion barrier (S3 Fig). Thus, our model predicts that changing a single
physiochemical parameter (equilibration times to the range of hours) has major impact on
pharmacodynamics: instead of TC>MIC alone, the AUC becomes another predictor of antibiotic
efficacy and both are needed to predict antibiotic action. S1 Movie and S2 Movie illustrate the
time course of the action of a hypothetical antibiotic that has the same binding and de-acetyla-
tion rates as ampicillin, but where the antibiotic must cross a diffusion barrier with p = 10−4 /s
and a threshold of fc = 10%. As in S1 Movie and S2 Movie, we compare a bolus injection (S3
Movie) and a concentration with the same time above MIC (S4 Movie).

We now examine the consequences of slow drug equilibration rates (i.e. in the range of
days) on predicted antibiotic pharmacodynamics. We slow the diffusion rate across the bacte-
rial cell envelope to p = 10−5, which corresponds to a half-life of 19h 15min. In this case, the
antibiotic concentration inside the cell remains above MIC after a bolus injection of 50x MIC
for a day. Exposure to the antibiotic at a concentration only slightly above MIC (1.01 x MIC) is
insufficient to achieve the required amount of bound target, even when maintained for several
days (Fig 5C). Thus, in situations where antibiotics are expected to equilibrate slowly, a high
peak concentration is necessary to achieve antibiotic action and the Cmax is expected to be the
best predictor of antibiotic action.

Model 2b: Isoniazid

We further tested this finding by investigating the reaction kinetics of a drug with a very differ-
ent mechanism of action: the antitubercular pro-drug isoniazid (INH). In this case, target
binding occurs after drug activation to the adduct INH-NAD which depends on NAD content
and oxygen saturation. Importantly, the majority of the active drug INH-NAD remains in the
mycobacterial cell and is not able to cross the cell envelope [49, 50].

Because INH-NAD remains in the cell, the expected amount of bound target does not
decline even when the external concentration of INH declines. We therefore interpret treat-
ment success here as the required time to reach fc, i.e. the expected time after which an average
bacterium is killed. Again, we can reproduce experimental and clinical findings that INH treat-
ment efficacy is significantly correlated with both Cmax and AUC in univariate regressions (Fig
6). S1 Table gives an overview of all parameters combinations used in the simulations.

In a multivariate regression, only Cmax is significantly correlated with the time to reach the
required threshold to kill bacteria (S4 Fig), although the best model according to the Akaike
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Information Criterion includes all three pharmacokinetic indices. Due to the prodrug-activa-
tion, it takes several hours to reach the threshold required for killing, and this delay can be
reduced with high peak concentrations. Since the active drug, INH-NAD, is trapped inside the
cell, the intracellular drug concentration does not decrease when the external concentration
decreases. Therefore, it is not necessary to keep the external pro-drug concentration above
MIC for the drug to be active.

Model 3: Antibiotic Action below MIC Modifies Pharmacodynamic
Properties of Tetracycline

The time above the MIC is expected to be a reasonable predictor of antibiotic action in situa-
tions where antibiotic concentrations below the MIC have little effect on bacteria. For example,
cells exposed to 80% MIC ampicillin show no measurable defect in either growth or elongation
rates, and all cells remain intact (S1 Fig). In contrast, translation inhibitors such as chloram-
phenicol and tetracycline do affect bacterial growth below MIC, and it has previously been
shown a nearly complete suppression of growth at 80% MIC [23]. When fitting Eq (10) to data
from single cells exposed to constant sub-MIC concentrations of antibiotics [23], it has previ-
ously been estimated that a high threshold of bound ribosomes must be met to interrupt all
bacterial growth (fc = 98%) and that there is a low diffusion barrier (p = 1.2x 10−2/s). Experi-
mental values from the literature suggest a short half-life of the drug-target complex (Table 1).
Based on the values of these parameters, we expect that the TC>MIC should be the best predic-
tor of tetracycline effects. However, experimental and clinical evidence suggests that both
AUC and TC>MIC determine the efficacy for tetracycline [23]. Accordingly, we used Model 3
(Eq (10) populated with parameters for tetracycline), to investigate how sub-MIC activity
affects antibiotic pharmacodynamics under different dosing strategies.

Fig 7A shows simplified pharmacokinetics of a tetracycline bolus injection with initial concen-
trations ranging from 0.1–5 x MIC. Fig 7B shows the effects of dosages above MIC on the bacte-
rial growth rate. Given the low diffusion barrier, bacterial growth is completely suppressed as long
as the antibiotic concentration is retained above MIC. As soon as the antibiotic concentration

Fig 6. Correlation between pharmacokinetic drivers and time until average cells are predicted to killed with isoniazid. This graph shows the
time until the threshold fc is reached after simulated bolus injections (model 2b) of 5-100x MIC isoniazid (typical Cmax values during therapy are at around
25x MIC [51, 52]) and a half-life of 0.5 – 4h. We used experimentally determined values for the MIC (0.1mg/l) for M. tuberculosis [53]. The different
panels show the correlation between the time until the threshold is reached and different pharmacokinetic measures: (A) time above MIC; (B) area under
the curve; (C) Cmax. We correlated the logarithm of tonset with the logarithm of the three pharmacokinetic indices in single linear regressions.

doi:10.1371/journal.pcbi.1005321.g006
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falls below MIC, bacterial growth immediately resumes and continues to increase in rate as the
antibiotic is cleared. Thus, when considering pharmacokinetic measures that correlate with the
complete suppression of bacterial growth, the time above MIC is the best predictor of antibiotic
action. However, the model also suggests that sub-MIC concentrations may substantially affect
the total expected bacterial load over 24h (Fig 7C).

Accordingly, our model predicts that TC>MIC may be an imperfect predictor of antibiotic
action (at least as measured by its effect on the total bacterial burden over 24h) since sub-MIC
exposure can impact expected bacterial burden (first 5 data points in Fig 8A, highlighted in

Fig 7. Antibiotic action of tetracycline used in different concentrations. These graphs show results of numerical simulations of Eq
(10) parameterized with previously fitted values [23]. The x-axis shows the time in hours after antibiotic administration. The different
colors indicate the initial antibiotic concentration in fold MIC (see legend). (A) Simplified pharmacokinetics (first-order clearance) of a
tetracycline bolus injection with a half-life of 6h. The y-axis indicates the antibiotic concentration in fold MIC. The grey shaded area
indicates an antibiotic concentration below MIC. The vertical dotted lines indicate when the antibiotic concentration for different dose
levels falls below MIC. (B) Effect of supra-MIC doses on bacterial growth rate (y-axis). Again, the vertical dotted lines indicate when the
antibiotic concentration for different dose levels falls below MIC. (C) Effect of sub-MIC concentrations of tetracycline on bacterial
population size (y-axis).

doi:10.1371/journal.pcbi.1005321.g007
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Fig 8. Time above MIC is insufficient predictor when sub-MIC concentrations are biologically active. These graphs show results from the
numerical simulations shown in Fig 7. Antibiotic efficacy is measured in fold reduction of total bacterial load during 24h normalized to a bacterial
population growing in the absence of antibiotics. Blue = peak concentration <MIC, red = peak concentration >MIC. The lower panels in (A) and (B)
show sub- and supra-MIC concentrations separately for clarity. (A) This graph shows the correlation between TC>MIC and antibiotic efficacy. (B) This
graph shows the correlation between area under the curve and antibiotic efficacy.

doi:10.1371/journal.pcbi.1005321.g008
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blue). In contrast, for antibiotic dosages above MIC, TC>MIC correlates well with efficacy (last
5 data points in Fig 8A, highlighted in red), however, it should be noted that the overall effect
is very small. Nevertheless, in a treated patient with low remaining bacterial burden the addi-
tional killing of few bacteria can make the difference between cure (i.e. extinction of bacterial
population) or relapse. Our model is deterministic and therefore cannot capture extinction,
however, depending on the initial population size a very small frequency of survivors that
translates to less than one bacterium effectively means extinction. Over a wider range of antibi-
otic dosages in bolus injection, the area under the curve correlates more strongly with antibi-
otic effects because it is a measure that also reflects actions that occur below MIC (Fig 8B).

Discussion

It is well known that certain pharmacokinetic measures (i.e. AUC, Cmax or TC>MIC) are better
predictors of the pharmacodynamics of some antibiotics than of others, but we currently have
limited quantitative understanding of the mechanisms that drive this phenomenon. In this
paper, we extend a model that links chemical reaction kinetics to bacterial population biology
[23] and suggest a potential mechanistic explanation for this phenomenon.

Based on this model, we suggest how physicochemical and biochemical characteristics of
drug-target interaction may shape antibiotic dose response curves. Differences in characteris-
tics between antibiotics offer a compelling explanation for the observation that different mea-
sures of drug exposure correlate best with antibacterial activity. Specifically, we identified four
factors that govern patterns of drug effects: i) the half-life of the antibiotic-target complex, ii)
the diffusion barrier between extracellular antibiotic and its target, iii) the threshold of bound
target required to suppress bacterial growth (i.e. target molecule occupancy at MIC) and iv)
drug effects when the antibiotic is present only at sub-MIC levels.

The first three factors, the half-life of drug-target complex, the diffusion barrier and the
threshold required for bacterial suppression, all influence the time until the antibiotic starts
and stops acting (i.e. the equilibration rate of the reaction). When the onset of action of an
antibiotic is rapid, we expect that achieving drug concentrations just above MIC should be suf-
ficient to trigger the antibacterial effect. If an antibiotic stops acting quickly, antibiotic effects
should cease as soon as the concentration falls below MIC. In these circumstances, we expect
that the time above MIC would be a good measure for antibiotic efficacy. We demonstrated
that our model, when parameterized with relevant drug-target binding data from the litera-
ture, can reproduce such time-dependent pharmacodynamics of ampicillin. Beta-lactams are
somewhat unique in that their targets are located outside the cytosol [54]. Therefore, there is
negligible diffusion barrier between the antibiotic molecules surrounding a bacterial cell and
their targets. Our model predicts that this leads to a fast onset and end of antibiotic action.
Also, almost all target molecules are occupied at MIC [38], and we demonstrate here that this
also should lead to a rapid onset and cessation of antibiotic activity. Time-dependent efficacy
of beta-lactams is well established both experimentally and clinically. For example, it is recom-
mended that beta-lactams are given as continuous infusion rather than bolus injections [27].

For most other antibiotic classes, antibacterial efficacy is correlated with AUC or Cmax [10,
14]. Many antibiotics have targets that are located in the cytosol (e,g. ribosomal-targeting anti-
biotics such as streptomycin or gyrase-targeting antibiotics such as ciprofloxacin). Also, unlike
beta-lactams, many antibiotics will have effects before the majority of target molecules are
bound. We therefore investigated whether our model can also reproduce concentration-
dependent patterns of antibiotic action, in which antibiotic efficacy is best described by either
Cmax or AUC.
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Indeed, our model predicts that the TC>MIC is not highly correlated with treatment efficacy
when the time until an antibiotic starts and stops being active (i.e. the equilibration time) is in
the range of hours or longer. The delay until an antibiotic is effective depends on many physio-
logical and biochemical factors. Here, we focus on the reaction kinetics alone, which provide a
lower bound for the expected time to onset of antibiotic action. We note that even these lower-
bound estimates may be as long as a few hours, potentially permitting several additional gener-
ations of bacterial replication. We would therefore suggest high doses, at least initially, for anti-
biotics that: 1) act at low thresholds of bound target; 2) diffuse only slowly through the cell
envelope; or 3) have a slow turnover rate (i.e. a long half-life of drug-target binding). A similar
argument can be made for the anti-tuberculosis drug isoniazid, which is a prodrug that is acti-
vated by bacterial cells. The activation rate of the drug alone is sufficient to explain the slow
onset of action of the drug [23], and this delay can likely be reduced with higher antibiotic
doses. Indeed, the efficacy of isoniazid has been linked to high peak doses [55], a finding we
were able to reproduce here. Additionally, when equilibration rates are slow, higher dose of
antibiotics can extend the action of the antibiotic beyond the time the antibiotic concentration
outside the bacteria exceeds the MIC. Thus, high doses have the additional benefit of prolong-
ing the post-antibiotic period for antibiotic-target pairs that equilibrate slowly. In isoniazid,
this extension of drug action predicted by our model is especially pronounced, because the
drug is trapped in the cell such that declining external drug concentrations have little effect. In
principle, these delays in onset and end of action are a similar phenomenon to the concept of a
“biophase lag” [56] although the underlying mechanisms are not the same.

To examine the conditions in which each of these pharmacokinetic metrics provides the
best measure of drug effect, we compared a dosing strategy with a high peak concentration
that facilitates rapid onset of an antibacterial effect with a dosing strategy that has an equivalent
AUC, but a lower peak concentration and a substantially longer exposure time (Fig 5). If an
antibiotic equilibrates slowly, the onset of antibiotic action at low doses is so delayed that the
required fraction of bound target cannot be reached before the antibiotic falls below MIC in
the low dose/long exposure strategy (Fig 5). Obviously, the exact parameter ranges in which
this is the case depend on the definition of “long” (in our case, days). If equilibration is too
slow compared to the relevant timeframe (for example due to the accumulation of activated
isoniazid in the cell), we would expect that Cmax is a better predictor of antibacterial efficacy
than the AUC. Whether the peak concentration (Cmax) or the total exposure (AUC) is the best
predictor of antibiotic efficacy thus depends on both the observed timeframe and the equili-
bration rate.

In addition to the onset and end of antibiotic action, we found that the biological activity of
the antibiotic at sub-MIC concentrations also determines which pharmacokinetic measure
best predicts treatment efficacy. A similar argument has been made for rifampicin therapy in
tuberculosis[57]. Some antibiotics such as ampicillin (S1 Fig) have very little effect below MIC.
In contrast, some antibiotics like tetracycline have some sub-MIC activity. Clearly, the time
above MIC alone cannot predict treatment success when sub-MIC concentrations partially
suppress bacterial growth. Indeed, our model predicts that treatment efficacy with tetracycline
depends both on TC>MIC and AUC which is in concordance with clinical and experimental
studies [10].

Taken together, our mechanistic model can reproduce the pharmacodynamic characteris-
tics of both ampicillin and tetracycline. It offers an intuitive explanation for differences in opti-
mal dosing strategies between antibiotic classes. However, the parameters needed to inform
even such a simple model have not yet been measured for many antibiotic/bacterial pairs. We
note that most of the kinetic measurements for antibiotic-target binding were published
decades ago [24, 34, 35]. To our knowledge, beta-lactams are the only antibiotic class for
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which target occupancy at MIC has been experimentally determined. Furthermore, the num-
ber of target molecules per cell and especially the concentration of free antibiotic at the target
site are rarely known, despite being a focus of active research in tuberculosis [58–61]. We sug-
gest that experiments to address these knowledge gaps should be prioritized as the results of
these studies could inform new approaches for the rational dosing of antibiotics.

Identifying optimal antibiotic dosing strategies is challenging and in this paper we have
addressed only a subset of the considerations that must be accounted for when determining
treatment recommendations. For example, antibacterial efficacy and toxicity must be balanced
and the frequency of dosing may affect adherence; these are important factors that should
doubtless affect treatment recommendations. In addition, our simple models do not consider
host immune responses to infection, which may further modify our expectations regarding
treatment success [57, 62, 63]. Nevertheless, given the urgent need to preserve the efficacy
of existing antibiotics and the need to develop new agents [64], we see a promising role for
mechanistic models that can suggest the most promising dosing strategies based on the physi-
cochemical and biochemical characteristics of drug-target interactions. Such novel pharmaco-
dynamics models can also be integrated into more complex frameworks that include host
responses and more sophisticated pharmacokinetics [57, 62, 63].

Our model is general and we believe it could be usefully adapted to improve dosing strate-
gies for treatment of other diseases. For example, we note that the effects of the physiological
fluctuations of drug concentration are also poorly understood in the treatment of cancer [65],
HIV [66] and malaria [67] and similar questions arise regarding the effects of exposure to
harmful substances in toxicology [68].

Methods

Previously, we have shown that models that consider drug-target binding kinetics can explain
complex patterns of antibiotic action such as post-antibiotic effects, inoculum effects, and per-
sistence [23]. The central assumption of these models is that bacterial replication decreases
and/or bacterial killing increases with the fraction of bound target molecules. Here, we extend
this approach using three different mathematical models that incorporate additional complex-
ity and biological realism in a stepwise fashion (Fig 1B). In all these models we follow the entire
bacterial biomass rather than single cells. For our purposes here and in contrast to previous
work [23], we can simplify the model by assuming that there is negligible heterogeneity
between single cells. Table 2 lists all parameters and variables of these models.

Model 1: Drug-Target Binding Only

To build our understanding of the drug-target reaction kinetics as antibiotic concentrations
fluctuate within a host, Model 1 focuses only on the drug-target binding that occurs after

Table 2. Explanation of variables, constants and parameters.

Variables Parameters and constants

Ae Extracellular antibiotic kf Rate of forward reaction (binding of drug to target)

Ai Intracellular antibiotic kr Rate of backward reaction (unbinding of drug from target)

T Free target p Permeability coefficient bacterial membrane (per bacterium)

AT Bound target fc Fraction of free target at MIC

AU Unspecifically bound antibiotic nA Avogadro constant (6.02 x 1023)

Vi Intracellular volume (~10-15L/ bacterial cell)

K Carrying capacity (109 bacteria/ml = 1012/L)

ku,f Rate of unspecific forward reaction

ku,r Rate of unspecific backward reaction

doi:10.1371/journal.pcbi.1005321.t002
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exposure and withdrawal of an antibiotic. For Model 1 we make the following simplifying
assumptions (which are subsequently relaxed in Models 2 and 3):

1. During the time of exposure, the antibiotic concentration remains constant (assumption
relaxed in model 2)

2. There is no concentration gradient or diffusion barrier between the medium and the intra-
cellular space (assumption relaxed in model 2)

3. Target molecules are not reproduced by the bacteria (assumption relaxed in model 3)

4. Target binding is described with a single apparent association rate (and, where relevant, dis-
sociation rate); this assumption partially relaxed in model 3, where we also consider unspe-
cific (i.e. off-target) binding.

The chemical reaction of antibiotics with their targets is described by the following equa-
tion: A+TÑ AT. The intracellular antibiotic molecules A react with target molecules T with a
rate kf and form an antibiotic-target molecule complex. If the reaction is reversible, the com-
plex dissociates with a rate kr, leading to a dynamic equilibrium.

The dynamics of this system are governed by the concentrations [A], [T], [AT] rather than
the absolute number of molecules. We assume that the total concentration of target/cell [T0] is
constant. In this case, the concentration of free target can be described as [T] = [T0] − [AT].
Assuming that cells are treatment-naïve, i.e. there are no bound target molecules at the begin-
ning, the kinetics of antibiotic-target reaction can then be described by a single differential
equation, which can be simplified if we assume the intracellular antibiotic concentration [A] is
constant:

dâAT ä
dt
à kf Aâ ä âT0ä � âAT äÖ Ü � kr ATâ ä Ö1Ü

and solved as:

ATâ ä tÖ Ü à
kf âAäâT0äÖ1� e�Ökrákf âAäÜtÜ

kr á kf âAä
Ö2Ü

At a certain point, the fraction of bound target reaches a critical threshold at which the net
growth of the bacterial population is zero. In this framework, the MIC is characterized as the
minimal antibiotic concentration at which this critical percentage of bound target, fc, is
reached. Thus, the MIC is the antibiotic concentration at which the equilibrium fraction of
bound antibiotic is exactly fc: i.e.
âAT äMIC
âT0 ä
à fc. After simplifying, this yields:

MIC à KDfc

1� fc
Ö3Ü

with the affinity constant KD à kr
kf

.

Expressing all antibiotic concentrations as fold-MIC (xMIC) and thereby replacing [A] with

MIC KDfc
1�fc

, Eq (2) can then be transformed:

ATâ ä tÖ Ü à fcT0xMIC
1� fcÖ1� xMICÜ 1� e�

kr Ö1�fcÖ1�xMICÜÜt
1�fc

⇣ ⌘
Ö4Ü
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The time to the onset of antibiotic action, i.e. the delay until the fraction of bound target
first exceeds fc after antibiotic administration, can be expressed as:

tonset à
fc � 1

krÖ1á fcÖxMIC � 1ÜÜ log �ÖxMIC � 1ÜÖfc � 1Ü
xMIC

✓ ◆
Ö5Ü

Model 2: Drug-Target Binding with Diffusion Barrier and Bolus
Injection

We next extend Model 1 to allow for fluctuating antibiotic concentrations after bolus dosing
and to account for diffusion across the bacterial cell envelope. (These extensions effectively
relax the first two assumptions for Model 1).

Model 2a: Ampicillin

Model 2 includes the following compartments: Ae, the number of extracellular antibiotic mole-
cules, Ai, the number of intracellular antibiotic molecules, T, the number of free target mole-
cules, and AT, the number of drug-target complexes. For bolus injections, the model is
described by the following set of equations:

dAe

dt
à � lnÖ2Ü

tcl
Ae � p Ae

Vi

Ve
� Ai

✓ ◆

dAi

dt
à p Ae

Vi

Ve
� Ai

✓ ◆
�

kf

nAVi
AiT á krAT

dT
dt
à �

kf

nAVi
AiT á krAT

dAT
dt
à

kf

nAVi
AiT � krAT

Ö6Ü

To model an alternative drug administration approach in which the antibiotic concentra-
tion is maintained at a constant level c and after a specified time (tend) is assumed to fall instan-
taneously to 0 (i.e. intravenous dosing), the extracellular antibiotic concentration is given by:

Ae à
c for t < tend

0 for t � tend

Ö7Ü
(

We express the antibiotic concentration as fold-MIC (xMIC) using Eq (3). The terms
describing the chemical kinetics of drug-target reaction are equivalent to Eq (1). In addition,
we describe the diffusion through the cell envelope with a permeability coefficient p depending
on the concentration difference inside and outside of the bacterial cells and the clearance of
the extracellular antibiotic; its half-life is tcl. In our simulations, drug binding and diffusion
from extra- to intracellular space changes the dynamics of external drug concentrations negli-
gibly, even though this may change at very high bacterial loads with a high number of targets
per cell [69].

Model 2B: Isoniazid

Here, we use the same equations and parameters as in Figure 7 in [23], extended by diffusion
across the cell envelope and a decay term that describes the elimination of the drug from the
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blood after a bolus injection with t1/2. In the case of the prodrug isoniazid (INH), target bind-
ing occurs after drug activation to the adduct INH•NAD (equivalent to A before) which
depends on NAD content and oxygen saturation. Here, we focus on INH binding to the enoyl
reductase InhA, which is then present in its inactive form InhAi. Assuming NAD and target
molecule concentration as well as oxygen saturation remain constant, the number of molecules
in each compartment is described by the following set of equations:

dINHe

dt
à � lnÖ2Ü

tcl
INHe � p INHe

Vi

Ve
� INHi

✓ ◆

dINHi

dt
à p INHe

Vi

Ve
� INHi

✓ ◆
� kNAD;O2

INHi

dINH � NAD
dt

à kNAD;O2
INHi �

kf

nAVi
INH � NAD InhA á kr InhAi

dInhAi

dt
à

kf

nAVi
INH � NAD InhA � krInhAi

Ö8Ü

This set of equations is based on (6) and we additionally model prodrug activation.

Model 3: Including Unspecific Binding and Bacterial Replication

Finally, Model 3 expands on Model 2 by allowing the reproduction of target molecules that
would occur as a result of bacterial replication and also allows for unspecific binding. (This
extension relaxes assumption 3 and partially relaxes assumption 4 in the list provided above.)
This model describes antibiotics that only suppress bacterial growth but do not increase bacte-
rial killing (i.e. bacteriostatic agents). For bacteriostatic translation inhibitors such as tetracy-
cline, the bacterial replication rate depends linearly on the fraction of free ribosomes [70]. We

therefore assume that the bacterial growth rate r is proportional to ffree à âTä
âTäáâAT ä above ff = 1- fc

and that there is no growth when the fraction of free ribosomes falls below this critical thresh-
old:

r ffree

⇣ ⌘
à

0 for ffree < ff

rno drug
1

1� ff
ffree�ff

⇣ ⌘
for ffree > ff

Ö9Ü

8><
>:

Here, we track bacterial cells B (scaled in number of cells per liter) that can reproduce until
they reach a maximal carrying capacity K, the extracellular and intracellular number of antibi-
otics Ae and Ai, and the intracellular concentration of drug-target complexes AT and unspecifi-
cally bound antibiotic AU. The rates kf and kr describe specific binding and dissociation, the
rates ku,f and ku,r describe the rates for unspecific binding and dissociation. Data indicate that
the total number of ribosomes increases linearly with cell volume; this means that the intracel-
lular concentration within a single cell between the time of its “birth” and the split into two
daughter cells remains relatively constant [31]. We can therefore write the number of free tar-
get molecules as T = BT0 − AT with T0 describing the fixed number of total target molecules
per cell. The growth of bacteria exposed to sub-MIC concentrations of a translation inhibitor
can then be described by the following set of differential equations (note that we are again
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following molecules, not molar concentrations):

dB
dt
à r B; T0; âAT ä; fcÖ Ü B 1� B

K

✓ ◆

dAe

dt
à � lnÖ2Ü

tcl
Ae � p Ae

Vi

Ve
� Ai

✓ ◆

dAi

dt
à p Ae

Vi

Ve
� Ai

✓ ◆
�

kf

nAVi
AiT á krAT � ku;f Ai Bá ku;rAU

dAT
dt
à �

kf

nAVi
AiT á krAT

dAU
dt
à ku;f Ai B� ku;rAU

Ö10Ü

Again, this equation is based on (6), in addition, we model bacterial population biology by
following the total amount of bacteria B.

Supporting Information

S1 Fig. Analysis of single cell time-lapse microscopy data for E. coli MG1655 cells exposed
to ampicillin. Cells were grown in a flow chamber supplied with medium without antibiotics
for 4 h (pre-phase, first section), exposed to antibiotic for 16h (peri-phase, middle section), fol-
lowed by growth in medium that did not contain antibiotics for 4h (post-phase, last section)).
(A) replication rate h-1; (B) elongation rate in pixel/min. Experimental mean in 5 min intervals
(thick black line), experimental mean for entire pre-, peri- and post-exposure period (blue
line), experimental minimum and maximum in 5 min intervals (thin, dotted black line), exper-
imental minimum and maximum for entire pre-, peri- and post-exposure period (blue shaded
area). 20 bacteria were observed and exposed to 6 mg/L ampicillin (0.8x MIC) for 16 h. For
details see [23, 71].
(TIF)

S2 Fig. Drug half-life and efficacy. The x-axes show the time after initiation of antibiotic ther-
apy in hours, the y-axes the current antibiotic concentration in fold MIC (black, left side) and
the % bound target (violet, right side). The green line shows the antibiotic concentration out-
side and inside the cell (assuming that there is a negligible diffusion barrier), the violet line
shows the amount of bound target (refers to y-axis on the right). The grey area indicates that
either the antibiotic concentration is below MIC or the fraction of bound target is below the
inhibitory threshold fc. The dotted vertical lines indicate beginning and end of antibiotic
action. The time the antibiotic is active, TC>MIC and AUC are given in the figure title. Graphs
in the first column depict bolus injections with an initial antibiotic concentration of 50MIC
and a half-life of 1/2h, the half-life in the second column is 1h and the half-life in the third col-
umn is 2h. All graphs show drug-target binding expected based on physicochemical character-
istics of ampicillin drug-target binding from the literature (Table 1, compare to Fig 5A). (A)
Includes no diffusion barrier, (B) includes a diffusion barrier with p = 10−4, and (C) an diffu-
sion barrier with p = 10−5.
(PDF)

S3 Fig. Biochemical properties shape antibiotic pharmacodynamics. The x-axes show the
time after initiation of antibiotic therapy in hours, the y-axes the current antibiotic concentra-
tion in fold MIC (black, left side) and the % bound target (violet, right side). The green line
shows the antibiotic concentration outside and inside the cell (assuming that there is a
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negligible diffusion barrier), the violet line shows the amount of bound target (refers to y-axis
on the right). The grey area indicates that either the antibiotic concentration is below MIC or
the fraction of bound target is below the inhibitory threshold fc. The dotted vertical lines indi-
cate beginning and end of antibiotic action. Graphs in the first column depict bolus injections
with an initial antibiotic concentration of 50MIC and a half-life of 1h. The second column
shows a hypothetical dosing regimen with a constant concentration just above the MIC (1.01
MIC) that has the same TC>MIC as in the first column. The third column shows a hypothetical
dosing regimen with a constant concentration just above the MIC (1.01 MIC) that has the
equivalent area under the curve (AUC) as in the first column. Note the different timescale in
the third column. All graphs show drug-target binding expected based on physicochemical
characteristics of ampicillin drug-target binding from the literature (Table 1, compare to Fig
5A) with the following modifications. (A) tbound = 19h 15 min (kr = 10−5). (B) fc = 10%.
(TIF)

S4 Fig. This figure shows the output of a multivariate regression of TC>MIC, AUC and Cmax

with tonset. We used the Akaike Information Criterion as implemented in the function step()
in R to identify the model that best describes the data. This function would drop all explana-
tory variables that do not improve model quality. While all explanatory variables (TC>MIC,
AUC and Cmax)were kept, only Cmax is significantly correlated with tonset. The statistical pro-
gramming software R was used, output of the function summary(step(lm())).
(PNG)

S1 Movie. Modeled effect of bolus injection of ampicillin on individual bacterial cells and
bacterial populations. These graphs show the expected dynamics of antibiotic-target reaction
according to model 2 with all parameters adapted to ampicillin (see Table 1). The left side
shows a cartoon of drug-target binding and how this affects bacterial viability. The amount of
different classes of molecules (bound, extracellular or intracellular antibiotic) is adapted such
that there are 10 target molecules/cell and at the peak 10 extracellular antibiotic molecules.
Upon reaching the required threshold, cells turn grey (dead or non-replicating). Surviving
cells or cells that were not replicating, but also not killed may restore full viability (lose the grey
shade) after the amount of bound antibiotics falls below the required threshold again. On the
right side, the Fig 5A, left panel is shown and the timecourse corresponding to the cartoon is
highlighted. The x-axis shows the time after initiation of antibiotic therapy in hours, the y-axes
the current antibiotic concentration in fold MIC (black, left side) and the % bound target (vio-
let, right side). The green line shows the antibiotic concentration outside and the red inside the
cell (both refer to the y-axis on the left), the violet line shows the amount of bound target
(refers to y-axis on the right). The grey area indicates that either the antibiotic concentration is
below MIC or the fraction of bound target is below the inhibitory threshold fc. The dotted ver-
tical lines indicate beginning and end of antibiotic action.
(MOV)

S2 Movie. Modeled effect of a constant concentration of ampicillin on individual bacterial
cells and bacterial populations. The setup is the same is in movie 1, but this movie corre-
sponds to Fig 5A, middle panel. The amount of molecules is adapted to movie 1, with excep-
tion of the amount of extracellular antibiotic. Compared to movie 1, this concentration would
amount to less than 1 molecule, and for clarity, we chose to depict one molecule.
(MOV)

S3 Movie. Modeled effect of bolus injection of an antibiotic with lower threshold and intra-
cellular target on individual bacterial cells and bacterial populations. The setup is the same
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as in movie 1, but we assume a diffusion barrier of p = 10−4 /s and a threshold fc of 10%.
(MOV)

S4 Movie. Modeled effect of a constant concentration of an antibiotic with lower threshold
and intracellular target on individual bacterial cells and bacterial populations. The setup is
the same as in movie 1, but we assume a diffusion barrier of p = 10−4 /s and a threshold fc of
10%.
(MOV)

S1 Table. This table shows all parameter combinations used for Fig 6. Note that for combi-
nations of low Cmax and short half-lives, the critical threshold could not be reached, i.e. the
dosing strategy did not have an antibacterial effect. Values are given in hours.
(DOC)
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