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Highlights 

 Physical, chemical and organic pollution are distinguished as dominant stressors

 Sediment contaminant concentrations reflect chronic to acute ecosystem impacts

 Two benthic foraminiferal assemblages were distinguished reflecting main stressors

 Organic pollution resulted in no living and low number fossilized tests

 The assemblage from an un-impacted reference site shows natural harsh conditions
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Abstract 

We investigated benthic foraminiferal assemblages in contaminated sediments in a subarctic harbor of 

northern Norway to assess their utility as indicators of anthropogenic impacts. Sediments in the harbor 

are repositories for POPs and heavy metals supplied through discharges from industry and shipping 

activities. Sediment contaminant concentrations are at moderate to poor ecological quality status 

(EcoQS) levels. The EcoQS based on benthic foraminiferal diversity reflects a similar trend to the 

EcoQS based on contaminant concentrations. Foraminiferal density and diversity is low throughout the 

harbor with distinct assemblages reflecting influence of physical disturbances or chemical stressors. 

Assemblages impacted by physical disturbance are dominated by L.lobatula and E.excavatum, while 

assemblages impacted by chemical stressors are dominated by opportunistic species S.fusiformis, 

S.biformis, B.spathulata and E.excavatum. The foraminiferal assemblage from an un-impacted nearby 

fjord consists mainly of agglutinated taxa. These assemblages provides a valuable baseline of the 

ecological impacts of industrialization in northern coastal communities.  
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1. Introduction 

Urbanization and industrialization lead to the contamination of coastal marine waters, altering the 

ecological quality of the environment. As a result, faunal assemblages in these water bodies often deviate 

from those present under natural, undisturbed conditions. With increasing environmental pressure on 

the marine Arctic, there is a need for accurate, quick and cost effective tools to monitor and assess their 

ecological quality status (EcoQS). Assessment of EcoQS is based on the extent of deviation of the 

macro-benthic community to reference conditions, following the EU legislation of the Water Framework 

Directive (WFD, 2000). Reference conditions, or environmental baselines, are site- specific due to the 

broad diversity range of ecological regions within Europe. As macro-benthic fauna leaves an incomplete 

fossil record, reconstruction of in-situ reference conditions at already impacted sites is often not possible. 

In recent years, progress has been made to test the use of other biological groups, which better fossilize 

in the sedimentary record (e.g. Alve, 1991b; Andersen et al., 2004; Borja et al., 2008). Among those 

groups, benthic foraminifera have proved as effective indicators of environmental impact (Alve et al., 

2009; Dolven et al., 2013). 

Benthic foraminifera are considered as meiofauna and live in the upper layers of the seafloor. They are 

one of the most diverse and widely distributed groups of unicellular organisms in the oceans (Murray, 

2006; Sen Gupta, 1999). They play a key role in the functioning of the benthic environment, actively 

contributing to bioturbation, ventilation of the sea floor and fate of organic matter (Gross, 2002). 

Foraminifera are sensitive indicators of environmental conditions, including both natural and 

anthropogenic alterations (Murray, 2006). In pristine environments, foraminifera are affected by 

parameters including temperature, salinity, nutrient availability, bottom substrate and dissolved oxygen 

(Murray, 2006). Anthropogenic stressors include amongst others heavy metals and polycyclic aromatic 

hydrocarbons (PAH) and organic matter enrichment. Foraminiferal reproductive cycles are short, and 

therefore their response to environmental change is fast (Kramer and Botterweg, 1991).  

As benthic foraminiferal assemblages respond to geographical location and characteristics of the 

physical environment, site specific impact studies are a critical precursor to the use of foraminifera as a 

bio-monitoring tool. Benthic foraminifera have proven to accurately reflect the impact of pollution in 

several harbors located in the Mediterranean region (e.g. Armynot du Châtelet et al., 2004; Coccioni et 

al., 2009; Frontalini and Coccioni, 2011). However, the impact of anthropogenic activities in harbors in 

the sub-arctic regions has not been extensively studied (Dabbous and Scott, 2012). The main objective 

of this paper is to examine the suitability of benthic foraminiferal assemblages as indicators of different 

environmental stressors active in a subarctic harbor. Additionally, we test the applicability of 

foraminiferal diversity as measure of EcoQS (Bouchet et al., 2012) in this high latitude environment.  

The harbor of the town of Hammerfest, Northern Norway (Fig. 1a)is an example of a harbor were various 

local pollution sources have resulted in pollution levels requiring immediate action (Pedersen et al., 

2015). By studying living and fossilized foraminiferal assemblages from this harbor, the foraminiferal 

method enables both quantification of present  and past  impact of environmental stressors active in the 
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harbor. At the same sites, the physical environment was mapped by means of grain size, total organic 

carbon and measurement of a range of heavy metals and POPs. We additionally quantified the natural 

baseline in a nearby un-impacted fjord. This dataset provides a useful baseline for future investigations 

of the ecological impacts of industrialization in northern coastal communities.  

 

2. Study area 

We focus on the inner harbor of Hammerfest which includes the city center (east side) and the industrial 

area of Fugleneset (west side) (Fig. 1b).  The inner harbor is a 600 meter wide embayment with water 

depths ranging from 2 to 40 m. A CTD profile of the water column was measured during core collection 

in June 2015. The average salinity and temperature was 33.7 psu and  6.3 oC respectively (Suppl.Fig. 

1). Bottom current speeds in the inner part of the harbor are <5cm/s, occasionally exceeding 10cm/s 

(Akvaplan-niva, 2013). The harbor receives freshwater from Lake Storvatn via the River Storelva which 

enters the harbor from the east.  

Urban activities connected to Hammerfest harbor include ship traffic associated with the petroleum 

industry and service-related industries.  These activities include various contaminant sources (Pedersen 

et al., 2015) the main ones being: petrol stations located at the harbor; (former) shipyards; discharges of 

untreated wastewater and sewage; and inflow of freshwater from the POPs polluted lake Storvatn. 

Additionally pollution from land based sources enter the harbor basin by, for example, subsurface water, 

rainwater, and snow melt. Polluted harbor sediments may be redistributed through resuspension by ships 

and marine organisms. 

These pollution sources have resulted in elevated levels of heavy metals and POPs in harbor sediments 

as illustrated by several environmental studies carried out since 1985 (e.g. Dahl-Hansen, 2005; Evenset 

et al., 2006; Jahren and Helland, 2009; Johnsen and Jørgesen, 2006; Pedersen et al., 2015; Skjegstad et 

al., 2003). Previous investigations revealed a complex mixture of sediment pollutants such as heavy 

metals, PAH, PCB and TBT at levels of risk for the harbor environment and human health (Norwegian 

Environment Agency, 2014).  

We used the nearby Revsbotn fjord (Fig. 1c) as a reference site for this study. The inner part of Revsbotn 

has water depths ranging between 0 and 50 m. A CTD profile of the water column taken at the time of 

collection showed bottom water temperatures of 5.8oC, and bottom water salinity of 33.6 psu (Suppl.Fig. 

1). A layer of fresh water transported from the river Russelva occurs at the harbor surface. No industrial 

or harbor activities occur at proximity to this site.  

 

3. Material and Methods 

3.1 Sample processing  

In this study, we perform a multi-proxy study on a sediment core (core 6; Fig. 1) from Hammerfest 

harbor to reconstruct the pollution history of the area. In addition, the same parameters are investigated 

on a reference core from the nearby Revsbotn fjord (core 7; Fig. 1) to reconstruct reference conditions. 
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The present day conditions in both the harbor and at the reference site were assessed by a set of surface 

samples (stations 1 to 7; Fig. 1) covering the 0-2 cm sediment interval (Table 1). 

Sediments at sites 1-5, were collected close to potential land based pollution sources (Table 1) (Skjegstad 

et al., 2003). Sediments were retrieved with a Van Veen grab sampler in October 2010. The sediment 

surface (0-2 cm) was collected for foraminiferal assemblage studies, while the top 10 cm of the grab 

sample was collected for chemical analyses. 

At site 6 sediments were retrieved with a multi-corer in June 2015. Two cores were retrieved 

simultaneously at each station: Core 6 A intended for foraminiferal assemblages, grain size analyses and 

TOC and core 6 B intended for heavy metal and POP concentrations. The cores were sub-sampled at 1 

cm intervals to a depth of 20 cm.  

At site 7, sediments were collected with a box corer due to the hard substrate. After retrieval, two plastic 

core liners were pushed into the sediments: core 7 A, intended for foraminiferal analyses and; core 7 B 

intended for grain size, TOC and heavy metal analyses. The cores were sub-sampled at 1 cm intervals 

to a depth of 5 cm.  

In the following, we refer to surface samples covering the 0-2 cm sediment interval, as “station” 1-7. 

For site 6 and 7 the results of the 0-1 cm and 1-2 cm sample were combined. We refer to the down core 

results presented for sites 6 and 7 as “core” 6 and 7 respectively.  

 

3.2 Foraminiferal assemblages 

The dead foraminiferal assemblages were identified for all samples. The living assemblage was studied 

in the surface samples (0-2 cm). After sampling, a Rose Bengal ethanol mixture (1g/l ethanol 95%) was 

immediately added to the sediment to stain the cytoplasm of the living fauna (Walton, 1952). The 

volume of the added mixture was at least equal to the sample volume (Murray, 2006). Samples were 

gently shaken to facilitate staining of living foraminifera within the sediment. The samples were stored 

cool for a minimum of two weeks (Lutze and Altenbach, 1991). Only specimens with a bright pink color 

of Rose Bengal stain inside more than half of the chambers were considered to be living at the time of 

sampling (de Stigter et al., 1998; 1999). In addition, for agglutinated foraminifera, specimens were 

defined as living if stain was present in the aperture (Schönfeld et al., 2012). 

Foraminifera were identified to species level (Supplementary data B) according to the generic 

classification of Loeblich and Tappan (1987). Nomenclature is according to the accepted species names 

published in the WoRMS database (Mees et al., 2015). See Supplementary data B for taxonomical notes. 

Both living and dead fauna were studied in the 100 µm to 1 mm size fraction. A minimum of 300 

specimens from a known split of the sediment were identified to precisely determine the relative 

abundance of species of the assemblage (Patterson and Fishbein, 1989). Some samples contained low 

amounts of living benthic foraminifera (Table 2), and therefore 300 living specimens were not always 

possible to identify (Table 2).  
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3.3 Contaminant analyses 

At all sites, the following heavy metals were analysed: Arsenic (As), Cadmium (Cd), Copper (Cu), 

Chromium (Cr), Mercury (Hg), Nickel (Ni), Lead (Pb) and Zinc (Zn). In addition, in samples at sites 1-

6, concentrations of persistent organic pollutants (POPs) were analysed and include: sum of 16 

polycyclic aromatic hydrocarbons (PAH(16)EPA), sum of 7 polychlorinated biphenyls (7PCB) and 

tributyltin (TBT). Analyses at sites 1-6 were performed by Eurofins Environmental Testing Norway AS 

according to their certified methodology (Appendix A). Analyses of site 7 were performed by ALS 

Laboratory Group Norway AS according to their certified methodology (Appendix A). For heavy metals 

and POP concentrations of stations 1-5 we use data previously published in Pedersen et al. (2015). For 

sites 6 and 7 new pollutant data is presented. 

 

3.4 Grain size analyses and TOC 

The grain size distribution of stations 1-5 was determined by a combination of sieving (> 63 µm) and 

Sedigraph (< 63 µm). Sediments were wet sieved at size fractions of 63 µm, 100 µm and 1 mm.  The 

silt (4-63 µm) and clay fractions (<4 µm) were quantified on the Micrometics SediGraph 5100 according 

to the technique described by Coakley and Syvitski (1991) (Table 1).  

At sites 6 and 7, the grain size distribution was determined with a Beckman Coulter Laser particle sizer 

13320 according to the method described by Xu (2000). Prior to analysis, the samples were chemically 

treated to remove organic material and CaCO3, using H2O2 and HCl respectively. From each sample, 2 

g of material and was placed in 20% HCl for 24 hours to remove the carbonates. After HCl treatment 

the samples were centrifuged and washed with distilled water two times to remove HCl. Hereafter, H2O2 

was used to remove organic matter. To enhance the reaction the samples were placed into a warmth bath 

of 85 oC for two hours. The samples were washed with distilled water and centrifuged two times to 

remove all the H2O2 from the samples before they were left for drying in room temperature. After this, 

0.5 g of sample material was mixed with 20 cl of water after which the samples were shaken for 24 

hours. Just before analyzes a drop of Calgon solution was added to the samples after which they were 

placed in an ultrasound bath for 5 minutes to disintegrate flocculation of particles. Each sample was 

analyzed three times and the average grain-size values of the results were calculated. 

The determination of TOC content of sites 1-5 was performed by Eurofins Environmental Testing 

Norway AS with infrared spectrometry (Norwegian Standard, 2001) and waspreviously published in 

Pedersen et al. (2015). The TOC content of sites 6 and 7 was performed at UiT - The Arctic University 

of Norway using a Leco CS-744 induction furnace (Table 1).  

 

3.5 Data analyses 

Assemblages and correspondence between core intervals of core 6 and 7 were determined with Q- and 

R-mode hierarchical clustering respectively, using Ward’s method and Euclidean distance using the 

statistical program PAST version 3.06c (Hammer et al., 2001). Relative abundances of species within 
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the dead assemblage were used as input. Only species that have a relative abundance of > 5 % in at least 

one sample were considered (Fishbein and Patterson, 1993). Before statistical analyses relative 

abundances were log transformed (log(1+X)) to increase the importance of less abundant species 

(Manly, 1997).  

 

3.6 Ecological quality status 

Ecological quality status (EcoQS), is used as a measure to quantitatively characterize the ecological 

quality of marine soft-bottom habitats, following the guidelines of the European Water Framework 

Directive (WFD, 2000). Assessment of EcoQS is based on the deviation from reference conditions as 

defined in the WFD, and is divided into five status categories, i.e. high, good, moderate, poor and bad. 

High EcoQS is considered as un-impacted reference or background conditions. Contaminant levels 

considered to be of good EcoQS if they have no ecosystem impact, while contaminant levels 

corresponding to moderate, good and bad EcoQS have chronic, acute and severe acute ecosystem 

impacts respectively (WFD, 2000) (Table 2).  

Two different methodologies to define EcoQS are presented in the present study. The EcoQS of the 

sediments, hereafter referred to as “EcoQS(sed)”, is based on the classification scheme of sediment 

quality by Bakke et al., (Bakke et al., 2010). This classification scheme divides contaminant 

concentrations in classes based on their impact on macrofauna organisms.  

Additionally, we derived EcoQS following the classification scheme proposed by Bouchet et al., (2012) 

based on benthic foraminiferal diversity, hereafter referred to as “EcoQS(bf)”,  This classification 

scheme is based on changes in benthic foraminiferal diversity in response to different levels of 

environmental stressor. Diversity is expressed as the exponential of the bias corrected version of the 

Shannon-Wiener index, expH’bc (Chao and Shen, 2003). Dolven et al., (2013), showed that these 

EcoQS(bf) classes are applicable to fossil assemblages, enabling the reconstruction of past ecological 

status. The absolute abundances of all observed species was used to calculate expH’bc, using the 

statistical language R (version 3.2.2; R Core Team, 2015), with the Entropy library (version 1.2.1; 

Hausser and Strimmer, 2009).  

 

4. Results 

4.1 Grain size distribution and total organic carbon 

Grain sizes of the surface sediments from Hammerfest ranges from sandy silt on the east side (station 1 

and 2) to sand on the west side and middle of the basin (station 3-6) (Fig. 2). The grain size distribution 

of core 6 is dominated by the sand fraction (Fig. 3). In this core we observed a distinct color change for 

sediment from dark brown to greenish grey at 7.5 cm core depth, corresponding to changes in physical 

properties (see below). For readability, we therefore refer to “core top” (0-7.5 cm) and “core bottom” 

(7.5-19.5 cm). An increase in the fine fraction is observed in the core top. In reference core 7, the grain 
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size distribution of the sediments falls within the same range as core 6, with sand as the dominating 

grain size class (Suppl.Fig. 2).  

The > 1 mm sediment fractions from stations 1, 2 and 6 contain lithogenic material, calcareous algae, 

shells and mollusks. The > 1 mm sediment fraction from stations 3, 4 and 5 consists mainly of organic 

material, kelp and some shells and mollusks. The > 1 mm fraction of core top 6 (Suppl.Fig. 2) mainly 

consists of lithogenic gravel, while core bottom 6 consists mainly of finer lithogenic material, calcareous 

algae, shell fragments, organic matter and wood particles.  

At most stations, the TOC of surface samples varies between 0.3 and 3.2 % (Fig. 2). In station 4 the 

TOC concentration is significantly higher (9.7 %). At reference station 7 the TOC content is 0.7 %. The 

TOC content of core 6 varies between 0.3 and 2.9 %, shifting to lower values in the core top. The TOC 

content of reference core 7 is stable, i.e. 0.6 and 0.7%. 

 

4.2 Contaminant levels 

4.2.1 Surface samples 

The distribution of metal and POP concentrations reflect the complexity of the pollution history and 

sources in the harbor (Fig. 2 and 3). High concentrations of PAH(16)EPA, 7PCB, Zn, As and Pb are 

generally found at the east side of the harbor (station 3-5), while high concentrations of TBT are 

observed in station 1 and 2 ( west side). Additionally, station 4 (east side) holds the highest 

concentrations of heavy metals Cd, Cu and Hg. While station 6 generally has lower values of these 

pollutants, it contains the highest concentrations of Cr and Ni. At reference station 7, concentrations of 

all metals except Cr and Ni are lower than in station 1-6 from Hammerfest harbor (Fig. 2 & 3, 

Supplementary data A).  

 

4.2.2 Cores 

Considering the core 6 down-core contaminant profiles, there is a general trend of decreasing 

contaminant concentrations towards the core top, i.e. present day (Fig. 3; Supplementary data A). 

Exceptions are Ni and Cr, whose concentrations decrease towards 7.5 cm core depth (core bottom), but 

increase again in the core top. The down-core contaminant profiles of reference core 7 show a stable 

trend, with lower concentrations of all metals compared to core 6 (Fig. 3). 

 

4.3 Benthic foraminiferal assemblages 

4.3.1 Foraminiferal density 

No living benthic foraminifera were observed at station 4. At other stations, the absolute abundances of 

the living fauna vary between 0.4 (station 2) and 9.2 (station  6) specimens per gram bulk dry sediment 

(#/g) (Table 2). The number of living foraminifera in control station 7 is 1.3 #/g.  

The absolute abundance of dead fauna in surface samples varies between 4 (station 4) and 1667 (station 

1) #/g. In core 6, the absolute abundance of dead fauna varies between 54 and 4141 #/g (Table 2). The 
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core top and core bottom show a remarkable shift in absolute abundance, i.e. an average absolute 

abundance of 2545 #/g in the core bottom against 85 #/g in the core top (Table 2).  In control core 7, the 

absolute abundance of the dead fauna varies between 36 and 138 #/g (Table 2). 

In sediment samples from Hammerfest, an average of only 1% of the total assemblage consisted of 

agglutinated specimens while in control core 7 from Revsbotn, an average of 67% belonged to 

agglutinated specimens (Supplementary data B).  

 

4.3.2 Foraminiferal diversity 

In surface stations 1-6 from Hammerfest harbor, the living assemblage (October 2010) consisted of 8 

agglutinated species and 32 living calcareous species. At reference station 7, the living assemblage (June 

2015) consisted of 6 agglutinated and 12 calcareous species. The dead assemblage of the surface stations 

from Hammerfest, consisted of 8 agglutinated and 31 calcareous species, against 10 agglutinated and 26 

calcareous species at reference station 7 (Supplementary data B). The dead assemblage of core 6 

consisted of 7 agglutinated and 29 calcareous species; while the dead assemblage of reference core 6 

consisted of 12 agglutinated species and 30 calcareous species.  

The diversity measure exp H’bc  of the living assemblage from Hammerfest exhibit the lowest diversity 

in station 2 (7.4) and highest in the surface of core  6 (16.0) (Table 2; Fig. 4). The exp H’bc for the living 

assemblage in Revsbotn was calculated to 15.9. The exp H’bc  of the dead assemblage of the surface 

samples from Hammerfest varies between 4.0 (station 1) and 12.4 (station 3), against 18.7 for reference 

station 7. The expH’bc increases towards the top of core 6 (6.4 to 8.0) (Table 2; Fig. 4). The expH’bc for 

reference core 7 varies between 18 and 20. 

 

4.3.3 Taxa in surface samples  

In Hammerfest harbor, the dominant living taxa (> 10 % relative abundance) by station are as follows 

(Suppl.Fig. 3, Suppl.Data B): station 1 Lobatula lobatula, Elphidium excavatum and Bulimina 

marginata; station 2 Cribristomoides spp., E. excavatum and L. lobatula; station 3 Stainforthia spp., 

Buccella spp., and E. excavatum; station 4 contained no living benthic foraminifera; station 5 

Stainforthia spp., E. excavatum and Spiroplectammina biformis; station 6 Reophax spp. and Bulimina 

marginata. For the control station 7, the dominant living taxa are Adercotryma glomerata, Eggerella 

spp., and Reophax spp.  

In station 1, 2, 3, 5 and 6, the dead assemblage is dominated by L. lobatula and E. excavatum. In station 

4, the dead assemblage is dominated by Cribristomoides spp., and L. lobatula. The dead assemblage of 

reference station 7 is dominated by A. glomerata, S. biformis and Cribristomoides spp. follows 

(Suppl.Fig. 3, Suppl.Data B). 

 

4.3.4 Taxa in sediment cores  
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In Hammerfest harbor (core  6), 10 species had a relative abundance of >5% (Fig. 5; Suppl.Fig. 4), and 

are considered as “most frequent species.”  The absolute abundances of most of the frequent species, 

show a sharp decrease above 7.5 cm core depth, corresponding with the change in physical properties. 

The species L. lobatula is in general the most abundant dead species together with E. excavatum and 

Cassidulina reniforme (Fig. 5). These three species have high absolute abundances in the core bottom 

(> 7.5 cm core depth). The species L. lobatula has an average relative abundance of 55% in the core 

bottom, decreasing to 9% in the core top (< 7.5 cm core depth). Consequently, the relative abundance 

of the other dominant species increases in the top part of the core, even though their absolute abundance 

decreases. Important accessory species are Haynesina germanica, Stainforthia spp. (Fig. 5), Trifarina 

angulosa and Cassidulina laevigata (Suppl.Fig. 4). Other abundant, species are Elphidium hallendense, 

Elphidium asklundi (Fig. 5) and Nonionella labradorica (Suppl.Fig. 4).  

 

At the control site (core 7), 7 taxa reached > 5% relative abundance (Fig. 5; Suppl.Fig. 4). The species 

A. glomerata dominates in each interval (Fig. 5). Other frequent species are Cribristomoides spp., 

Eggerella spp. and S. biformis. Less frequent, yet abundant are Buccella spp., B. marginata and 

Staintforthia spp. (Fig. 5). The relative abundance of A. glomerata, Eggerella spp., S. biformis and 

Buccella spp. increases while the relative abundance of Cribristomoides spp., B. marginata and 

Stainforthia spp. decreases towards the top of the core (Suppl. Fig. 4). The absolute abundance of these 

species declines at 1.5 cm core depth. At this depth interval, the relative abundance of Cribristomoides 

spp. and S. biformis is elevated (Fig. 5).  

 

Q-mode clustering of log transformed relative abundances of the >5% species resulted in three clusters 

(Fig. 6): A) all samples of core 7; B) core  6 depth 1.5 to 5.5 cm; C) core  6 depth 0.5 cm and 6.5-19.5 

cm. R-mode clustering of the same parameter grouped: I) C. reniforme, E. excavatum, L. lobatula; II) 

A. glomerata, Cribristomoides spp., Eggerella spp., and S. biformis; III) E. asklundi, E. hallandense and 

N. labradorica and; IV) B. marginata, Buccella spp., S. fusiformis, H. germanica, C. laevigata, T. 

angulosa. (Fig. 6). 

 

5. Discussion 

5.1 Physical environment Hammerfest harbor 

Input of contaminants into the harbor of Hammerfest over several decades has resulted in a significant 

accumulation of contaminants in harbor sediments (Fig. 2 and 3). In response measures were 

implemented in 2006 to control contaminant supplies by land based sources to the harbor (Johnsen and 

Jørgesen, 2006).  

Skjegstad et al. (2003) measured sediment contaminant concentrations in 1998, at sites close by our 

stations from 2010 (Suppl. Fig. 5). Comparison shows that contaminant concentrations have decreased 

in the sediment surface collected in 2010 in comparison to those collected in 1998 (Suppl. Fig. 5; Suppl. 
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Data A).  Additionally, station 6 (collected 2015) shows lower contaminant concentrations for almost 

all contaminants. This is in correspondence with the decreasing trend of almost all contaminant 

concentrations towards the top of core 6 (Fig. 3). Exceptions are Ni and Cr, with elevated concentrations 

for station 6 in comparison to the surface samples from 2010 (see below) and elevated concentrations 

in the core top. The concentration profiles of Ni and Cr show a trend similar to the fine fraction (Fig. 3). 

The affinity of metals to finer particles is well known and is attributed to the absorptive properties of 

clay minerals as well as the larger specific surfaces of fine grained sediment (Contu et al., 1984; 

Horowitz, 1991). Hence, the increase in Ni and Cr, might be explained by increased clay content of the 

sediments in the core top, rather than an increased input to the harbor of these elements.  

The outcome of our study shows that the first measures to reduce input of contaminants from land based 

sources into the harbor basin have been effective. Yet contaminant concentrations are still elevated 

compared to contaminant concentrations at reference site 7. 

 

A large abrupt shift in TOC content and > 1 mm particles is observed at 7.5 cm core depth. The change 

in contaminant concentrations is however more gradual (Fig. 3). A similar change is observed in the 

foraminiferal assemblages at 6.5 cm core depth (Fig. 5). The 1-cm offset between foraminiferal 

assemblage and abiotic properties is explained by the fact that the parameters were measured on two 

different multi-corers (see Material and Methods). A possible explanation for the change in sediment 

properties might be the result of a different source of sediments to the core site 6, while the same 

mechanisms transport contaminants to the core site, i.e. through the water column. Shipping routes 

within the harbor have been changed to prevent disturbance of polluted sediments on the east side of the 

harbor (Skjegstad et al., 2003). A change in shipping routes may have increased the reworking by ship 

propellers of the coarse sediments at the west side towards the deeper part of the harbor, where core 6 

was retrieved.  

 

5.2 Ecological quality status 

We calculated EcoQS based on two different input parameters, i.e. sediment contaminant concentrations 

(EcoQS(sed)) and foraminiferal diversity (EcoQS(bf)).  

Concentrations of heavy metals in surface samples from station 1-6 are within EcoQS(sed) classes high 

to poor. The concentrations of POPs reflect moderate to bad EcoQS(sed) (Fig. 2). This indicates that 

sediment contaminant concentrations have chronic to severe acute ecosystem impacts (Bakke et al., 

2010; WFD, 2000). EcoQS(bf) based on the living assemblage varies between moderate to bad (station 

1-5), while the EcoQS(bf) of station 6 corresponds to  good conditions (Fig. 4). The diversity of the dead 

assemblages of stations 1 to 6 reflect moderate to bad EcoQS(bf) conditions. Hence, both the living and 

dead assemblages of station 1 to 5 (collected in 2010) consistently indicate a contaminated environment. 

The living assemblage of station 6 (collected in 2015) however appears to be un-impacted, 

corresponding to the generally lower contaminant levels at this station compared to stations 1-5.  
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The concentrations of all heavy metals at reference station 7 reflect high EcoQS(sed) (Fig. 3), indicating 

that metal concentrations in station 7 represent un-impacted reference conditions (Bakke et al., 2010).  

The living assemblage of reference station 7 on the other hand reflects moderate EcoQS(bf), while the 

diversity corresponds to good EcoQS(bf) conditions (Fig. 4).  

Due to the decrease in metal concentrations in core 6 towards present-day, concentrations of most metals 

correspond to high and good EcoQS(sed) in the core top. Only Cu shows moderate EcoQS(sed) in the 

lower part of the core top. Concentrations of PAH(16)EPA and TBT on the other hand correspond to 

moderate to bad EcoQS(sed) classes in both the core top and bottom, while 7 PCB concentrations 

decrease from moderate to high EcoQS(sed) values (Fig. 3). This indicates that POP concentrations in 

harbor sediments are still at levels harmful to the ecosystem, while metal concentrations are considered 

to be of no ecosystem impact. This is only poorly supported by the diversity based EcoQS(bf), reflecting 

a poor status for the entire core 6 (Fig. 4). 

In reference core 7, all heavy metal concentrations correspond to high EcoQS(sed) (Fig. 3), while 

EcoQS(bf) correspond to good status (Fig. 4). The latter suggests that the benthic foraminiferal 

assemblage of Revsbotn reflects an un-impacted benthic foraminiferal assemblage and can be used as 

reference to reconstruct the pre-impacted conditions for the Hammerfest harbor (see discussion below). 

 

Our results show that EcoQS(sed) reflects better conditions than the EcoQS(bf). The discrepancy 

between different EcoQS is partly explained by the fact that multiple stressors influence benthic 

foraminiferal assemblages and the individual contribution of each stressor is not always possible to 

distinguish. From our dataset it is also not possible to reconstruct which contaminant has had a larger 

influence on the ecosystem. Additionally, EcoQS(bf) is based on the response of benthic foraminifera 

to oxygen depletion in Southern Norway (Bouchet et al., 2012), which might be different from the 

response of benthic foraminifera to chemical pollution prevailing in the Hammerfest harbor. 

Furthermore, the natural diversity of the South Norwegian coast, on which the EcoQS(bf) classes are 

based, is different from the benthic foraminiferal assemblage in Northern Norway. Hence the boundaries 

between the different EcoQS(bf) classes might not be directly applicable to our area.  

A similar discrepancy between EcoQS (sed) and EcoQS(bf) was observed by Dolven et al., (2013) who 

suggested to rather compare to temporal trends. The temporal pattern between EcoQS(bf) and 

EcoQS(sed) for core 6 is largely comparable, i.e. improving EcoQS towards the top of the core, and 

overall decreasing contaminant levels. This indicates that the reduction in contaminant concentrations, 

had a positive effect on foraminiferal diversity reflecting benthic recovery. 

 

5.3 Foraminiferal assemblages and environmental stressors 

The main focus of the benthic faunal studies in Hammerfest harbor (sites 1-6), was to test how the 

benthic foraminiferal assemblage in Hammerfest harbor reflects the ecosystem impact of the different 

environmental stressors active in the harbor. Site 7 in Revsbotn served as the reference site providing 
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information on the potential non-impacted benthic foraminiferal assemblage. Care should be taken when 

interpreting living assemblages, as no replicate samples were analyzed in our study. Therefore our study 

does not take into consideration foraminiferal patchiness at the sampling site. Also since the surface 

stations 1-5 were taken with a grab corer, surface sediments might have been disturbed resulting in 

specimen loss together with some of the uppermost sediment (Riddle, 1989; Wigley, 1967). In addition, 

some samples contained low amounts of living benthic foraminifera (Table 2), which may introduce 

additional bias to our study. However, statistical studies based on a large number of paleo-ecological 

datasets, demonstrated that a sample size ranging between 25 to 60 specimens effectively produced the 

same multivariate result as data based on larger sample size (Forcino, 2012; Forcino et al., 2015). We 

therefore argue that, although care should be taken when interpreting samples with low number 

(60<n<300) of specimens, the living assemblages presented here are representative, as they rather 

precisely reflect the wide range of environmental stressors in the harbor (Suppl.Fig. 3). Nevertheless, 

data on living fauna has not been included in the statistical methods. 

Estuaries and fjords are complex systems, with multiple factors other than pollution affecting benthic 

foraminiferal assemblages, i.e. grain size distribution, water mass properties and food availability. Our 

results show that both core 6 and 7 have a similar grain size distributions (Fig. 2 and 3) and were taken 

at similar water depths (40-41 m), with similar bottom water temperature and salinity (Suppl.Fig. 1). 

We therefore argue that the benthic foraminiferal assemblage from Revsbotn likely reflects the 

assemblage to be expected in Hammerfest harbor under non-impacted conditions.  

Based on the physical properties and foraminiferal counts we identified four assemblages reflecting four 

different environmental stressors/settings. Q- and R- mode clustering was performed on the dead faunal 

counts to strengthen our observations (Fig. 6). Below we discuss the dominant stressors, with 

corresponding indicator species and contaminant sources (summarized in Table 3).  

 

5.3.1 Physical disturbance 

Samples from the west side of the harbor (station 1 and 2) are characterized by coarse grained sediments 

This is attributed to ship traffic as ship propellers may disturb and resuspend  contaminated sediments 

and transport fine grained sediments away from the site. Additionally, the samples have high TBT 

concentrations. TBT has been used as a biocide in anti-fouling paint for ships until it was internationally 

banned in 2008 (Gipperth, 2009).  The relatively high Pb and Hg concentrations might be attributed to 

spills of leaded gasoline, potentially from the gasoline station close by station 2 (Pedersen et al., 2015). 

The sediments of core top 6, resemble the grain size properties of the surface samples from the west side 

of the harbor (station 1 and 2).  i.e. coarse grain sizes, generally lower heavy metal levels, but still 

elevated concentrations of POPs (Figs. 2 and 3). The increased amount of > 1mm sediment particles in 

core top 6 (Suppl. Fig. 2), confirms a more turbulent high energy environment. 

The benthic foraminiferal assemblage prevailing in station 1, 2 and core top 6, reflects these physical 

properties. Correspondence clustering, based on dead assemblages of core 6 and 7, grouped samples of 
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core top 6 (Fig. 6; Cluster B). The assemblage in this core interval is dominated by E. excavatum, C. 

reniforme and sub-dominance of L. lobatula (Fig. 6). Although E. excavatum frequently occurs in 

uncontaminated fjord settings (Husum and Hald, 2004; Jennings and Helgadottir, 1994; Mackensen et 

al., 1985), the species is reported to flourish in areas of physical and chemical stress, including high 

turbidity environments (Polyak et al., 2002) and heavy metal and POP contamination (e.g. Alve and 

Olsgard, 1999; Dabbous and Scott, 2012; Sharifi et al., 1991). Throughout the entire harbor, a relatively 

high amount of living specimens of E. excavatum was observed, reflecting the harsh conditions for 

benthic foraminifera in the harbor. Cassidulina reniforme often co-exists with E. excavatum (e.g. Husum 

and Hald, 2004; Jennings and Helgadottir, 1994; Mackensen et al., 1985) and has been reported as one 

of the first species to recolonize former barren areas when exposure to industrial effluents was reduced 

(Schafer et al., 1991). Other Elphidium species show additionally higher abundances in core top 6 

(Suppl. Fig. 4 – see E. asklundi). Elphidium species are capable of adapting to harsh environments and 

are capable of quickly colonizing obliterated areas when environmental conditions improve (e.g. Alve, 

1999; Corliss, 1985; Corliss and Van Weering, 1993; Linke and Lutze, 1993; Wollenburg and 

Mackensen, 1998). Lobatula lobatula is a clinging epifaunal species tolerant to relatively coarser grain 

sizes and high energy environments (Hald and Steinsund, 1992; Mackensen et al., 1985), which is 

consistent with the turbid, harsh physical  environment prevailing in core top 6. Additionally, L. lobatula 

tolerates limited food availability (Mackensen et al., 1985; Nyholm, 1961), which is suggested by the 

low TOC content (Fig. 3). Hence, the assemblage reflects improved environmental conditions, in 

addition to the coarse grain sizes prevailing in core top 6.  

Despite the lower contaminant levels and higher diversity in the core top 6 (Fig. 3 and 4), the total 

absolute abundance is one order of magnitude lower than the core bottom (Table 2). The low TOC 

concentrations in core top 6, might be indicative of a lower vertical export of organic matter, and hence 

decreased primary and secondary food sources for benthic foraminifera (Loubere and Fariduddin, 1999).  

The living fauna dominating in station 1 and 2, confirm that physical disturbances are the main stressors 

affecting the foraminiferal assemblage, with E. excavatum and L. lobatula as dominating species. The 

high abundance of Cribristomoides spp., reported to live attached and epifaunal (Murray, 2006), 

additionally supports the influence of the high energy environment on the foraminiferal assemblage.  

 

5.3.2 Chemical stressors 

Correspondence clustering grouped the 0-1 cm interval of core 6 with the core bottom 6 (Fig. 6). The 

core bottom 6 resembles grain size properties of the stations from the east side of the harbor (station 3 

and 5), i.e. finer grain sizes and higher contaminant levels. The higher contaminant levels of station 3 

and 5 are attributed to urban activities around the harbor, and partly are the result of input of 

contaminants by the outlet of the polluted lake Storvatn (Evenset et al., 2006; Pedersen et al., 2015). 

Similar contaminants have high concentrations in bottom core 6, suggesting a similar source.  
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The foraminiferal assemblage in core bottom 6 has a relatively lower diversity, and shows a strong 

dominance of L. lobatula with a sub-dominance of E. excavatum and C. reniforme (Fig. 6). This 

illustrates the harsh environmental conditions prevailing in Hammerfest harbor, for reasons explained 

above. The sand content in core bottom 6 partly explains the high abundance of L. lobatula in this 

interval of the core, however it does not explain why its abundance is elevated compared to the even 

coarse core top. Lobatula lobatula is easily reworked due to its low shell weight in comparison to shell 

size (Kontrovitz et al., 1978). We therefore argue that the high amounts of L. lobatula in this part of the 

core partly represents a reworked fauna. 

An important difference separating the foraminiferal assemblage dominant in the core bottom from the 

assemblage in the core top, is the relatively higher abundance of opportunistic, stress tolerant, species, 

e.g.  H. germanica and B. marginata (Fig. 5 and Suppl.Fig. 4). The pollution tolerant H. germanica is 

known to show positive responses to anthropogenic pollutants (Alve et al., 2009; Alve and Olsgard, 

1999; Yanko et al., 1998). Haynesina germanica has been reported to be common and co-existing with 

E. excavatum, when contamination is highest (Sharifi et al., 1991). Bulimina marginata is considered to 

be an opportunistic species in anthropogenic stressed environments which thrives in nutrient rich muddy 

sediments (e.g. Jorissen et al., 1992; Langezaal et al., 2005; Mojtahid et al., 2006; Murray, 1991).  

Opportunistic species also prevail in the living assemblage of station 3 and 5 i.e. Stainforthia spp., E. 

excavatum, S. biformis, B. spathulata and B. marginata (e.g. Alve, 1994, 1995, 2003; Gooday and Alve, 

2001; Murray, 2006; Polovodova Asteman et al., 2015; Schafer et al., 1991; Scott et al., 2001).  

Core bottom 6 contains a high density, yet low diversity, as a result of a high number of specimens 

belonging to a few opportunistic species, a trend that is more often observed in highly contaminated 

environments (e.g. Ellison et al., 1986; Murray, 2006; Pearson and Rosenberg, 1976). This, in addition 

to the relatively higher number of opportunists, makes us conclude that the benthic foraminiferal 

assemblage of the core bottom 6 (Fig. 6; Cluster B) and station 3 and 5 is mainly influenced by chemical 

stressors. 

It should be noted that the low presence of agglutinated taxa (<1 %) in Hammerfest harbor stands in 

contrast to other studies from contaminated environments, where the opposite trend was reported, i.e. 

dominance of agglutinated opportunistic and stress-tolerant taxa when impact levels are highest 

(e.g.Alve, 1991a; Dabbous and Scott, 2012; Polovodova Asteman et al., 2015). Conversely, the total 

absence of agglutinated species has been reported in environments influenced by periodic discharges of 

oil and tar, resulting in either dissolution of agglutinated shells after deposition or unfavorable conditions 

for agglutinated taxa (Alve, 1995; Dermitzakis and Alafousou, 1987). Discharge of oil and tar in 

Hammerfest harbor is likely given the high ship traffic in the harbor and is supported by the high 

concentrations of PAHs, Pb and Hg in the sediments, and might therefore explain the absence of 

agglutinated taxa.  

 

5.3.3 Organic pollution 
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In station 4, no living foraminifera were present. The observed black sediments in combination with a 

high percentage of TOC in station 4, indicates a hypoxic or anoxic environment. This station is close to 

a sewage outlet, and the input of high amounts of organic material for sewage effluents, has created 

conditions unfavorable for foraminifera. The high percentage of TOC might also have resulted in a low 

pH, and consequently dissolution of carbonate tests. This explains the low number of dead specimens 

in station 4 (Table 2). The dead assemblage is dominated by agglutinated species e.g. Cribristomoides 

spp. and Reophax spp. Dominance of agglutinated specimens over calcareous specimens additionally 

indicates post-mortem dissolution of calcareous tests. These conditions have not been observed in core 

6, and suggest a large local impact from the sewage effluents.  

 

5.3.4 Natural stressors 

Contaminant concentrations of reference core 7 reflect high EcoQS, and correspondence clustering 

based on dead foraminiferal counts clusters all samples of core 7 (Fig. 6; Cluster A). Agglutinated taxa 

dominate both the dead and living fauna in Revsbotn (Suppl.Data B). The dead assemblages in reference 

core 7 is dominated by agglutinated species A. glomerata, with Cribristomoides spp., Eggerella spp., 

and S. biformis as sub-dominant species (Fig. 6). Similar species are frequently observed in the living 

fauna of station 7. This is comparable to observations in other north Norwegian fjords (Corner et al., 

1996; Husum and Hald, 2004; Strand, 1979) and fjord settings in other northern regions (Jennings and 

Helgadottir, 1994; Murray, 2006). The species A. glomerata has been reported as part of transitional 

fauna in southern Scandinavian fjords and is indicative of changing environmental conditions at the 

onset of a pollution period (Polovodova Asteman et al., 2015). The high abundance of A. glomerata at 

our un-impacted reference site, highlights that species indicative of environmental pollution at more 

southern locations might reflect natural conditions at higher latitudes, and addresses the need for region 

specific impact studies and indicator species. Bulimina marginata, Stainforthia spp., and Buccella spp. 

are the most important part of the calcareous fauna in Revsbotn (Suppl.Fig. 4). Bulimina marginata is a 

frequently observed in inner fjords (Husum and Hald, 2004; Murray, 2006). Polyak et al., (2002) 

observed elevated abundances of Buccella spp. in river-proximal settings. Station 7 is located near the 

Russelva river (Fig. 1). In turn, Stainforthia species are opportunistic and thrive on pulses of high 

seasonal productivity (Alve, 1995; Gustafsson and Nordberg, 2001). This type of food availability in 

the area is supported by the high abundance of A. glomerata reported to respond to pulses of fresh 

phytoplankton (Ernst and van der Zwaan, 2004; Heinz, 2002). Hence, the foraminiferal assemblage in 

Revsbotn reflects normal inner fjord settings.  However, the presence of opportunistic species in 

Revsbotn, show that the environment is naturally challenging.  

 

Density of benthic foraminiferal assemblages is typically low in environments subjected to severe levels 

of contamination (Schafer, 1973; Yanko et al., 1994). Hence, the low number of living foraminifera per 

gram dry sediment (Table 2) in the surface samples and core top 6, confirm the impact of contaminant 
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on the living assemblage in the harbor. It should however be noted, that living foraminiferal density in 

station 7 from Revsbotn shows equally low absolute abundances of living specimens. Several studies 

from nearby non-impacted inner fjord settings show similar low abundances of living foraminifera, i.e. 

0.05-30 specimens/g dry sediment (Corner et al., 1996; Husum and Hald, 2004), attributed to higher 

sedimentation rates and harsh delta conditions creating naturally unfavorable conditions for the living 

fauna. Similar conditions prevail at reference site 7 located close to a river outlet. This is confirmed by 

the moderate EcoQS(bf) based on the diversity of the living fauna, even though EcoQS(sed) reflects 

background conditions. This can be explained by the fact that the EcoQS (bf) is based on the more 

diverse foraminiferal assemblagea from Southern Norway (see discussion in Chapter 5.2). Similar 

naturally challenging conditions for benthic foraminifera might prevail in Hammerfest harbor. For bio-

monitoring purposes, it is therefore important to keep in mind that density and diversity in Hammerfest 

fjord might be naturally low, even when contaminant levels have decreased to low impact values. This 

naturally challenging environment, in addition to similar opportunistic species in both impacted and 

non-impacted environments, might impede bio-monitoring in this area based on benthic foraminifera 

only. 

 

6. Conclusion 

This study investigated the correlation between contaminants, grain size and benthic foraminiferal 

assemblages in the harbor of Hammerfest (N. Norway). The harbor is highly contaminated by persistent 

organic pollutants and heavy metals mainly due to discharges from local industries and shipping related 

activities. The foraminiferal assemblage at a non impacted site in the nearby Revsbotn fjord was 

investigated to reconstruct the natural baseline. Due to recent measures to decrease contaminant supplies 

into the harbor, contaminant levels have decreased compared to levels measured in 1998 (Skjegstad et 

al., 2003). However, sediment contaminant concentrations, especially for POPs, are still at moderate to 

poor EcoQS(sed) levels causing chronic to acute ecosystem impacts.  

Foraminiferal density and diversity in the harbor is low in. The EcoQS(bf), based on a benthic 

foraminiferal diversity, reflects a similar spatial and temporal trend as the EcoQS(sed) based on 

contaminant concentrations. However, the EcoQS(bf) does not directly reflect the EcoQS(sed), most 

likely due to the high-latitude location of Hammerfest harbor, with a naturally lower diversity than the 

more southern location on which the current EcoQS(bf) is based. This addresses the need for an adjusted 

EcoQS(bf) scheme for more northern latitudes. Based on the living and dead foraminiferal assemblages, 

four different stressors with associated foraminiferal assemblages indicative of these environmental 

stressors have been defined: 

 Physical stressors by ship traffic. Sediments are characterized by coarse grain sizes (> 1 mm), 

low TOC, lower metal concentrations and elevated TBT concentrations. Associated benthic 

foraminifera include L. lobatula, E.excavatum and Cribristomoides spp. 
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 Chemical stressors by urban activities. Sediments are characterized by high heavy metal and 

POP concentrations. Associated benthic foraminifera include opportunists Stainforthia spp., S. 

biformis, B.marginata and E. excavatum 

 Organic stressors from sewage effluents. Sediments are anoxic and characterized by high metal 

and TOC concentrations. No living foraminifera and only few dead agglutinated species were 

observed. 

 Natural stressors prevail at the reference station and are associated with dominance of the 

agglutinated species A.glomerata, Cribristomoides spp., Eggerella spp., and S. biformis. 

The patterns identified through this investigation provide a valuable baseline for future investigations 

of the ecological impacts of industrialization in northern coastal environments. 
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Table 1 

Overview of sample sites and water depth, collected material with corresponding equipment and overview 

of performed analyses with corresponding methods and laboratories. Analyses were performed at UiT The 

Arctic University of Norway unless stated otherwise below. Abbreviations: vGC = Van Veen grab, MC = 

multi corer, BC = box corer, EF = Eurofins Environmental Testing Norway AS, ALS = ALS Laboratory 

Group Norway AS, IRS = infrared spectrometry, Leco = Leco CS-744 induction furnace, Sed.Gr = 

Micrometics SediGraph, LPS= Beckman Coulter Laser particle sizer 13320.  

Sites 

(water depth) 

sub- 

sample 

Reference in 

text 

sample 

equipment 

depth 

interval 

living 

forams 

dead 

forams 

heavy 

metals 

POPs TOC GS 

1 
(13 m) 

A Station 1 vGC 0-2 cm x x Sed.Gr 

B 0-10 cm EF EF IRS 

2 

(7 m) 

A Station 2 vGC 0-2 cm x x Sed.Gr 

B 0-10 cm EF EF IRS 

3 

(16 m) 

A Station 3 vGC 0-2 cm x x Sed.Gr 

B 0-10 cm EF EF IRS 

4 
(15  m) 

A Station 4 vGC 0-2 cm x x Sed.Gr 

B 0-10 cm EF EF IRS 

5 

(12 m) 

A Station 5 vGC 0-2 cm x x Sed.Gr 

B 0-10 cm EF EF IRS 

6 

(41 m) 

surface A* Station 6 MC 0-2 cm* x x 

core A Core 6 
core top 6 

(0-7.5 cm) 

7.5-20 cm: 

core bottom 6 

0-20 cm; 
1 cm intervals 

x LPS 

core B 0-20 cm; 

1 cm intervals 

EF EF Leco 

7 

(41 m) 

surface A* Station 7 BC 0-2 cm* x x 

core A (reference) 

Core 7 

0-5 cm; 

1 cm intervals 

x LPS 

core B 0-5 cm; 
1 cm intervals 

ALS Leco 

*results of 0-1 cm and 1-2 cm have been combined



Table 2 

Number of counted specimens (n), species (S), total standardized absolute abundance (#/g) and diversity 

index (expH'bc) of the surface stations (A) and cores (B). Color shading corresponds to environmental 

quality status defined by Bouchet et al., (2012) (exp H’bc) as indicated in table (C). 

 

(A) 
dead fauna surface samples living fauna surface samples 

station interval n S #/g exp H'bc station interval n S #/g exp H'bc 

1 0-2 cm 294 17 1667,2 4 1 0-2 cm 82 18 2,2 14,2 

2 0-2 cm 290 18 975,8 4,2 2 0-2 cm 17 7 0,4 7,4 

3 0-2 cm 300 24 98,4 12,4 3 0-2 cm 114 17 2,9 9,6 

4 0-2 cm 60 15 4,3 10,7 4 0-2 cm - - - - 

5 0-2 cm 297 19 1083,1 6,4 5 0-2 cm 242 20 8,3 8,6 

6 0-2 cm 764 29 106,8 9 6 0-2 cm 213 30 9,2 16 

7 0-2 cm 679 38 193,9 18,7 7 0-2 cm 91 18 1,3 14,4 

 

(B) 

core 6 dead fauna core 7 dead fauna 

  core depth n S #/g exp H'bc   core depth n S #/g exp H'bc 

core  0,5 444 29 117,8 8,8 core  0,5 308 31 426,6 20 

6 1,5 320 21 94,6 8,8 7 1,5 371 31 133,5 17,1 

 

2,5 297 21 54,2 8,3 

 

2,5 301 27 356,1 17 

 

3,5 292 19 64,2 8,9 

 

3,5 326 30 449,9 18,2 

 

4,5 299 14 57,5 7 

 

4,5 311 28 391,2 18 

 

5,5 307 19 120,4 8,3 

      
 

6,5 314 23 306,4 6,7 

      
 

7,5 315 23 1985,6 6,5 

      
 

8,5 300 19 2900,1 6,5 

      
 

9,5 332 18 4141,2 5,7 

      
 

10,5 303 21 3705,5 6,3 

      
 

11,5 334 20 2380,4 5,3 

      
 

12,5 312 23 2659,5 5,5 

      
 

13,5 340 18 2378,4 5,4 

      
 

14,5 363 20 1973,8 5,9 

      
 

15,5 320 21 2047,8 6,7 

      
 

16,5 319 16 2354,8 6,1 

      
 

17,5 308 17 2275,2 6,7 

      
 

18,5 311 21 1939,5 6,6 

        19,5 319 22 2347,9 6,4             

 

(C) 

EcoQS class EcoQS range Ecosystem impact 

High >20  Reference conditions  

Good  15-20  No impact 

Moderate  10-15  Chronic impact 

Poor  5-10  Accute impact 

Bad  <5  Severe accute impact 

 (Bouchet et al., 2012)  

 

 

 

 

 



Table 3 

Overview of the defined stressors with sources and associated contaminants and foraminiferal species 

indicative for these stressors.  

 
Main 

stressor 

Source + contaminants Indicator species Corresponding samples 

 
Physical 

disturbance 

Shipping industry 
 

Mechanical reworking 

sediments 
 

TBT, Hg, Pb 

High energy environment indicators including: 
 

L. lobatula 

Cribristomoides spp. 
E. excavatum 

 

West site harbor 
(station 1, 2) 

 

Top core 6 
(0-7.5 cm) 

 
Chemicals 

Urban industrial activities 
and inflow lake Storvatn 

 

heavy metals and POPs 

Opportunistic species including: 
 

Stainforthia spp., S.biformis, B. marginata, E. excavatum 

East site harbor 
(station 3, 5) 

 

Bottom core 6 
(7.5-20 cm) 

 

 

Organic 
pollution 

Sewage effluents 

 
Organic matter, POPs, 

heavy metals 

No living foraminifera 

Few dead foraminifera with dominance of agglutinated species 

Station 4 

 
Natural 

conditions 

Pristine conditions Agglutinated species including: 
 

A. glomerata, Cribristomoides spp., Eggerella spp., S. biformis 

 
Less frequent calcareous species include:  

B. marginata, Stainforthia spp. 

Station 7 
 

Core 7 

 



Figure captions 

Fig. 1. Location maps. Maps showing: Northern Norway and SW Barents Sea region (Andreassen et 

al., 2008). (a) The location of the town of Hammerfest and Revsbotn is indicated (top panel); (b) The 

inner harbor of the town of Hammerfest with the locations of site 1-6; (c) Location of site 7 in 

Revsbotn (bottom panel). Bathymetric contours are in meters (m).  

Fig. 2. Element concentrations, grain size and TOC surface sediments. Concentrations of heavy 

metals and POPs measured in surface sediments Hammerfest and top of core 6 and 7. Corresponding 

EcoQS(sed) classes as defined by Bakke et al. (2010) are indicated by corresponding colors. Lower 

right panel shows grain size distributions expressed as weight percentage of the abundance of sand (> 

63 µm), silt (4-63 µm) and clay (< 4µm) (left y-axis). The total organic carbon (TOC) of the surface 

sediments, indicated by red dot (right y-axis). 

Fig. 3. Element concentrations, grain size and TOC cores. Down core concentrations of heavy 

metals and POPs measured in core 6 (black dots black line) and 7 (white dots dashed line). 

Corresponding EcoQS(sed) classes as defined by Bakke et al. (2010) are indicated by corresponding 

colors. Lower right panel shows the down core distribution in core 6 of sand (> 63 µm), silt (4-63 µm) 

and clay (< 4µm) content (upper x-axis) and down core distribution of TOC content, indicated by red 

line (lower x-axis). Grain size properties of core 7 can be found in supplementary figure 2. 

Fig. 4. Diversity. Diversity expressed as exponential of bias corrected Shannon-Wiener index (exp 

H’bc), for surface samples (upper panel) and sediment cores (lower panel). Black dots black line 

corresponds to core 6; white dots dashed line corresponds to core 7. EcoQS(bf) classes as defined by 

Bouchet et al. (2012) are indicated by corresponding colors.  

Fig. 5. Foraminiferal assemblage core. Left panel shows dominating foraminiferal species in 

sediment cores 6 and 7. Shown are relative abundances (black line; upper x-axis) and standardized 

absolute abundances (grey shading; lower x-axis). Right panel show relative abundances of other 

relevant species.  

Fig. 6. Q- and R-mode clustering. Dendrograms from Q- and R-mode clustering using Euclidean 

distance and Ward’s method based on log transformed relative abundances of both agglutinated and 

calcareous species from core 7, Revsbotn, and core 6, Hammerfest. Sample codes refer to code name 

and midpoint depth of sample interval. Grey shading indicates relative abundances of the species in 

sample interval (see legend).  
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