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Abstract Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for
one-fifth of the Earth’s population. Between 13% and 36% of the region’s glacierized areas exhibit surface
debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained.
We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier,
Nepal, spanning a 7 month period in 2014. Supraglacial ponds and accompanying debris cover modulate
proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system
may store>23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 h.
Given projections of increased debris cover and supraglacial pond extent across High Mountain Asia, we
conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs.
Incorporation of these processes is critical to improve predictions of the region’s freshwater resource
availability and cascading environmental effects downstream.

1. Introduction

An estimated 1.4 billion people depend on freshwater sourced from snow and ice melt in High Mountain Asia
(Immerzeel et al., 2010). Although highly variable across the region, this meltwater typically contributes
between 20% and 50% of the total annual runoff (Bookhagen & Burbank, 2010; Immerzeel & Bierkens,
2012; Lutz et al., 2014). Contemporary observations (Bolch et al., 2012; Brun et al., 2017; Kääb et al., 2012;
Pritchard, 2017) and predicted trends (e.g., Shea, Immerzeel, et al., 2015; Soncini et al., 2016) of glaciers in
the Himalaya demonstrate declining ice volumes but highlight uncertainty over the associated glacio-
hydrological impacts and consequent water stress arising from climate change. One important cause of this
ambiguity is the presence of a supraglacial debris mantle present onmany of the region’s glaciers, which cov-
ers up to 36% of the glacierized area in the Everest region (Bolch et al., 2012; Kääb et al., 2012; Scherler et al.,
2011; Thakuri et al., 2014). This debris mantle commonly causes downglacier ablation areas to exhibit low sur-
face gradients and velocities (e.g., Quincey et al., 2007; Salerno et al., 2017; Scherler et al., 2011; Thompson
et al., 2016), and its overall extent is increasing and predicted to expand further (Bolch et al., 2008; Rowan
et al., 2015; Thakuri et al., 2014). Supraglacial debris exerts a critical influence on glacier response to climate
forcing because, dependent on its thickness, debris can either accelerate or retard ablation (Evatt et al., 2015;
Østrem, 1959). This effect, coupled with the dynamic topography of the glacier surface, promotes highly het-
erogenous ablation and the formation of surface lakes and ponds, which are a common feature of receding
debris-covered glaciers (Basnett et al., 2013; Benn et al., 2012; Gardelle et al., 2011; Miles et al., 2016, Miles,
Willis, et al., 2017, Miles, Steiner, et al., 2017; Narama et al., 2017; Reynolds, 2000; Watson et al., 2016).
However, the processes and causal relationships underpinning the spatial distribution of supraglacial ponds
remain unclear (Salerno et al., 2017).

Supraglacial ponds are “hotspots” of glacier ablation (Mertes et al., 2017) due to their reflective and thermal
characteristics (Benn et al., 2001; Miles et al., 2016; Sakai et al., 2000; Watson, Quincey, Carrivick, & Smith,
2017) and the presence of bare-ice cliffs associated with pond formation and growth (Sakai et al., 2002;
Brun et al., 2016; Watson, Quincey, Carrivick, & Smith, 2017). Consequently, ponds may accelerate glacier
thinning and recession and act as temporary meltwater storage reservoirs (Benn et al., 2001, 2012). Ponds
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on debris-covered glaciers are commonly either transient features due to inception or collapse of near-
surface or shallow englacial drainage routes and consequent drainage, or appear “perched” in closed basins
where efficient flow paths are absent (Benn et al., 2001; Miles, Steiner, et al., 2017; Reynolds, 2000; Watson,
Quincey, Carrivick, Smith, Rowan, et al., 2017). Seasonally, ponds on Himalayan glaciers typically grow both
in area and depth (Watson, Quincey, Carrivick, Smith, Rowan, et al., 2017), attaining maximum extent mid-
monsoon and declining in size thereafter (Miles, Willis, et al., 2017; Narama et al., 2017; Watson et al.,
2016). Interannually, debris redistribution and change in surface topography result in variation in pond posi-
tions (Narama et al., 2017; Watson et al., 2016), and as ponds attain their local hydrological base level, they
may evolve into larger scale lakes (Thompson et al., 2016; Mertes et al., 2017). Observations of supraglacial
pond water quality confirm that hydrological linkages do exist between ponds (Bhatt et al., 2016; Takeuchi
et al., 2012), and pond extent may be governed by the evolving development and (re)organization of supra-
glacial drainage systems (Miles, Steiner, et al., 2017; Watson et al., 2016, Watson, Quincey, Carrivick, Smith,
Rowan, et al., 2017). Yet the extent to which these ponds impact upon meltwater generation and modify
the seasonal hydrograph remains poorly quantified.

A lack of in situ observations of meltwater generation, transit, and runoff for Himalayan glaciers (Bajracharya
et al., 2015; Immerzeel et al., 2012) has led to uncertainties in the prediction of their hydrological response to
environmental forcing. For example, some numerical models of debris-covered glacier systems utilize a linear
reservoir parameterization linking proglacial discharge to meltwater production (e.g., Fujita & Sakai, 2014;
Ragettli et al., 2015). Such methods though fail to account for the potential hydrological complexities in the
region. Specifically, the presence of interconnected supraglacial ponds implies a potentially complex hydro-
logical system (Miles, Steiner, et al., 2017) that will modulate the water inputs to and outputs from the glacier
system. Hence, the acquisition of detailed measurements characterizing the hydrological behavior of debris-
covered glaciers on diurnal to seasonal time scales is an imperative for improved predictions of meltwater
delivery to downstream water resources throughout the Himalaya. Here we present the results of a glacier-
scale runoff monitoring program at the debris-covered Khumbu Glacier in the Everest region of Nepal. Our
measurements span a 190 day period from April to November 2014 including the summer monsoon season.

2. Field Site and Methods

Khumbu Glacier (27.97°N, 86.83°E) flows from the southern flanks of Mount Everest to its terminus at
~4,900 m above sea level (asl) (Figure 1a). The terminus elevation is slightly lower than the local permafrost
limit of ~5,000 m asl (Schmid et al., 2015). The glacier is likely to be polythermal, with an estimated 17 m deep
cold surface ice layer (Mae et al., 1975). The glacier thinned at approximately �0.6 m a�1 between 2000 and
2015, with losses of �1.4 m a�1 at elevations of 5,200–5,300 m asl (King et al., 2017). Approximately 47% of
the 41 km2 glacier including the Changri Nup and Changri Shar tributaries is debris-covered (Figure 1b).
Supraglacial debris thickness varies from 0.1 m to over 3 m and is concentrated over the lowermost 8 km
of the glacier (Soncini et al., 2016), overlying 20 m to 440 m of glacier ice (Gades et al., 2000). Recent observa-
tions (e.g., Nuimura et al., 2011) indicate that this debris cover has become increasingly topographically
uneven: differential ablation has resulted in a complex glacier surface characterized by the presence of
numerous supraglacial water bodies (Watson et al., 2016; Wessels et al., 2002). Throughout 2014, ~1% of
the total debris-covered area comprised supraglacial ponds (Figures 1b–1e). However, as elsewhere in the
region, the hydrological evolution and connectivity of these supraglacial ponds is poorly constrained. The
Changri Nup and Changri Shar tributaries are now physically disconnected but retain a surface hydrological
connection with the Khumbu Glacier tongue (Vincent et al., 2016). The only visible source of meltwater runoff
flowing from the Khumbu catchment emerges from a turbid supraglacial lake situated close to the eastern
glacier margin (Figure 1c). There is no evidence for any other active terminal or lateral outlets for englacial
or subglacial drainage pathways. Runoff data were recorded immediately downstream of this outlet lake,
where meltwater drains via a breach in the eastern Little Ice Age lateral moraine to the upper Dudh Koshi.

Discharge (Q) data were collected between 14 May and 13 November (day of year (DOY) 134 to 317) using
standard methods (Herschy, 1995). A hydrological monitoring station was established in a stable reach of
the sole outflow channel at 4930 m asl. Average water stage was recorded at 30 min intervals using a
Druck PDCR1730 pressure transducer and Campbell Scientific (CS) CR1000 data logger. A stage-discharge rat-
ing curve was developed using triplicate dilutions (Hudson & Fraser, 2005) of 3 mL aliquots of 10% fluorescein
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and a Turner Designs Cyclops7 fluorometer linked to a CS CR10X data logger. A nonlinear stage-discharge
relationship yielded a coefficient of determination of r2 = 0.79 (n = 18). Estimated uncertainty in Q is
<15%, although this is increased for higher Q values (see supporting information; Di Baldassarre &
Montanari, 2009; Rantz et al., 1982; Sakai et al., 1997). On-glacier air temperature (Ta) and debris

Figure 1. (a) ASTER imagery (September 2012) of the Everest region, Nepal, outlining lower elevations of the Khumbu
Glacier; (b) hypsometry and supraglacial pond area in Khumbu Glacier ablation zone based on satellite imagery from
26 April, 22 May, and 6 December 2014 (see Watson et al., 2016); (c) ablation zone of Khumbu Glacier highlighting
key data collection sites and major geomorphological features, including hydrologically inactive outlets (IAOs) indicative
of abandoned drainage routes and supraglacial lake positions on 26 April 2014 prior to the onset of the monsoon
season; (d and e) oblique images illustrating typical debris cover and pond morphology, taken during the pre-monsoon
period, May 2014.

Geophysical Research Letters 10.1002/2017GL075398

IRVINE-FYNN ET AL. SUPRAGLACIAL PONDS REGULATE RUNOFF 11,896



temperature (Td) were monitored at 4,935 m asl using Gemini TinyTag2 logging thermistors with a stated
measurement accuracy of ±0.4°C (Figure 1c). The Ta sensor was mounted in a naturally aspirated radiation
shield 1 m above the debris surface; the Td sensors were located within the debris layer at depths of 0.55
and 1.0 m below the surface and away from the debris-ice interface. All temperature measurements were
recorded at 30min intervals. Local incident shortwave radiation (SWin) was recorded at an automatic weather
station 5,363 m asl on the Changri Nup Glacier (Figure 1c) using a Kipp & Zonen CNR4 sensor with 3% uncer-
tainty. Precipitation (P) was measured at Pyramid Observatory (Figure 1c) at 5,035 m asl using a Geonor T-200
gauge; these hourly data were corrected for undercatch of solid precipitation and have an estimated accu-
racy of ±15% (Sherpa et al., 2017).

We examined the timing of peak discharge and the shape of the diurnal hydrograph using standard
approaches; lag times between time series were identified using a moving window cross correlation (e.g.,
Jobard & Dzikowski, 2006), while we classified diurnal hydrographs using a paired principal component ana-
lysis (PCA) and hierarchical cluster analysis (HCA) approach (e.g., Hannah et al., 2000; Swift et al., 2005).
Specifically, daily (24 h) hydrographs were assumed to commence at low Q at 06:00, PCA was conducted
without rotation, and only components with eigenvalues >1.0 were retained. PCA identified modes of diur-
nal Q variation defined by the standardized component loadings, and these loadings for each day were clus-
tered using Euclidean distance measures and a within-groups linkage method. A total of six groups were
identified and further classified using a second, independent HCA that defined diurnal hydrograph similarity
based on key discharge metrics following z-score normalization. Daily hydrographs were then described
based on “shape” defined by PCA clusters and “magnitude” identified in the secondary HCA.

Estimates of recession storage constants (K) for each diurnal hydrograph were derived from semilogarithmic
plots of Q versus time (e.g., Gurnell, 1993; Hodgkins et al., 2013) where:

K ¼ �t

ln Qt
Q0

� � (1)

for which t is time since the start of the recession segment and Q0 and Qt the discharge at the start of the
recession segment and at time t, respectively. For all days classified as exhibiting diurnal discharge cycles
(n = 117) or constant recessional hydrographs (n = 29), K-values were calculated from the time step following
peak discharge, or from 18:00 in the case of persistent recession hydrographs. Recession segments and asso-
ciated aggregate recession constants were identified using segmented linear regression for cases exhibiting
durations >1 h.

3. Results

The meteorological and discharge time series (Figures 2a–2d) for the 2014 monsoon season reveal that Ta
and SWin exhibited strong diurnal variations, with highest incident energy fluxes between 10:00 and 15:00,
as typifies the region (see Shea, Wagnon, et al., 2015). These two variables were highly correlated over the
diurnal cycle (r> 0.5, p< 0.05) throughout the observation period (Figure 2e). Seasonal changes in Td aligned
well with Ta, although at the daily time step, correlation suggested a changing lag between variables
(Figure 2e). Despite a distinct diurnal variability in Td, variation was suppressed at depth (Figure 2b), and Td
remained below 0°C following DOY 300. The seasonal pattern of Q broadly followed that of Tawith an under-
lying diurnal fluctuation of between 0.005 and 12.3 m3 s�1 and daily mean Q peaking at ~9 m3 s�1 that com-
pares well with published records of discharge during 2014 for the upper Dudh Koshi (Soncini et al., 2016; see
supporting information). Interestingly, diurnal correlation indicated that Q and both Ta and SWin vary out of
phase for much of the observation period (Figure 2e). Q lagged Ta progressively decreasing from 12 to 6 h
until DOY 220 and subsequently returning to lags >12 h until DOY 285 when lags dropped again to ~6 h
(Figure 2f). The diurnal hydrograph cycle became steadily delayed until DOY270 when Td declined to ~5°C
and continued to fall when a protracted hydrograph recession dominated. While statistically significant
diurnal correlations between Q and P were found, these were inconsistent and showed no systematic
trend (Figure 2e). Lag analysis highlighted statistically significant correlations (r > 0.405, p < 0.05) between
Q and P over 24 h periods, predominantly with Q lagged by >10 h; however, no pattern in lag time
was observed.
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Figure 2. Time series of (a) on-glacier air temperature Ta and total daily precipitation P, (b) debris temperature Td at 0.55
and 1.0 m below the debris surface, (c) incident shortwave radiation SWin, and (d) meltwater discharge Q. Analyses
identify (e) daily correlations between Ta, SWin, P, and Q with the 95% confidence levels indicated for the hourly (r ≈ 0.41)
and half-hourly (r ≈ 0.29) data sets, (f) the lag time between daily peak Ta and maximum Q, (g) the timing of minimum
and maximum Q, (h) the daily hydrograph classification based on shape and magnitude, and (i) the three principal
hydrograph recession constants (KP, KR, and KB).
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Three sequential recession segments were identified as typical within the time series: (i) slow decrease in Q
lasting ≤7 h immediately following peak Q (KP), (ii) major recession component of rapid decrease in Q over
~9 h duration (KR), and (iii) a second slow decrease for ~5 h prior to the onset of the next diurnal cycle
(KB). Where only a singular extended recession was identified, this was taken to be KR. KP and KB were found
to be statistically similar but lacked a significant temporal trend, while KR showed a strong nonlinear associa-
tion with peak Q, decreasing and increasing as the monsoon season progressed. While aggregate K-values
broadly agree with the magnitude of those identified in other glacial runoff records (mean KP = 86.7 and
KB = 72.4 h, while mean KR = 108 h for the season but 31.1 h before DOY270), the recession segment pattern
contrasts with the commonly reported systematic increase in K-values over diurnal hydrograph recession
segments (e.g., Gurnell, 1993; Hodgkins et al., 2013). No association between K-values and P or daily peak
Q was found. In tests, uncertainty related to the rating curve used to derive the Q time series (see supporting
information; Rantz et al., 1982) did not impact the recession patterns identified; however, if using a power law
rating curve (Herschy, 1995), recession constants KP, KR, and KB increased by 81 ± 30%, 51 ± 50%, and
57 ± 26% respectively.

4. Discussion

Our results from Khumbu Glacier indicate a hydrological configuration with both similarities and distinct dif-
ferences to those typically reported for Alpine glacier systems in Europe and elsewhere. Systematic progres-
sion in timing of peak Q, seasonal undulation in diurnal discharge amplitude, diurnal hydrograph asymmetry,
and clear patterns in hydrograph classification are commonly described for temperate, debris-free alpine
glaciers (e.g., Hannah et al., 2000; Jobard & Dzikowski, 2006; Richards et al., 1996; Swift et al., 2005).
Typically, as the snowline recedes upglacier and melt season advances, peak Q occurs progressively
closer to the time of heightened SWin and Ta and, even for large south-facing valley glaciers such as
Aletschgletscher, equivalent in size to Khumbu Glacier, Q lags the meteorological drivers of melt by<5 h dur-
ing much of the ablation season (e.g., Lang, 1973; Verbunt et al., 2003). As ablation continues on debris-free
glaciers the amplitude of Q increases and the hydrograph form becomes more accentuated. Here particularly
prior to DOY230 (Figures 3f–3h), the patterns of hydrograph characteristics resemble those reported for tem-
perate alpine settings.

However, in contrast to debris-free alpine counterparts, the timing of daily peak and minimum discharge at
Khumbu Glacier shows amoremarked delay relative to meteorological drivers of ablation: peakQ occurs ≥6 h
after maximum SWin and Ta, while minimum Q commonly coincides with peak irradiance. Q lagging energy
fluxes reflects the delay in energy transfers that initiate melt, particularly for those associated with exchange
at the atmosphere-debris interface and through the debris layer (Carenzo et al., 2016) (Figure 2b). Further lags
may relate to meltwater transit to the monitoring site. Transition in lag time between Ta and Qmidseason is
ascribed to changes in weather systems and lapse rates reported for the region during the monsoon (e.g.,
Shea, Wagnon, et al., 2015, Steiner & Pellicciotti, 2016), the reduction in both Ta and SWin, and subtle changes
in the hydrological function of the drainage system. The lack of association between Q and precipitation has
been observed elsewhere on debris-covered glaciers (e.g., Thayyen et al., 2005). However, the elongated diur-
nal hydrograph recession diverges notably from other glacial observations, and more specifically, recession
data reported here evidence neither “fast” supraglacial and “moderate” englacial and subglacial drainage
flow paths, superimposed on a “slow” persistent base flow on a diurnal basis, nor a seasonal decline in reces-
sion storage constants (cf. Gurnell, 1993). Furthermore, the gauging station elevation (4,930 m asl) ensures
the Q record solely relates to the supraglacial (debris-covered) and shallow englacial environment.
Observations during 2014 confirmed that some supraglacial meltwaters entered a shallow englacial network,
potentially allowing flow between supraglacial ponds, evidenced by spatial variability in pond turbidity that
suggested hydrological connectivity (Figure 1e) (see Takeuchi et al., 2012). While geomorphic signatures sug-
gested that meltwater that had once drained or followed seepage pathways through other moraine breach
locations, contemporary field observations indicate that these are relict inactive features (IAOs: Figure 1c).
Consequently, we discuss our data in the context of a conceptual model of the dominantly supraglacial drai-
nage system illustrated in Figure 3, comprising a debris layer punctuated by a cascade of lakes or ponds.

The cascade of developing ponds represents a series of reservoirs capable of temporarily storing meltwater
and delaying its transit downstream. Combining the pre-monsoon pond areas (~2.5 × 105 m2; Figure 1) with
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observation of the outflow lake level varying by ~0.7 m over a diurnal melt cycle, we estimate the supraglacial
pond cascade on Khumbu Glacier to account for a minimum daily storage capacity of ~1.75 × 105 m3

(equivalent to 23% of the observed mean daily discharge). Supported by evidence of progressive pond
deepening during the monsoon season (e.g., Watson, Quincey, Carrivick, Smith, Rowan, et al., 2017), we
conclude that the diurnal storage capacity of the pond system alone, not including the porous debris
layer, can readily accommodate the observed daily mean P (~1.23 × 105 m3 over the whole glacier area).
The timing and magnitude of on-glacier storage may also be controlled by freeze-thaw processes,
analogous to a periglacial environment given the local permafrost limit. During the winter, both the
supraglacial debris layer and ponds are largely frozen, likely becoming impermeable and unable to convey
any surface meltwater. As the monsoon season develops, the system progressively thaws (e.g., Benn et al.,
2001; Miles et al., 2016; Narama et al., 2017; Sakai et al., 2000; Watson, Quincey, Carrivick, Smith, Rowan,
et al., 2017). The ponds may become hydrologically linked by three key flow paths: those within the
debris-covered mantle; shallow debris-filled crevasses (e.g., Benn et al., 2012; Gulley & Benn, 2007) or
channels formed from collapsed near-surface englacial conduits (Miles, Steiner, et al., 2017); and debris- or

Figure 3. Conceptual model of the seasonal hydrological development of the surface of a Himalayan debris-covered
glacier over an annual cycle. Indicative daily hydrometeorological plots for each stage are shown with SWin (dashed),
Q (blue), and a natural logarithmic transformed Q used to identify the recession components (red). (a) Pre-monsoon the
surface is frozen following the winter period, (b) but as the monsoon season approaches, the debris-cover begins to thaw
and water derived from melting intraclast ice and ponds commences flow and thermal ablation at the base of ponds.
(c) Mid-monsoon the debris is fully thawed, ponds become connected and glacier ice melt occurs and ponds deepen
through thermal ablation, which, coupled with monsoon rainfall, leads to more efficient drainage over the glacier
ice surface. (d) Toward the end of the monsoon season the air temperatures drop and initiate freezing at the debris surface,
while reductions in water flow facilitate upward freezing at the base of the debris layer; however, the thawed portion of
the debris layer still transfers meltwater from ponds toward the glacier margin, albeit delayed. (e) Post-monsoon, which
aligns with the latter portion of our records, continued freezeup of the lake and debris layer occurs restricting any
transmission of meltwater as winter approaches and the glacier-wide hydrological system drains.
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water-choked near-surface passages (Watson, Quincey, Carrivick, Smith, Rowan, et al., 2017). Published fig-
ures for heterogeneous debris indicate permeability of between 10�2 and 10�6 m s�1 (Gulley & Benn,
2007; Muir et al., 2011; Parriaux & Nicoud, 1990; Woo & Steer, 1983), although mobilization of fines may
further reduce hydraulic efficiency (Woo & Xia, 1995). When thawed, therefore, we anticipate the debris layer
and associated supraglacial and shallow or collapsed englacial features may act as a depth-limited, transient
storage reservoir, regulating bulk meltwater discharge over the glacier surface and between ponds and
hence moderating the overall diurnal flow variance. The debris layer is underlain by glacier ice with discrete,
spatially limited, shallow englacial flow paths analogous to continuous permafrost with isolated, closed talik.
The result, in the monsoon-influenced climate, is a thermal regime dominated by the seasonal freezing and
thawing of the debris layer, as is evident in our Td time series, and for which the correlations between Ta and
Td (Figure 2e) likely reflect change in debris heat capacity with water content. Khumbu Glacier’s supraglacial
debris layer may therefore be considered equivalent to a seasonally cryotic active layer (Bonnaventure &
Lamoureux, 2013).

As the monsoon season progresses, evolution of the debris mantle hydrological system may result in
increased interpond connectivity. Progressive thaw at depth in the debris layer and glacier ice melt, despite
enlarging the supraglacial storage capacity, also aids the development of increasingly efficient supra-
permafrost drainage: interclast ice is replaced with water flow pathways and increased hydraulic permeability
(Woo & Steer, 1983; Woo & Xia, 1995), providing more efficient connections through the debris and
facilitating debris-ice interface and englacial flow path development (Gulley & Benn, 2007; Gulley et al., 2009;
Miles, Steiner, et al., 2017; Watson, Quincey, Carrivick, Smith, Rowan, et al., 2017). Strengthening connectivity
increases the rapidity of runoff through the cascading pond system. Sporadic activation, modification, or
abandonment of flow paths and diurnal or seasonal variation in supraglacial pond storage capacity likely
contributes to the observed variation of discharge recession (Figure 3i). Such delay, peak flow suppression,
and attenuated recession, as seen in our data, are indicative of level-pool routing controlling meltwater transfer
through a series of reservoirs (Montaldo et al., 2004) and, as such, the ponds may be conceptualized as
thermokarst (Kirkbride, 1993).

Evidence for this role of supraglacial ponds and debris as regulators of meltwater discharge is exemplified by
the diurnal hydrograph recession. When pond levels are at their peak or minima at seasonal and diurnal time
scales, KP and KB are determined by the hydraulic conductivity of the (thawed) debris that separates the indi-
vidual pond basins. KP was not clearly associated with either Ta or SWin nor with daily maximum discharge;
the recession segment was not associated with the magnitude of meltwater production. Once daily melt-
water provision declines or ceases, changes in hydraulic head drive drainage through the pond cascade
and the major recession (KR) is governed by outflow channel geometry rather than rates of inflow controlled
by debris permeability. KR remains broadly consistent over the hydrologically active period (DOY 134–270).
Subsequently, particularly as Ta and Td both fall and water drains from the pond cascade, water within the
debris layer and debris-rich hydraulic connections between ponds refreezes, and the hydraulic efficiency
of the system declines. This change is highlighted by KR> KB, the post-monsoon increase in KR and a strongly
negative, nonlinear relationship between KR and peak Q.

The observations following DOY 230 of declining Q despite positive Ta and Td and precipitation contributions
are counterintuitive. However, given our hydrological analysis and conceptual model, it seems reasonable to
suggest that this effect could have arisen from the fully thawed debris layer readily storing excess water pro-
duced in this period and mobilization of fines impinging on hydrological efficacy, with a consequent net
reduction in throughflow evidenced by gradual increases in all K-values. The drainage of meltwater contin-
ued for ~45 days after nighttime Ta dropped to freezing, with around 7% of the observed runoff volume
being delivered in this late and post-monsoon period. This protracted drainage corresponds well to the delay
in runoff thought to relate to hysteresis caused by a deep groundwater system in the Nepal Himalaya
(Andermann et al., 2012). Our data suggest that widespread supraglacial debris layers themselves may con-
tribute to the observations of reservoir behavior in glacierized catchments at a seasonal time scale and
extend the duration of glacier meltwater delivery to downstream environments.

5. Conclusions
We have demonstrated that the evolving system of supraglacial ponds and accompanying debris has the
capacity to act as a fundamental modulator of proglacial discharge regimes at Khumbu Glacier. Although
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there is uncertainty in the causal associations between glacier surface gradient, debris cover and pond occur-
rence (Salerno et al., 2017), supraglacial ponds are reported to be increasingly prevalent on debris-covered
glaciers and represent an active and dynamic hydrological system (Miles, Willis, et al., 2017; Miles, Steiner,
et al., 2017; Narama et al., 2017; Watson et al., 2016; Watson, Quincey, Carrivick, Smith, Rowan, et al., 2017).
Recently, there has been growing recognition that small changes in hydrological function in mountain
regions can have substantial impacts on freshwater availability (e.g., Pritchard, 2017) and biodiversity
(Jacobsen et al., 2012), and on terrestrial water bodies and ecosystems in the Himalaya (Salerno et al.,
2016; Xu et al., 2009). To understand the hydrological response of debris-covered glaciers and to forecast
changes in water resources and ecosystem services in the region, it is crucial to explicitly incorporate pro-
cesses relating to the thermodynamics and hydrology of widespread debris mantles that can now be consid-
ered as cryotic, thermokarstic active layers—systems that are more commonly described solely in periglacial
settings (Bonnaventure & Lamoureux, 2013). Further geophysical and hydrochemical exploration of debris
cover (e.g., McCarthy et al., 2017; Muir et al., 2011) is needed to better define the nature of the supraglacial
debris-covered drainage system and the modes and thermodynamics of hydraulic connectivity between
ponds. With ~75 to 90% glacier area in the Himalaya above 4,500–5,000 m asl, the elevation range commonly
associated with the regional permafrost limit (Schmid et al., 2015), the processes we describe here should be
widely applicable throughout the region and highlight the important role that debris-layer supraglacial
hydrology may have on mediating glacier runoff characteristics in High Mountain Asia. Long-term increases
in areal extent of debris cover and ponds will not only contribute to more rapid glacier mass loss but, we pro-
pose, also alter patterns of meltwater supply and quality to downstream catchments through their roles as
temporary reservoirs and flow regulators. A more complete understanding of this buffering process is crucial
to improving projections of the region’s future water resources in a changing climate.
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