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Abstract: In this paper a saturated controller is derived that solves the translational control
problem for underactuated quadrotors. The controller is applied to multiple quadrotors during
a formation reconfiguration where the quadrotors move from an initial position to a desired
position. The null-space-based behavioral control method is a popular method for avoiding
collisions between mobile agents, and is augmented in this paper with saturation functions
to enable feasible collision-free trajectories for the quadrotors during the reconfiguration.
Simulations have been performed to validate the theoretical results and show the performance
of the solution.
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1. INTRODUCTION

The problem of controlling quadrotors has received much
attention in the control community the last decade ranging
from autonomous mapping, collision avoidance, formation
flight and cooperative control (cf. Bouabdallah and Sieg-
wart (2005), Grzonka et al. (2012), Guerrero et al. (2012),
Guisser and Medromi (2009) and references therein). Fly-
ing with a formation of quadrotors have several distinct
advantages. With several quadrotors, it is possible to ob-
tain 3D measurements which will be more accurate than
what a single quadrotor is able to obtain. Furthermore,
pictures taken with multiple quadrotors can be stitched
together providing a higher resolution than a single picture
taken by one quadrotor. Even though there are many
advantages, there are also several disadvantages where
the main challenge is collision avoidance. With multiple
quadrotors located in the same airspace some sort of
supervisory method must be applied to avoid collisions.
One of the most well known collision avoidance methods is
potential fields presented by Khatib (1986) which creates
an attractive potential around the desired position and
repulsive potentials around obstacles. By following the
negative gradient of the resulting field, an agent will be
able to reach a desired position without colliding with any
obstacles. But; the method suffers from several inherent
limitations such as local minima which can trap an agent
from reaching its destination, and the inability to pass
through narrow gaps.

Another method that can be used for collision avoidance
is the Null-Space-Based (nsb) behavioral control method
presented by Antonelli et al. (2005). The method enables
an agent to have multiple tasks, such as collision avoid-
ance, move to target, maintain rigid formation and others.
The basic idea is to prioritize the tasks into a hierarchy,
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where higher level tasks subsumes lower level tasks. This
means that if a task conflict with a higher level task, its
conflicting velocity components will be projected onto the
null-space and thereby removing its contribution from the
total reference velocity vector. The nsb method has re-
sulted in many papers with applications to mobile robots,
ships and spacecraft (cf. Arrichiello et al. (2006), Antonelli
et al. (2009), Oland et al. (2010), Schlanbusch et al. (2011)
and Schlanbusch and Oland (2013)).

A quadrotor has four rotors used for both rotational
and translational control, and can change its orientation
by changing the rotation speed of the rotors. One of
the main challenges with quadrotors is that they only
have four actuators and six degrees of freedom. With
fewer actuators than degrees of freedom this constitutes
an underactuated control problem (cf. Reyhanoglu et al.
(1999)), which makes controller design more challenging.
Several different concepts have been proposed; such as
feedback linearization, backstepping, sliding mode and
PID control. Common for all schemes is that a coupling
between the translational and rotational dynamics must be
found in order to track a desired position vector. This can
be done directly in the desired attitude, which is typical
for guidance schemes such as way-point guidance; or it
can be done as part of the controller design. In Cunha
et al. (2009) the authors apply nested saturation functions
based on Teel (1992) to control a quadrotor. Controlling
the center of mass relative a desired trajectory, the authors
backstep four times until the coupling between the rotation
and translation is found.

Instead of controlling the center of mass, it is possible
to shift the origin away from the center of mass to
enable a coupling between the rotational and translational
dynamics.



1.1 Contribution

In this paper a saturated controller is derived based on
the coupling between the rotational and translational
dynamics and enables a quadrotor to track a desired
trajectory. The controller is analyzed using Lyapunov
theory where the tracking error is shown to be uniformly
globally asymptotically stable. The same controller is
then applied to multiple quadrotors performing a position
reconfiguration where collision avoidance is handled using
the nsb method which is augmented with saturation
functions to avoid large velocity commands.

This paper is organized as follows: In Section 3 the quadro-
tor modeling is presented and shows how to make the
coupling between rotational and translational dynamics.
The saturated controller is shown in Section 4 while the
saturated nsb method is derived in Section 5, and in
Section 6 a simulation of four quadrotors perform position
reconfiguration is shown and the results are discussed.

2. PRELIMINARIES

2.1 Notation and reference Frames

The time derivative is denoted ẋ = dx
dt
, and its second

derivative is given as ẍ = d2x
dt2

. Superscripts denote the
reference frame of a vector where b is the body frame, and
n is the North-East-Down (ned) frame which is assumed
to be inertial. The two frames are shown in Figure 1
where the xn axis points North, yn points East and zn

points down towards the center of the Earth. The body
frame has its xb axis pointing through rotor 1 as shown in
Figure 2, yb points through rotor 3 while zb completes the
right handed orthonormal reference frame. The rotation
matrix from body frame to ned frame is denoted Rn

b ∈
R

3×3 which holds the properties that Rn
bR

b
n = I where

I is the identity matrix such that (Rn
b )

⊤ = Rb
n. The

angular velocity between two frames is denoted ω
γ
α,β which

represents the angular velocity of frame β relative α
referenced in frame γ. The time derivative of the rotation
matrix is given as Ṙn

b = Rn
bS(ω

b
n,b) where S(ωb

n,b) is the

cross-product operator and ωb
n,b is the angular velocity of

the body frame relative the ned frame referenced in the

body frame. Given two vectors v1 = [v1 v2 v3]
⊤
,v2 ∈ R

3,
the cross product operator can be written as

S(v1) =

[

0 −v3 v2
v3 0 −v1
−v2 v1 0

]

(1)

and where S(v1)v2 = v1 × v2 and S(v1)v2 = −S(v2)v1.

3. MODELING

A quadrotor has four rotors that are used as actuation
to perform both rotational and translational motion. As
shown in Figure 2 the speed of the rotors can directly be
controlled producing the desired forces and moments. The
thrust from the rotors is found as (cf. Castillo et al. (2005))
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where k1, k2, k3, k4 are positive constants and ω1, ω2, ω3, ω4

are the speed of each rotor. The moments can be found
related to the rotor speeds as

τ b =
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where τ1, τ2, τ3, τ4 are the motor-moments of the rotors
and l is the distance from the center of mass to the rotors.

By treating the ned frame as an inertial frame the rigid
body dynamics of a quadrotor can be written as

ṗn
n,c =Rn

bv
b (4)

v̇b =−
1

m

[

0
0
T

]

+Rb
n

[

0
0
g

]

− S(ωb
n,b)v

b −Dvb (5)

ω̇b
n,b =J−1(−S(ωb

n,b)Jω
b
n,b + τ b) (6)

Ṙn
b =Rn

bS(ω
b
n,b) (7)

where pn
n,c is the position vector from the origin of the

ned frame to the center of mass of the quadrotor, vb is the
velocity vector in body frame,m is the mass, g = 9.81 m/s2

is the gravitational constant,D = diag{d1, d2, d3} is a pos-
itive definite damping matrix and J = diag{Jxx, Jyy, Jzz}
is the inertia matrix.

As illustrated in Figure 1, the origin can be shifted away
from the center of mass giving the position vector in the
ned frame as

pn
n,o =pn

n,c +Rn
b∆

b (8)

where pn
n,o is the position vector between the ned frame

and a point to be controlled and ∆b := [0 0 ∆]
⊤

is a
constant body-fixed displacement vector used to couple
the translation and rotation. Differentiating (8), using (4)
and (7), we obtain

ṗn
n,o =Rn

b (v
b + S(ωb

n,b)∆
b) (9)

where the property S(ωb
n,b)∆

b = −S(∆b)ωb
n,b can be used

to write (9) as

ṗn
n,o =Rn

b (v
b − S(∆b)ωb

n,b). (10)



Equation (10) can be differentiated once more, and by
inserting (5) and (6) it becomes

p̈n
n,o =Rn

bS(ω
b
n,b)(v

b − S(∆b)ωb
n,b)

+Rn
b (−

1

m

[

0
0
T

]

+Rb
n

[

0
0
g

]

− S(ωb
n,b)v

b −Dvb

− S(∆b)J−1(−S(ωb
n,b)Jω

b
n,b + τ b)). (11)

Gathering the control signals, the acceleration vector can
be written as

p̈n
n,o =Rn

bS(ω
b
n,b)(v

b − S(∆b)ωb
n,b)

+Rn
b (Bu+Rb

n

[

0
0
g

]

− S(ωb
n,b)v

b −Dvb

+ S(∆b)J−1S(ωb
n,b)Jω

b
n,b). (12)

where u = [τx τy T ]
⊤

and
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The acceleration now contains three states to be controlled
and three actuator signals to control them.

Remark 1. No control objective has been placed on the
yaw torque and it remains a free variable that can be used
for an additional control objective.

4. SATURATED CONTROLLER DESIGN

Let the tracking errors be defined as

e1 =pn
n,o − pn

r (t) (14)

e2 =ṗn
n,o − ṗn

r (t) (15)

where pn
r (t) is a reference trajectory that is to be tracked

by the control law. The velocity vector can be written using
(9) as vb = Rb

ne2 + Rb
n(ṗ

n
r − Rn

bS(ω
b
n,b)∆

b) which can

be used together by differentiating (14)-(15) to find the
tracking error dynamics as

ė1 =e2 (16)

ė2 =Rn
bS(ω

b
n,b)(v

b − S(∆b)ωb
n,b)

+Rn
b (Bu+Rb

n

[

0
0
g

]

− S(ωb
n,b)v

b −DRb
ne2

−DRb
n(ṗ

n
r −Rn

bS(ω
b
n,b)∆

b)

+ S(∆b)J−1S(ωb
n,b)Jω

b
n,b)− p̈n

r (t) (17)

which is similar to a double integrator with dynamics.

Let a continuous saturation function be defined as σ(s) =
tanh(s) which holds the property that s⊤σ(s) > 0 ∀s. A
Lyapunov Function Candidate can now be chosen as

V1 =kpe
⊤
1 σ(e1) +

1

2
e⊤2 e2 (18)

where kp is a positive gain, and where the Lyapunov
Function Candidate is positive definite and radially un-
bounded. By differentiating (18) and inserting (16)-(17)
the Lyapunov derivative becomes

V̇1 =kpe
⊤
2
σ(e1) + kpe

⊤
1
σ̇(e1)e2

+ e⊤2 (R
n
bS(ω

b
n,b)(v

b − S(∆b)ωb
n,b)

+Rn
b (Bu+Rb

n

[

0
0
g

]

− S(ωb
n,b)v

b −DRb
ne2

−DRb
n(ṗ

n
r −Rn

bS(ω
b
n,b)∆

b)

+ S(∆b)J−1S(ωb
n,b)Jω

b
n,b)− p̈n

r (t) (19)

where e1 := [e1,x e1,y e1,z]
⊤

and the derivative of the
saturation function is found as

σ̇(e1)=I−





tanh2(e1,x) 0 0
0 tanh2(e1,y) 0
0 0 tanh2(e1,z)



 (20)

which is zero when it is in saturation. The control law can
now be chosen as

u =B−1(−Rb
n

[

0
0
g

]

+ S(ωb
n,b)v

b +DRb
n(ṗ

n
r

−Rn
bS(ω

b
n,b)∆

b)− S(∆b)J−1S(ωb
n,b)Jω

b
n,b

+Rb
np̈

n
r (t)− S(ωb

n,b)(v
b − S(∆b)ωb

n,b)

+Rb
n(−kpσ̇(e1)e1 − kpσ(e1)−Kdσ(e2))) (21)

where Kd > 0 is a diagonal gain matrix. The control
law contains the term kpσ̇(e1)e1 which is zero when the
function is in saturation, meaning that all the tracking
functions in the control law remain saturated. Inserting the
control law (21) into (19) the Lyapunov derivative becomes

V̇1 =− e⊤
2
Kdσ(e2)− e⊤

2
Rn

bDRb
ne2 (22)

which is negative semidefinite. The matrix Rn
bDRb

n is
a positive definite matrix that provides damping to the
system. Since trace is similarity invariant, it follows that
Tr(Rn

bDRb
n) = Tr(D) which contains the sum of the

positive eigenvalues of the damping matrix, meaning that
Rn

bDRb
n must be a positive definite matrix.

It is evident from the Lyapunov derivative (22) that the
tracking error e2 → 0, and to study the stability properties
of e1, the control law (21) can be inserted into (17)
resulting in the closed loop dynamics as

ė1 =e2 (23)

ė2 =−Rn
bDRb

ne2 − kpσ̇(e1)e1 − kpσ(e1)

−Kdσ(e2). (24)

Since the reference trajectory is time-varying, the Ma-
trosov theorem (cf. Hahn (1967)) can be used to prove
stability of e1. Consider an auxiliary function W = e⊤1 e2
which can be differentiated and by inserting (23)-(24), it
becomes

Ẇ =e⊤
2
e2 + e⊤

1
(−Rn

bDRb
ne2 − kpσ̇(e1)e1

− kpσ(e1)−Kdσ(e2)). (25)

Now consider the set N = {pn
n,o ∈ R

3|e2 = 0}, and by
evaluating the auxiliary function in this set, its derivative
becomes

Ẇ =− kpe
⊤
1
σ̇(e1)e1 − kpe

⊤
1
σ(e1) (26)

which is definitely nonzero. The Lyapunov function (18)
is positive definite, decrescent and its derivative (22) is
negative semidefinite and the derivative of the auxiliary
function (26) is definitely nonzero in the set N . Thus,
all conditions of Theorem 55.3 in Hahn (1967) are met,
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Fig. 3. Position and velocity tracking errors

and we can conclude that the origin (e1, e2) = (0,0)
is uniformly asymptotically stable (uas). Furthermore,
since the Lyapunov function (18) is radially unbounded
it follows using standard Lyapunov arguments (cf. Khalil
(2002)) that the origin (e1, e2) = (0,0) is uniformly
globally asymptotically stable (ugas).

4.1 Simulation of the Saturated Control Law

The attitude dynamics is used to solve the translational
control problem. When e1 and e2 are in saturation, the
trajectory tracking problem can be related to that of
tracking a straight line, meaning that the attitude will
converge to a constant value and the angular velocity will
go to zero. Consider the scenario of tracking a circle where

pn
r (t) = [R cos(ωrt) R sin(ωrt) zr]

⊤
(27)

ṗn
r (t) = [−Rωr sin(ωrt) Rωr cos(ωrt) 0]

⊤
(28)

p̈n
r (t) =

[

−Rω2

r cos(ωrt) −Rω2

r sin(ωrt) 0
]⊤

(29)

where R = 50 m is the radius of the circle, ωr = 0.002
rad/s is the reference angular velocity of the circle, t is
the time, zr = −25 m is the reference altitude and the
displacement vector is chosen as ∆ = 0.1 m. The position
and velocity errors are shown in Figure 3 where the
velocity error goes into saturation and stays in saturation
until the position error has gone to zero. The attitude
and angular velocity are shown in Figure 4, where the
attitude holds constant values while the velocity error is
in saturation, while the angular velocity quickly converges
to zero. The angular velocity has three small spikes when
the position and velocity errors go to zero.

5. NULL-SPACE-BASED BEHAVIORAL CONTROL

Let us now consider the case of multiple quadrotors using
the saturated controller (21) for translational control.
With multiple quadrotors, there exist a possibility of
collisions which in this paper is avoided using the nsb

method. Based on the work by Antonelli et al. (2005) let a
task variable be defined as a function of the position such
that ξi = f(pn) ∈ R

3 where i = 1, 2 and pn is a position
vector. It maintains the differential relation as

ξ̇i =
∂f(pn)

∂pn
ṗn := Ji(p

n)ṗn (30)
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where Ji is the configuration-dependent Jacobian matrix.
This can be solved for the velocity using the Moore-

Penrose pseudo-inverse as ṗn = J
†
i ξ̇i where J

†
i =

J⊤
i (JiJ

⊤
i )

−1. By defining a desired task, ξi,d, the least
squares solution can be used to find a reference velocity
that fulfills that task as

ṗn
r =J

†
i ξ̇i,d. (31)

As pointed out in Antonelli et al. (2005), if (31) is
integrated in order to find the reference position, it will
result in numerical drift. This is solved using a closed loop
inverse kinematic algorithm as

ṗn
r =J

†
i (ξ̇i,d +Λξ̃i) (32)

where Λ is a gain matrix and ξ̃i = ξi,d − ξi. In analogy to
(32) a single task velocity can now be computed as

ṗn
1 =J

†
i (ξ̇i,d +Λiξ̃i) (33)

and multiple tasks can be added together. With two tasks,
the reference velocity vector can be found as

ṗn
r = ṗn

1
+ (I− J

†
1
J1)ṗ

n
2

(34)

which projects conflicting lower level velocity components
onto the null-space and adds them together producing the
total reference velocity vector.

5.1 Saturated nsb Control

One major issue with the nsb method, is that when the
initial position error is large, it will produce large reference
velocities which may be hard or impossible to track for a
given controller. To design a feasible reference velocity, let

ṗn
r = σ1(ṗ

n
1 ) + (I− J

†
1
J1)σ2(ṗ

n
2 ) (35)

and σi(·), i = 1, 2, is a linear saturation function

σi(s) =

{

s if |s| < sign(s)smax,i

sign(s)smax,i otherwise
(36)

where smax,i is the maximum output from the saturation
function. Though the saturation function is defined for
scalar functions, it can be applied on a component level
to both vectors and matrices. To prove that the first task
always is fulfilled, let a Lyapunov Function Candidate be

defined as V2 = 1

2
ξ̃
⊤

1
ξ̃1 which can be differentiated, and

using that ξ̇
1
= J1ṗ

n
r together with (35), it results in



V̇2 =ξ̃
⊤

1
(ξ̇

1,d − J1(σ1(ṗ
n
1
) + (I− J

†
1
J1)σ2(ṗ

n
2
))) (37)

=ξ̃
⊤

1 (ξ̇1,d − J1(σ1(J
†
1
(ξ̇1,d +Λ1ξ̃1))

+ (I− J
†
1
J1)σ2(ṗ

n
2 ))). (38)

Assuming that the two tasks conflict, it follows that J1(I−

J
†
1
J1) = 0 removing the last term, and by designing the

saturation function such that smax,1 > max{||J†
1
||, ||ξ̇1,d||}

it follows that V̇2 = −ξ̃
⊤

1
σ1(Λ1ξ̃1) which is negative

definite. By applying standard Lyapunov arguments (cf.

Khalil (2002)) it follows that the origin (ξ̃1 = 0) is
ugas when the tasks conflict, meaning that the first task
is always fulfilled. A Lyapunov Function Candidate for

the second task can be defined as V3 = 1

2
ξ̃
⊤

2
ξ̃
2
and by

differentiating it and using that ξ̇2 = J2ṗ
n
r , we obtain

V̇3 =ξ̃
⊤

2 (ξ̇2,d − J2(σ1(ṗ
n
1 ) + (I− J

†
1
J1)σ2(ṗ

n
2 ))). (39)

When the two tasks are not conflicting, the Jacobian

matrices hold the property that J2J
†
1
= 0 which can be

used to reduce (39) to

V̇3 =ξ̃
⊤

2 (ξ̇2,d − J2σ1(ṗ
n
1 )− J2σ2(ṗ

n
2 )) (40)

=ξ̃
⊤

2 (ξ̇2,d − J2σ2(J
†
2
(ξ̇2,d +Λ2ξ̃2))) (41)

and by designing smax,2 > max{||J†
2
||, ||ξ̇2,d||} the Lya-

punov derivative becomes

V̇3 =ξ̃
⊤

2
(ξ̇2,d − σ2(ξ̇2,d +Λ2ξ̃2)) = −ξ̃

⊤

2
σ2(Λ2ξ̃2) (42)

which is negative definite and has a ugas equilibrium when
the tasks are not conflicting. To summarize, if the tasks are
conflicting, the quadrotor will change its reference velocity
in such a way that the tasks no longer conflict; and then
it will continue to complete its lower-level task.

5.2 Tasks

Collision Avoidance The most critical task is to avoid
collision between the quadrotors. A protective sphere can
be placed around each of the quadrotors, and if the relative
distance between any of the quadrotors are less than
a constant d, conflicting velocity component from lower
level tasks will be projected onto the null-space. Let the
position of the obstacle be defined as pn

o and the position
of a quadrotor be defined as pn. Let the task variable be
defined as ξ1 = d− ||pn −pn

o || and a desired task variable
as ξ1,d = d. The Jacobian is found as J1 = r̂⊤ where the
unit vector is given as

r̂ =
pn − pn

o

||pn − pn
o ||

(43)

which is aligned with the direction between the quadrotor
and the obstacle. Using (33), the velocity vector for the
collision avoidance scheme becomes

ṗn
1
=J

†
1
λ1(d− ||pn − pn

o ||). (44)

Note that the task of keeping a relative distance away from
obstacles is a scalar task, such that J1 ∈ R

3, and the gain
λ1 becomes scalar.

Move to a Desired Position The second task can be
chosen to move to a desired position. The task variable
becomes ξ

2
= pn, while the desired variable becomes

Table 1. Initial and Desired Position Vectors

Quadrotor Initial Position (m) Desired Position (m)

Q1

[

−50 20 0
]

⊤
[

20 10 20
]

⊤

Q2

[

−50 −30 0
]⊤ [

40 10 20
]⊤

Q3

[

−50 20 0
]⊤ [

60 30 20
]⊤

Q4

[

−50 50 0
]

⊤
[

80 10 20
]

⊤
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Fig. 5. Position Reconfiguration in East North Up Frame

ξ2,d = pn
d , where pn

d is a desired position. The Jacobian
becomes J2 = I such that the velocity vector becomes

ṗn
2 =ṗn

d +Λ2(p
n
d − pn) (45)

which can be used for trajectory tracking. The saturated
reference velocity is now found by inserting J1, (44) and
(45) into (35).

6. SIMULATION

Consider four quadrotors, denoted Q1, Q2, Q3, Q4 with
initial and desired positions as shown in Table 1. The gains
are chosen as λ1 = 1, Λ2 = 0.2I, smax,1 = smax,2 = 2,
∆ = 0.1 m and the size of the protective sphere is set
to d = 10 m. As shown in Figure 5 all quadrotors are
able to move to their desired positions. Quadrotors Q-
1 and Q-2 begin with an initial relative distance of only
5m, and as shown in Figure 6 they quickly move away to
maintain a relative distance of 10 m or more. During the
reconfiguration, the relative distance between any of the
quadrotors never go below about 10 m except the initial
case of Q-1 and Q-2, and therefore no collisions occur.

As a comparison of the saturated nsb and the regular nsb
method, consider a scenario of a quadrotor performing a
position reconfiguration where the desired position is far
away (1000 m). Between the initial position and the final
position there is an obstacle that must be avoided. The
relative distance is shown in Figure 7, where the saturated
nsb method is shown on the top, while the regular nsb

method is shown at the bottom. The regular nsb method
has a minimum relative distance of about 3.5 m due to high
reference velocity, while the saturated nsb method has a
minimum relative distance of about 9.6 m. Since velocity
components are projected onto the null-space whenever
the relative position is equal or less than d = 10 m, it
is natural that a very high relative velocity makes the
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quadrotor move close to the obstacle before the conflicting
velocity components are removed. To be fair it is not a
problem with the nsb method itself, but a problem of
using relative distance as a measurement of when to switch
on the collision avoidance method. The same problem
exists for other collision avoidance methods, and can be
remedied by using saturation functions as in this paper
or by incorporating the relative velocity when checking for
collisions. This has motivated research such as Schlanbusch
and Oland (2013) where the relative velocity vector is used
to increase the size of the protective sphere whenever an
agent is on collision course with an obstacle, and maintains
a minimum size whenever the agent is moving parallel or
away from the obstacle.

7. CONCLUSION

In this paper we have derived a saturated controller for
an underactuated quadrotor which is shown to be ugas

and validated by tracking a circle. With basis in the nsb

behavioral control method, a saturated nsb method was
derived and validated using a case of four quadrotors that
performed a formation reconfiguration without collisions.
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