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Abstract: In this paper a new method of performing waypoint tracking is shown for
underactuated fixed-wing uavs. The position error can be mapped onto the desired axis using
a desired rotation matrix, while the velocity error can be mapped to the desired axis using a
desired angular velocity. With all errors defined along one axis, the tracking problem is easily
solved using only one thruster. A velocity controller is derived which makes sure that the uav

tracks a desired total velocity moving towards the next waypoint, while a sliding surface attitude
controller is designed to track the desired attitude. The impact of saturation on the attitude
controller is also studied where it is shown that the actuators will desaturate in finite time,
through a change in the reference trajectory. Using both controllers, a solution to the problem
of waypoint tracking of an underactuated uav is proposed, and simulations have been performed
that support the theoretical results.
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1. INTRODUCTION

A fixed-wing unmanned aerial vehicle (uav) has six de-
grees of freedom, and four actuators: thrust and three
deflection angles. With fewer actuators than degrees of
freedom this constitutes an underactuated control prob-
lem (cf. Reyhanoglu et al. (1999)). Generally it is only
possible to track as many outputs as available control
inputs, making two of the states unactuated. A mapping is
therefore required to map the errors from the unactuated
states onto the actuated ones. This is the principle of
a guidance system that generates reference signals that
can be tracked by the controller making the unactuated
states go to zero. One guidance method is line-of-sight
(los) guidance, where the vector between the vehicle and
a waypoint can be represented by a pitch and yaw angle
as well as a distance. This enables the attitude controller
to track the desired attitude defined by the los-vector,
while the thrust can be used to make the distance go to
zero. Hence, only three actuators are required to reach
any point in R

3. This has made waypoint guidance very
popular for underactuated rigid bodies such as e.g. fixed-
wing uavs, autonomous underwater vehicles (auvs), ships,
quadrotors and spacecraft (cf. Aguiar and Pascoal (2002),
Børhaug and Pettersen (2005), Breivik and Fossen (2005),
Fossen et al. (2003), Lee et al. (2010), Roberts and Tayebi
(2009) and references therein).

The main focus in the literature is to parameterize the
attitude using Euler angles, and to define the desired pitch
and yaw angles to solve the waypoint tracking problem.
By working directly on an angular level, the properties
of the rotation matrix that are exploited in this paper,
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may be lost. Instead of using Euler angles, it is possible
to define a desired rotation matrix such that the position
errors become mapped onto one axis. Similarly, a desired
angular velocity vector can be designed to map the velocity
errors onto the same axis. An attitude controller can then
be used to track the desired attitude, and by moving with
a positive velocity, the vehicle will eventually reach its
desired waypoint.

Roberts and Tayebi (2009) derived a desired rotation
matrix by looking at the desired force vector in an inertial
frame relative the constrained thrust in the body frame. By
properly designing the rotation matrix using quaternions,
they were able to solve the trajectory tracking problem for
a vertical take-off and landing (vtol) uav. However, the
method does have some critical issues; the thrust must be
nonzero and it requires either an observer or the derivative
of the force vector in order to find the desired angular
velocity, resulting in very complex equations where the
derivative of the aerodynamics and other forces must be
taken into account.

Inspired by the results of Roberts and Tayebi (2009) we
derive a waypoint guidance scheme which is applied to
an underactuated fixed-wing uav. Instead of defining the
rotation matrix at the acceleration level, we define it at
the position error level providing us with simple equations
for calculating the desired rotation matrix and the desired
angular velocity vector. A sliding surface controller is
then derived to track the desired attitude, and a velocity
controller is designed to make the uav move with a desired
velocity to the next waypoint.



2. MODELING

2.1 Notation

In this paper the time derivative of a vector is denoted
as ẋ = dx/dt and the Euclidean length is written as

||x|| = (x⊤x)
1

2 . Superscript denotes the reference frame
of the current vector, where n denotes the North East
Down (ned) frame and b denotes the body frame. The
ned frame, assumed to be inertial, has its xn-axis aligned
towards the North, yn is pointing East and zn is pointing
towards the center of the Earth. The body frame is
fixed to the rigid body, where xb is pointing along the
fuselage of the body, yb is pointing through the right
wing, while zb is pointing downwards. The rotation matrix
is denoted as Rc

a ∈ SO(3) which rotates a vector from

frame a to frame c, where its transpose (Rc
a)

⊤
= Ra

c ,

such that (Ra
c )

⊤
Ra

c = Rc
aR

a
c = I, where I is the identity

matrix. The angular velocity vector is denoted ω
c
a,e which

represents the angular velocity of frame e relative frame
a referenced in frame c, and angular velocities between
different frames can be added as ωe

a,d = ω
e
a,c + ω

e
c,d. The

time derivative of the rotation matrix is found as Ṙc
a =

Rc
aS(ω

a
c,a) where the cross-product operator S(·) is such

that for two arbitrary vectors v1,v2 ∈ R
3 we have that

S(v1)v2 = v1 ×v2. The cross-product operator also holds
the properties that S(v1)v2 = −S(v2)v1, S(v1)v1 = 0

and that v⊤
1 S(v2)v1 = 0. Given v1 = [v1 v2 v3]

⊤
, the

cross-product operator is defined as

S(v1) :=

[

0 −v3 v2
v3 0 −v1
−v2 v1 0

]

. (1)

2.2 Translational Kinematics and Dynamics

The translational kinematics is defined as (cf. Stevens and
Lewis (2003))

ṗn = Rn
bv

b (2)

vb
r = vb −Rb

nv
n
wind (3)

where vb is the velocity vector of the center of mass,

vb
r := [u v w]

⊤
is the velocity vector of the body (vb)

relative the wind vector (vn
wind). The rotation matrix from

body to wind is defined as

Rw
b :=

[

cos(α) cos(β) sin(β) sin(α) cos(β)
− cos(α) sin(β) cos(β) − sin(α) sin(β)

− sin(α) 0 cos(α)

]

(4)

where the angle of attack is defined as

α := tan−1
(w

u

)

(5)

and the sideslip angle as

β := sin−1

(

w

VT

)

(6)

where VT is the total velocity defined as

VT := ||vb
r|| =

√

(vb
r)

⊤vb
r. (7)

The relative velocity vector in the wind frame is now found
through the rotation

vw
r = Rw

b v
b
r =

[

VT

0
0

]

(8)

which aligns the total velocity along the xw axis.

Assuming that the wind velocity is constant or slowly
varying the relative acceleration of the body frame is found
using Newton’s Second Law as

v̇b
r =

1

m
f bthrust +

1

m
Rb

wf
w
aero +Rb

nf
n
g − S(ωb

n,b)v
b
r (9)

wherem is the mass, f bthrust = [T 0 0]
⊤
is the thrust vector

with T as the total thrust, fwaero is the aerodynamic force

vector, fng = [0 0 g]
⊤

is the gravity vector where g is the

gravitational acceleration and ω
b
n,b is the angular velocity

between the body and ned frame. The aerodynamic force
vector can be defined as

fwaero =
1

2
ρSV 2

T





−(CD0
+ kC2

L)
CYβ

β
−(CL0

+ CLα
α)



 (10)

where ρ is the air density, S is the wing area, C(·)

are aerodynamic coefficients, CL = CL0
+ CLα

α and
k is a constant scalar value dependent on the aircraft
configuration.

The total velocity can be differentiated as

V̇T =
1

VT

(vb
r)

⊤v̇b
r (11)

and by inserting (9) into (11) the total acceleration be-
comes

V̇T =
1

VT

(vb
r)

⊤(
1

m
f bthrust +

1

m
Rb

wf
w
aero +Rb

nf
n
g

− S(ωb
n,b)v

b
r) (12)

where the thrust can be extracted, and by using the
property that (vb

r)
⊤S(ωb

n,b)v
b
r = 0 it results in

V̇T =
uT

mVT

+
1

VT

(vb
r)

⊤(
1

m
Rb

wf
w
aero +Rb

nf
n
g ). (13)

Note that in order to produce lift, an aircraft must have
a positive velocity meaning that both VT and u must be
positive.

Remark 1. Even though an aircraft is underactuated since
there are no direct control of the v and w velocity compo-
nents, it is still controllable by controlling the total velocity
and pointing the velocity vector in a desired direction.

2.3 Rotational Kinematics and Dynamics

The orientation of a fixed-wing uav can be parameterized
by using a unit quaternion as

qn,b :=
[

ηn,b ǫ
⊤
n,b

]⊤
∈ S3

=

[

cos

(

ϑn,b

2

)

k⊤
n,b sin

(

ϑn,b

2

)]⊤

(14)

where ηn,b is the scalar part and ǫn,b ∈ R
3 is the vector

part, and the subscript of qn,b defines the orientation to
be the body frame relative the ned frame. The quaternion
performs a rotation of an angle ϑn,b around the unit vector
kn,b, and the rotation matrix between the body and ned

frame can be constructed as

Rn
b = I+ 2ηn,bS(ǫn,b) + 2S2(ǫn,b), (15)

and it holds the property q⊤
n,bqn,b = η2n,b + ǫ

⊤
n,bǫn,b = 1.

The rotational kinematics of the quaternion is given as (cf.
Egeland and Gravdahl (2002))



q̇n,b =
1

2
qn,b ⊗

[

0
ω

b
n,b

]

=
1

2
T(qn,b)

[

0
ω

b
n,b

]

(16)

where ⊗ denote the quaternion product and where

T(qn,b) :=

[

ηn,b −ǫ
⊤
n,b

ǫn,b ηn,bI+ S(ǫn,b)

]

. (17)

The angular dynamics of a fixed-wing uav can be written
as

Jω̇b
n,b = −S(ωb

n,b)Jω
b
n,b + τ

b
aero (18)

where

J =

[

Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

]

(19)

is the inertia matrix and J(·) are positive constants. The
aerodynamic moments can be defined as

τ
b
aero := f(α, β) −Dω

b
n,b +Bu (20)

where u = [δa δe δr]
⊤

is a vector consisting of the deflec-
tion angles which are used for control, and an aerodynamic
moment vector function is defined as

f(α, β) :=
1

2
ρSV 2

T





b(Cl0 + Clββ)
c̄(Cm0

+ Cmα
α)

b(Cn0
+ Cnβ

β)



 (21)

D := −
1

2
ρSV 2

T















b2

2VT

Clp 0
b2

2VT

Clr

0
c̄2

2VT

Cmq
0

b2

2VT

Cnp
0

b2

2VT

Cnr















(22)

where D is a positive definite matrix, b represents the wing
span, c̄ is the mean aerodynamic chord, and the control
effectiveness matrix is defined as

B :=
1

2
ρSV 2

T





bClδa
0 bClδr

0 c̄Cmδe
0

bCnδa
0 bCnδr



 . (23)

The angular acceleration can now be written by inserting
(20) into (18) as

Jω̇b
n,b = −S(ωb

n,b)Jω
b
n,b + f(α, β) −Dω

b
n,b +Bu. (24)

The control objective is to point the wind frame in a
desired direction which solves the way-pointing tracking
problem. Let an error quaternion between a desired frame
and the wind frame be defined as the composite rotation

qd,w = qd,n ⊗ qn,b ⊗ qb,w (25)

which has two equilibria at q⋆
d,w =

[

±1 0⊤
]⊤

which rep-
resents the same physical orientation, but mathematically
they are different. From a control perspective it is more
intuitive to control relative the origin, and based on the
work by Kristiansen (2008) let an error function be defined
as

eq± :=

[

1∓ ηd,w
ǫd,w

]

(26)

which has the kinematics as

ėq± = Te(eq±)ω
w
d,w

= Te(eq±)(R
w
b ω

b
n,b −Rw

d ω
d
n,d + ω

w
b,w) (27)

with

Te(eq±) :=
1

2

[

±ǫ
⊤
d,w

ηd,wI+ S(ǫd,w)

]

(28)

where ωd
n,d is the desired angular velocity relative the ned

frame and ω
w
b,w is the angular velocity between the wind

and body frame.

Assumption 1.
It is assumed that sign(ηd,w(t)) = sign(ηd,w(t0)) ∀t.

This assumption makes it possible to focus only on one of
the two equilibria during controller derivation. Note that
this assumption can be relaxed using for example Hybrid
switching (cf. Schlanbusch et al. (2011)).

Lemma 1. Under assumption 1 it can be shown that the
following inequality holds

e⊤q±Te(eq±)T
⊤
e (eq±)eq± ≥

1

8
e⊤q±eq± (29)

Proof 1. The proof is given in Kristiansen (2008) and
Schlanbusch (2012). ✷

2.4 Wind Frame

The rotation from body frame to wind frame can be
written using quaternions as

qb,w = qb,s ⊗ qs,w = T(qb,s)qs,w (30)

where subscript s denotes the stability frame which is an
intermediate frame, and the two quaternions are defined
as

qb,s :=
[

cos
(α

2

)

0 − sin
(α

2

)

0
]⊤

(31)

qs,w :=

[

cos

(

β

2

)

0 0 sin

(

β

2

)]⊤

. (32)

Higher order derivatives of the angle of attack and sideslip
can be estimated using linear filters which is often done
for rotational control of aircraft (cf. Farrell et al. (2005),
Sonneveldt et al. (2009)). A linear filter can be chosen as
(cf. Fossen (2012))

ẋd := Adxd +Bdr (33)

with

Ad =





0 1 0
0 0 1

−ω3
n −(2ζ + 1)ω2

n −(2ζ + 1)ωn



 (34)

Bd =
[

0 0 ω3
n

]⊤
(35)

where ζ is the relative damping ratio, ωn is the natural
frequency and r is the reference signal being either the
angle of attack or sideslip. The state vector can be chosen

as xd := [α α̇ α̈]
⊤

in the case of estimating the angle of
attack and similarly for the sideslip angle. With the higher
order derivatives of the angle of attack and sideslip, the
angular velocity of the wind frame relative the body frame
is found as (cf. Stevens and Lewis (2003))

ω
w
b,w =





0
0

β̇



+

[

cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

][

0
−α̇
0

]

=





−α̇ sin(β)
−α̇ cos(β)

β̇



 (36)

and the angular acceleration is found through direct dif-
ferentiation as



pn
r

en

pn
wp

yn

xn

yb

xb

xd

yd

Fig. 1. Position vectors in the xy-plane relative

ω̇
w
b,w =





−α̈ sin(β) − α̇β̇ cos(β)

−α̈ cos(β) + α̇β̇ sin(β)

β̈



 . (37)

3. WAYPOINT GUIDANCE

To control the unactuated states, a guidance scheme is
designed which maps the position error onto the desired
attitude and the velocity error onto the desired angular
velocity. The basic idea of this guidance scheme is to map
the position and velocity errors onto the xd axis, and then
use the thrust to translate along this axis until the given
waypoint is reached. In Fig. 1 the different reference frames
and vectors are shown, where pn

r is the position vector
towards the body frame, pn

wp represents the position of
the waypoint and en is the error between the waypoint and
the position of the uav. To take the wind into account, the
relative velocity can be defined in ned as ṗn

r := Rn
b v

b
r. Let

a tracking function be defined as

ed :=





||pn
wp − pn

r ||
0
0



 = Rd
n(p

n
wp − pn

r ) (38)

which projects the tracking error in ned frame onto the
desired xd axis. When the uav comes close to a given
waypoint, the guidance scheme switches to next waypoint
ensuring that ||pn

wp − pn
r || ≥ d > 0 ∀t, where d is a

constant. The rotation matrix between the ned frame and
the desired frame can be constructed using quaternions.
Let en := pn

wp −pn
r such that ed = Rd

ne
n. Then the angle

of rotation can be found using the dot product while the
axis of rotation can be found using the cross product as

ϑn,d = cos−1

(

ed · en

||en||2

)

(39)

kn,d =
ed × en

||ed × en||
. (40)

The desired quaternion can now be constructed as

qn,d =
[

ηn,d ǫ
⊤
n,d

]⊤

=

[

cos

(

ϑn,d

2

)

k⊤
n,d sin

(

ϑn,d

2

)]⊤

(41)

while the rotation matrix is found as

Rn
d = I+ 2ηn,dS(ǫn,d) + 2S2(ǫn,d). (42)

To find the desired angular velocity, (38) can be differen-
tiated resulting in

ėd = −S(ωd
n,d)e

d −Rd
bv

b
r (43)

where ṗn
r = Rn

b v
b
r has been used. The derivative of the

tracking error in the desired frame is found as

ėd =







d

dt
||en||

0
0






(44)

where by design, the velocity components along the yd

and zd axes are zero. Equation (43) can now be solved
with regards to the desired angular velocity by noting that
−S(ωd

n,d)e
d = S(ed)ωd

n,d and that

S(ed) =

[

0 0 0
0 0 −||en||
0 ||en|| 0

]

, (45)

giving

ėd = S(ed)ωd
n,d −Rd

bv
b
r. (46)

From (45) it is seen that it only has components along the
yd and zd axes, meaning that when solving for the desired
angular velocity, the xd components can be ignored and
therefore also ėd. This results in

ω
d
n,d = S†(ed)Rd

bv
b
r (47)

where † represents the pseudoinverse, and we obtain the
desired pitch and yaw angular velocities required to align
the total velocity in the desired direction. This is the result
of projecting all the errors onto the xd axis, which enables
a simple expression for the desired angular velocity. Note
that rank(S†(ed)) = 2 such that it does not produce
any roll motion, and the pseudoinverse must be used
since S(ed) does not have an inverse. The desired angular
acceleration in the desired frame can be found through
differentiation of (47) or using for example linear filters
(cf. Fossen (2012)). By following this desired attitude, an-
gular velocity and acceleration, the tracking errors become
mapped onto the xd axis, and go to zero as the uav moves
between two waypoints with a positive total velocity.

4. TRANSLATIONAL CONTROL

The objective of the aircraft is to fly between two way-
points with a positive total velocity. Let a desired total
velocity be a constant denoted as VT,d > 0 and the velocity

error defined as Ṽ := VT −VT,d, then a Lyapunov Function
Candidate can be defined as

V1 :=
1

2
Ṽ 2, (48)

and its derivative is found by inserting (13), resulting in

V̇1 =Ṽ (
uT

mVT

+
1

VT

(vb
r)

⊤(
1

m
Rb

wf
w
aero +Rb

nf
n
g )

− V̇T,d). (49)

The thrust can now be chosen as

T =
mVT

u
(V̇T,d −

1

VT

(vb
r)

⊤(
1

m
Rb

wf
w
aero +Rb

nf
n
g )

− kV Ṽ ) (50)

where kV > 0 is a gain and by inserting the control law
into (49) it results in

V̇1 = −kV Ṽ
2. (51)

The Lyapunov function (48) is positive definite, decrescent
and radially unbounded, while its derivative (51) is neg-
ative definite. Hence by applying theorem 4.10 in Khalil
(2002) it follows that the origin Ṽ = 0 is exponentially
stable (es). The actuator constraint of the thrust is not
analyzed in this paper and is considered future work.



5. ROTATIONAL CONTROLLER

The attitude and angular velocity can be controlled using
a sliding surface controller to make the uav track its
desired trajectory and follow its waypoints. Without loss
of generality, let eq := eq+ and Te := Te(eq+) meaning
that we focus on the positive equilibrium point during
the controller derivation. Let a sliding surface variable be
defined as (cf. Slotine and Li (1988))

sb := ω
b
n,b − ω

b
n,r (52)

ω
b
n,r := Rb

dω
d
n,d −Rb

wω
w
b,w − γRb

wT
⊤
e eq (53)

where sb is the sliding variable, ωb
n,r is reference angu-

lar velocity relative ned and γ is a positive gain. Pre-
multiplying (52) by the inertia matrix, differentiating and
inserting (24) and using that ωb

n,b = sb + ω
b
n,r we obtain

Jṡb = −S(ωb
n,b)Jω

b
n,b + f(α, β) −Dsb −Dω

b
n,r

+Bu− Jω̇b
n,r (54)

where the reference angular acceleration becomes

ω̇
b
n,r = Rb

dS(ω
d
b,d)ω

d
n,d +Rb

dω̇
d
n,d −Rb

wω̇
w
b,w

− γRb
wS(ω

w
b,w)T

⊤
e eq −

γ

2
Rb

wǫ̇d,w (55)

where the property that T⊤
e eq = 1

2ǫd,w has been used and

note that ωd
b,d = −Rd

bω
b
n,b + ω

d
n,d.

A Lyapunov Function Candidate can now be chosen as

V2 =
1

2
kqe

⊤
q eq +

1

2
(sb)⊤Jsb (56)

where kq is a positive gain. By differentiating (56), insert-
ing (54) and (27) it becomes

V̇2 = kqe
⊤
q Teω

w
d,w + (sb)⊤(−S(ωb

n,b)Jω
b
n,b + f(α, β)

−Dsb −Dω
b
n,r +Bu− Jω̇b

n,r) (57)

which can be rewritten using the property that the angular
velocity is ωw

d,w = Rw
b (s

b − γRb
wT

⊤
e eq) = Rw

b s
b − γT⊤

e eq
resulting in

V̇2 = −kqγe
⊤
q TeT

⊤
e eq + (sb)⊤(−S(ωb

n,b)Jω
b
n,b + f(α, β)

−Dsb −Dω
b
n,r +Bu− Jω̇b

n,r + kqR
b
wT

⊤
e eq). (58)

The control signal can now be chosen as

u = B−1(Jω̇b
n,r + S(ωb

n,b)Jω
b
n,b − f(α, β) +Dω

b
n,r

− kqR
b
wT

⊤
e eq −Kss

b) (59)

where Ks is a positive definite gain matrix. The control
law can now be inserting into (58) resulting in

V̇2 = −kqγe
⊤
q TeT

⊤
e eq − (sb)⊤(D+Ks)s

b (60)

V̇2 ≤ −
kqγ

8
||eq||

2 − λmin(D+Ks)||s
b||2 (61)

where Lemma 1 has been used and λmin(D +Ks) is the
smallest eigenvalue of the resulting matrix. From (56) we
see that the Lyapunov function is positive definite and
decrescent, while its derivative (61) is negative definite.

With qn,d(t),ω
d
n,d(t), ω̇

d
n,d(t) ∈ L∞ and using standard

Lyapunov arguments (cf. Khalil (2002)), we conclude
that the equilibrium point (eq+, s) = (0,0) is uniformly
exponentially stable (ues). Furthermore it follows as s →
0 that ω

b
n,b → ω

b
n,r and as eq+ → 0 it follows that

ω
w
d,w → 0 and hence all tracking errors will go to zero.

A similar proof can be done for the negative equilibrium
point.

5.1 Saturation

The control law in (59) has been derived under the assump-
tion of infinite actuation, while the actuators are in fact
saturated providing a limited amount of actuation. This
is a challenging control problem that has received much
attention the last decades. The common solution for flight
control is to apply anti-windup where the difference be-
tween the desired control signal and the saturated control
signal is integrated and fed back into the control law. Other
approaches are by putting severe limitation on the feasible
trajectories making the solution only applicable to a few
scenarios. One of the major challenges with bounding the
control law (59) is that it contains the vector (21) which
can be very large during aggressive maneuvers forcing the
system into saturation. In the following section we first
show that the angular velocity is bounded. The control
law is then differentiated and arranged in such a way that
the reference trajectory becomes a second order differential
equation exposed to a bounded disturbance which can be
made arbitrarily small by increasing the gains.

Assumption 2. During the analysis of the saturation, it is
assumed that the total velocity has converged to its desired
value and is constant.

Assumption 3. It is assumed that the wind is constant
or slowly varying, such that the angular velocity ω

w
n,w is

bounded.

Lemma 2. The angular velocity ω
b
n,b of the system (24) is

globally uniformly ultimately bounded for any u.

Proof 2. The actuators are physically upper and lower
bounded with a maximum and minimum deflection angle,
such that ||u|| ≤ umax. Let a Lyapunov Function Candi-
date be defined as

V3 =
1

2
(ωb

n,b)
⊤Jωb

n,b (62)

and by differentiation and inserting (24) it becomes

V̇3 = −(ωb
n,b)

⊤Dω
b
n,b + (ωb

n,b)
⊤(f(α, β) +Bu) (63)

≤ −λmin(D)||ωb
n,b||

2 ∀ ||ωb
n,b|| ≥ δ (64)

where δ = ||f(α,β)||+||B||umax

λmin(D) , and hence all the solutions

are globally uniformly ultimately bounded (cf. Khalil
(2002)). ✷

Lemma 3. The angular velocity ω
w
b,w is bounded when the

wind is slowly varying or constant.

Proof 3. The angular velocity between the body frame and
wind frame can be written as

ω
w
b,w = ω

w
n,w − ω

w
n,b (65)

where ω
w
n,w is bounded using Assumption 3 and ω

w
n,b is

bounded as shown in Lemma 2. Hence, it follows that ωw
b,w

must also be bounded. ✷

Lemma 4. The function ḟ(α, β) is bounded.

Proof 4. Using Assumption 2 the function ḟ(α, β) can be
shown to be (cf. (21))

ḟ(α, β) =
1

2
ρSV 2

T





bClβ β̇
c̄Cmα

α̇

bCnβ
β̇



 (66)

and since ω
w
b,w is shown to be bounded in Lemma 3, it

follows that α̇, β̇ must also be bounded, and consequently
also ḟ (α, β). ✷



The angular velocity between body and wind frame can
also be written as

ω
w
b,w = Rw

d ω
d
n,d −Rw

b ω
b
n,r −

γ

2
ǫd,w (67)

where T⊤
e eq = 1

2ǫd,w has been used. With ǫ̇d,w =
1
2 (ηd,wI+ S(ǫd,w))ω

w
d,w it follows that

kq
2
Rb

wǫ̇d,w =
kq
4
Rb

w(ηd,wI+ S(ǫd,w))ω
w
d,w (68)

where

ω
w
d,w = Rw

b ω
b
n,b −Rw

b ω
b
n,r −

γ

2
ǫd,w. (69)

The control law (59) can now be differentiated as

u̇ = B−1(Jω̈b
n,r + (−S(Jωb

n,b) + S(ωb
n,b)J)ω̇

b
n,b

− ḟ (α, β) +Dω̇
b
n,r −

kq
2
Rb

wS(ω
w
b,w)ǫd,w

−
kq
2
Rb

wǫ̇d,w −Ks(ω̇
b
n,b − ω̇

b
n,r)) (70)

where the angular acceleration ω̇
b
n,b can be gathered, and

by inserting (67)-(69) it becomes

u̇ = B−1(Jω̈b
n,r + (−Ks − S(Jωb

n,b) + S(ωb
n,b)J)ω̇

b
n,b

− ḟ(α, β) +Dω̇
b
n,r +Ksω̇

b
n,r

+
kq
2
Rb

wS(ǫd,w)(R
w
d ω

d
n,d −Rw

b ω
b
n,r −

γ

2
ǫd,w)

−
kq
4
Rb

w(ηd,wI+ S(ǫd,w))(R
w
b ω

b
n,b −Rw

b ω
b
n,r −

γ

2
ǫd,w)),

(71)

where
kq

2 Rb
wS(ω

w
b,w)ǫd,w = −

kq

2 Rb
wS(ǫd,w)ω

w
b,w has been

used. The expression
kq

4 Rb
w(ηd,wI + S(ǫd,w))R

w
b ω

b
n,r −

kq

2 Rb
wS(ǫd,w)R

w
b ω

b
n,r =

kq

4 Rb
w(ηd,wI − S(ǫd,w))R

w
b ω

b
n,r,

such that the (71) can be rewritten as

u̇ = B−1(Jω̈b
n,r + (−Ks − S(Jωb

n,b) + S(ωb
n,b)J)ω̇

b
n,b

− ḟ(α, β) + (D+Ks)ω̇
b
n,r

+
kq
4
Rb

w(ηd,wI− S(ǫd,w))R
w
b ω

b
n,r

+
kq
2
Rb

wS(ǫd,w)(R
w
d ω

d
n,d −

γ

2
ǫd,w)

−
kq
4
Rb

w(ηd,wI+ S(ǫd,w))(R
w
b ω

b
n,b −

γ

2
ǫd,w). (72)

The terms can now be gathered by defining K1 := J,

K2 := (D+Ks) , K3 :=
kq

4 Rb
w(ηd,wI−S(ǫd,w))R

w
b , K4 =

B−1KsJ
−1B which all are positive definite matrices, and

µ := −(−Ks − S(Jωb
n,b) + S(ωb

n,b)J)J
−1(−S(ωb

n,b)Jω
b
n,b

+ f(α, β) −Dω
b
n,b)) + ḟ(α, β)

−
kq
2
Rb

wS(ǫd,w)(R
w
d ω

d
n,d −

γ

2
ǫd,w)

+
kq
4
Rb

w(ηd,wI+ S(ǫd,w))(R
w
b ω

b
n,b −

γ

2
ǫd,w) (73)

then (72) to be written as

u̇ = −K4u+B−1(S(ωb
n,b)− S(Jωb

n,b)J
−1)Bu

+B−1(K1ω̈
b
n,r +K2ω̇

b
n,r +K3ω

b
n,r − µ). (74)

Now let a Lyapunov Function Candidate be defined as

V4 =
1

2
u⊤u (75)

which can be differentiated, and by inserting (74) it
becomes

V̇4 = u⊤(−K4u+B−1(S(ωb
n,b)− S(Jωb

n,b)J
−1)Bu

+ u⊤B−1(K1ω̈
b
n,r +K2ω̇

b
n,r +K3ω

b
n,r − µ)). (76)

Let β1 := ||B−1(S(ωb
n,b) − S(Jωb

n,b)J
−1)B|| serve as an

upper bound for the second term, then the Lyapunov
derivative can be written as

V̇4 ≤ −(λmin(K4)− β1)||u||
2

+ u⊤B−1(K1ω̈
b
n,r +K2ω̇

b
n,r +K3ω

b
n,r − µ)) (77)

where the gain λmin(K4) must be larger than β1 which
can be done through Ks. Desiring that the last term shall
be zero we have

K1ω̈
b
n,r +K2ω̇

b
n,r +K3ω

b
n,r = µ (78)

which is a second order differential equation exposed to
a disturbance µ which can be shown to be bounded by
applying Lemma 2-4 and noting that |α|, |β| ≤ π/2. By
properly choosing the gains K2 and K3 which depend on
kq andKs the system (78) can be made stable making ωb

n,r

go to a small bounded set around the origin which can be
made arbitrarily small by increasing the gains. When the
reference trajectories enter this bounded set, the first term
of (77) will dominate the reference trajectories, resulting
in a desaturation of the actuators.

Remark 2. This result has several similarities to the work
by Tandale and Vala (2005) who derive an adaptive quater-
nion tracking controller for spacecraft maneuvers in the
presence of saturations. In their result, they must assume
that the error between the actual and desired control signal
is bounded which is a reasonable assumption considering
that it is only natural to track feasible trajectories. Our
result on the other hand has a disturbance vector that de-
pend on the angular velocities, the quaternion error, angle
of attack and sideslip angle, which all are bounded. The
vector part of the quaternion is bounded to ||ǫd,w|| ≤ 1,
|α|, |β| ≤ π

2 while the angular velocity vectors are bounded
as shown in Lemma 2 and Lemma 3.

6. SUMMARY OF THE MAIN CONTRIBUTION

Theorem 1. Given an underactuated uav described by the
dynamics (2), (3), (9), (16) and (24) in closed loop with
an attitude controller

u =B−1(Jω̇b
n,r + S(ωb

n,b)Jω
b
n,b − f(α, β)

+Dω
b
n,r − kqR

b
wT

⊤
e eq −Kss) (79)

sb =ω
b
n,b − ω

b
n,r (80)

ω
b
n,r =Rb

dω
d
n,d −Rb

wω
w
b,w − γRb

wT
⊤
e eq (81)

that tracks the desired quaternion and angular velocity

qn,d =

[

cos(
ϑn,d

2
) k⊤

n,d sin(
ϑn,d

2
)

]⊤

(82)

ω
d
n,d = S†(ed)Rd

bv
b
r (83)

ϑn,d = cos−1

(

ed · en

||en||2

)

kn,d =
ed × en

||ed × en||
(84)

ed = [||en|| 0 0]
⊤

en = pn
wp − pn (85)

with a translational controller



T =
mVT

u
(V̇T,d −

1

VT

(vb
r)

⊤(
1

m
Rb

wf
w
aero +Rb

nf
n
g )

− kV Ṽ ), (86)

where Ṽ = VT − VT,d and VT,d > 0, then the uav is able
to reach any point in R

3 described by pn
wp. The resulting

equilibrium points (eq±, s) = (0,0) are ues, Ṽ = 0 is es.
Furthermore, if the actuators go into saturation, they will
become desaturated in finite time.

7. SIMULATION

Initial states of the fixed-wing uav are chosen as pn(0) =

[0 0 0]
⊤
, vb(0) = [30 0 0]

⊤
, qn,b(0) = [1 0 0 0]

⊤
and

ω
b
n,b(0) = [0 0 0]

⊤
, vn

wind = [10 0 0]
⊤

and the following
parameters have been used

m = 20.64 Jxx = 1.607 Jyy = 7.51
Jzz = 7.18 Jxz = 0.59 b = 1.96
c̄ = 0.76 S = 1.37 k = 0.1
CL0

= 0.1 CLα
= 0.25 CD0

= 0.5
CYβ

= −0.1 Cl0 = −0.001 Clβ = −0.038
Clp = −0.213 Clr = 0.114 Clδa

= −0.056
Clδr

= 0.014 Cm0
= 0.022 Cmα

= −0.473
Cmq

= −3.449 Cmδe
= −0.364 Cn0

= 0
Cnβ

= 0.036 Cnp
= −0.151 Cnr

= −0.195
Cnδa

= −0.036 Cnδr
= −0.055.

The gains were chosen as Ks = 2I, kq = 2, γ = 2,KV = 2
and the desired velocity as VT,d = 42m/s. The matrix of
waypoints was defined as

Pn
wp =

[

2000 2000 0 0 0 −2000 0
1000 4000 6000 7000 5000 6000 0
1000 1000 5000 10000 10000 5000 2000

]

which switches to the next waypoint whenever ||en|| ≤
d = 1m. In Fig. 2 the attitude error is shown, where
the top figure shows the initial convergence, where the
tracking error goes quickly to zero. The bottom plot
shows the first 100 seconds of the simulation, where the
first switch of waypoints happens at about 58 seconds
resulting in a spike in the attitude error, which quickly
is handled by the attitude controller driving the errors
to zero. Similarly the angular velocity error is shown in
Fig. 3 where the top figure shows the initial convergence
while the bottom figure shows the first 100 seconds where
all the errors converge to zero. In Fig. 4 the deflection
angles are shown which are upper and lower bounded by
±20◦. The placement of the waypoints result in some sharp
maneuvers, forcing the actuators into saturation for a little
while until they become desaturated. The velocity tracking
error is shown in Fig. 5 which exponentially converge to
zero, and remain at zero throughout the simulation. A
3D plot of the simulation is shown in Fig. 6 where the
waypoints are illustrated as red circles and the position
tracking error is shown in Fig. 7.

8. CONCLUSION

In this paper a solution to waypoint tracking for a fixed-
wing uav has been derived that is rather simple to
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implement, and through simulations it is shown to have
good performance. Future work is to consider the actuator
dynamics of the deflection angles in the translational
dynamics which greatly complicates the control problem.



0

0

0

0

55

5

1010

10

-20-20

-25-25

-15-15

-10-10

-5-5

200 400 600 800

V
T
−
V
T
,d
(m

/
s)

V
T
−
V
T
,d
(m

/
s)

Time (s)Time (s)

Fig. 5. Velocity tracking error

−2000
0

2000 0
2000

4000
6000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Y−axis (m)
X−axis (m)

Z
−

a
x
is

 (
m

)

Fig. 6. Waypoint tracking

0
0 100 200 300 400 500 600 700 800

1000

2000

3000

4000

5000

6000

7000

8000

e
d
(m

)

Time (s)

Fig. 7. Position tracking error

REFERENCES

Aguiar, A.P. and Pascoal, A.M. (2002). Way-point track-
ing of underactuated AUVs in the presence of ocean
currents. In Proceedings of the 10th Mediterranean
Conference on Control and Automation.

Børhaug, E. and Pettersen, K.Y. (2005). Adaptive way-
point tracking control for underactuated autonomous
vehicles. In Proceedings of the 44th IEEE Conference
on Decision and Control.

Breivik, M. and Fossen, T.I. (2005). Guidance-based
path following for autonomous underwater vehicles. In
Proceedings of MTS/IEEE OCEANS.

Egeland, O. and Gravdahl, J.T. (2002). Modeling and
simulation for automatic control. Marine Cybernetics.

Farrell, J., Sharma, M., and Polycarpou, M. (2005).
Backstepping-based flight control with adaptive func-
tion approximation. Journal of Guidance, Control, and
Dynamics, Vol. 28, No. 6, 1089–1101.

Fossen, T.I. (2012). Handbook of marine craft hydrody-
namics and motion control. Wiley.

Fossen, T.I., Breivik, M., and Skjetne, R. (2003). Line-of-
sight path following of underactuated marine craft. In
Proceedings of the 6th IFAC MCMC, Girona, Spain.

Khalil, H.K. (2002). Nonlinear systems. Prentice Hall, 3rd
edition.

Kristiansen, R. (2008). Dynamic synchronization of space-
craft. Ph.D. thesis, NTNU.

Lee, T., Leok, M., and McClamroch, N.H. (2010). Geo-
metric tracking control of a quadrotor UAV on SE(3).
In Proceedings of the 49th IEEE Conference on Decision
and Control.

Reyhanoglu, M., van der Schaft, A., McClamroch, N.H.,
and Kolmanovsky, I. (1999). Dynamics and control of
a class of underactuated mechanical systems. IEEE
Transactions on Automatic Control, Vol. 44, No. 9,
1663–1671.

Roberts, A. and Tayebi, A. (2009). Adaptive position
tracking with external disturbance estimation for a
VTOL-UAV. In Proceedings of the 48th IEEE Confer-
ence on Decision and Control.

Schlanbusch, R. (2012). Control of rigid bodies. Ph.D.
thesis, NTNU.

Schlanbusch, R., Grøtli, E., Loria, A., and Nicklasson, P.J.
(2011). Hybrid attitude tracking of output feedback
controlled rigid bodies. In Proceedings of the 50th IEEE
Conference on Decision and Control and European Con-
trol Conference.

Slotine, J.E. and Li, W. (1988). Adaptive manipulator
control: a case study. IEEE Transactions on Automatic
Control, Vol. 33, No. 11, 995–1003.

Sonneveldt, L., van Oort, E.R., Chu, Q., and Mulder, J.
(2009). Nonlinear adaptive flight control design and
handling qualities evaluation. In Proceedings of the 48th
IEEE Conference on Decision and Control, Shanghai,
China.

Stevens, B.L. and Lewis, F.L. (2003). Aircraft control and
simulation. Wiley, 2nd edition.

Tandale, M.D. and Vala, J. (2005). Adaptive dynamic
inversion control with actuator saturation constraints
applied to tracking spacecraft maneuvers. The Journal
of Astronautical Sciences, Vol. 52, No. 4, 517–530.


