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Abstract. The study of the network design problems related to reverse supply chain 

and reverse logistics is of great interest for both academicians and practitioners due 

to its important role for a sustainable society. However, reverse logistics network 

design is a complex decision-making problem that involves several interactive fac-

tors and faces many uncertainties. Thus, in order to improve the reverse logistics 

network design, this paper proposes a new optimization model under stochastic en-

vironment and an improved solution method for network design of a multi-stage 

multi-product reveres supply chain. The study is presented in a series of two parts. 

Part I presents the relevant literature and formulates a stochastic mixed integer lin-

ear programming (MILP) for improving the decision-making of the reverse logistics 

network design. Part II improves the solution methods for the proposed stochastic 

programming and illustrates the application through a numerical experimentation. 

Keywords: Reverse logistics, network design, operational research, optimization, 

stochastic programming, MILP, scenario-based solution, risk averse 

                                                           

1 H. Yu () 

Department of Industrial Engineering, UiT The Arctic Univeristy of Norway, Lodve 

Langesgate 2, 8514 Narvik, Norway 

e-mail: hao.yu@uit.no 

2 W.D. Solvang  
e-mail: wei.d.solvang@uit.no 

https://link.springer.com/chapter/10.1007/978-981-10-5768-7_45


2   

1.1 Introduction 

Decision-making of a real world problem is hardly done with all relevant infor-

mation available, but, in most cases, the decision has to be made even if some pa-

rameters cannot be accurately predicted or estimated at the time of decision-making 

(King and Wallace, 2012). For example, when a manufacturing facility is planned, 

the size of the facility is usually determined by the predication of future demand, 

however, the prediction of the future is always wrong as discussed in many research 

works (Chopra and Meindl, 2007). Thus, we have to make a proper decision with 

“the wrong predication of the future”, and this will have a significant influence on 

the performance of the facility, say, an overoptimistic predication may lead to a 

waste of capacity or a high level of inventory, while a pessimistic estimation prob-

ably results in the incapability to fulfill the customer demands. With a deterministic 

model, this problem is usually tackled with a sensitivity analysis in order to deter-

mine the sensitivity of the optimal result to some key parameters. Nevertheless, the 

main shortcoming of this method is that sensitivity analysis can tell you to which 

degree the key parameters will affect the optimal result of the studied problem, but 

it cannot give you any suggestions on how to react to those changes (King and 

Wallace, 2012). Therefore, in reverse logistics network design, it is a much better 

way to treat the uncertainties in the modeling process with different techniques, i.e., 

fuzzy programming (Chu et al., 2010, Govindan et al., 2016), stochastic program-

ming (El-Sayed et al., 2010, Ramezani et al., 2013, Pishvaee et al., 2009), robust 

optimization (Talaei et al., 2016), etc.   

In order to provide a better tool for reverse logistics network design under un-

certainty, this research uses stochastic optimization in the modeling of the problem, 

and it also improves the solution method and presents some managerial implica-

tions. The first part of this research presents a MILP under stochastic environment 

for reverse logistics network design, and this paper focuses on the development of 

an improved multi-criteria scenario-based risk-averse solution method and the nu-

merical experimentation.  

1.2 An Improved Multi-criteria Scenario-based Risk-averse 

Solution Method to the Stochastic Problem  

The advantage of stochastic optimization is that it presents a proper model for the 

complex decision-making problem without the exact information of what is going 

to happen in the future (King and Wallace, 2012). Due to this reason, several pos-

sibilities and scenarios have to be accounted in a stochastic model in comparison 

with its deterministic form, which makes the model becoming more complex to 

solve. Many research works published in operational research and mathematical 

programming focus on the solution methods of stochastic optimization problems 
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(Wallace and Ziemba, 2005, Kall et al., 1994, Higle and Wallace, 2003, Birge and 

Louveaux, 2011). In this paper, based upon a recently published paper by Soleimani 

et al. (2016), we develop an improved multi-criteria scenario-based risk-averse so-

lution method for the reverse logistics network design under stochastic environ-

ment.  

Fig. 1.1 presents the procedures of the solution method. As illustrated in the fig-

ure, the initial stage is to calculate the indicators for performance evaluation. There 

are three steps have to be conducted in this stage. First, the scenarios of the stochas-

tic optimization problem are generated with respect to the change of uncertain pa-

rameters. Second, for each scenario generated, the problem becomes a MILP and 

can be resolved independently. The optimal reverse logistics network configura-

tions calculated in each scenario are considered the candidates to the stochastic op-

timization problem. Third, all scenarios are tested for each candidate and indicators 

for evaluation including mean, standard deviation (SD) and coefficient of variation 

(CV) are calculated.      

 

 

Fig. 1.1 The procedures of the multi-criteria scenario-based risk-averse solution method with dif-

ferent performance evaluation. 

The performance of different candidates is compared with the reciprocal of CV 

in accordance with Soleimani et al. (2016)’s method. The method aims to maximize 

the profit generated by the reverse logistics system while simultaneously minimize 

the risk of decision-making through the minimization of SD. SD is a very important 

measures of data dispersion in statistics and econometrics (Washington et al., 2010), 

say, how far in average the data dispersed from the mean. In reverse logistics net-

work design, SD is used as the indictor for risk assessment, and a large SD implies 

a high risk on the realization of the expected profit. It is noteworthy that the risk or 

stability is not always considered an indicator for performance evaluation of the 
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solutions to a stochastic problem, and the use of it heavily depends on the circum-

stance or problems modelled. For example, a venture capital may pursue a high 

return of investment (ROI), and the preference in this case is to have a high expec-

tation of ROI and SD even if it leads to a high risk as well. However, the objective 

of reverse logistics network design is to have a stable profit generation with low 

risk, which gives long-term benefits to the players within the reverse supply chain. 

Thus, the evaluation with the reciprocal of CV is to maximize profit expectation 

while minimize the potential risk. 

The evaluation method proposed by Soleimani et al. (2016) has a significant 

shortcoming which may result in a sub-optimal solution dramatically affected by 

the risk or SD. For example, comparing with two candidates A (mean=5000, 

SD=1000) and B (mean=1000, SD=100), the reciprocal of CV of the two candidates 

are 5 and 10, respectively. Thus, the optimal solution is candidate B according to 

the performance evaluation method. However, it is obvious that candidate A has a 

much higher profit expectation than candidate B even if the worst-case scenario 

happens. Candidate B is with very low potential risk, but the performance in profit 

generation is weak as well, so it is not a wise choice for the decision-maker. The 

reason is that when the mean and SD are composited, the relative importance of 

them is not accounted in the reciprocal of CV, so when there is a big difference in 

the mean, the optimal result calculated may be the one with both low risk and weak 

profitability. Besides, the evaluation method cannot be applied when the objective 

becomes a minimum function, e.g., min-cost, due to the simultaneous minimization 

of the mean and SD. In addition, there are also some challenges in the interpretation 

of the managerial implication as CV is used mainly for comparing the relative dis-

persion of data but not for decision-making of a stochastic problem (Yu and 

Solvang, 2016a).    

  

𝑀𝑒𝑡ℎ𝑜𝑑1 = ∂
(𝑀𝑚𝑎𝑥 −𝑀𝑐)

(𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛)
+ (1 − ∂)

(𝑆𝐷𝑐 − 𝑆𝐷𝑚𝑖𝑛)

(𝑆𝐷𝑚𝑎𝑥 − 𝑆𝐷𝑚𝑖𝑛)
 

 

(1) 

𝑀𝑒𝑡ℎ𝑜𝑑2 = ∂
(𝑀𝑚𝑎𝑥 −𝑀𝑐)

(𝑀𝑚𝑎𝑥 −𝑀𝑚𝑖𝑛)
+ (1 − ∂)

(𝐶𝑉𝑐 − 𝐶𝑉𝑚𝑖𝑛)

(𝐶𝑉𝑚𝑎𝑥 − 𝐶𝑉𝑚𝑖𝑛)
 

(2) 

 

In order to resolve the problems mentioned above, this paper further develop the 

multi-criteria scenario-based risk-averse solution method with the help of a weight 

sum function as illustrated in Eqs. (1) and (2). As shown in the equations, the mean 

and SD are first normalized before they can be combine in the weighted sum. It is 

noteworthy that the potential risk is measured by both absolute indicator (SD) and 

relative indicator (CV), and the result will be compared in the numerical experimen-

tation. Furthermore, the weighted sum formula can be easily modified in order to 

determine the optimal solution of a minimum objective function. 
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1.3 Numerical Experimentations 

In this section, the proposed stochastic MILP model and improved multi-criteria 

scenario-based risk-averse solution method are tested with a numerical experimen-

tation. The problem includes 2 products, 15 customers, 8 candidates for collection 

& disassembly centers, 5 candidates for reuse/repair centers and 5 candidates for 

recycling centers. First, the parameters are given based upon uniform distribution. 

Then, three benchmark scenarios are defined as best-case (max-profit and max-

product), deterministic (mean-profit and mean-product) and worst-case (min-profit 

and min-product), respectively. With the combination of the stochastic parameters, 

another 8 scenarios are generated in a logically reasonable way as illustrated in Ta-

ble 1.1, meanwhile, the computational effectiveness is also considered in this pro-

cess. For detailed introduction of scenario generation for a stochastic problem, refer 

to the research works given by King and Wallace (2012) and Kaut and Wallace 

(2003). 

Table 1.1 Generated scenarios for the numerical experimentation 

Stochastic pa-

rameter 

Scenario 

best basic worst 1 2 3 4 5 6 7 8 

Amount of used 

products 

Max Mean Min L L L L H H H H 

Price/subsidy 

for reuse 

Max Mean Min L L H H L L H H 

Price/subsidy 

for recycling 

Max Mean Min L H L H L H L H 

Note: H=high, L=low 

 

The model is coded with Lingo programming and the optimal solution of each 

scenario is first calculated as a MILP problem. Fig. 1.2 shows the profit generated 

from the reverse logistics system in each candidate solution and the mean value. It 

is clearly that there are a fair allocation of the tested scenarios around the mean, this 

represents a large variety of potential scenarios may happen in future under market 

fluctuation with both optimistic and pessimistic expectation. Even if more scenarios 

can be generated, but as many argues (Pishvaee et al., 2009, El-Sayed et al., 2010), 

this dramatically increases the complexity of problem, but the benefit yielded is 

extremely limited. Thus, the scenarios generated in this numerical experiment is in 

a rational and efficient way.   
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Fig. 1.2 The profit of each candidate and the mean. 

In a stochastic optimization problem, the objective is to determine the optimal 

solution through all the scenarios. As discussed by King and Wallace (2012), there 

are two characteristics of the optimal solution of a stochastic problem, namely, ro-

bustness and flexibility. In some situations, the optimal solutions should be robust 

to withstand all the possible situations in future without many changes, e.g., a bus 

schedule, while in many other circumstances, the focus of a stochastic programming 

is to be flexible and easy to adapt to the changes and fluctuations, e.g., a schedule 

or plan of a fast delivery company. In the reverse logistics network design, both 

robustness and flexibility are focused in the decision-making, say, the long-time 

strategic decisions (locations of different facilities) should be robust and remain un-

changed for a long period, while the short-term tactical decisions (distribution of 

used products and transportation strategies) should be flexible and updated period-

ically in order to maximize the profit generated under market fluctuation. Therefore, 

the stochastic MILP model formulated in this paper is two-stage in nature. The first 

stage variable is facility location decisions, and the second stage variable is the de-

cisions related to the distribution and transportation of used products. 

In the second step of the solution method, the candidates are tested through all 

scenarios. The first stage decisions will not change, while the second stage decisions 

are flexible with the changing price and generated amount of used products in order 

to maximize the economic performance of the reverse logistics system. The com-

parison of the profit expectation (mean) and level of risk (SD) is given in Fig.1.3. 

As shown in the figure, the expected profit is higher with the candidate solutions 

calculated under high amount of used products generated, while the level of risk is 

better maintained with the candidates calculated under low generation of used prod-

ucts.      
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(A) (B) 

Fig. 1.3 The performance of candidates through all scenarios: (A) Profit expectation; (B) Standard 

deviation.  

In the testing phase, we observed infeasibilities when some candidate reverse 

logistics network configurations are implemented in the scenarios with high gener-

ation of used products. The reason for the infeasibility is the conflict between ser-

vice constraint and capacity constraint, say, the facility capacity is not large enough 

to handle all the used products generated. In order to solve this problem, the model 

needs to be relaxed and a compromise has to be made based on the decision-maker’s 

objective, either to provide a reduced service or to have more investment for in-

creasing the capacity of reverse logistics system. In this paper, the relaxation of the 

capacity constraint is made in some scenarios in order to generate feasible solutions, 

and the relaxation is made in such a way that the change to the original network 

configuration is kept at the minimum level.   

 

Table 1.2 Generated scenarios for the numerical experimentation 

Scenarios Evaluation method 

Method1 Method2 Method3 

best 2.6099 0.3257 0.3016 

basic 2.1698 0.3253 0.3304 

worst 3.1043 0.6347 0.6309 

1 3.1933 0.7000 0.7000 

2 2.9605 0.5746 0.5715 

3 3.0837 0.4397 0.4057 

4 2.8748 0.6109 0.6208 

5 2.4456 0.3002 0.2815 

6 2.2069 0.3465 0.3543 

7 2.2494 0.2988 0.2923 

8 2.1489 0.3000 0.3000 

 

The performance of the candidates are measured with three different methods, 

and the result is given in Table 1.2. For implementing the weighted sum methods, 

several combinations of weights are tried and ∂ = 0.7 is selected for methods 2 and 
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3. As illustrated in the table, the optimal results from different evaluation methods 

vary significantly. The optimal solutions evaluated by methods 1, 2 and 3 are can-

didates 1, 7 and 5, respectively.  

 

 

Fig. 1.3 Comparison of the mean and profit expectation in test scenarios of the optimal solutions 

calculated with the three different method.  

Fig. 1.3 presents the comparison of the mean and profit expectation in each sce-

nario of the three candidates. As shown in the figure, the overall profit expectation 

of candidate 1 is much lower than that of candidates 7 and 5, and the overall profit 

expectation of candidate 7 is slightly higher than that of candidate 5. When the 

amount of used products generated is low, candidate 1 has a slightly better perfor-

mance than the others, but when the generation of used products is high, the eco-

nomic performance of candidates 7 and 5 are much better. Thus, it is obvious that 

the optimal solution calculated by the reciprocal of CV is with lower level of risk 

and lower economic performance. Compared with candidate 1, even if the level of 

risk is higher, both candidates 7 and 5 have much better economic performance 

particularly when the generation of used products is high. To distinguish with the 

two candidates, candidate 7 has a slightly higher profit expectation of the reverse 

logistics system, while candidate 5 has a slightly better level of risk (slightly better 

performance in low generation scenarios).  

From the discussion above, it is clearly that the optimal solution calculated by 

the original method is a weak performance one even if the level of risk is low. Both 

of the other methods with weighted sum can generate better solutions compared 

with the original method, and the optimal solution may be selected based upon the 

decision-maker’s preference. 
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1.4 Conclusion 

In this paper, we developed a new MILP model under stochastic environmental for 

designing a multi-product multi-level reverse logistics network, and an improved 

multi-criteria scenario-based risk-averse solution method was also proposed for re-

solving the stochastic optimization problem. The objective of the proposed model 

is to maximize the overall profit generated in the reverse logistics system under 

market fluctuation, and the solution method in a recently published research work 

is improved so that both profit expectation and potential risk are taken into consid-

eration in the decision-making. A numerical experimentation is conducted, and the 

application of the model and the effectiveness of the improved solution method are 

explicitly presented. 

For future improvement of the research, the consideration of environmental and 

social sustainability should be taken into account in the reverse logistics network 

design (Yu and Solvang, 2016b, Govindan et al., 2016). The simultaneous consid-

eration of several conflict objectives under uncertain environment may significantly 

increase the computational complexity, so the development of advanced solution 

algorithms is also suggested as a promising direction for the future research.  
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