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A stochastic model for intermittent fluctuations in the scrape-off layer of magnetically

confined plasmas has been constructed based on a super-position of uncorrelated pulses

arriving according to a Poisson process. In the most common applications of the model, the

pulse amplitudes are assumed exponentially distributed, supported by conditional averaging

of large-amplitude fluctuations in experimental measurement data. This basic assumption

has two potential limitations. First, statistical analysis of measurement data using conditional

averaging only reveals the tail of the amplitude distribution to be exponentially distributed.

Second, exponentially distributed amplitudes leads to a positive definite signal which cannot

capture fluctuations in for example electric potential and radial velocity. Assuming pulse

amplitudeswhich are not positive definite oftenmake finding a closed form for the probability

density function difficult, even if the characteristic function remains relatively simple. Thus

estimating model parameters requires an approach based on the characteristic function, not

the probability density function. In this contribution, the effect of changing the amplitude

distribution on the moments, probability density function and characteristic function of the

process is investigated and a parameter estimation method using the empirical distribution

function is presented and tested on synthetically generated data. This proves valuable for

describing intermittent fluctuations in the boundary region of magnetized plasmas.

I. INTRODUCTION

Radial propagation of filamentary structures is the main contributor to cross-field transport of

particles and heat in the scrape-off layer (SOL) of magnetically confined plasmas [1–11]. This

turbulence-driven transport results in broad plasma profiles and enhanced plasma-wall interactions
∗ audun.theodorsen@uit.no
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[5, 12–20].

Statistical analysis of single-point measurements in the far-SOL of several tokamak experi-

ments reveal skewed and flattened fluctuation probability density functions (PDFs), exponential

auto-correlation functions and Lorenzian power spectra for positive definite variables such as ion

saturation current, electron density and temperature, and gas puff imaging (GPI) intensity signals

[15, 16, 20–27]. Conditional averaging of large-amplitude fluctuations show that large structures

exhibit fast exponential growth and slower exponential decay, with exponentially distributed peak

amplitudes and exponentially distributed waiting times between them [15, 21–24, 26, 27]. Mea-

surements of the radial velocity is shown to have PDFs with exponential tails which are nearly

symmetric around the mean value [24, 26]. Previously, PDFs with exponential tails have been

investigated using the so-called instanton method [28, 29].

In order to systematize and unify these observations, a well-known reference model for in-

termittent fluctuations [30–37] has been introduced for SOL plasma fluctuations [38–40]. This

model, called a shot noise process or filtered Poisson process (FPP), consists of a super-position of

independent and identical pulse shapes with randomly distributed amplitudes, arriving according

to a Poisson process. The predictions of this FPP have been shown to be in excellent agreement

with experimental measurements of PDFs, auto-correlation functions and frequency power spectra,

conditional averaging, and higher order statistics such as threshold level crossings and excess time

statistics [21–27].

This model provides a framework for comparing measurements of SOL fluctuations. For

example, it has been demonstrated from GPI data in Alcator C-Mod that far-SOL fluctuations

have highly skewed and flattened PDFs, while PDFs close to the separatrix more closely resemble

normal distributions. [21, 25] At the same time, Lorenzian power spectra with the same time scale

are observed at all radial positions [25]. Interpreting the PDFs by model, blobs are numerous

and close together in the near SOL, while they are further apart in the far SOL. The blobs retain

their basic shape while traveling through the SOL, however, as indicated by the universality of

the spectra [25]. By comparing PDFs and power spectra, and by estimating model parameters,

measurements in the SOL of different fusion experiments, in various confinement modes and for a

range of plasma parameters can be compared. We note, however, that due to the time invariance of

the Poisson process, the model inherently only describes statistically stationary turbulence in the

SOL.

Previous theoretical work has revealed the convergence of the lowest order moments for the
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process [41], extended the model to include additive noise [42], revealed the auto-correlation and

power spectrum for different pulse shapes [43] and for randomly distributed pulse durations [44]

and discussed the rate of threshold crossings and average time above a given threshold [45]. It

has also been demonstrated that radial propagation of filament structures with these statistical

properties results in exponential profiles in the SOL, consistent with experimental observations

[39, 40]. In this contribution, we focus on the PDF, the characteristic function and the lowest order

moments of the process for various relevant amplitude distributions.

While conditional averaging has demonstrated exponentially distributed amplitudes for large-

amplitude fluctuations, the statistical properties of small amplitudes has not been revealed. As-

suming a positive definite time series (as is the case for ion saturation current, electron density,

electron temperature or GPI intensity), exponentially distributed amplitudes is an obvious assump-

tion. Another candidate is the Gamma distribution with shape parameter β > 1. This distribution

is unimodal and decays exponentially for large amplitudes, but has vanishing probability for am-

plitudes approaching zero. In this contribution we will compare the distributions for the FPP given

exponentially and Gamma distributed amplitudes with shape parameter β = 2, since this captures

the essential differences between the two distributions while allowing for analytical treatment of

the PDF and the characteristic function of the FPP.

While the ion saturation current, electron density and temperature, and GPI intensity all are

positive definite variables, electric potential and radial velocity are not. Thus, in order to correctly

model fluctuations in these quantities, amplitude distributionswith non-zero probability for negative

amplitudes are required. The asymmetric Laplace distribution fulfills this requirement while still

having exponential tails. The PDF of the FPP with symmetric Laplace distributed amplitudes has

been favorably compared to measurements of radial velocity of filaments in the SOL [24, 26]. In

the asymmetric case, however, the resulting FPP does not have a closed form solution for the PDF.

Thus methods for estimating model parameters based on or requiring the PDF of the process are

not applicable. However, the characteristic function for the model can still be found in closed

form. This allows for a method based on the empirical characteristic function, which is general

enough to allow for any asymmetry in the Laplace distributed amplitudes (of which the exponential

distribution is a special case) and noise level. We present this method and its application to the

FPP.
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II. MOMENTS OF THE FILTERED POISSON PROCESS

In this section, the FPP is introduced as a model for SOL fluctuations. The general form of the

moments are presented for two-sided, exponential pulse shapes and three different pulse amplitude

distributions: the exponential distribution, the Gamma distribution with shape parameter β = 2

and the asymmetric Laplace distribution. We also investigate how normally distributed additive

noise affects the moments of the FPP.

The FPP is given by a super-position of K identical pulse shapes ϕ with randomly distributed

amplitudes Ak arriving at times sk restricted to the range 0 ≤ sk ≤ T . All random variables are

assumed independent. The pulses arrive according to a Poisson process with intensity T/τw, where

τw is the average waiting time between pulses. Thus the arrival times are uniformly distributed

on the interval [0, T ] and the waiting time between pulses is exponentially distributed with mean

value τw.

We express the FPP as [30, 31, 46, 47]

ΦK(t) =

K(T )∑

k=1

Akϕ

(
t− sk
τd

)
, (1)

where τd is the fixed pulse duration time. In general, the duration timesmay be randomly distributed,

but only the mean value of this variable (that is, τd) plays a role for the moments and distribution

of Φ, see App. A. Thus, for simplicity of notation and without loss of generality, we will in the

following consider a constant duration time. The pulse shape ϕ(θ), where θ is a unitless variable,

is normalized according to ∫ ∞

−∞
dθ |ϕ(θ)| = 1. (2)

Here and in the following, only the two-sided exponential pulse shape will be considered. This

pulse shape has an asymmetry parameter 0 < λ < 1, and is given by

ϕ(θ) =





exp(θ/λ), θ < 0,

exp(−θ/(1− λ)), θ ≥ 0.
(3)

We define the integral of the n’th power of the pulse function, which for the two-sided exponential

pulse is independent of the asymmetry parameter λ,

In =

∫ ∞

−∞
dθ [ϕ(θ)]n =

1

n
. (4)
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While in principle λ could be randomly distributed, as discussed in App. A, we will in this

contribution assume all pulses to be identical, with the same, fixed λ and τd.

Under the assumptions given above, the characteristic function of the FPP has been derived in

App. A, and is given by Eq. (A17). Inserting the integral of the n’th power of the pulse function

given in Eq. (4) into Eq. (A17), the logarithm of the characteristic function of the FPP is given by

the sum

lnCΦ(u) = γ
∞∑

n=1

(iu)n

n!n
〈An〉 , (5)

where γ = τd/τw is the so-called intermittency parameter of the process. This parameter determines

the degree of pulse overlap, and thereby the intermittency of the process. For low γ, each

pulse duration is short compared to the average time between pulses, and the process is strongly

intermittent. For high γ, many pulses arrive in the duration of one pulse event and pulse overlap

becomes significant.

The cumulants of the process are given by the coefficients in the expansion of the logarithm of

the characteristic function,

lnCΦ(u) =
∞∑

n=1

κn
(iu)n

n!
, (6)

which according to Eq. (28) are given by

κn =
γ

n
〈An〉 . (7)

The mean value of the process is 〈Φ〉 = κ1, the variance is Φ2
rms = κ2, where rms denotes the root

mean square value, and the skewness and flatness moments are related to the cumulants by [30, 38]

SΦ =
κ3

κ
3/2
2

, (8a)

FΦ = 3 +
κ4

κ2
2

. (8b)

According to Eq. (7), each cumulant is proportional to γ for any amplitude distribution. Thus, the

mean value is proportional to γ, the rms-value is proportional to γ1/2, the skewness is proportional

to γ−1/2 and the flatness to 1/γ. For increasing γ, any FPP will have mean and rms tending

to infinity (for finite In and 〈An〉) and vanishing skewness and flatness. For the FPP there is a

universal parabolic relationship between FΦ and SΦ, independent of the intermittency parameter γ

[38, 39]

FΦ = 3 +
κ2κ4

κ2
3

S2
Φ = 3 +

I2I4

I2
3

〈A2〉 〈A4〉
〈A3〉2

S2
Φ = 3 +

9

8

〈A2〉 〈A4〉
〈A3〉2

S2
Φ. (9)
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The physical basis for a parabolic relationship between skewness and kurtosis has been explored

previously [48, 49]. We note that while many relationships between skewness and kurtosis based

on Eq. (8) are possible, only the one presented in Eq. (9) is independent of the intermittency

parameter γ.

We will consider 3 different amplitude distributions for the FPP; the exponential distribution,

the Gamma distribution with shape parameter β = 2 and the asymmetric Laplace distribution.

These all give closed form expressions for the characteristic function of Φ. The PDF of the

exponential distribution has a finite value for A = 0 and is monotonically decreasing. The Gamma

distribution with shape parameter 2 is unimodal and tends to 0 for A → 0. Since both have

exponential tails, comparing the distribution of the FPP with exponentially and Gamma distributed

amplitudes will highlight the importance of small-amplitude pulses while keeping the effect of

large-amplitude pulses equal. The Laplace distribution allows for both positive and negative values

of A, whereas the exponentially and Gamma distributed amplitudes are strictly positive. Thus the

Laplace distribution is the only one of these capable of describing measurement data which is not

positive definite.

A. Exponentially distributed amplitudes

The exponential distribution is a one parameter distribution with scale parameter α > 0. The

distribution and its moments are given by

PA(A;α) =
1

α
exp(−A/α), A > 0, (10a)

〈An〉 = αnn!, (10b)

for integer values of n.

For exponentially distributed amplitudes, the first four moments of Φ are given by [38, 39]

〈Φ〉 = γα, (11a)

Φ2
rms = γα2, (11b)

SΦ =
2

γ1/2
, (11c)

FΦ =
6

γ
+ 3, (11d)
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and we have the parabolic relationship between the skewness and flatness moments,

FΦ = 3 +
3

2
S2

Φ, (12)

where the pre-factor is simply 3/2, as the scale parameter is cancelled out.

B. Gamma distributed amplitudes

The Gamma distribution has a shape parameter β > 0 and a scale parameter α > 0. It is given

by

PA(A;α, β) =
Aβ−1

αβΓ(β)
exp(−A/α), A > 0, (13a)

〈An〉 = αn
Γ(β + n)

Γ(β)
. (13b)

For β = 1, this is equivalent to the exponential distribution with scale parameter α. For β = 2, we

have

PA(A;α, β) =
A

α2
exp(−A/α), A > 0, (14a)

〈An〉 = αnΓ(2 + n). (14b)

For large amplitudes A, the Gamma distribution has an exponential tail with the same decay

rate as the exponential distribution with equal α. The moments are not equal, however, as

Γ(2+n) = (1+n)!, giving a factor (1+n) more for all moments in the case of Gamma distributed

pulse amplitudes.

For Gamma distributed amplitudes with general shape parameter β, the first four moments are

given by

〈Φ〉 = γαβ, (15a)

Φ2
rms = γα2β(β + 1)

2
, (15b)

SΦ =
23/2

3γ1/2

β + 2

[β (β + 1)]1/2
, (15c)

FΦ =
1

γ

(β + 2)(β + 3)

β(β + 1)
+ 3. (15d)

The parabolic relationship between the skewness and flatness moments depends on the shape

parameter for the amplitude distribution,

FΦ = 3 +
9

8

β + 3

β + 2
S2

Φ. (16)
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Setting β = 1 gives the same moments and parabolic relation as for the exponentially distributed

amplitudes. For the special case β = 2, the moments are

〈Φ〉 = 2γα, (17a)

Φ2
rms = 3γα2, (17b)

SΦ =
8

33/2γ1/2
, (17c)

FΦ =
10

3γ
+ 3. (17d)

and the parabolic relationship simplifies to

FΦ = 3 +
45

32
S2

Φ. (18)

This relationship is very close to the case of exponentially distributed amplitudes, Eq. (12), (it

would be equal for the prefactor 48/32 = 3/2).

C. Asymmetrically Laplace distributed amplitudes

The asymmetric Laplace distribution can be formulated in a few different ways, see for example

Refs. 50 and 51. Wewill use a different formulationwhich easily admits the exponential distribution

as a limiting case. With α > 0 as a scale parameter and 0 < β < 1 as a shape parameter, we have

PA(A;α, β) =
1

2α





exp
(
− A

2α(1−β)

)
, A > 0,

exp
(

A
2αβ

)
, A < 0,

(19a)

〈An〉 = (2α)nn!
[
(−1)nβn+1 + (1− β)n+1

]
. (19b)

This distribution is symmetric for β = 1/2, and is equivalent to the exponential distribution in the

limit β → 0. In the limit β → 1, the distribution is an exponential distribution mirrored around

A = 0, with zero probability for positive A-values and finite probability for negative A-values.

For Laplace distributed pulse amplitudes, the first four moments are given by

〈Φ〉 = 2γα(1− 2β), (20a)

Φ2
rms = 4γα2[β3 + (1− β)3], (20b)

SΦ =
(1− β)4 − β4

[β3 + (1− β)3]3/2
2

γ1/2
, (20c)

FΦ =
[β5 + (1− β)5]

[β3 + (1− β)3]2
6

γ
+ 3. (20d)
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and the parabolic relationship between skewness and flatness is,

FΦ = 3 +
3

2

[β5 + (1− β)5][β3 + (1− β)3]

[(1− β)4 − β4]2
S2

Φ. (21)

For β = 0, we have the same expressions as for the exponentially distributed amplitudes. For

β = 1/2, the Laplace distribution is symmetric, so all odd moments of A vanish, see Eq. (19b),

giving

〈Φ〉 = 0, (22a)

Φ2
rms = γα2, (22b)

SΦ = 0, (22c)

FΦ =
6

γ
+ 3. (22d)

In this case, there is no parabolic relationship between skewness and flatness, since SΦ = 0. As β

approaches 1/2 (from either side), the prefactor in Eq. (21) tends to infinity.

D. Comparisons

In Fig. 1, realizations of the process are presented for γ ∈ {1, 10} and the amplitude distributions

given above. The bottom (blue) lines give realizations with amplitudes distributed according to an

exponential distribution. The middle (orange dashed) lines are for Gamma distributed amplitudes

with shape parameter β = 2, and the top (green dotted) realizations are computed using the

Laplace distribution with shape parameter β = 1/2. In all cases, the realizations have been

normalized to have zero mean and unit standard deviation, in order to remove the dependency on

the scale parameter in the amplitude distribution. In Fig. 1a, γ = 1 and all processes are strongly

intermittent, alternating between periods of activity and inactivity. In Fig. 1b, γ = 10, and the

large degree of pulse overlap leads to weaker intermittency and makes individual pulses harder

to discern. While the signals with exponentially and Gamma distributed amplitudes are easy to

separate visually from the Laplace case for γ = 1, this is not true for the case with γ = 10, where

all realizations look like a random walk around a mean value. Indeed, it can be shown that the

PDF of the normalized process Φ̃ = (Φ− 〈Φ〉)/Φrms approaches a standard normal distribution as

γ →∞, independent of the amplitude distribution and the pulse shape [30, 47]. Visually, it is very

difficult to separate the filtered Poisson process with exponentially distributed amplitudes from the

one with Gamma distributed amplitudes with shape parameter β = 2.
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FIG. 1: Realizations of the filtered Poisson process for various pulse amplitude distributions and

values of the intermittency parameter γ. The pulse asymmetry parameter λ is 1/10.

In Fig. 2, the inverse of the prefactor in the parabolic relationship between the skewness and

flatness moments as a function of β is shown for exponentially distributed amplitudes (blue),

Gamma distributed amplitudes (orange dashed) and Laplace distributed amplitudes (green dotted).

The inverse is used, since the prefactor itself tends to infinity in the case of Laplace distributed

amplitudes for β → 1/2, as discussed above. This prefactor is constant for exponentially distributed

amplitudes, since the exponential distribution has no shape parameter. For Gamma distributed

amplitudes, the inverse of the prefactor is smaller than for exponentially distributed amplitudes for

β < 1 and larger for β > 1, thus the prefactor itself is larger for β < 1 and smaller for β > 1. From

Eq. (16) we see that the prefactor approaches 9/8 as β → ∞. The FPP with Laplace distributed

amplitudes and β = 0 or β = 1 has the same prefactor in the parabolic relation as the FPP with

exponentially distributed amplitudes. The skewness is equal in magnitude but with different sign

for these two cases, giving the same prefactor in the parabolic relationship.

E. Additive noise

In many applications of the model, there may be some normally distributed additive noise to

the process, either as white noise connected to measurements or as noise with the same power

spectrum as the FPP, connected to the dynamics. This situation has been explored in detail for

exponentially distributed amplitudes and one-sided exponential pulses [42]. We assume the noise

process, denoted by X , to be normally distributed and independent of the FPP, and denote the

signal with additive noise as

Ψ = Φ +X. (23)
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FIG. 2: The inverse of the prefactor in the parabolic relationship between the skewness and

flatness moments for the filtered Poisson process with exponentially (blue), Gamma (orange

dashed) and Laplace (green dotted) distributed pulse amplitudes as function of the shape

parameter of the amplitude distribution.

The basic properties of the distribution of a sum of independent random variables are reviewed

in App. B1. For a normal distribution, only the first two cumulants are non-zero. Using that the

variance of the process is given by the second cumulant, we define the noise ratio as

ε =
X2

rms

Φ2
rms

=
κX2
κΦ

2

. (24)

Using this noise ratio and that the cumulants of a sum of independent random variables is the sum

of their cumulants, see Eq. (B4), we have

〈Ψ〉 = κΦ
1 + κX1 , (25a)

Ψ2
rms = (1 + ε)κΦ

2 , (25b)

SΨ =
κΦ

3

[(1 + ε)κΦ
2 ]

3/2
, (25c)

FΨ = 3 +
κΦ

4

[(1 + ε)κΦ
2 ]

2 . (25d)
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The parabolic relationship between the skewness and flatness moments is

FΨ = 3 +
κΦ

4

[
(1 + ε)κΦ

2

]

(κΦ
3 )

2 S2
Ψ. (26)

The effect of noise on the moments is to increase the variance and decrease the skewness and

flatness, leading to Ψ more closely resembling a normally distributed process than Φ. As ε

increases, the prefactor in the parabolic relationship increases as well.

III. PROBABILITY DISTRIBUTIONS

Under the assumptions that we have an FPP with fixed τd and λ and independent amplitudes

and arrival times, the characteristic function of the FPP has been derived in App. A, and is given

in various forms by Eqs. (A12), (A13) and (A17). For the two-sided exponential pulse function,

we can split the integral in Eq. (A13) into two parts, one over negative values of θ and one over

positive values of θ, and substitute the integration for the pulse shape in Eq. (3). This gives

lnCΦ(u) = γ

u∫

0

dv
CA(v)− 1

v
, (27)

where CA is the characteristic function of the amplitudes. Inserting the integral of the n’th power

of the pulse function given in Eq. (4) into Eq. (A17), we can alternatively give the characteristic

function of the FPP as the sum

lnCΦ(u) = γ
∞∑

n=1

(iu)n

n!n
〈An〉 , (28)

as in the previous section. The PDF of Φ is given by

PΦ(Φ) =
1

2π

∫ ∞

−∞
du exp (−iΦu)CΦ(u). (29)

We will in the following frequently use the normalization

Φ̃ =
Φ− 〈Φ〉

Φrms
, (30)

which removes the dependence on the scale parameter in the amplitude distribution. The PDF of

Φ̃ is in general

PΦ̃(Φ̃) = ΦrmsPΦ(ΦrmsΦ̃ + 〈Φ〉), (31)

while its characteristic function is

CΦ̃(u) = exp

(
−i 〈Φ〉

Φrms
u

)
CΦ

(
u

Φrms

)
. (32)
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A. Exponential amplitude distribution

In the case of exponentially distributed amplitudes, it is well known [35, 38, 47, 52, 53] that the

distribution of Φ is a gamma distribution with shape parameter γ and scale parameter α,

PΦ(Φ) =
Φγ−1

αγΓ(γ)
exp

(
−Φ

α

)
, Φ > 0, (33a)

CΦ(u) = (1− iαu)−γ . (33b)

Using the normalization in Eq. (30), the dependence explicit on α disappears, and the distribution

becomes

PΦ̃(Φ̃) =
γγ/2

Γ(γ)
(Φ̃ + γ1/2)γ−1 exp(−γ1/2Φ̃− γ), (34a)

CΦ̃(u) = exp (−i√γu)

(
1− i u√

γ

)−γ
. (34b)

In Fig. 3, the effect of the parameter γ is illustrated by presenting the complementary cumulative

distribution function (cCDF) of Φ̃ for various parameter values. The cCDF at a given function value

φ̃ can be interpreted as the probability that the random variable takes the value φ̃ or a larger value. It

can also be interpreted as the fraction of time a signal spends above a threshold value φ̃. Φ is positive

definite, so the lowest possible value for Φ̃ is Φ̃ = −√γ. For small γ, the cCDF falls off slowly

with increasing Φ̃, indicating high probability of large amplitude fluctuations. As γ increases, the

probability of large values of Φ̃ decreases, as the signal transitions from an intermittent signal to

one resembling random motion around a mean value. As stated earlier, for γ → ∞, the process

Φ̃ approaches a standard normal distribution, presented by the black diamonds in Fig. 3. For the

γ-values presented here, the Gamma-distributed signals all have higher probability of fluctuations

with amplitude Φ̃ > 2 compared to a normally distributed signal, highlighting the importance of

intermittency for threshold phenomena.

B. Gamma amplitude distribution

Using gamma distributed amplitudes, we have

lnCΦ(u) = γβ iαu 3F2


1 1 1 + β

2 2
; iαu


 , (35)
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FIG. 3: Complementary cumulative distribution function of the normalized filtered Poisson

process for various values of the intermittency parameter γ. The black diamonds indicate a

normal distribution with vanishing mean and unit standard deviation.

where pFq is the generalized hypergeometric function [54]. For β = 1, this simplifies to the

characteristic function for an exponential amplitude distribution, as discussed above. For β = 2,

the characteristic function is

lnCΦ(u) = γ

[
1

1− iαu − 1− ln(1− iαu)

]
, (36)

giving

CΦ(u) = exp(−γ) exp

(
γ

1− iαu

)
(1− iαu)−γ. (37)

In App. C, the corresponding PDF is shown to be [35, 53]

PΦ(Φ) =
1

α

(
Φ

γα

)(γ−1)/2

exp

(
−γ − Φ

α

)
Iγ−1

(
2

√
γ

Φ

α

)
. (38)

Here, I is the modified Bessel function of the first kind [54]. Using the mean and rms-values given

by Eq. (17), we have that the distribution of the normalized variable Φ̃ = (Φ− 〈Φ〉)/Φrms is again
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FIG. 4: Probability density functions for the filtered Poisson process with exponential amplitude

distribution (full lines) and Gamma amplitude distribution with shape parameter β = 2 (dashed

lines). Both are given for various values of the intermittency parameter γ.

independent of α, and we have

PΦ̃(Φ̃) =
√

3γ

(√
3

γ
Φ̃ + 2

)(γ−1)/2

exp
(
−
√

3γΦ̃− 3γ
)
Iγ−1


2γ

√√
3

γ
Φ̃ + 2


 , (39a)

CΦ̃(u) = exp

(
−γi u√

3γ

1 + 2iu/
√

3γ

1− iu/√3γ

)(
1− i u√

3γ

)−γ
. (39b)

A comparison between the PDF in Eq. (39a) and the PDF for the case of exponentially distributed

amplitudes, given by Eq. (34a), is presented in Fig. 4 for various values of the intermittency

parameter. It is evident that the PDF of the FPP with Gamma distributed amplitudes can be very

well approximated by the PDF of a FPP with exponentially distributed amplitudes and slightly

larger γ. Thus the PDF seems a poor choice for differentiating Gamma distributed amplitudes with

β = 2 from exponentially distributed amplitudes in a given realization of the process.
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FIG. 5: Probability distribution functions of the normalized filtered Poisson process with

Laplace distributed amplitudes for various γ and β.

C. Asymmetric Laplace amplitude distribution

With asymmetrically Laplace distributed amplitudes, the characteristic function of the filtered

Poisson process is

CΦ(u) = (1 + i 2αβu)−γβ(1− i 2α(1− β)u)−γ(1−β). (40)

Note that this can be seen as the characteristic function of a sum of two independent gamma

distributed variables, one over positive values with shape parameter γ(1− β) and scale parameter

2α(1−β), and one over negative values with shape parameter γβ and scale parameter 2αβ. While

the PDF is in general not possible to find in closed form, a numerical estimate can be found by

noting that the PDF of a sum of independent random variables is the convolution of their respective

distributions. Estimating the two gamma distributions and convolving them numerically gives

PDFs as illustrated in Fig. 5. In Fig. 5a, the intermittency parameter is γ = 2 and the shape

parameter β varies. For β = 1/2, this is a symmetric Laplace distribution. As β → 0, the PDF

approaches a Gamma distribution. Fig. 5b shows the distribution for β = 1/2 and various values

of γ. As discussed below, one can find the PDF in closed form in this case. The PDF is symmetric

around Φ̃ = 0 for all γ. For small γ, it is sharply peaked and convex around Φ̃ = 0, while for large

γ, it is concave and approaches a normal distribution as γ increases. For all combinations of β and

(finite) γ, the PDF has exponential tails.

In the limit β → 0, the Laplace distribution approaches the exponential distribution and the

standard Gamma distribution for Φ is recovered. In the case β = 1/2, the Laplace distribution is
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symmetric and we can find the PDF in closed form. The distribution is [24, 35, 44, 53]

PΦ(Φ; γ, α, β = 1/2) =
1

π1/2αΓ(γ/2)

( |Φ|
2α

)(γ−1)/2

K(γ−1)/2

( |Φ|
α

)
, (41a)

CΦ(u) =
(
1 + α2u2

)−γ/2
, (41b)

where K is the modified Bessel function of the second kind [54]. The normalized variable Φ̃ has

the distribution

PΦ̃(Φ̃; γ, β = 1/2) =
γ1/2

π1/2Γ(γ/2)

(
γ1/2|Φ̃|

2

)(γ−1)/2

K(γ−1)/2

(
γ1/2|Φ̃|

)
, (42a)

CΦ̃(u) =

(
1 +

u2

γ

)−γ/2
. (42b)

This PDF is presented in Fig. 5b for various values of the intermittency parameter γ.

D. Additive noise

Adding noise to the FPP is straightforward as long as only the characteristic function is consid-

ered. Using the FPP with asymmetrically Laplace distributed amplitudes and additive noise as an

example, we have

Ψ(t) = Φ(t) +X(t), (43)

where Φ is a FPP with Laplace distributed amplitudes and X is normally distributed noise with

vanishing mean and standard deviationXrms. The characteristic function of Ψ is the product of the

characteristic functions of Φ and X , see App. B1. We have

CΨ(u) = (1 + i2βαu)−γβ (1− i2(1− β)αu)−γ(1−β) exp

(
−1

2
X2

rmsu
2

)
. (44)

Using the noise parameter ε from Eq. (24), we have X2
rms = εΦ2

rms. The moments for the FPP

with additive noise from Eq. (25) give 〈Ψ〉 = 2αγ(1 − 2β) and Ψ2
rms = (1 + ε)Φ2

rms = 4α2γ(1 +

ε) [β3 + (1− β)3]. Normalizing the process by Ψ̃ = (Ψ− 〈Ψ〉)/Ψrms and using Eq. (32), we have

CΨ̃(u) =

(
1 + i

βu√
γ(1 + ε)B(β)

)−γβ (
1− i (1− β)u√

γ(1 + ε)B(β)

)−γ(1−β)

exp

(
− εu2

2(1 + ε)
− i
√
γ(1− 2β)u√
1 + εB(β)

)
, (45)

where B(β) =
√

(1− β)3 + β3. Performing the inverse Fourier transform on this expression to

get the PDF of Ψ̃ does in general not lead to a closed analytical expression. However, it can be

done for the FPP with exponentially distributed amplitudes (that is, in the limit β → 0) [42].
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IV. PARAMETER ESTIMATION

In Sec. III B, it was shown that the distribution of an FPP with Gamma distributed ampli-

tudes with shape parameter β = 2 does not differ significantly from an FPP with exponentially

distributed amplitudes and a slightly larger γ. The exponential distribution is a special case of

the asymmetric Laplace distribution, and so we consider the FPP with asymmetrically Laplace

distributed amplitudes to describe the most general form of the distribution of the FPP presented

in this contribution. Adding noise as well gives the process described in Sec. III D. This process

does not in general have a closed form PDF, and so standard methods for estimating the process

parameters which rely on the PDF does not work. We do, however, have a closed form for the

characteristic function. Estimating parameters using the characteristic function has been discussed

in Refs. 55–57. The main problem is finding a reasonable set of variables for the characteristic

function. This has been considered by Refs. 58 and 59. All consider dividing the characteristic

function into real and imaginary components explicitly. The approach taken here is more compact,

and should be equivalent.

We have a set of independent and identically distributed observations Y1, Y2, . . . , YN . We

assume we know the distribution family, but not the parameters; the PDF is given by P (y;θ) with

the corresponding characteristic function C(u,θ), where θ is a vector of parameters. The goal is

to estimate these parameters from the observations. Define the empirical characteristic function

CN(u) =
1

N

N∑

n=1

exp (iuYn) , (46)

and the error function

εN(u,θ) = N1/2 (CN(u)− C(u,θ)) . (47)

Given a discrete set of sampling points for the characteristic function uj = jδu, j = 1, 2, 3, . . . ,M ,

the error vectorwill be given by (here and in the following, θ is suppressed for simplicity of notation)

εN = [εN(u1), εN(u2), . . . , εN(uM)]T . (48)

It is known that εN is asymptotically normal with zero mean and an (M ×M) covariance matrix

Ω [55, 56],

Ωkl = 〈εN(uk)εN(ul)〉 = C (uk + ul)− C (uk) C (ul) . (49)

An estimator θ̂ of θ can be found by minimizing [58]

εN Ω̂−1εTN , (50)
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where Ω̂ is an estimate of Ω. We estimate the covariance matrix by defining an (M ×N)-matrix

E with

Ekl = exp (iukYl)− CN (uk) . (51)

Then we have

Ω̂ =
1

1−NEET . (52)

Thus, in order to estimate the parameters θ, we choose the set of u (as described below) and

calculate Ω̂. With an initial guess θ0, εN can be constructed and Eq. (50) can be iteratively

minimized to find the estimator θ̂.

Choosing the bin size for a histogram can have large effects on the resulting PDF. In the same

way, choosing the sampling points uj has a large effect on the estimation procedure. Various

approaches are discussed in Refs. 58 and 59. Not many points are needed; both agree on around

10 points as sufficient. Choosing δu is harder and requires the derivative of C with respect to θ

(and preferably, the PDF of Y , which we do not have). As a low-complexity, high-cost brute force

method, we note that θ̂ is insensitive to the initial values for a good choice of δu. Thus, we do the

estimation for a large range of δu and many different initial values. The results are chosen where

many initial values lead to the same result.

A. Examples of parameter estimation

In this section, we attempt to estimate the parameters θ = (γ, β, ε) from realizations of the

process introduced in Sec. III D. In the absence of noise, the method works well as long as the

degree of pulse overlap is not excessive (γ < 20). We therefore present particularly challenging

examples from the full 3-parameter model. Three sets of parameters have been chosen. To describe

an FPP with experimentally relevant intermittency level, exponentially distributed amplitudes and

low noise level, the parameters (γ, β, ε) = (2, 0, 10−1) were used. Both pulse overlap and high

noise level lead to a distribution more closely resembling a normal distribution. Therefore, in

order to reveal the sensitivity to intermittency in a process with high noise level, the parameters

(γ, β, ε) = (5, 1/2, 1) were used. Lastly, as strong intermittency leads to a more symmetric

distribution, revealing the presence of moderate asymmetry in a process with high intermittency

was tested with the parameters (γ, β, ε) = (10, 1/4, 10−1).

In Fig. 6, parameter estimation has been performed for parameters (γ, β, ε) = (2, 0, 10−1) (top),

(γ, β, ε) = (5, 1/2, 1) (middle) and (γ, β, ε) = (10, 1/4, 10−1) (bottom), using the L-BFGS-B -
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FIG. 6: Result of parameter estimation procedure. True parameters, given by full black lines, are

(γ, β, ε) = (2, 0, 10−1) (top, a, b, c), (γ, β, ε) = (5, 1/2, 1) (middle, d, e, f) and

(γ, β, ε) = (10, 1/4, 10−1) (bottom, g, h, i), with estimated parameters γ̂ (left column, a, d, g), β̂

(center column, b, e, h) and ε̂ (right column, c, f, i). For each characteristic value step size δu,

parameters have been estimated for 18 different sets of initial values, each giving a data point

which is either a blue dot or an orange star. Green dashed lines give the mean of values signified

by orange stars.

algorithm wrapped by the scipy.optimize.minimize - package [60–62]. The synthetic time series

have N = 106 data points, and we use uj = jδu, j = 1, 2, . . . , 10 and δu ∈ {0, 1, 2, . . . , 14} ·
10−1 + 1/2. For each δu, parameters have been estimated for all combinations of the initial values

γ0 ∈ {10−1, 1, 10}, β0 ∈ {0, 1/4, 1/2} and ε0 ∈ {10−3, 10−1}, giving 18 estimated values for each

δu and each of γ, β and ε. These estimated values are shown by the blue dots and orange stars in

Fig. 6. Large scatter for a specific δu signifies high sensitivity to initial values in the estimation

procedure. For δu < 0.5, there was high dependence on initial values in all cases, so we only show

results for δu > 0.5. In all cases, the black line gives the true value and the green dashed line

gives the estimated value. The estimated value is found by taking the mean of all orange stars,
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γ, β, ε γ̂ − γ β̂ − β ε̂− ε

2, 0, 10−1 0.00± 0.01 0.003± 0.007 0.000± 0.001

5, 1/2, 1 −0.2± 0.2 0.001± 0.003 0.01± 0.03

10, 1/4, 10−1 −0.5± 0.4 −0.02± 0.02 0.03± 0.02

TABLE I: Table of estimated model parameters with standard deviation for all three sets of

example parameters.

while ignoring blue dots. The criteria for deciding which values are used in the estimate are as

follows. Top, we assume β = 0 is known or suspected. Many points cluster around the β = 0 line,

and these all correspond to the same value of γ. Thus, these points are chosen for the parameter

estimation, using β < 5 × 10−2 for the orange stars. Middle, the estimates diverge for γ and ε in

the case u > 1.6, so these values are not used, and marked with blue dots. Bottom, we have two

fixed points for different initial values, one with high γ and β, and low ε, and one with low γ and

β, and high ε. In this case, we choose to explain as little of the variation in the signal as possible

with the additional noise level described by ε. Low ε corresponds to high γ and β, so β > 10−1

was used as a condition to mark estimated values with orange stars.

In Table I, the estimated values are presented. This is the true parameter value subtracted

from the mean value of the accepted estimated parameters with uncertainty equal to one standard

deviation. For the two lowest example intermittency parameters, all estimated parameters are very

close to the true value. For the example parameters (γ, β, ε) = (10, 1/4, 10−1), the procedure

underestimates γ and overestimates ε. This is most likely due to the fact that as γ increases, the

FPP approaches a normal distribution, making it difficult to separate the FPP from the normally

distributed noise in the PDF. Still, all estimated parameters are within two standard deviations of

the true parameter values.

V. DISCUSSION AND CONCLUSIONS

In this contribution, we have investigated the filtered Poisson process given three different

distributions of the pulse amplitudes; exponentially distributed amplitudes, Gamma distributed

amplitudes and asymmetrically Laplace distributed amplitudes. For all of these, the mean, vari-

ance, and skewness and flatness moments of the resulting process were presented, as well as the
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parabolic relationship between the skewness and flatness moments. In addition, it was discussed

how normally distributed noise affects the moments and the parabolic relation. In all cases, the

characteristic function of the filtered Poisson process has a closed form solution, while the prob-

ability density function only has closed form solutions for exponentially distributed amplitudes,

Gamma distributed amplitudes with shape parameter β = 2 and symmetrically Laplace distributed

amplitudes.

It was furthermore shown that exponentially distributed amplitudes and Gamma distributed

amplitudes with shape parameter β = 2 lead to PDFs for the FPP which are practically indistin-

guishable. In previous work [44], it was shown that the amplitude distribution does not influence

the power spectrum or the auto-correlation function of the FPP. Thus, a realization of an FPP

with Gamma distributed amplitudes with shape parameter β = 2 cannot be easily distinguished

from a realization of a FFP with exponentially distributed amplitudes and a slightly larger in-

termittency parameter γ. The assumption of Gamma distributed amplitudes therefore leads to

more complicated derivations and expressions, but practically equivalent predictions, for the PDF,

auto-correlation and power spectrum, and can safely be simplified to the standard assumption of

exponentially distributed amplitudes.

Laplace distributed amplitudes lead to expressions which are qualitatively different from ex-

ponentially or Gamma distributed amplitudes, since the two latter do not admit negative function

values. Only for the case of symmetrically Laplace distributed amplitudes does the process have

a closed form PDF. This makes parameter estimation methods requiring the PDF not applicable

in general. However, the characteristic function has a closed form expression for any value of the

asymmetry parameter. It has been demonstrated that a method based on the empirical character-

istic function can be used to reliably estimate the model parameters in realizations of the process.

This method can also handle additional noise to the process. The only problem in applying this

method is deciding on the sampling points for computing the empirical characteristic function.

In this contribution we have disregarded complex, iterative procedures for a simple brute-force

method relying on the fact that the estimation procedure should be insensitive to initial parameter

guesses for a good choice of sampling points. This method was capable of finding the correct noise

ratio and asymmetry parameters in situations complicated by low intermittency (leading to more

symmetric and Gaussian-like distributions) in the signal.

The FPP is a reference model for intermittent fluctuations in physical systems, where large

amplitude bursts of similar shape dominate the fluctuations. Due to the Poisson process driving
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the model, it only considers turbulence which is statistically stationary in time. In magnetized

plasmas, the model has been successfully applied to measurements of SOL fluctuations, where it

is used to systematize and unify measurements. Finding the correct assumptions for the amplitude

distributions and having good methods for estimating the model parameters is vital in being able to

compare and contrast data for varying plasma parameters andmachine configurations. In the future,

comparisons between different machines will also be carried out using the framework presented

here.
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Appendix A: Derivation of the characteristic function

In general, it has been assumed that the pulse amplitudes are independently and identically

distributed, that the pulse arrival times are independently uniformly distributed, and that the pulses

have a fixed shape. The characteristic function of the FPP (and its cumulants) has in this case been

discussed in Refs. 30, 31, 46, 47, and 63.

In this section, we will derive the characteristic function of the FPP in a form as general as

possible, and investigate exactly which assumptions are necessary in order to obtain a closed form

expression. In its most general form, the FPP is given by

ΦK(t) =

K(T )∑

k=1

Akϕ

(
t− sk
τk

, λk

)
, (A1)

where the amplitudes A, arrival times s, duration times τ and asymmetries λ all are random vari-

ables. We begin by assuming that all random variables are independent and identically distributed

across pulses, that is for all k 6= l:

pAk,λk,τk,sk (Ak, λk, τk, sk) = pAl,λl,τl,sl (Al, λl, τl, sl) , (A2)
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and

pAk,λk,τk,sk,Al,λl,τl,sl (Ak, λk, τk, sk, Al, λl, τl, sl) =

pAk,λk,τk,sk (Ak, λk, τk, sk) pAl,λl,τl,sl (Al, λl, τl, sl) . (A3)

One could easily imagine an alternative FPP where for example the amplitude of the pulse depends

on the waiting time from the last pulse. In this case, Ak would depend on sk and sk−1, and a very

different treatment from the present one would be required. In the following we drop the index on

the random variables, since each pulse is statistically identical. The characteristic function of Φ is

the product of all characteristic functions of φ = Aϕ
(
t−s
τ
, λ
)
. Fixing K for the moment, we have

CΦ(u;K, t) =
K∏

k=1

Cφ(u; t) = Cφ(u; t)K , (A4)

where the variables after the semicolon are parameters in the characteristic function. By definition,

Cφ(u; t) = 〈exp (iuφ)〉 =

∞∫

−∞

dA
∞∫

−∞

dλ
∞∫

−∞

dτ
∞∫

−∞

ds pA,λ,τ,s(A, λ, τ, s) exp

(
iAuϕ

(
t− s
τ

, λ

))
.

(A5)

The PDF of Φ for fixed K is

PΦ(Φ|K) =
1

2π

∞∫

−∞

du exp (iuΦ)Cφ(u; t)K . (A6)

Using that K is Poisson distributed,

PK(K|T ) =
1

K!

(
T

τw

)K
exp

(
− T
τw

)
, (A7)

we have

PΦ(Φ|T ) =
∞∑

K=0

PΦ(Φ|K)PK(K|T ) =
1

2π

∞∫

−∞

du exp (iuΦ) exp

{
T

τw
[Cφ(u; t)− 1]

}
. (A8)

The expression inside the last exponential function can be identified as the logarithm of CΦ(u).

Since the joint PDF of A, λ, τ and s integrates to 1 by definition, we have that this expression is

lnCΦ(u;T, t) =
T

τw

∞∫

−∞

dA
∞∫

−∞

dλ
∞∫

−∞

dτ
∞∫

−∞

ds pA,λ,τ,s(A, λ, τ, s)
[
exp

(
iAuϕ

(
t− s
τ

, λ

))
− 1

]
,

(A9)
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Since K is Poisson distributed, s is uniformly distributed on 0 ≤ s ≤ T . Assuming that s is

independent of all the other random variables, we have

lnCΦ(u;T, t) =
1

τw

∞∫

−∞

dA
∞∫

−∞

dλ
∞∫

−∞

dτ pA,λ,τ (A, λ, τ)

T∫

0

ds
[
exp

(
iAuϕ

(
t− s
τ

, λ

))
− 1

]
.

(A10)

Exchanging the variable s to θ = (t − s)/τ , assuming stationarity and ignoring end effects for θ

(that is, setting the integration limits back to −∞ < θ <∞), we have

lnCΦ(u) =
1

τw

∞∫

−∞

dA
∞∫

−∞

dλ
∞∫

−∞

dτ τpA,λ,τ (A, λ, τ)

∞∫

−∞

dθ [exp (iAuϕ (θ, λ))− 1] . (A11)

This is the most general form of the characteristic function of Φ, where we only assume that pulses

are independent of each other and that the arrivals follow a Poisson process and are independent

of the other properties of the pulses.

Assuming that A, λ and τ are independent, and that λ takes on a specific value, we arrive at

lnCΦ(u) = γ

∞∫

−∞

dAPA(A)

∞∫

−∞

dθ [exp (iuAϕ(θ))− 1] . (A12)

Changing the order of integration in Eq. (A12) and using the definition of the characteristic function,

we have [44]

lnCΦ(u) = γ

∞∫

−∞

dθ


−1 +

∞∫

−∞

dAPA(A) exp (iuAϕ(θ))


 = γ

∞∫

−∞

dθ [CA (uϕ(θ))− 1] ,

(A13)

where CA is the characteristic function for the amplitude distribution PA.

If we instead expand the exponential function in Eq. (A11) into a sum, we have

lnCΦ(u;T, t) =
1

τw

∞∑

n=1

(iu)n

n!

∞∫

−∞

dA
∞∫

−∞

dλ
∞∫

−∞

dτ τpA,λ,τ (A, λ, τ)An
∞∫

−∞

dθ ϕ (θ, λ)n . (A14)

The last integral gives In(λ), and

lnCΦ(u) =
1

τw

∞∑

n=1

(iu)n

n!
〈τAnIn(λ)〉 . (A15)

For a stationary FPP with independent pulses, where the pulse does not depend on its arrival

or waiting time, this is the most general form of the characteristic function, as it allows for
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any relationship between the variables determining the pulse shape (amplitude, decay time and

asymmetry). It also reveals the cumulants,

κn =
1

τw
〈τAnIn(λ)〉 . (A16)

If we use the two-sided exponential pulse, In is independent of λ, and thus λ (and its dependence on

A and τ ) plays no further role in Eq. (A15). If we additionally assume that τ andA are independent,

we have

lnCΦ(u) = γ
∞∑

n=1

(iu)n

n!
〈An〉 In, (A17)

where γ = τd/τw = 〈τ〉 /τw. Crucially, this expression (and thus the PDF and moments of Φ) is

independent of the distributions of τ and λ as long as τ and A are independent and the pulse shape

has In independent of λ.

Appendix B: The distribution of a sum of independent random variables

For simplicity, we include somewell known properties of the sum of characteristic functions, see

for example [64]. Given two independent random variables, Y1 and Y2 with respective characteristic

functions CY1 and CY2 and respective cumulants κY1n and κY2n , their sum

Y = Y1 + Y2 (B1)

has the characteristic function

CY (u) = CY1(u)CY2(u) (B2)

and the probability density function

PY (Y ) = [PY1 ∗ PY2 ] (Y ), (B3)

where ∗ denotes convolution. The cumulants κYn of Y are found by

lnCY (u) = ln [CY1(u)CY2(u)]

= lnCY1(u) + lnCY2(u)
∞∑

n=1

κYn
(iu)n

n!
=
∞∑

n=1

κY1n
(iu)n

n!
+
∞∑

n=1

κY2n
(iu)n

n!

κYn = κY1n + κY2n . (B4)
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Appendix C: PDF of filtered Poisson process with gamma distributed amplitudes

In Eq. (37), the characteristic function of the filtered Poisson process with Gamma distributed

amplitudes with shape parameter β = 2 is shown to be

CΦ(u) = exp(−γ) exp

(
γ

1− iαu

)
(1− iαu)−γ. (C1)

This characteristic function is the product of the two functions

g1(u) = exp(−γ) exp

(
γ

1− iαu

)
(C2)

and

g2(u) = (1− iαu)−γ. (C3)

The PDF of Φ is thus the convolution of the inverse Fourier transforms of these functions, PΦ(Φ) =

G1(Φ) ∗ G2(Φ), where G1 is the inverse Fourier transform of g1, and G2 is the inverse Fourier

transform of g2. The second function g2 is the characteristic function of a Gamma distributed

variable with shape parameter γ and scale parameter α, so

G2(Φ) =
Φγ−1

αγΓ(γ)
exp(−Φ/α), Φ > 0. (C4)

The inverse transform of the first part is easy to see if we expand the exponential function into a

sum,

g1(u) = exp(−γ)
∞∑

n=0

γn

n!(1− iαu)n
. (C5)

For n = 0, the inverse transform is a Dirac delta function. For n > 0, this is some factor multiplied

by the characteristic function of a Gamma distributed random variable with shape parameter n and

scale parameter α,

G1(Φ) = exp(−γ)

[
δ(Φ) +

∞∑

n=1

γn

n!

Φn−1

αnΓ(n)
exp(−Φ/α)

]
, Φ > 0. (C6)

Performing the convolution gives

PΦ(Φ) = exp(−γ)

[
Φγ−1

αγΓ(γ)
exp

(
−Φ

α

)
+
∞∑

n=1

γn

n!
exp

(
−Φ

α

)
Φγ+n−1

αγ+nΓ(γ + n)

]

=
1

α
exp

(
−γ − Φ

α

) ∞∑

n=0

γn

n!

(
Φ

α

)γ+n−1
1

Γ(γ + n)

=
1

α

(
Φ

γα

)(γ−1)/2

exp

(
−γ − Φ

α

)
Iγ−1

(
2

√
γ

Φ

α

)
, (C7)
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where I is the modified Bessel function of the first kind [54].
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