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SOME NEW TWO–SIDED INEQUALITIES

CONCERNING THE FOURIER TRANSFORM

AIGERIM KOPEZHANOVA, ERLAN NURSULTANOV AND LARS-ERIK PERSSON

(Communicated by I. Perić)

Abstract. The classical Hausdorff-Young and Hardy-Littlewood-Stein inequalities do not hold
for p > 2 . In this paper we prove that if we restrict to net spaces we can even derive a two-sided
estimate for all p > 1 . In particular, this result generalizes a recent result by Liflyand E. and
Tikhonov S. [7] (MR 2464253)

1. Introduction

Let

f̂ (t) =
1√
2π

∫ ∞

−∞
f (x)e−itxdx, x ∈ R,

be the Fourier transform of a function f ∈ L1(R).
Let 1 < p < 2, p′ = p

p−1 and 0 < q � ∞. Then we have the following inequalities

‖ f̂‖Lp′ (R) � c1‖ f‖Lp(R), (1)

‖ f̂ ‖Lp′,q(R) � c2‖ f‖Lp,q(R), (2)

where Lp,q(R) is the classical Lorentz space. These inequalities are called the Hausdorff-
Young inequality and the Hardy-Littlewood-Stein inequality, respectively, (see e.g. [15]
and [16]).

Note that these inequalities (1) and (2) hold with equality for p = q = 2 (Planche-
rel’s theorem) but do not hold in general for 2 < p < ∞.

Let 0 < p,q � ∞, M be the set of the segments [a,b] in R and |e| = b−a.
The net space Np′q(M) is defined as the set of all measurable functions f such

that the quasinorm

‖ f‖Np′q(M) =
(∫ ∞

0

(
t

1
p′ f (t,M)

)q dt
t

) 1
q

< ∞
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for q < ∞, and

‖ f‖Np′∞(M) = sup
t>0

t
1
p′ f (t,M) < ∞

for q = ∞, where

f (t;M) := sup
|e|�t
e∈M

1
|e|

∣∣∣∣∣∣
∫
e

f (x)dx

∣∣∣∣∣∣ .
These spaces were introduced in [11] (see also [12] and [13]). In particular, the

following result was proved:

THEOREM A. Let 2 < p < ∞, 0 < q � ∞. Then

‖ f̂‖Np′q(M) � c3‖ f‖Lpq(R). (3)

The inequality (3) complements the Hardy-Littlewood-Stein inequality. Similar
results for the Fourier transform in the periodic case were obtained in [10] and [5].

The main aims of this paper are to derive the sufficient condition so that the Fourier
transform f̂ belongs to Lp -space (1 < p < ∞) and to obtain conditions so that the norm
of the Fourier transform f̂ in Lp -space (1< p < ∞) has both upper and lower estimates.

The main results are formulated in Section 3. The proofs can be found in Section 4
and in Section 2 we present some necessary preliminaries, including new lemmas of
independent interest.

CONVENTIONS. The letter c(c1,c2,etc.) means a constant which does not de-
pend on the involved functions and it can be different in different occurrences. More-
over, for A,B > 0 the notation A � B means that there exists positive constants c1 and
c2 such that c1A � B � c2A. For 1 < p < ∞ we denote p′ = p/(p−1).

2. Preliminaries

The total variation of the function f , defined on an interval [a,b]⊂ R is the quan-
tity

Vb
a ( f ) := sup

P

n

∑
i=0

| f (xi+1)− f (xi)|,

where the supremum is taken over all partitions of [a, b]:

P : a = x0 < x1 < .. . < xn = b, n ∈ Z+.

We say that the measurable function f (x) ∈V ([a,b]) if Vb
a ( f ) < ∞.

The total variations V ∞
a ( f ) and Vb−∞( f ) can be defined as follows:

V∞
a ( f ) := lim

b→∞
Vb

a ( f )

and
Vb
−∞( f ) := lim

a→−∞
Vb

a ( f ).

We need the following lemma (see [3]).
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LEMMA 1. Let f (x) be a continuous function on a closed interval [a,b] and
g = g(x) ∈V ([a,b]). Then the integral

I =
∫ b

a
f (x)dg(x),

exists and
|I| � max

x∈[a,b]
| f (x)|Vb

a (g).

We also need the following lemmas of independent interest:

LEMMA 2. Let 1 < p < ∞. Then

‖ f̂‖Np′p(M) � c‖ f‖Lp(R).

Proof. The statement of this Lemma 2 follows from Theorem A for the case
2 < p < ∞. Moreover, taking into account that

‖ f̂‖Np′ p(M) � c1‖ f̂‖Lp′ p(R),

(see [13]) the statement of this Lemma 2 follows from (2) for the case 1 < p � 2. The
proof is complete. �

Let V2k( f ) := V[2k,2k+1]∪[−2k+1,−2k]( f ) be the total variation of the function f (x),
defined on the set [2k,2k+1]∪ [−2k+1,−2k] , k ∈ Z.

LEMMA 3. Let α > 0 and 1 < p < ∞. If(
∑
k∈Z

(
2kαV2k( f )

)p
) 1

p

< ∞,

then
V∞

1 ( f ) < ∞ and V−1
−∞( f ) < ∞.

Proof. It is obvious that

V∞
1 ( f ) =

∞

∑
k=0

V 2k+1

2k ( f ).

By using Hölder’s inequality, we obtain that

∞

∑
k=0

V 2k+1

2k ( f ) �
(

∞

∑
k=0

(
2kαV 2k+1

2k ( f )
)p
) 1

p

·
(

∞

∑
k=0

2−kα ·p′
) 1

p′

= cα ,p

(
∞

∑
k=0

(
2kαV 2k+1

2k ( f )
)p
) 1

p

� cα ,p

(
∞

∑
k=0

(
2kαV2k( f )

)p
) 1

p

< ∞.

The second inequality for V−1
−∞( f ) can be proved in a similar way. The proof is com-

plete. �
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LEMMA 4. Let 1 < p < ∞ and 0 < q � ∞. If f ∈ Npq(M), then the following
equivalence

‖ f‖Npq �
(

∑
k∈Z

(
2

k
p f (2k,M)

)q
) 1

q

holds, where f (2k,M) = sup
|e|�2k

e∈M

1
|e| |
∫
e f (x)dx| , M is the set of all segments [a,b] in R .

Proof. Since f ∈ Npq(M) we have that

I =
∫ ∞

0

(
t

1
p f (t,M)

)q dt
t

< ∞.

This integral can be represented as follows

I = ∑
k∈Z

∫ 2k+1

2k

(
t

1
p f (t,M)

)q dt
t

.

Taking into account that the function f is monotone, we find that

∑
k∈Z

∫ 2k+1

2k

(
t

1
p f (t,M)

)q dt
t

� ∑
k∈Z

(
2

k+1
p f (2k,M)

)q ∫ 2k+1

2k

dt
t

= c1 ∑
k∈Z

(
2

k
p f (2k,M)

)q
,

and

∑
k∈Z

∫ 2k+1

2k

(
t

1
p f (t,M)

)q dt
t

� 2−
1
p ∑

k∈Z

(
2

k+1
p f (2k+1,M)

)q ∫ 2k+1

2k

dt
t

= c2 ∑
k∈Z

(
2

k
p f (2k,M)

)q
.

The proof is complete. �

The statement in our Theorem 2 is related to a recent result by E. Liflyand and
S. Tikhonov [7], where an extended solution of Boas’ conjecture was proved (for origi-
nal proof see [14]). In particular, they defined the class GM as follows:

DEFINITION 1. We say that the function f belongs to the class GM if for all
x ∈ (0,∞) we have that

V 2x
x ( f ) � c

∫ β x

x
β

t−1| f (t)|dt, (4)

for some β > 1.
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3. Main results

Our first main result reads as follows.

THEOREM 1. Let 1 < p < ∞ and f ∈ L1(R). If f satisfies the condition(
∑
k∈Z

(
2

k
p′ V2k( f )

)p
) 1

p

< ∞, (5)

then f̂ ∈ Lp(R) and the inequality

‖ f̂ ‖Lp � c

(
∑
k∈Z

(
2

k
p′ V2k( f )

)p
) 1

p

(6)

holds. Here the constant c does not depend on f .

In [2] estimates of the form (6) in terms of the Fourier coefficients are obtained but
these estimates are obtained with additional conditions such as GM monotonicity and
non-negativity of the Fourier coefficients.

Our next main result is

THEOREM 2. Let 1 < p < ∞. Assume that the function f satisfy that there exists
c > 0 such that

V2k( f ) � c sup
|e|�2k

e∈M

1
|e|

∣∣∣∣∣∣
∫
e

f (x)dx

∣∣∣∣∣∣ , k ∈ Z. (7)

Then ‖ f̂‖Lp(R) < ∞ if and only if ‖ f‖Np′p < ∞ and, moreover,

‖ f̂ ‖Lp(R) � ‖ f‖Np′p(M).

REMARK 1. Necessary and sufficient conditions on the Fourier transform f̂ for
nonnegative functions from the class GM to belong to the space Lp(R) (1 < p < ∞)
was proved in [7] (see also e.g. [8]). In this connection we also refer to [17]. The
following proposition shows that Theorem 2 in a sense generalizes the mentioned result.

PROPOSITION 1. (i) If f is a non-negative function and f ∈GM, then f satisfies
condition (7).

(ii) The reversed implication does not hold in general, more precisely, there exists
a function f satisfying (7) but not (4).

REMARK 2. In connection to statement (i) we also refer to M.Dyachenko, E. Lif-
lyand and S. Tikhonov [1]. Note that in [1] criteria of belonging of the cosine and the
sine Fourier transforms in the Lebesgue spaces with the power weights are obtained for
non-negative functions f ∈ GM .
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REMARK 3. The class of GM functions was important in the study both of Fourier
series and Fourier transforms. In connection to the results obtained above we also refer
to the recent papers [6] and [9] by E. Liflyand and S. Tikhonov. The first one surveys
GM functions, while in the second one more general weighted estimates are obtained
than in [7]. Moreover, these results gave rise to some multivariate extensions, see [4].

The proofs of the statements in Theorem 1, Theorem 2 and Proposition 1 are given
in the next Section.

4. Proofs of the main results

Proof of Theorem 1. By using Lemma 3, we find that V∞
1 ( f ) < ∞ and V−1

−∞( f ) <
∞. Then, for all sequences such that xk → ∞ we have that each sequence { f (xk)} is
a fundamental sequence (satisfying (8) below). Indeed, since V∞

1 ( f ) < ∞, then there
exists N such that for all k > N we have V∞

xk
( f ) < ε. Hence,

| f (xk)− f (xk+p)| �
k+p−1

∑
j=k

∣∣ f (x j)− f (x j+1)
∣∣= V

xk+p
xk ( f ) � V∞

xk
( f ) < ε. (8)

Thus, we have that lim
k→∞

f (xk) exists. Since the sequence {xk} is arbitrarily chosen we

obtain that lim
x→+∞

f (x) = a. Therefore, due to the fact that f ∈ L1(R), we conclude that

lim
x→+∞

f (x) = 0.

Let x > 0. Then
+∞∫
x

d f (y) = lim
b→+∞

( f (b)− f (x)) = − f (x).

By appling the duality representation of the norm of a function in the space Lp(R), we
obtain that

‖ f̂‖Lp(R) = sup
‖g‖Lp′ (R)=1

∞∫
−∞

f̂ (x)g(x)dx = sup
‖g‖Lp′ (R)=1

∞∫
−∞

f (x)ĝ(x)dx,

where ĝ(x) is the conjugate function of ĝ(x).
This integral can be represented as follows

‖ f̂‖Lp(R) = sup
‖g‖Lp′ (R)=1

⎛⎝∣∣∣∣∣∣
0∫

−∞

f (x)ĝ(x)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∫
0

f (x)ĝ(x)dx

∣∣∣∣∣∣
⎞⎠ .

By using the fact that f (x) = −
∞∫
x
d f (y) we can consider the following integral

I :=

∣∣∣∣∣∣
∞∫

0

f (x)ĝ(x)dx

∣∣∣∣∣∣=
∣∣∣∣∣∣

∞∫
0

⎛⎝ ∞∫
x

d f (y)

⎞⎠ ĝ(x)dx

∣∣∣∣∣∣ .
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Hence, by interchanging the order of integration and using Lemma 1, we find that

I =

∣∣∣∣∣∣
∞∫

0

y∫
0

ĝ(x)dxd f (y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∑k∈Z

2k+1∫
2k

y∫
0

ĝ(x)dxd f (y)

∣∣∣∣∣∣
� ∑

k∈Z

sup
2k�y�2k+1

∣∣∣∣∣∣
y∫

0

ĝ(x)dx

∣∣∣∣∣∣ ·V 2k+1

2k ( f ).

Furthemore, taking into account that∣∣∣∣∣∣
y∫

0

ĝ(x)dx

∣∣∣∣∣∣� 2k+1 sup
|e|�2k

e∈M

1
|e|

∣∣∣∣∣∣
∫
e

ĝ(x)dx

∣∣∣∣∣∣= 2k+1(ĝ)(2k;M) for 2k � y � 2k+1,

where (ĝ)(2k;M) is the average function of ĝ on the set M of the segments [a,b] , we
obtain that

I � ∑
k∈Z

2k+1(ĝ)(2k,M)V 2k+1

2k ( f ) = c1 · ∑
k∈Z

2
k
p (ĝ)(2k,M)V 2k+1

2k ( f )2
k
p′ .

Next, by using Hölder’s inequality, we get that

I � c1

(
∑
k∈Z

(
2

k
p (ĝ)(2k,M)

)p′
) 1

p′
·
(

∑
k∈Z

(
2

k
p′ V 2k+1

2k ( f )
)p
) 1

p

.

Hence, by using Lemma 4 and Lemma 2, we obtain the following estimate:

I � c2

(
∑
k∈Z

(
2

k
p′ V 2k+1

2k ( f )
)p
) 1

p

‖g‖Lp′ (R). (9)

Similarly, we can estimate the integral
0∫

−∞
f (x)ĝ(x)dx :

∣∣∣∣∣∣
0∫

−∞

f (x)ĝ(x)dx

∣∣∣∣∣∣� c3

(
∑
k∈Z

(
2

k
p′ V−2k

−2k+1( f )
)p
) 1

p

‖g‖Lp′ (R). (10)

By combining (9) and (10), we find that

‖ f̂‖Lp(R) � c

(
∑
k∈Z

(
2

k
p′ V2k( f )

)p
) 1

p

.
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The proof is complete. �

Proof of Theorem 2. By using Lemma 2, we have that

‖ f‖Np′ p(M) � c2‖ f̂‖Lp(R).

On the other hand, by using inequality (6) of Theorem 1, we find that

‖ f̂‖Lp(R) � c3

(
∑
k∈Z

(
2

k
p′ V2k( f )

)p
) 1

p

.

Therefore, in view of the fact that

V2k( f ) � c sup
|e|�2k
e∈M

1
|e|

∣∣∣∣∣∣
∫
e

f (x)dx

∣∣∣∣∣∣ , k ∈ Z,

it yields that

‖ f̂‖Lp(R) � c4

⎛⎜⎝∑
k∈Z

⎛⎜⎝2
k
p′ sup

|e|�2k

e∈M

1
|e|

∣∣∣∣∣∣
∫
e

f (x)dx

∣∣∣∣∣∣
⎞⎟⎠

p⎞⎟⎠
1
p

= c4‖ f‖Np′ p(M).

The proof is complete. �

Proof of Proposition 1. (i) Let f be a non-negative function and f ∈ GM. Then

V2k( f ) = V−2k

−2k+1( f )+V 2k+1

2k ( f ) � c

(∫ −β2k

− 2k
β

t−1| f (t)|dt +
∫ β2k

2k
β

t−1| f (t)|dt

)

� c

(∫ −β ∗2k

− 2k
β∗

t−1| f (t)|dt +
∫ β ∗2k

2k
β∗

t−1| f (t)|dt

)
,

where β ∗ = max{2,β}. Therefore,

V2k( f ) � c

(
β ∗

2k

∫ − 2k
β∗

−β ∗2k
f (t)dt +

β ∗

2k

∫ β ∗2k

2k
β∗

f (t)dt

)

� 2c(β ∗2 −1) sup
|e|�2k

1
|e|
∫

e
f (x)dx,

i.e. f satisfies (7).
(ii) Let

f (x) =

⎧⎨⎩
1, −1 � x � 1,

sinx
x2 , 1 < x,
1
x2 , x < −1.
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We note that

V2k( f ) �
{

2−k, k ∈ Z
+

0, −k ∈ N,

sup
|e|�2k

1
|e|
∫

e
f (x)dx �

{
2−k, k ∈ Z

+

1, −k ∈ N,

so f satisfies (7). On the other hand when k ∈ N, we have

V 2k+1

2k ( f ) � 2−k,

∫ β2k

2k
β

t−1| f (t)|dt � 2−2k,

which means that f does not satisfy (4). The proof is complete. �
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