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Abstract Aim of the study: A vast majority of human malignancies are associated with

ageing, and age is a strong predictor of cancer risk. Recently, DNA methylation-based marker

of ageing, known as ‘epigenetic clock’, has been linked with cancer risk factors. This study

aimed to evaluate whether the epigenetic clock is associated with breast cancer risk suscepti-

bility and to identify potential epigenetics-based biomarkers for risk stratification.

Methods: Here, we profiled DNA methylation changes in a nested caseecontrol study
embedded in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort

(n Z 960) using the Illumina HumanMethylation 450K BeadChip arrays and used the Hor-

vath age estimation method to calculate epigenetic age for these samples. Intrinsic epigenetic

age acceleration (IEAA) was estimated as the residuals by regressing epigenetic age on chro-

nological age.

Results: We observed an association between IEAA and breast cancer risk (OR, 1.04; 95% CI,

1.007e1.076, P Z 0.016). One unit increase in IEAA was associated with a 4% increased odds

of developing breast cancer (OR, 1.04; 95% CI, 1.007e1.076). Stratified analysis based on

menopausal status revealed that IEAA was associated with development of postmenopausal

breast cancers (OR, 1.07; 95% CI, 1.020e1.11, P Z 0.003). In addition, methylome-wide

analyses revealed that a higher mean DNA methylation at cytosine-phosphate-guanine

(CpG) islands was associated with increased risk of breast cancer development (OR per 1

SD Z 1.20; 95 %CI: 1.03e1.40, P Z 0.02) whereas mean methylation levels at non-island

CpGs were indistinguishable between cancer cases and controls.

Conclusion: Epigenetic age acceleration and CpG island methylation have a weak, but statis-

tically significant, association with breast cancer susceptibility.

ª 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Ageing is a major risk factor for most neoplasms [1]. In

particular, breast cancer is an age-associated disease

whose incidence rises sharply after menopause [1]. This

increased risk was hypothesised to be the consequence of

accumulation of genetic changes (mutations) associated
with deregulation of cellular processes and genomic

instability. However, accumulation of genetic changes

exhibits striking interindividual differences [2], and dif-

ferences in biological ageing processes may only be

partly explained by genetic determinants [3].

A recent study demonstrates that DNA methylation

(DNAm) data lend themselves for developing a highly

accurate multitissue biomarker of ageing [4]. The
DNAm-based marker of ageing (known as ‘epigenetic

clock’) derived from several tissues can be used to

accurately estimate the chronological age of all tissues

and cell types [4]. This composite biomarker of ageing,

which is defined as a weighted average across 353 spe-

cific CpG sites, produces an estimate of age (in units of

years), referred to as ‘epigenetic age’ or ‘DNA methyl-

ation age (DNAm age)’. Recent studies demonstrate
that DNAm age is at least a passive biomarker of bio-

logical age: the epigenetic age of blood has been found

to be predictive of all-cause mortality [5e9], frailty [10],

cognitive and physical functioning [5]. Further, the

utility of the epigenetic clock method using various tis-

sues and organs has been demonstrated in applications

surrounding Alzheimer disease [11], centenarian status

[8], pre-natal and early life influences [12], Down syn-
drome [13], HIV infection [14], Huntington disease [15],

obesity [16], lifetime stress [17], menopause [18], and

Parkinson disease [19]. Departures of methylation-

estimated age from chronological age can be used to

define intrinsic epigenetic age acceleration (IEAA) that

measures cell-intrinsic ageing effects that are indepen-

dent of chronological age and blood cell composition.

A recent study suggests that IEAA can be used to
predict lung cancer risk [20]. However, it is not yet

known whether IEAA lends itself for predicting breast

cancer susceptibility in a prospective caseecontrol

study. To test this hypothesis, we analysed blood

methylation data from incident breast cancer cases and

matching controls of a large prospective study within

the European Prospective Investigation into Cancer and

Nutrition (EPIC) cohort.
2. Materials and methods

2.1. Selection of incident cancer and control participants

The present study was conducted on nested caseecontrol

samples from the European Prospective Investigation

into Cancer and Nutrition (EPIC) cohort, a large pro-

spective study conducted in 23 centres across ten
European countries (Denmark, France, Germany,

Greece, Italy, Norway, Spain, Sweden, The Netherlands,

and the United Kingdom), aiming to investigate the

relationship between diet, lifestyle, metabolism and

cancer risk [21]. In brief, the EPIC cohort includes a total

of about 315,000 women and 200,000 men. At baseline

recruitment, all study participants provided extensive

questionnaire information about nutrition and other
lifestyle factors. All study participants also provided a

blood sample, which was processed, divided into aliquots

of plasma, serum and buffy coat and frozen at �196 �C
(under liquid nitrogen) for later use in specific research

projects. In all EPIC centres, an identical protocol for

subject recruitment, sample collection and storage was

followed. Detailed information on the subject recruit-

ment, baseline data, and blood collection protocols have
been reported previously [22]. All participants gave

written, informed consent for data and biospecimen

collection and storage, as well as follow-up. The study

was approved by the local ethics committees and the

Institutional Review Board of the International Agency

for Research on Cancer (IARC, Lyon, France). During

prospective follow-up of the EPIC cohort, a very large

number (>11,000) of newly diagnosed, invasive breast
cancer cases were confirmed histologically or cytologi-

cally as primary breast cancers according to the Inter-

national Classification of Diseases for Oncology, Second

Edition (ICD-O-2) and included all breast cancer sub-

sites (ICD C50.0-C50.9). A representative subset of these

cases was used for studies comparing a variety of

biomarker measurements with a set of control subjects,

matching the cases by recruitment centre. Incident pa-
tients with cancer were identified at regular intervals

through population-based cancer registries (in Denmark,

Italy except Naples, the Netherlands, Norway, Spain,

Sweden, and the United Kingdom) or by active follow-

up (France, Germany, Greece, and Naples), which

involved a combination of methods, including a review

of health insurance records, cancer and pathology reg-

istries, and direct contact with participants and their
next-of-kin.

For the purpose of this study, we included 960 fe-

males from the EPIC cohort including 480 incident

breast cancer cases. Our main criteria for selection of

case/control pairs included: (1) a balanced representa-

tion of the main subtypes of breast cancer, and (2)

representation of recruiting centres. One control

participant was randomly assigned for each patient with
breast cancer from appropriate risk sets consisting of all

cohort participants alive and free of cancer (except for

non-melanoma skin cancer) at the time of diagnosis

(and hence, age) of the index case. Matching criteria

were: centre, length of follow-up, age at blood collection

(3 months relaxed up to 2 years for sets without avail-

able controls), time of blood collection, fasting status,

menopausal status, menstrual cycle day and current use
of contraceptive pill/hormone replacement therapy.
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Twenty technical replicates were included to compare

inter- and intra-array batch variation. Technical repli-

cates and 38 samples or their matched counterparts

which failed the quality control criteria were excluded

from the analysis leaving 902 participants (451 controls

and 451 cases) (Table 1).

2.2. Bisulfite conversion and genome-wide DNA

methylation analysis

The DNA was isolated as per the standard DNA

extraction procedure from the from the buffy coat
samples (Autopure LS, Qiagen). DNA methylome

profiling was carried out using Illumina Infinium

HumanMethylation450 (HM450) as previously

described [23].

2.3. Bioinformatics analysis

Data preprocessing and analyses were performed using

R 3.2.3 (https://www.r-project.org/) and Bioconductor

3.2 [24] as described before [23]. DNAm level was

described as a b value, which is a continuous variable

ranging between 0 (no methylation) and 1 (full
Table 1
Characteristics of incident breast cancer and control participants at

baseline (i.e.time of blood collection).

All samples

Controls (%) Cases (%)

Sample size 451 451

Mean methylation (in %) 51.86 51.82

Age (years)

Mean (SD) 52.3 (8.94) 52.3 (8.97)

Median 53.4 53.5

Alcohol consumption (g/d)

Mean(SD) 8.2 (11.82) 10.0 (12.98)

Age at menarche

Mean (SD) 12.9 (1.34) 12.7 (1.59)

BMI

Mean (SD) 25.5 (4.22) 26.0 (4.72)

Physical activity (Cambridge index)

Sedentary 99 (22.0) 121 (26.8)

Moderately sedentary 187 (41.5) 178 (39.5)

Moderately active 76 (16.9) 87 (19.3)

Active 78 (17.3) 62 (13.7)

Missing 11 (2.4) 3 (0.7)

Hormone receptor status

ERþ/PRþ/Her2þ e 85 (18.8)

ERþ/PRþ/Her2e e 290 (64.3)

ER�/PR�/Her2e e 76 (16.9)

Country

Italy 160 (35.5) 160 (35.5)

Spain 27 (6.0) 27 (6.0)

UK 38 (8.4) 38 (8.4)

The Netherlands 66 (14.6) 66 (14.6)

Greece 25 (5.5) 25 (5.5)

Germany 135 (29.9) 135 (29.9)

SD: Standard deviation; ER: oestrogen receptor; PR: progesterone

receptor; Her2: human epidermal growth factor receptor 2; BMI: body

mass index.
methylation). To avoid spurious associations, we

excluded the cross-reactive probes and probes over-

lapping with a known single nucleotide polymorphism

(SNPs) with a minor allele frequency of at least 5% in

the overall population (European ancestry, [25]), leaving

423,066 probes. In any given sample, probes with a

detection P-value (a measure of an individual probe’s

performance) of more than 0.05 were assigned missing
status. If a probe was missing in more than 5% of

samples, it was excluded from all samples. According to

this criterion, we excluded 1483 probes, leaving 421,583

probes available for the analyses. We applied colour bias

correction followed by quantile and beta-mixture

quantile normalisation (BMIQ) to align Type I and

Type II probe distributions [26].

2.4. White blood cell count estimates

Quantile normalised data were used to infer blood cell

proportions. We estimate blood cell counts using two

different software tools. First, Houseman’s estimation

method [27] was used to estimate the proportions of

CD8þ T cells, CD4þ T, natural killer, B cells, and

granulocytes (also known as polymorphonuclear leuco-

cytes). Second, the advanced analysis option of the

epigenetic clock software [4,14] was used to estimate the
percentage of exhausted CD8þ T cells (defined as

CD28-CD45RA-) and the number (count) of naı̈ve

CD8þ T cells (defined as CD45RA þ CCR7þ). We and

others have shown that the estimated blood cell counts

have moderately high correlations with corresponding

flow cytometric measures [27,28]. For example, flow

cytometric measurements correlate strongly with

DNAm-based estimates: r Z 0.63 for CD8þ T cells,
r Z 0.77 for CD4þ T cells, r Z 0.67 for B cell, r Z 0.68

for naı̈ve CD8þ T cell, r Z 0.86 for naı̈ve CD4þ T, and

r Z 0.49 for exhausted CD8þ T cells [28].

2.5. Global and mean methylation analysis

For the global DNAm analyses, mean methylation of

the DNAm probes (421,583) was calculated for cases

and control samples. Human cancers are characterised

by global hypomethylation and a loci-specific DNA
hypermethylation [29]. We hypothesised that DNA

methylation of probes would vary based on their phys-

ical location. To this end, the probes were classified into

different categories either reflecting their physical loca-

tion in relation to CpG islands (island, shore, shelf and

open sea) or based on a functional criterion (DP: distal

promoter, DS: distal sequence, GB: gene body, IG:

intergenic, and PP: proximal promoter) as previously
described [30]. A CpG shore is defined as the area 2 kb

on either side of the CpG island, and a CpG shelf is

defined as the area 2 kb outside of the CpG shore

[31,32]. While the regions in the genome containing

isolated CpG sites outside CpG islands, shores and

https://www.r-project.org/


Table 2
Association between global methylation and breast cancer risk by CpG

genomic features.

Context # CpGs Std. dev. OR (95% CI)a P value

All CpG sites 421 583 3.45E-04 1.09 (0.94e1.25) 0.21

Islands 130 982 5.87E-04 1.20 (1.03e1.40) 0.02

Open Sea 150 852 4.50E-03 1.49 (0.36e6.24) 0.58

CpG Shelf 40 948 4.88E-04 0.89 (0.78e1.02) 0.10

context Shore 98 801 5.40E-04 1.00 (0.87e1.16) 0.97

Distal promoter 19 990 5.42E-04 1.06 (0.92e1.21) 0.44

Distal sequence 7828 6.68E-04 0.96 (0.84e1.09) 0.52

Genic Gene Body 168 460 3.80E-04 1.02 (0.89e1.18) 0.76

context Intergenic 56 903 5.35E-04 1.02 (0.89e1.17) 0.76

Proximal

promoter

168 337 5.26E-04 1.15 (0.99e1.34) 0.07

a Odds ratio and confidence interval were calculated per 1 standard

deviation. Odds ratios were adjusted for body mass index (BMI)

(continuous variable) and daily alcohol intake. OR- Odds ratio, CI:

confidence interval.
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shelves, that do not have a specific designation are

referred to as open seas [33].

2.6. Epigenetic clock of ageing

The epigenetic clock is a prediction method of chrono-

logical age based on the DNAm levels of 353 CpGs [4].

The predicted (estimated) age resulting from the epige-

netic clock is referred to as ‘DNA methylation age’. In

IEAA, epigenetic age acceleration is defined as the
DNAm age left unexplained by chronological age where

intrinsic denotes a modification to this concept. In addi-

tion to adjusting for chronological age, IEAAalso adjusts

the DNAm age estimate for blood cell count estimates,

arriving at a measure that is unaffected by both variation

in chronological age and blood cell composition.

We focussed on IEAA in our blood-based methyl-

ation study as this measure of age acceleration is
significantly correlated with epigenetic age acceleration

in (non-malignant) female breast tissue [9].

Formally, IEAA is defined by regressing DNAm age

on chronological age and seven measures of blood cell

count abundances: naive CD8 T cells, exhausted CD8 T

cells (defined as CD28-CD45RA-), plasma blasts, CD4 T

cells, NK cells, monocytes, granulocytes. IEAA is auto-

matically calculated using the advanced analysis option
of the epigenetic clock software (where IEAA is denoted

as ‘AAHOAdjCellCounts’). A positive or negative value

of IEAA indicates that the woman is either older or

younger than expected based on chronological age at the

time of the blood draw.

2.7. Statistical analysis

For the mean methylation analysis, average methylation

over all probes within each category was calculated and
the odds ratios (per one standard deviation of global

methylation) were estimated by conditional logistic

regressionmodel with caseecontrol status as the outcome

and the epigenome-wide methylation measurement as

continuous predictor adjusting for surrogate variables

(technical batch effects such as sample plate, array chips),

alcohol consumption (g/day) and bodymass index (BMI)

as continuous variable.
Odds ratios (ORs) for breast cancer and 95% CIs were

calculated by using logistic regression for IEAA. Initial

analysis was done using unconditional logistic regression

to allow calculation of OR. Multivariate logistic regres-

sion was performed by including known breast cancer

risk factors including alcohol consumption (g/day), full

term pregnancy (ever/never), BMI (as continuous vari-

able and as categorical variable: underweight, normal,
overweight and obese), level of education (none, primary,

technical/profession, secondary, higher education), age at

menarche, Cambridge physical activity index (inactive,

moderately inactive, moderately active and active) strat-

ified by clustering variable. A stratified multivariate
conditional logistic regression analysis based on the

menopausal status was performed using the aforemen-

tioned models.
3. Results

3.1. Baseline characteristics

The baseline characteristics of samples at the time of

recruitment are listed in Table 1. Women were between

26 and 73 years of age with a mean age of 52.3 years for

cases and controls. The majority of breast cancer cases

were hormone receptor (ER and PR) positive (83%)

while 17% of the breast cancers were triple negative
(Table 1). There was a very high correlation between the

intra- and interplate technical replicates (average cor-

relation coefficient r2 Z 0.98 and 0.97, respectively, data

not shown).
3.2. Hypermethylation of CpG islands is associated with

breast cancer risk

We compared the global mean methylation across

421,583 probes and observed no difference between

prospectively collected cases and matched controls

(51.82% versus 51.86%, P Z 0.68). Our analysis showed
that each unit (95% CI/1SD, 1.03e1.40, P Z 0.02) in-

crease in methylation at CpG island sites increased the

risk of being a case by 20% (Table 2). While P < 0.05, it

should be noted that the results would be marginally

significant allowing for four subsets (CpG islands, CGI

shores, CGI shelves, and open sea). No change in breast

cancer risk was observed for other regions (shore, shelf

and open sea) (Table 2), nor did we find an association
of individual CpG site or region with breast cancer

status.



Table 3
Logistic regression analysis of IEAA for incident breast cancer status.

Univariate analysis

OR (95% CI)

Multivariate analysisa

OR (95% CI)

All samples

IEAA 1.04 (1.007e1.075) 1.04 (1.007e1.076)
Premenopausal samples

IEAA 1.00 (0.9572e1.06) 1.00 (0.9510e1.056)

Postmenopausal samples

IEAA 1.06 (1.019e1.11) 1.07 (1.020e1.11)

OR: Odds Ratio; CI: Confidence Interval; IEAA: Intrinsic Epigenetic

Age Acceleration.
a Odds ratios were adjusted for physical activity (inactive, moder-

ately inactive, moderately active and active).
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3.3. Postmenopausal breast cancer cases exhibit DNA

methylation age acceleration

Epigenetic age had a strong positive correlation with

chronological age in both case and control samples

(Fig. 1a). We observed a marginally significant differ-

ence in age acceleration between prospective cases

compared to matched controls (Fig. 1b, P Z 0.05,

Supplementary Fig. 1). Stratified analysis based on time

from blood collection to disease diagnosis revealed that

prospective breast cancers exhibited age acceleration 10
years prior to diagnosis compared to matched control

samples (Fig. 1c, P Z 0.01).

A conditional logistic regression model that relates

breast cancer status to IEAA showed that IEAA was

associated (Table 3) with breast cancer status. The re-

sults were not attenuated after adjusting for known

breast cancer factors (Supplementary Table 1). Each

unit increase in IEAA led to 4% increased odds of being
a breast cancer case (OR, 1.04; 95% CI, 1.007e1.076,

P Z 0.016) (Table 3). IEAA follows an approximately

normal distribution with mean zero, variance Z 28.2,

standard deviation of 5.31. The following quantiles

describe the empirical distribution of IEAA:

minimum Z �24.2, maximum 24.4, median Z �0.12,

first quartile Z �3.0, third quartile Z 3.0. Thus, 25% of

women had an IEAA value > 3.
Fig. 1. Epigenetic clock analysis. a) DNA methylation age (y-axis)

versus chronological age (x-axis). Points correspond to female

subjects. Red indicates breast cancer case, black control. The

dashed line indicates a regression line, b) epigenetic age accelera-

tion versus breast cancer status. Each bar plot depicts the mean

value, standard deviation and reports a non-parametric group

comparison test p-value (Wilcoxon test), c) epigenetic age accel-

eration versus breast cancer status (developed within 10 years post

blood draw). Each bar plot depicts the mean value, standard

deviation and reports a non-parametric group comparison test p-

value (Wilcoxon test). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web

version of this article.)
None of the blood cell count measures were associ-

ated with disease status in prediagnostic blood samples

(Supplementary Fig. 2). Interestingly, high physical ac-

tivity was associated with decreased odds of being a
breast cancer case (Supplementary Table 1).

A recent study demonstrated that menopause has a

weak but statistically significant effect on epigenetic age

acceleration. Further, menopause has been known to

accelerate age-related diseases including breast cancer

[34,35]. To adjust for menopausal status, we evaluated

the association between IEAA and breast cancer in

separate strata defined by menopausal status (premen-
opausal and postmenopausal). The baseline character-

istics of premenopausal and postmenopausal breast

samples are shown in Supplementary Table 2. We

observed a positive correlation between epigenetic and

chronological age in postmenopausal samples (Fig. 2a).

Stratified analysis of postmenopausal breast cancers

based on the lead-time between blood collection and

cancer diagnosis revealed that breast cancers had a
higher IEAA compared to non-cancer samples (Fig. 2b,

Supplementary Fig. 3).

A very high value of IEAA Z 10 is associated with a

doubling of odds of developing postmenopausal breast

cancer (OR Z 1.97 (1.22e2.83) calculated as 1.0710

from our multivariate logistic regression model Table 3).

Twenty-five percent of all women exhibit an age accel-

eration larger than 3 which is associated with 22% in-
crease in the odds of developing postmenopausal breast

cancer (OR Z 1.22 (1.06e1.37) calculated as 1.073).

We found that breast cancer that developed within 10

years from date of recruitment had a stronger associa-

tion with IEAA (Fig. 2c). However, the results of this

secondary analysis should be interpreted with caution

due to an inflated false positive rate resulting from

multiple comparisons. We did not observe such associ-
ations in premenopausal breast samples (Supplementary

Figs. 4, 5). Similar to our findings in all breast samples,

high physical activity was associated with decreased

odds of being a breast cancer case in postmenopausal

women (Supplementary Table 3).



Fig. 2. Epigenetic clock analysis for postmenopausal samples.

a) DNA methylation age (y-axis) versus chronological age (x-axis).

Points correspond to female subjects. Red indicates breast cancer

case, black control. The dashed line indicates a regression line; b)

epigenetic age acceleration versus breast cancer status. Each bar

plot depicts the mean value, standard deviation and reports a non-

parametric group comparison test p-value (Wilcoxon test); c)

epigenetic age acceleration versus breast cancer status (developed

within 10 years post blood draw). Each bar plot depicts the mean

value, standard deviation, and reports a non-parametric group

comparison test p-value (Wilcoxon test). (For interpretation of the

references to colour in this figure legend, the reader is referred to

the web version of this article.)
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Interestingly, we observed a highly significant asso-

ciation between IEAA and incident postmenopausal

breast cancers (OR, 1.07; 95% CI, 1.020e1.11,
PZ 0.003). By contrast, no significant association could

be observed for incident premenopausal breast cancers

(OR, 1.00; 95% CI, 0.9510e1.056, P Z 0.94) (Table 3).

4. Discussion

Using a rigorous and large-scale nested prospective

caseecontrol study, we demonstrate that: (1) IEAA

in blood increases the odds of developing post-

menopausal breast cancers and (2) genome-wide

hypermethylation in CpG islands is associated with

incident breast cancer cases. While several articles have

studied blood methylation data versus breast cancer risk
[36e39], it appears that ours is the first study to detect a

weak but significant association of IEAA with breast

cancer susceptibility. Our study stands out in terms of its

large sample size, its use of a robust epigenome wide

technology (Illumina 450K array), the careful matching

of breast cancer cases with controls in a prospective

caseecontrol study, and its use of a powerful epigenetic

biomarker of ageing, which is independent of blood cell
counts (IEAA).

Our finding regarding the association between global

CpG island methylation levels and breast cancer risk is

congruent with the findings from our earlier retrospective
study on breast cancer [39] and supports the notion that

regulatory regions of the genome are often hyper-

methylated in cancer cells [29]. It is noteworthy that we

observed CpG island hypermethylation in blood tissue

samples of incident breast cancer patients. Several

epidemiological caseecontrol studies have reported

global genomic hypomethylation in peripheral blood of

cancer patients, suggesting a systemic effect of hypo-
methylation on disease predisposition [40,41]. In addi-

tion, two recent studies reported a lower global

methylation levels in prospectively collected blood sam-

ples from breast cancer cases compared to controls

[38,42]. However, we did not find any change in global

DNAm levels between cases and controls. These dis-

crepancies may be due to technical and biological varia-

tions attributable to the low power of the studies.
Epigenetic changes are ubiquitous in primary breast

cancers although the role of deregulation of the epi-

genome is largely unknown. It has been suggested that a

gradual accumulation of methylation changes (‘epige-

netic drift’) may occur through stochastic events,

resulting in clonal expansion of the stem/progenitor

cells, and that this process may contribute to the age-

associated increase in risk of developing breast cancer
[43e45]. DNAm age is highly correlated to chronolog-

ical age across sorted cell types (CD4 T cells, monocytes,

B cells, glial cells, neurons), complex tissues (e.g. blood)

and organs (brain, breast, kidney, liver, lung) [4]. Our

findings were consistent with the previous studies in

different tissues [4,16]. The epigenetic clock derived

from the DNAm age is robust with respect to the batch

effects and can be applied to all Illumina array plat-
forms: the EPIC chip (850K), the Illumina 450K array

and the 27K array [4] and possibly measures a cell

intrinsic and tissue independent epigenetic drift [46]. For

blood derived DNA measured on the Illumina 450K

array, the epigenetic clock algorithm provides not only

several measures of age acceleration but also estimates

of blood cell counts. One of the major concerns

regarding age-associated DNAm signatures is the in-
fluence of tissue’s cellular composition which may alter

with age. We found no differences in leucocyte sub-

populations between cases and controls. By definition,

our intrinsic measure of epigenetic age acceleration

(IEAA) is not confounded by changes in the proportion

of blood cell counts (Methods). We focussed on IEAA

as it has been shown to be correlated with epigenetic age

acceleration in breast tissue [9]. Future research could
investigate whether epigenetic age acceleration of breast

tissue is predictive of breast cancer.

We can only speculate when it comes to explaining

why IEAA was only predictive of postmenopausal

breast cancer but not of premenopausal breast cancer.

Breast cancers developing in postmenopausal women

are influenced by specific polymorphisms in endogenous

steroid hormone metabolic pathways and exogenous
administration of hormones at menopause (hormone
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replacement therapy). Our observed age acceleration in

postmenopausal breast cancers might reflect differences

in hormone exposure. In this context, it is noteworthy

that both natural and surgical menopause are associated

with an increase in intrinsic age acceleration [18]. In

addition, age-associated compromised detoxification,

DNA repair mechanisms and immune surveillance may

add to the endogenous factors which could lead to
postmenopausal breast cancer development [1]. It is

unlikely that smoking and BMI confound the relation-

ship between epigenetic age and breast cancer risk

because : (1) BMI and smoking have only a very weak

effect on the epigenetic age acceleration of blood tissue

(correlation r < 0.10) [16,20], and (2) we could detect

accelerated ageing effects in multivariate regression

models that adjusted for these potential confounders.
Our results based on a prospective study cohort points

to a higher rate of ageing in the blood samples from

individuals who develop breast cancer compared to the

controls. While the results from our epigenetic age

analysis are biologically meaningful, the association

between DNAm age and disease risk is probably too

weak for prognostic purposes.

In the present study, we demonstrated that a surro-
gate tissue (blood) captures accelerated ageing effects

and relates to an effector (breast cancer) of ageing. We

have demonstrated that IEAA was associated with

postmenopausal breast cancer susceptibility and identi-

fied potential epigenetics-based biomarkers for risk

stratification. Because menopause has been known to

accelerate age-related diseases including cancer, our

finding also suggest potential underlying mechanism and
provides biological plausibility to the association be-

tween menopause and cancer risk. Further research

aimed at understanding epigenome deregulation in

cancer causation, risk stratification and the mechanism

underlying accelerated epigenetic clock is warranted.
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