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“Lend me your arms, fast as thunderbolts, for a pillow on my journey.”
–Hendrik Doeff (1764–1837)





Abstract
We aim to give an insight into aspects of developing and deploying a deep
learning algorithm to automate biomedical image analyses. We anonymize
sensitive data from a medical archive system, attempt to replicate and further
improve published methods, and scale out our algorithm to support large-scale
analyses. Specifically, our contributions are described as follows.

First, to anonymize and extract mammograms for the development of a breast
cancer detection algorithm, we wrote a script for mammograms that reside in a
data-locking, sensitive, and proprietary pacs. The script will be used in a larger
project to extract mammograms from all screening points in Norway.

Second, because this script is currently being authorized by Helsenord IKT,
we instead developed an algorithm for a similar screening problem in the
biomedical field. In order not to reinvent the wheel,we investigated earlierwork.
The high-impact article JAMA 2016; 316(22)[1] describes a high performance
deep learning algorithm that detects diabetic retinopathy, reporting a receiver
operating characteristic curve (AUC) of 0.99. We attempted to replicate the
method. Our AUC of 0.74 and 0.59 did however not reach the reported results,
possibly by differences in data, or by missing details in the methodology.

Third, by modifying the data preprocessing methods in the diabetic retinopa-
thy algorithm slightly, the AUC increased to 0.94 and 0.82. These findings
emphasize the challenges of replicating deep learning methods that have their
source code not published, and do not use publicly available data.

Fourth, benchmarks were run to assess the resources needed to run algorithm
development and automated analyses on a national (Norwegian) scale. We
estimate that a breast cancer detection algorithm can be trained on 4 GPUs in
less than 17 hours, with a sublinear speed-up of 3.36 times compared to 1 GPU.
Evaluation with inexpensive GPUs has been shown to perform instantly.

Lastly, with our experiences and lessons learned in mind, we conclude with
literature suggestions and recommendations to develop and to deploy an
algorithm for breast cancer detection in a large-scale screening program.
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1
Introduction
Over the last years, deep learning has emerged as a popular set of machine
learning methods based on learning data representations. It has been shown
that deep learning algorithms are able to beat state-of-the-art approaches in
traditional machine learning problems such as image and sound classification,
and it has been stated that they may surpass human-level capabilities in classi-
fying these kinds of data. The remarkable progress in deep learning has been
a result of three main factors. First, the collection of massive amounts of data.
Second, the development and accessibility of new machine learning frame-
works and platforms [2, 3, 4, 5] and algorithms [6, 7, 8, 9] due to advances
in parallel [3, 10, 11] and scalable software systems [12, 13, 14]. Third, storage
costs have been rapidly decreasing [15, 16], and mobile applications, internet
of things (IoT), and the importance of data as a resource [17], have all led to
further investments in research and development of deep learning technologies
[18].

Deep learning is learning data representations by using a network of multiple
layers of nonlinear processing units for various kinds of feature extraction and
transformation. Each layer’s output is the successive layer’s input. Most deep
learning models andmethods attempt to mimic the activity in layers of neurons
in the neocortex, i.e. an artificial neural network. It learns, like other machine
learning methods, by iteratively classifying a training data set, and updating
its parameters slightly into the right direction every time a classification error
occurs. Ultimately, the fine-tuned parameters of the algorithm are tested on an
evaluation data set to measure the algorithm’s performance. Such an algorithm

1
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facilitates the automatic classification of data, which, when deployed, removes
the need for a person to classify the data manually.

The main objective when developing a deep learning algorithm is for it to be
fundamental or general enough, such that it performs well on unseen data.
Although this seems simple, finding the optimal fine-tuned parameters of the
algorithm is a task that usually involves many trial and error attempts. Instead
of developing an algorithm from scratch, there are dozens of optimization tech-
niques that accelerate convergence [19]. However, the algorithm’s performance
is ultimately determined by the input data. Retrieving data from public sources
is often insufficient, while private data is hard and costly to obtain due to legal
regulations and data lock-in [20, 21]. Furthermore, even though other studies
may have stated high performance for their algorithm, it has been shown that
many studies are non-replicable [22, 23, 24], all emphasizing the obstacles that
are associated with developing a deep learning algorithm.

We aim to give an insight into various aspects of developing and deploying a
deep learning algorithm to automate biomedical image analyses. We anonymize
sensitive data from a medical archive system, attempt to replicate and further
improve published methods, and scale out our algorithm to support large-scale
analyses. Specifically, our contributions on various aspects of developing and
deploying a deep learning algorithm are as follows:

1. We wrote an anonymization script for mammograms that reside in a
data-locking, sensitive and proprietary pacs archive system.

2. We developed an algorithm that detects diabetic retinopathy, by attempt-
ing to replicate the main method of a highly-cited study that was pub-
lished in JAMA 2016; 316(22)[1]. The study was non-replicable. Our
algorithm had an area under the receiver operating characteristic curve
(AUC) of 0.74 and 0.59 for two test sets, compared to 0.99 for both test
sets in the original study.

3. We increased the algorithm’s AUC to 0.94 and 0.82 by introducing some
improvements.

4. We evaluated running the algorithm on 1 and 2 NVIDIA GeForce GTX
1080 (Ti) GPUs, compared to running on the multi-GPU UNINETT DaaS
Cluster, which consists of 4 NVIDIA Titan X Pascal GPUs in 2 worker
nodes.

Thesis Statement Although applying a deep learning method appears to be
simple, the developer must overcome the limitations of data lock-in and
non-replicability of earlier described algorithms within the same domain.
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1.1 Three Challenges of Applying Deep Learning
1.1.1 Data Retrieval
With the introduction of competition platforms for machine learning like Kaggle
[25], data sets are made publicly available for any researcher to analyze data
and develop deep learning algorithms. Similarly, other institutions have also
published data sets [26, 27, 28, 29, 30]. However, these data sets may have
limited quality, or they may not contain sufficient data for developing a deep
learning algorithm. Data may for example lack the right labels or grades for
classification, or the databases are too limited in size. Besides, public databases
are generally more meant as benchmarks for algorithm performance evaluation
rather than being used for algorithm training. When there is no (sufficient)
public data available, data needs to be retrieved from a private database or
archive system.

Many private databases and archive systems are proprietary and do not allow
out-of-the-box data exportation or portability. Data or vendor lock-in [20, 21]
in databases and archive systems hinders developers getting data necessary
for developing a deep learning algorithm. Furthermore, databases or archive
systems often contain sensitive information that connects with a person’s
identity. Due to legal regulations, there is often a lengthy application process
involved to obtain access to such data. Moreover, the data usually requires
anonymization or de-identification before extraction.

1.1.2 Algorithm Development
Along with the increasing amount of investments in research and development
of deep learning technologies in the biomedical industry [31, 32, 33, 34, 35],
there is an emerging need to automate classification in image and sound
classification tasks. To develop a deep learning algorithm that automates these
tasks, an artificial neural network (ANN) model needs to be designed. It is
possible to design a model from scratch, however it requires extensive domain
knowledge, and it will take many trial-and-error attempts, or just luck, to design
a model that provides a solid base for developing an algorithm with high
performance. In other words, there is no generalized solution, even for a given
domain. There are practical guidelines on how to design a model architecture,
for example for image recognition [36], however usually without references to
academic literature. Therefore it is more practical to use a predesigned model.
Predesigned models of convolutional neural networks (CNNs), like InceptionV3
[37] or ResNet-50 [38], have been shown to develop algorithms with high
performance for various domains. Such an algorithmwill still need to be verified
on large amounts of data before it can be used in a clinical setting.
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There have been published numerous high-impact articles stating that their
proposed deep learning algorithm reach near human-level performance [39, 40,
41]. Nevertheless, there has been raised a shared concern across the biomedical
industry that many studies cannot be verified [22, 23, 24, 42], due to insufficient
or inaccurate reporting of methodologies [43]. Being able to verify a study by
replication, i.e. strictly following the described methods, is essential for the
development of medical technologies based on published results [44]. There
is also a general lack of funding to support replication research, and when
methods have been replicated, the replication results are rarely published [45].
Furthermore, it is often impossible for researchers with low budgets to verify
high-impact studies. High-impact studies like [46, 47] receive large funding,
and can thus afford to use non-public data and a team of experts for data
quality assurance and professional labeling or grading. Ideally, studies should
publish their source code and data, so that other researchers can verify the
results for their own data. However, this is not always possible, for example for
sensitive data, or for methods with commercial value [22, 48].

1.1.3 Algorithm Deployment
After developing and evaluating a deep learning algorithm, the next step is
to make it available for others. Deep learning algorithms can be deployed in
various ways. The most commonly used deep learning deployment model is a
web service (for example a RESTful API). The web service takes in some data
and yields a prediction immediately. To improve the deep learning algorithm,
the web service can also keep track of the consumed data, and use the data
for periodical automatic re-training of the algorithm. The resource usage of
deploying a deep learning algorithm as a web service, or in fact the deployment
phase in general, has not been described well in literature.

1.2 Objective and Approaches
This thesis is the offspring of a pilot project with its goal to enable auto-
mated analyses for BreastScreen Norway1 [49], with two main objectives: the
development of a deep learning algorithm for breast cancer detection, and
enabling real-time analysis by deploying the algorithm. However, we have not
yet received the anonymized mammograms, hence we were unable to develop
an algorithm for breast cancer detection. Our approaches are described as
follows.

1. BreastScreen Norway was earlier called the Norwegian Breast Cancer Screening Pro-
gramme (NBCSP).



1.3 SUMMARY OF RESULTS 5

First, we wrote an extraction and anonymization script for mammograms resid-
ing in a Picture archiving and communication system (pacs) at the University
Hospital of North Norway (UNN), which provides storage and access to var-
ious images types in the medical field. The mammograms were gathered in
BreastScreen Norway orchestrated by the Cancer Registry of Norway [50]. Our
script anonymizes sensitive meta-data in the form of personal data that reside
in and around the mammogram files for two reasons. First, keeping person-
ally identifiable information is generally constrained by strict legal regulations.
Second, keeping personal information in the data is generally not necessary
for developing a deep learning algorithm.

Second, we gained insights into developing a deep learning algorithm. Since
we have not yet received the anonymized mammograms from the pacs system,
we developed an algorithm for a similar screening problem in the biomedical
field: diabetic retinopathy. Diabetic retinopathy is an eye disease that people
with diabetes can develop. The high blood sugar levels due to diabetes cause
damage to blood vessels in the retina, causing them to swell, leak, or close,
stopping blood from passing through. These conditions can ultimately lead
to blindness [51]. The article Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs,
published in JAMA in 2016 [1], reported a deep learning algorithm for detecting
diabetic retinopathy with an area under the receiver operating characteristic
curve of 0.99. This high-impact article has been cited many times since, and
has consequently become a well-known study in the biomedical field. The
authors did however not publish their source code. This is why we attempted
to replicate the proposed method for developing a high-performance deep
learning algorithm for diabetic retinopathy detection. We further improved our
replica algorithm by modifying the original method.

Third, to assess the resource usage of developing and real-time analysis of
a biomedical deep learning algorithm on a national (Norwegian) scale, we
measured training and analysis speed of our diabetic retinopathy detection
algorithm on 1 and 2 NVIDIA GeForce GTX 1080 (Ti) GPUs, compared to the
multi-GPU UNINETT DaaS Cluster, which consists of 4 NVIDIA Titan X Pascal
GPU in 2 worker nodes.

1.3 Summary of Results
The anonymization script is currently being authorized and will be used to
extract mammograms from UNN. The source code for the anonymization script
is available at: https://github.com/mikevoets/dicom_anonymizer.

https://github.com/mikevoets/dicom_anonymizer


6 CHAPTER 1 INTRODUCT ION

We were not able to replicate the JAMA 2016; 316(22) study. Our algorithm’s
area under the receiver operating characteristic curve (AUC) of 0.74 and 0.59
on two independent test sets did not come close to the reported AUC of 0.99
in the original study (see Figure 1.1a). This may be caused by the use of a
single grade per image, or different hyper-parameter settings. By changing the
preprocessing methods, our replica algorithm’s AUC increased to 0.94 and 0.82,
respectively (see Figure 1.1b). Our replication attempt shows the challenges of
replicating deep learning, and the need for more replication studies to validate
deep learning methods, especially for medical image analyses.

Our source code and instructions for our replication are available at: https://
github.com/mikevoets/jama16-retina-replication. This repository has gained
a significant interest. As of May 2018, the repository had been forked 9 times
and gathered 16 stars. We also archived this work as a stand-alone article on
arXiv [52], gained feedback from the deep learning community on Twitter and
Facebook, and submitted it to JAMA Network Open.

Environment
Max. training speed
(images/sec)

Max. prediction speed
(images/sec)

Deep1
(1x NVIDIA GeForce GTX 1080) 91.1 ± 0.36 328 ± 0.53

UNINETT DaaS Cluster
(4x NVIDIA Titan X Pascal) 461 ± 5.6 868 ± 2.4a

aThis result was achieved with 2 NVIDIA Titan X Pascal GPUs.

Table 1.1: Training and prediction speed in retinal fundus images per second with one
NVIDIA GeForce GTX 1080 compared to 4 NVIDIA Titan X Pascal GPUs.

In Table 1.1, we show the best results of measuring training and evaluation
(prediction) speed in images per second, in a minimal single-GPU environ-
ment, compared to the UNINETT DaaS cluster with 4 NVIDIA Titan X Pascal
GPUs. Instructions for running the benchmarks can be found in the replication
repository.

https://github.com/mikevoets/jama16-retina-replication
https://github.com/mikevoets/jama16-retina-replication
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(a) JAMA 2016; 316(22) replica algorithm.

(b) Improved algorithm.

Figure 1.1: Area under receiver operating characteristic curve (AUC) for the replica
algorithm (a) and with improved preprocessing methods (b) trained with
using only gradable retinal fundus images and stochastic gradient descent.
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1.4 Thesis Structure
The rest of this work is covered as follows. Chapter 2 covers the implementation
of the anonymization script for extracting mammograms from a pacs system.
Chapter 3 covers the JAMA 2016; 316(22) replication and development of the
deep learning algorithm for diabetic retinopathy, and the improvements we
introduced. Chapter 4 measures data throughput during algorithm training,
and analysis performance, by comparing the algorithm in three environments.
Chapter 5 then discusses the limitations and extensions of our findings, and
finally, we conclude and discuss future work.



2
Data Retrieval from PACS
2.1 Introduction
We implemented an extraction and anonymization script for mammograms in
Norwegian hospitals for BreastScreen Norway. From a practical point of view,
it is easiest to execute the script on the hospital ICT infrastructure and to let
the script consume a list of identifiers from the Cancer Registry of Norway
[50] (from here referred to as the Cancer Registry). We use the script in a
pilot project to extract anonymized data from the University Hospital of North
Norway (UNN). We collaborate with Helse Nord IKT. Helse Nord IKT operates
the ICT infrastructure of the North Norwegian health region. The project is
part of a larger ICT research project at UiT - The Arctic University of Norway
aiming to develop the needed infrastructure for integrated analysis of medical
data.

The mammography data set includes mammograms taken in the period from
2012 until 2018, and excludes people who have opted-out of their images being
used for research. Estimations are that this part of the data set contains 280
000 images from 70 000 screenings. The mammograms reside in a Sectra pacs
system. This system does not provide an API for extraction or anonymization
of files, making the objective of our script to extract mammograms from the
part of the file system used by the pacs. The mammograms are DICOM files.
They contain personal meta-data, requiring the script to anonymize these files
since there is no explicit need and allowance to use person-related data to
develop a deep learning algorithm. The Cancer Registry has provided a variable

9
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Hard drive with
anonymized

folder

Application

PID, InvID,
variables...

Anonymization script
Find DICOM path

Anonymize DICOM
Save to anonymized

folder

Sectra PACS

Helsenord IKT/UNN

Figure 2.1: Overview of the mammograms anonymization process.

specification for additional meta-data associated with each mammogram that
are not part of the DICOM file, but are essential to develop a deep learning al-
gorithm. Because these meta-data contain personal data as well, the script also
anonymizes these meta-data. The script further assures that the anonymized
data cannot be linked back to the original personal data.

Retrieving the variable specification and confirmation on being able to extract
mammograms is an ongoing part of a lengthy application process. We do
not gain access to the pacs system to extract mammograms directly, instead
we wrote a prepared script that Helse Nord IKT will verify and finish before
executing it in the Sectra pacs environment at UNN (see Figure 2.1). Ultimately,
the script will be used in the larger ICT project to extract mammograms from
all screening points in Norway.

2.1.1 Breast Cancer Screening
Figure 2.2 shows the process of breast cancer screening until periodical import
into the Cancer Registry. Every business day in the North Norwegian region,
about 65 people attend mammography screening at UNN, and an additional
65 people are screened remotely. The Cancer Registry imports data from UNN
periodically, typically once a year. The Cancer Registry imported data from 435
000 people who were screened for breast cancer in the screening rounds of
the year 2014-2015.
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Figure 2.2: Visualization of breast cancer screening and periodic retrieval by the Cancer
Registry.
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2.2 Implementation
The anonymization script was written in Python 2.7, and can be used from the
command line. The script accepts several parameters. First, the root directory
path where the DICOM files containing digital mammograms and meta-data
reside. Second, the path to the csv file with meta-data from the Cancer Registry.
Third, the directory path where anonymized DICOM files should be placed
to. Fourth, the path where the anonymized variables (cleaned file) from the
Cancer Registry should be placed to.

2.2.1 Anonymization of DICOM files
DICOM, Digital Imaging and Communications in Medicine, is a standard digital
file format for medical images [53, 54]. These files contain raw image data
and other meta-data related to the image. This meta-data usually consists of
personal information, information about the owner of the image, and infor-
mation about for what purpose, when, and with what equipment the image
was taken. To anonymize the personal data in the DICOM files, the script uses
the dicom-anon Python tool [55]. Dicom-anon has been implemented by the
Children’s Hospital of Philadelphia (CHOP) [56]. See Table 2.2 in Section 2.2.3
for an overview on how DICOM files in our script are anonymized. Dicom-anon
attempts to be compliant with the Basic Application Confidentiality Profile as
specified in DICOM 3.15 Annex E document [57]. These specifications define
what values in the meta-data should be anonymized based on their modality.
Modality represents the DICOM file type. For mammography, the modality is
mg. Dicom-anon further removes all attributes from the DICOM file that are
not specified in Annex E. The tool creates a sqlite3 database file with a table
containing the original and cleaned version of every attribute. This file will be
removed after running our anonymization script.
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2.2.2 Anonymization of Cancer Registry Meta-Data
The scripts accepts a csv file with a list of variables from the Cancer Registry.
See Table 2.1 in Section 2.2.3 for an overview on how the values from this
file are anonymized and placed to a cleaned file. The first two variables per
line represent the personal identifier (PID), and the invitation or screening
identifier (InvID), respectively. PID can be linked to many InvIDs. The third
value represents the screening date. The seventh value represents the diagnosis
date. Other examples of values in the file are annotations for ground truth, and
where the image was taken. These other values do not need to be modified,
because they cannot be linked with a person’s identity. The PID and InvID
are not included in the anonymized meta-data file, but are used to identify
the association between the person and screenings later. The screening date
and diagnosis date are originally formatted as 15.mmm.yyyy. The anonymiza-
tion script re-formats the screening date to m-yyyy, and the diagnosis date is
converted to the amount of days after the screening date. The screening date
is used for the new directory structure of the anonymized DICOM files per
person.

2.2.3 Anonymity Assurance Test
The script provides a test to assure that the resulting anonymizedmammograms
and meta-data cannot be linked back to their original personal information.
To facilitate this test, we provided a couple of example DICOM files with fake
personal information, together with an example csv file that represents the
meta-data file from the Cancer Registry. The folder structure for the example
DICOM files before running the test is shown in Figure 2.3a. The test can
be run by specifying the -t flag when executing the script. After running the
script in test mode, the tests folder is modified as shown in Figure 2.3b. The
result of anonymizing a file representing the file from the Cancer Registry is
shown in Table 2.1, and the result of anonymizing DICOM files is shown in
Table 2.2.

2.3 Discussion
To implement the anonymization script, we had to make some assumptions.
First, we assume that one PID can be associated with many InvIDs, because a
person may be screened for breast cancer multiple times. Second, we assume
that the variables in the csv file from the Cancer Registry are delimited by
white spaces. The delimiter can however be changed in the script. Third, we
assume that the variables are delimited in the same order as the variables in the
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variable specification received from the Cancer Registry: i.e. the first two values
in the line should be PID and InvID, the third value O2_Bildetakningsdato, and
the seventh value Diagnosedato.

2.3.1 Limitations
DICOM files that are explicitly marked as containing burnt-in data along with
files that have a series description of Patient Protocol, will be copied to a
quarantine folder, and cannot be anonymized by our script.

We did not know any details regarding the internal folder structure of the pacs
system. Because of this, we have not implemented the method for retrieving the
internal path to a specific DICOM file given a PID and InvID. Before executing
this script in the Sectra pacs environment at UNN, Helse Nord IKT is required
to verify the script and implement the method to find the internal DICOM
paths for all screened people.

Original values (in variables.csv)

PID InvID
O2_Bildetakingsdato
Screening date ...

Diagnosedato
Diagnosis date

Example_Patient Screening_1 15.Jan.2016 ... 15.Feb.2016
Example_Patient Screening_2 15.Dec.2017 ... 15.Jan.2018

Anonymized values (in cleaned_variables.csv)

Anonymized PID Screening date ...
Diagnosis
Days offset

e3b23d103c4342... 12-2017 ... 31
e3b23d103c4342... 1-2016 ... 31

Table 2.1: Overview of anonymization of values of the Cancer Registry. The personal
identifier PID is anonymized by assigning a pseudo-randomized UUID. The
screening identifier InvID is removed. Instead, the screening date is used
and formatted to m-yyyy. Note that this corresponds to the anonymized
folder structure in Figure 2.3b. The diagnosis date is converted to the offset
in days relative from the screening date. All other variables in the file are
unchanged (not shown in this table).
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DICOM Attribute Name Value in Screening_1/EE06C00F.dcm Value in 1-2016/1.dcm

Specific Character Set ’ISO_IR 100’ <removed attribute>
Image Type [’ORIGINAL’, ’PRIMARY’, ”] [’ORIGINAL’, ’PRIMARY’, ”]
Study Date ’20140408’ ’19010101’
Content Date ’20140408’ ’19010101’
Study Time ’104011’ ’000000.00’
Content Time ’104117.000000’ ’000000.00’
Accession Number ’R9BF8PC1GE’ ’Accession Number 1’
Patient ID ’R9BF8PC1GE’ ’Patient ID 1’
[Examination Number] ’E9BF8PC1GE’ <removed attribute>
Patient Name ’Anonymous Female 1959’ "Patient’s Name 1"
Patient’s Birth Date ’19591221’ ’19010101’
Patient’s Sex ’F’ ’CLEANED’
Patient’s Birth Name ’anonymous’ <removed attribute>
Patient’s Age ’054Y’ <removed attribute>
Patient’s Mother’s Birth Name ’anonymous’ <removed attribute>
Medical Alerts ’anonymous’ <removed attribute>
Allergies ’anonymous’ <removed attribute>

...
Study ID ’E9BF8PC1GE’ ’CLEANED’
Patient Identity Removed <non-existent> ’YES’

...
KVP ’30’ ’30’
Distance Source to Detector ’660’ ’660’
Distance Source to Patient ’660’ ’660’
Estimated Radiographic Magnification ’1’ ’1’
Field of View Dimension(s) [’306’, ’239’] [’306’, ’239’]
Exposure Time ’785’ ’785’
X-Ray Tube Current ’62’ ’62’
Exposure ’49’ ’49’
Expore in uAs ’48800’ ’48800’

...
Pixel Data Array of 14660856 bytes Array of 14660856 bytes

Table 2.2: Overview of DICOM meta-data anonymization. Files are anonymized by
the dicom-anon tool [55]. For this example we used the attribute values
of EE06C00F.dcm and its anonymized variant 1.dcm. All person-related
meta-data are anonymized by assigning a sequence. All dates are reset
to 1901-01-01. Patient’s Sex and Study ID attributes are cleaned. Optional
or unrecognized attributes are removed. A new attribute Patient Identity
Removed is added to the anonymized DICOM file. The actual image repre-
sented by Pixel Data stays unchanged. We do not show DICOM tag and VR
in this table, as they do not provide additional relevant information about
the anonymization procedure.
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tests

identify

Example_Patient

Screening_1

EE06C00F.dcm

Screening_2

EE63A78A.dcm
variables.csv

(a) Before executing test. The personal folders reside in the identify folder (may be
PID), each consisting of one or more screening (may be InvID) folders consisting
of DICOM files. The variables.csv file represents a possible csv file with example
variables from the Cancer Registry.

tests

identify

variables.csv

cleaned

e3b23d103c434222bea933e45f4c75d4

1-2016

1.dcm

12-2017

1.dcm
cleaned_variables.csv

(b) After having executed test. The original identify folder structure still exists with its
original content, but a new folder cleaned has been created. This folder consists of
the anonymized data. It consists of folders namedwith pseudo-randomly generated
UUIDs, representing people. Each folder consists of one or more screening folders
named with the screening’s date formatted by m-yyyy, found among the Cancer
Registry variables, with one or more renamed anonymized DICOM files for the
corresponding screening. The cleaned variables from the Cancer Registry are
placed in cleaned_variables.csv.

Figure 2.3: Folder structure for the DICOM anonymizer script before and after test
run.
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2.3.2 Related Work
The Digital Mammography DREAM challenge [58] was a machine learning
competition held in 2016, as an attempt to find a machine learning algorithm
that improves the predictive accuracy of digital mammography for the early
detection of breast cancer, with its main focus on reducing the recall rate
for breast cancer screening. It provided a data set consisting of 640 000 de-
identified mammograms from 86 000 people with corresponding personal
characteristics and outcome measures. This shows that large amounts of anno-
tated data are needed to develop and evaluate a deep learning algorithm, and
confirms that de-identification or anonymization of the digital mammograms
is necessary.

2.3.3 Conclusion
When the script has been successfully executed, the folder with the anonymized
data can be transferred from the sensitive data environment, and the resulting
anonymized data can then be used to develop a deep learning algorithm.



3
Replication andImprovement of aHigh-Impact Study
3.1 Introduction
For this thesis, we make an assessment on the replicability of a deep learning
method. We have chosen to attempt to replicate the main method from De-
velopment and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs, published in JAMA 2016; 316(22)[1].
As of May 2018, this article had been cited 370 times [59]. We chose to replicate
this study because it is a well-known and high-impact study in the medical
field, the source code has not been published, and there are as far as we know
not any others who have attempted to replicate this study.

The original study describes an algorithm (hereby referred to as the original
algorithm) for detection of referable diabetic retinopathy (rDR) in retinal
fundus photographs. The algorithm is trained and validated using 118 419
fundus images gotten from EyePACS and from three eye hospitals in India. The
original algorithm’s performance was evaluated on 2 test sets, and achieved an
area under the receiver operating characteristic curve (AUC) for detecting rDR
of 0.99 for both the EyePACS-1 and the Messidor-2 test sets. Two operating
points were selected for high sensitivity and specificity. The operating point
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for high specificity had 90.3% and 87.0% sensitivity and 98.1% and 98.5%
specificity for the EyePACS-1 and Messidor-2 test sets, whereas the operating
point for high sensitivity had 97.5% and 96.1% sensitivity and 93.4% and 93.9%
specificity, respectively.

To assess replicability of the method used to develop the original algorithm for
detection of rDR, we used similar images from a publicly available EyePACS
data set for training and validation, and we used a subset from the EyePACS
data set and images from the public Messidor-Original data set for performance
evaluation. Because many of the details regarding the validation procedure
were not described in the original study (for example for hyper-parameter
optimization), we had to find optimal hyper-parameters ourselves. Our objec-
tive is to compare the performance of the original rDR detection algorithm
to our result algorithm after trying to replicate, taking into account potential
deviations in the data sets, having fewer grades, and potential differences in
hyper-parameter settings.

We were not able to replicate the original study. Our algorithm’s AUC for detect-
ing rDR for our EyePACS and Messidor-Original test sets were 0.74 and 0.59.
The operating point for high specificity had 67.2% and 44.0% sensitivity and
68.2% and 64.8% specificity for our EyePACS and Messidor-Original test sets,
and the operating point for high sensitivity had 79.8% and 56.6% sensitivity
and 53.7% and 54.3% specificity. The results can differ for four reasons. First,
we used public retinal images with only one grade per image, whereas in the
original study the non-public retinal images were re-graded multiple times.
Second, the original study lacked details regarding the training and validation
procedure, and the original algorithm may therefore have been tuned better.
Third, there might be errors in the original study or methodology. The last
possible reason is that we may have done something wrong with replicating
the method by having misinterpreted the methodology. We do not know for
sure which of the four reasons has led to our considerably worse performance.
In further research, apart from this replication, we improved the algorithm by
slightly modifying the preprocessing procedure, and the AUC then increased
to 0.94 and 0.82 for the Kaggle EyePACS and the Messidor-Original test sets,
respectively.

We believe our failed effort on trying to replicate a highly-cited deep learning
paper motivates the need for additional replication studies in deep learning.
This result gives a general insight into the challenges of replicating studies that
do not use publicly available data and publish source code. We have published
our source code with instructions for how to use it with public data. This gives
others the opportunity to improve upon the attempted replication.
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3.2 Methods
3.2.1 Data Sets
The data sets consist of images of the retinal fundus acquired for diabetic
retinopathy screening. Any other information regarding the person is not part
of the data sets. Each image is graded according to severity of symptoms (see
Section 3.2.2).

The original study obtained 128 175 retinal fundus images from EyePACS in
the US and from three eye hospitals in India. 118 419 macula-centered images
from this data set were used for algorithm training and validation (referred to
as development set, divided into training and tuning set in the original study).
To evaluate the performance of the algorithm, the original study used two
data sets (referred to as validation sets in the original study). For evaluating
an algorithm’s performance, the term test set is commonly used. The first test
set was a randomly sampled set of 9963 images taken at EyePACS screening
sites between May 2015 and October 2015. The second test set was the publicly
available Messidor-2 data set [60, 61], consisting of 1748 images. We provide
an overview of the differences in image distribution used in our replication
compared with the original study in Figure 3.2.

We obtained images for training, validation and testing from two sources:
EyePACS from a Kaggle competition [62], and the publicly available Messidor-
Original set [63]. The Messidor-Original set is a benchmark for algorithms that
detect diabetic retinopathy. We randomly sampled the Kaggle EyePACS data set
consisting of 88 702 images into a training and validation set of 57 146 images
and a test set of 8790 images. The leftover images were mostly images graded
as having no diabetic retinopathy and were not used for training the algorithm.
The reason for the number of images in our training and validation set is to
keep the same balance for the binary rDR class as in the original study’s training
and validation set. Our EyePACS test set has an identical amount of images
and balance for the binary rDR class as in the original study’s EyePACS test
set. We used all the available 1200 images from Messidor-Original for testing.
We removed duplicate images and made corrections from this set as suggested
on the Messidor-Original download page, resulting in a test set of 1187 images.
Note that we could not use Messidor-2 since they do not provide official grades
for diabetic retinopathy. Messidor-Original is a subset of Messidor-2, which
means that these data sets are quite similar.
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Figure 3.1: Screenshot of grading tool used to assess gradability for all images.

3.2.2 Grading
The images used for the algorithm training and testing in the original studywere
all graded by ophthalmologists for image quality (gradability), the presence of
diabetic retinopathy, and macular edema. We did not have grades for macular
edema for all our images, so we did not train our algorithm to detect macular
edema.

Kaggle [64] describes that some of the images in their EyePACS distributionmay
consist of noise, contain artifacts, be out of focus, or be over- or underexposed.
[65] states further that 75% of the EyePACS images via Kaggle are estimated
gradable. For this replication we graded all Kaggle and Messidor-Original
images on their image quality with a simple grading tool (Figure 3.1). We
are not licensed ophthalmologists, but we assume fundus image quality can
be reliably graded by non-experts. We used the “Grading Instructions” in the
Supplement of the original study to assess image quality. We publish the image
quality grades with the source code. Images of at least adequate quality were
considered gradable.
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Figure 3.2: Data set distribution in original study compared to this replication.
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Figure 3.3: Examples of ungradable images because they are either out of focus,
under-, or overexposed.

In the original study, diabetic retinopathy was graded according to the Interna-
tional Clinical Diabetic Retinopathy scale [66], with no, mild, moderate, severe
or proliferative severity.

The Kaggle EyePACS set had been graded by one clinician for the presence
of diabetic retinopathy using the same international scaling standard as used
in the original study. We have thus only one diagnosis grade for each image.
Kaggle does not give more information about where the data is from. The
Messidor-Original test set was graded by medical experts for both the presence
of diabetic retinopathy, and for the risk of macular edema. Since we do not have
grades for the risk of macular edema in our training set, we did not use these
grades in our algorithm. In Messidor-Original, diabetic retinopathy was also
graded using a different scale, so we converted the grades to the International
Clinical Diabetic Retinopathy scale by using the scale’s definitions [66]. Fundus
images with one to five microaneurysms and no hemorrhages were considered
mild; 6 to 14microaneurysms or up to 5 hemorrhages and no neovascularization
were considered moderate; and more than 15 microaneurysms, more than 5
hemorrhages, or the presence of neovascularization were considered severe or
worse diabetic retinopathy. See Table 3.1 for an overview. As in the original
study, we converted the final diabetic retinopathy grade to a binary grade
indicating referable diabetic retinopathy, which presents moderate or worse
diabetic retinopathy.

3.2.3 Algorithm Training
The objective of this replication is to assess replicability of the original study.
We try to replicate the method by following the original study’s methodology
as accurately as possible. As in the original study, our algorithm is created
through deep learning, which involves a procedure of training a neural network
to perform the task of classifying images. We trained the algorithm with the
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Kaggle EyePACS grading
(International Clinical
Diabetic Retinopathy scale)

Messidor-Original grading rDR grade

No diabetic retinopathy
Normal: no microaneurysms and
no hemorrhages 0

Mild diabetic retinopathy
1 to 5 microaneurysms and
no hemorrhages 0

Moderate diabetic retinopathy
6 to 14 microaneurysms, or
up to 5 hemorrhages and
no neovascularization

1

Severe diabetic retinopathy
More than 15 microaneurysms,
more than 5 hemorrhages, or
neovascularization

1

Proliferative diabetic retinopathy - 1

Table 3.1: Interpretation of referable diabetic retinopathy (rDR) grades from the grad-
ing used in Kaggle EyePACS and Messidor-Original.

same neural network architecture as in the original study: the InceptionV3
model proposed by Szegedy et al [37]. This neural network consists of a range
of convolutional layers that transforms pixel intensities to local features before
converting them into global features.

The fundus images from both training and test sets were preprocessed as
described by the original study’s protocol for preprocessing. In all images the
center and radius of the each fundus were located and resized such that each
image gets a height and width of 299 pixels, with the fundus center in the
middle of the image. We also scale-normalized the images before passing them
to the neural network, as in the original study.

The original study used distributed stochastic gradient descent proposed by
Dean et al [3] as the optimization function for training the parameters (i.e.
weights) of the neural network. This suggests that their neural network was
trained in parallel, although the paper does not describe it. We did not conduct
any distributed training for our replica neural network. Therefore, we used the
non-distributed stochastic gradient descent [67] as our optimization procedure.
Using a different optimization procedure affects the time consumption, but not
the final performance of the algorithm. The original study did not describe any
learning rate for their training. Therefore we had to experiment with several
settings for the learning rate.

As in the original study, we used batch normalization layers [68] after each con-
volutional layer. Our weights were also pre-initialized using weights from the
neural network trained to predict objects in the ImageNet data set [69].
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The neural network in the original study was trained to output multiple binary
predictions: 1) whether the image was graded moderate or worse diabetic
retinopathy (i.e. moderate, severe, or proliferative grades); 2) severe or worse
diabetic retinopathy; 3) referable diabetic macular edema; or 4) fully gradable.
The term referable diabetic retinopathy was defined in the original study as
an image associated with either or both category 1) and 3). For the training
data obtained in this replication, only grades for diabetic retinopathy were
present. Thatmeans that our neural network outputs only one binary prediction:
moderate or worse diabetic retinopathy (referable diabetic retinopathy).

For this replication, the training and validation sets were split like in the
original study: 80% was used for training and 20% was used for validating the
neural network. It is estimated that 25% of the Kaggle EyePACS set consists
of ungradable images [65]. Therefore, we also assessed image gradability for
all Kaggle EyePACS images, and we trained an algorithm with only gradable
images. In the original study, the performance of an algorithm trained with
only gradable images was also summarized. We do not use the image quality
grades as an input for algorithm training.

Hyper-parameter settings for the optimization and validation procedure were
not specified, so we conducted experiments to find hyper-parameter settings
that worked well for training and validating the algorithms.

3.2.4 Algorithm Validation
We validate the algorithm bymeasuring the performance of the resulting neural
network by the area under the receiver operating characteristic curve (AUC)
on a validation set, as in the original study. We find the area by thresholding
the network’s output predictions, which are continuous numbers ranging from
0 to 1. By moving the operating threshold on the predictions, we obtain dif-
ferent results for sensitivity and specificity. We then plot sensitivity against
1–specificity for 200 thresholds. Finally, the AUC of the validation set is cal-
culated, and becomes an indicator for how well the neural network detects
referable diabetic retinopathy. The original study did not describe how many
thresholds were used for plotting AUC, so we used the de facto standard of
200 thresholds.

The original paper describes that the AUC value of the validation set was
used for the early-stopping criterion [70]; training is terminated when a peak
AUC on the validation set is reached. This prevents overfitting the neural
network on the training set. In our validation procedure, we also use the AUC
calculated from the validation set as an early stopping criterion. To determine
if a peak AUC is reached, we compared the AUC values between different
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validation checkpoints. To avoid stopping at a local maximum of the validation
AUC function, our network may continue to perform training up to n epochs
(i.e. patience of n epochs). Since the original paper did not describe details
regarding the validation procedure, we had to experiment with several settings
for patience. One epoch of training is equal to running all images through the
network once.

We used ensemble learning [39] by training 10 networks on the same data set,
and using the final prediction computed by taking the mean of the predictions
of the ensemble. This was also done in the original study.

In the original study, additional experiments were conducted to evaluate the
performance of the resulting algorithm based on the training set, compared
with performance based on subsets of images and grades from the training
set. We did not replicate these experiments for two reasons. First, we chose to
focus on replicating the main results of the original paper. That is, the results
of an algorithm detecting referable diabetic retinopathy. Second, we cannot
perform subsampling of grades, as we only have one grade per image.

3.3 Results
We found that a static learning rate of 0.003 performed well under training the
algorithm. For Nesterov’s accelerated gradient descent we used a momentum
value of 0.9. As for our early-stopping criterion at a peak AUC, we introduced
a patience of 10 epochs. Our chosen requirement for a new peak AUC was
a value of AUC that is larger than the previous peak value, with a minimum
difference of 0.01.

The replica algorithm’s performance was evaluated on two independent test
sets. We provide an overview of the differences in image distribution used in
our replication compared with the original study in Figure 3.2 in Section 3.2.2.
Our replica algorithm yielded an AUC of 0.74 and 0.59 on our Kaggle EyePACS
test data set and Messidor-Original (Figure 3.4 and Table 3.2).

We observe mainly three things from Table 3.2. First, there is a large discrepancy
between the AUC of our replication and the original study. Second, the AUC
did not change substantially when excluding non-gradable images. Third, the
AUC increased substantially when altering the preprocessing method (see
Section 3.4.3), but it is still low compared to the original study.
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Figure 3.4: Area under receiver operating characteristic curve (AUC) for the replica algorithm
trained with only gradable fundus images and stochastic gradient descent.

Figure 3.5: Area under receiver operating characteristic curve (AUC) for the improved algorithm
trained with only gradable fundus images and stochastic gradient descent.
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Replication results

Operating threshold High sens. High spec. AUC score

Kaggle EyePACS
(orig. EyePACS-1)

75.4% sens.
55.4% spec.

65.7 (90.1)% sens.
67.6 (98.2)% spec. 0.71

Messidor-Original
(orig. Messidor-2)

57.6% sens.
54.6% spec.

42.2 (86.6)% sens.
68.8 (98.4)% spec. 0.60

Operating threshold High sens. High spec. AUC score (orig.)

Only grad. Kaggle EyePACS test
(orig. EyePACS-1)

79.8 (97.5)% sens.
53.7 (93.4)% spec.

67.2 (90.3)% sens.
68.2 (98.1)% spec. 0.74 (0.99)

Only grad. Messidor-Original
(orig. Messidor-2)

56.6 (96.1)% sens.
54.3 (93.9)% spec.

44.0 (87.0)% sens.
64.8 (98.5)% spec. 0.59 (0.99)

Improved results

Operating threshold High sens. High spec. AUC score

Kaggle EyePACS test
(orig. EyePACS-1)

87.0% sens.
81.9% spec.

80.6 (90.1)% sens.
88.1 (98.2)% spec. 0.93

Messidor-Original
(orig. Messidor-2)

76.0% sens.
70.7% spec.

70.1 (86.6)% sens.
78.3 (98.4)% spec. 0.81

Operating threshold High sens. High spec. AUC score (orig.)

Only grad. Kaggle EyePACS test
(orig. EyePACS-1)

90.0 (97.5)% sens.
81.4 (93.4)% spec.

83.3 (90.3)% sens.
90.5 (98.1)% spec. 0.94 (0.99)

Only grad. Messidor-Original
(orig. Messidor-2)

77.0 (96.1)% sens.
70.8 (93.9)% spec.

70.1 (87.0)% sens.
82.6 (98.5)% spec. 0.82 (0.99)

Table 3.2: Overview of performance on test sets of replication and improved ensemble
models trained with stochastic gradient descent, compared to results from
the original study. In the first two rows, we summarize results for training
on all images, and in the last two rows we summarize results for training
on only gradable images. The results of the original study are depicted in
parenthesizes. In columns without parenthesis values, the original study
did not report results for the algorithm and/or operating point.
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3.4 Discussion
The results show substantial performance differences between the original
study’s algorithm and our replica algorithm. Even though we followed the
methodology of the original study as closely as possible, our algorithm did not
seem to "learn" how to recognize lesions in fundus images as local features.
This is probably because our algorithms were trained under different hyper-
parameters, and because in the original study ophthalmologic experts re-graded
all their images. According to the original study, the validation and test sets
should have multiple grades per image, because it will provide a more reliable
measure of a model’s final predictive ability. Their results on experimenting
with only one grade per image show that their algorithm’s performance declines
with 36%.

Some of the details regarding the methods in the original study were not speci-
fied. First, the details on hyper-parameter settings for the validation procedure,
or for the optimization function are missing. The original study also briefly
mentions that image preprocessing is performed in the validation procedure,
but it does not further elaborate on this. Second, it is unclear how the algo-
rithm’s predictions for diabetic retinopathy or macular edema are interpreted
in case of ungradable images. The image quality grades might have been used
as an input for the network, or the network might be concatenated with an-
other network that takes the image quality as an input. Third, apart from the
main algorithm that detects referable diabetic retinopathy and outputs 4 binary
classifications, other algorithms seem to have been trained as well. An example
is the described algorithm that only detects referable diabetic retinopathy for
gradable images, and an algorithm that detects all-cause referable diabetic
retinopathy, which presents moderate or worse diabetic retinopathy, referable
macular edema, and ungradable images. Details on how these other algorithms
are built are however not reported. It is unclear whether the main network has
been used or if the original study trained new networks. Lastly, the original
paper did not state how many iterations it took for their proposed model to
converge during training, or describe how to find a converging model.

3.4.1 Hyper-Parameters
The main challenge in this replication was to find hyper-parameters, which
were not specified in the original paper, such that the algorithm does not
converge on a local maximum of the validation AUC function. To understand
how we should adjust the hyper-parameters, we measured the Brier score on
the training set and the AUC value on the validation set after each epoch of
training. We observed the following. First, during the first 15 epochs, the AUC
value on the validation set increases and stabilizes at approximately 0.65. From
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then, the validation AUC does not increase, but stays around the same value.
The Brier score measured on the training set gradually decreases, indicating
that the algorithm is learning features from the images in the training set. This
scenario continues for many epochs: the validation AUC stays around 0.65,
with the Brier score of the training set gradually decreasing for every epoch.
After about 50 epochs, the validation AUC decreases again, and the algorithm
clearly overfits on the training data. One possible reason for the algorithm to
not converge may be the dimensions of the fundus images. As the original study
suggests, the original fundus images were preprocessed and scaled down to a
width and height of 299 pixels to be able to initialize the InceptionV3 network
with ImageNet pre-trained weights, which have been trained with images of
299 by 299 pixels. We believe it is difficult for ophthalmologists to find lesions
in fundus images of this size, so we assume the algorithm has difficulties with
detecting lesions as well. [65] also points out this fact, and suggests re-training
an entire network with larger fundus images and randomly initialized weights
instead. And as mentioned before, it seems like the original study extended the
InceptionV3 model architecture for their algorithm to use image gradability as
an input parameter.

3.4.2 Kaggle Images
A potential drawback with the images from Kaggle is that it contains grades
for diabetic retinopathy for all images. We found that 19.9% of these images is
ungradable, and it is thus possible that the algorithm will “learn” features for
ungradable images, and make predictions based on anomalies. This is likely to
negatively contribute to the algorithm’s predictive performance, but we were
not able to show a significant difference of performance between an algorithm
trained on all images and an algorithm trained on only gradable images.

3.4.3 Improvements
We made minor changes to the replicated method. First, we modified the pre-
processing procedure. In the original study the images were scale-normalized,
which we assumed meant normalizing the image values by scaling them down
to being in a range from 0 to 1 [71]. We have seen from many entries in the
Kaggle-competition that as a preprocessing procedure image standardization
was performed, subtracting mean from each image and then dividing by the
standard deviation. Therefore, we attempted to standardize the images instead
of scale-normalizing them, and we re-trained all algorithms. This resulted in a
substantial increase in performance (Figure 3.5 and Table 3.2). Why this small
difference in preprocessing yielded such a large increase in performance is
unclear.
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Second, we re-trained the algorithms with Nesterov’s accelerated gradient
descent instead of stochastic gradient descent. This did however not affect the
performance, but fewer epochs were needed to find the peak validation AUC
value.

3.5 Conclusion
We attempted to replicate the main method from JAMA 2016; 316(22), but
we were not able to get the same performance as reported in that study.
The findings of this replication confirm the need for additional deep learning
replication studies.



4
Scalability Evaluation
4.1 Introduction
To assess resources required to develop and to deploy a deep learning algo-
rithm for automated analyses, we used the deep learning algorithm from the
replication in Chapter 3. We believe that, by scaling out our diabetic retinopathy
detection algorithm, we can make a rough estimation on the resources required
to develop and deploy an algorithm for large-scale screening programs such as
BreastScreen Norway. We compare algorithm training and evaluation on three
test environments. The first environment is a machine with 1 NVIDIA GeForce
GTX 1080 GPU (Deep1). We set results from this environment in contrast with
running the same experiments on the multi-GPUMedsensio1, which consists of 2
NVIDIA GeForce GTX 1080 Ti GPUs, and UNINETT DaaS Cluster, which consists
of 4 NVIDIA Titan X Pascal GPUs in 2 worker nodes. To get an insight into
whether it is worth to invest in a more powerful set-up to conduct algorithm
training or not, we find the training speed given by images per second on all test
environments in our first experiment. In the second experiment, we measured
prediction speed for unseen data, to assess resource requirements for running
a deep learning model in production as a service. In both experiments, we used
the retinal fundus images from our replication. We ran the experiments in
TensorFlow, since we implemented the deep learning algorithm in TensorFlow
as well. We run the benchmark tests non-distributedly for one NVIDIA GeForce
GTX 1080, in parallel for 2 Nvidia GeForce GTX 1080 Ti GPUS, and we run in a
distributed fashion for 3 and 4 NVIDIA Titan X Pascal GPUs.
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Details for Deep1 (NVIDIA GeForce GTX 1080)
Instance Deep1
CPU Intel Core i5-7600K @ 3.80GHz
GPU 1x NVIDIA GeForce GTX 1080
OS Ubuntu 16.04
TensorFlow / CUDA / cuDNN 1.9 / 9.0 / 7
Disk 500 GB HHD

Details for Medsensio1 (NVIDIA GeForce GTX 1080 Ti)
Instance Medsensio1
CPU AMD Ryzen 7 1700
GPU 2x NVIDIA GeForce GTX 1080 Ti
OS Ubuntu 16.04
TensorFlow / CUDA / cuDNN 1.9 / 9.0 / 7
Disk 1 TB SSD

Details for UNINETT DaaS Cluster (NVIDIA Titan X Pascal)
Instance UNINETT DaaS Cluster
CPU Intel Xeon E5-2683 v4
GPU 4x NVIDIA Titan X Pascal (2 per node)
OS Ubuntu 16.04
TensorFlow / CUDA / cuDNN 1.9 / 9.0 / 7
Disk 800 GB local SDD per node

Figure 4.1: Details for test environments on which the benchmarks were run.

TensorFlow supports large-scale, distributed computation operations [5, 72].
TensorFlow’s documentation describes results from their own benchmarks of
parallel and distributed training on data clusters with many GPUs [73]. The
benchmark results have been confirmed independently on other data clusters
like Amazon ec2 [74]. The benchmarks were run with various neural network
architectural models. The InceptionV3 [37] neural network architecture was
trained on data from ImageNet [39]. This is the same architecture we used for
our deep learning algorithm. In the replication repository (see Section 1.3),
we added functionality for the benchmarks to run with the retinal fundus
images and preprocessing used in our replication, since they are different
than ImageNet and its preprocessing. According to the official benchmark
results, training InceptionV3 with ImageNet data on 8 NVIDIA Tesla K80 GPUs
distributedly gives a 7.6x speed-up (30 images/sec on 1 GPU compared to
229 images/sec on 8 GPUs). We therefore expect that distributed training of
InceptionV3 with our retinal fundus images by using 4 NVIDIA Titan X Pascal
GPUs will give a sub-linear speed-up as well.



4.2 EXPER IMENTS 33

Table 4.1: Settings for running the benchmarks on all test environments.

Environment
Training
batch size/GPU

Evaluation
batch size/GPU variable_update

UNINETT DaaS Cluster
(4x NVIDIA Titan X Pascal) 64 256

1,2 GPUs: parameter_server
3,4 GPUs: distributed_replicated

Medsensio1
(2x NVIDIA GeForce GTX 1080 Ti) 32 256 parameter_server

Deep1
(1x NVIDIA GeForce GTX 1080) 32 256 parameter_server

Environment local_parameter_device cross_replica_sync
optimizer
function

UNINETT DaaS Cluster
(4x NVIDIA Titan X Pascal)

1,2 GPUs: cpu
3,4 GPUs: n/a

1,2 GPUs: False
3,4 GPUs: True sgd

Medsensio1
(2x NVIDIA GeForce GTX 1080 Ti) cpu n/a sgd

Deep1
(1x NVIDIA GeForce GTX 1080) cpu n/a sgd

4.2 Experiments
See Table 4.1 for all benchmark settings. In the first experiment, we measured
training speed with 32 images per batch per GPU and stochastic gradient
descent. There are two types of benchmark processes during training and
evaluation: 1) workers, which run the model, send their local gradients to
the parameter servers, and receive updated variables back; and 2) parameter
servers (PS),which host trainable variables and update themwith values sent by
the workers. To run the benchmarks on one and two GPUs on all environments,
we used local parameter servers using the CPU from the same node as the
worker. Since the GPUs reside on the same node, we do not have inter-node
communication. For running the benchmarks with 3 and 4 GPUs on UNINETT
DaaS Cluster, the training needs to be split on at least two nodes, since one
single node on this cluster has 2 GPUs. Distributed training can be conducted
in several ways. The most common approach, and the approach we used, is
data parallelism (between-graph replication in TensorFlow). Each node has an
instance of the model and reads different training samples. To reduce overhead
of inter-node network communication, each node ran both a parameter server
and a worker.

The second experiment measures prediction speed in images per second. A
deployed model can either evaluate unseen data in batches or real-time. For
evaluation in batches, we used a batch size of 256. To assess maximum real-time
evaluation performance, we used a batch size of 1, on 1 GPU, to simulate a
deployed model serving many independent evaluation requests. We extended
this experiment by measuring the performance on 1 CPU only.
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Training andbatch prediction speed are presented in Figure 4.2a andFigure 4.2b.
See Figure 4.3a for benchmarks results for real-time prediction speed. Each
experiment was run 5 times and then the times were averaged together.

To verify that the added functionality for running the TensorFlow benchmarks
with the retinal fundus data run correctly, we compared our benchmark results
to results from running the original benchmarks with synthetic ImageNet
data. The synthetic data is a set of estimated ImageNet data. The official
TensorFlow benchmarks were run with synthetic data to remove disk I/O and
input pipeline (to read data from disk) as a variable and to set a baseline for
the other benchmark results.

4.3 Discussion
The benchmark results show (sub)linear speed-ups for algorithm training with
multiple GPUs (see Figure 4.2a). Scaling up the number of GPUs on a single
node from 1 to 2 GPUs gave on average a nearly linear speed-up of 1.95
times (1.93 times on UNINETT DaaS and 1.97 times on Medsensio1). Moreover,
distributing the workload on multiple nodes in the UNINETT DaaS Cluster
resulted in a speed-up of 2.58 times on 3 GPUs, and 3.36 times on 4 GPUs. By
experimenting with various settings, we observed that running the training
benchmarks on 4 nodes with 1 GPU each yielded a higher performance than
running the benchmarks on 2 nodes with 2 GPUs each. Speed-up was reduced
when running the benchmarks in a distributed manner on multiple nodes due
to inter-node communication overhead.

The benchmark results show that it is useful to have multiple GPUs available
when evaluating data in batches (see Figure 4.2b). Scaling up from 1 to 2
GPUs for batch evaluation resulted in sublinear speed-ups, with an average
speed-up of 1.78 times (1.91 times on UNINETT DaaS and 1.65 on Medsensio1).
For real-time evaluation, we measured performance only for 1 GPU to simulate
real-time mass-evaluation of single images (see Figure 4.3a). These results
show that real-time evaluation performs similarly for all GPU types. Real-time
evaluation performance on 1 CPU only was also measured. However, only the
AMD Ryzen 7 1700 CPU (Medsensio1) was able to run the benchmarks.

Figures 4.3b, 4.4a, and 4.4b point out that similar performance is reached
for running the benchmarks with retinal fundus data and synthetic data. As
expected, when a larger amount of data is evaluated, the disk I/O and input
pipeline overhead becomes visible. Overall, the results show minimal differ-
ence between the two types of data, meaning that our retinal fundus data
benchmarks yield accurate results.
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(a) Parallel and distributed training speed.

(b) Batch evaluation (prediction) speed.

Figure 4.2: Training (a) and evaluation (b) performance on UNINETT DaaS Cluster,
Medsensio1 and Deep1 GPUs. The number of GPUs are presented from left
to right, from 1 to a maximum of 4 GPUs.
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(a) Real-time evaluation (prediction) speed on 1 GPU or 1 CPU on all environments.
However, only the AMD Ryzen 7 1700 CPU (Medsensio1) was able to run the
benchmarks.

(b) Comparison of real-time evaluating retinal fundus data and synthetic ImageNet
data on 1 GPU.

Figure 4.3: Real-time evaluation performance (a), and comparing evaluation perfor-
mance with retinal fundus data and synthetic ImageNet data (b).



4.3 DISCUSS ION 37

(a) Comparison of training with retinal fundus data and synthetic ImageNet data on
1 and 2 GPUs.

(b) Comparison of batch evaluating retinal fundus data and synthetic ImageNet data
on 1 and 2 GPUs.

Figure 4.4: Comparisons of training (a) and evaluation (b) of retinal fundus images
from our replication and synthetic ImageNet data.
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4.4 Conclusion
The benchmark results show that training and batch evaluation can be effec-
tively scaled out to multiple GPUs to gain (sub)linear speed-ups. It is further
shown that lower-performance GPUs and even CPUs with high enough specifi-
cations are sufficient to run real-time evaluation.

With our results of running benchmarks in our diabetic retinopathy algorithm,
we can assess the time and resources needed to train a deep learning algorithm
with data from BreastScreen Norway. To be able to make an estimation, we
assume that the neural network of the breast cancer detection algorithm has
the same amount of layers and parameters as in our diabetic retinopathy
detection algorithm. A larger neural network would likely consume more time
to train. In addition, we assume that the image dimensions are the same (299
by 299 pixels). To find an estimation of the amount of hours needed to train
an algorithm, the following function can be used:

hourstrain ≈
epochs · imaдes

imaдes/sec · 3600
(4.1)

By using 4 GPUs, which have shown to be able to train 461 images per second,
training our diabetic retinopathy algorithm with 43 688 images in 100 epochs
would take less than 3 hours. Following this function and taking in mind
our assumptions, 100 epochs of training a deep learning algorithm for breast
cancer detection with 280 000 images from BreastScreen Norway will take
approximately 17 hours. If 2 GPUs were used instead of 4, training would take
approximately 30 hours instead. If a time constraint would be to train one
model in 24 hours, training with 4 GPUs (or more) is recommended. However,
if only 4 GPUs are available and two models need to be trained in parallel, for
example to create an ensemble for improved performance, it is recommended to
train each model with 2 GPUs, due to higher relative speed-up on 2 GPUs.

Our experiments have also shown that all GPUs can yield a visually instant
prediction for diabetic retinopathy for one retinal fundus image (in approx-
imately 16 milliseconds), despite the specification differences between the
various types of GPUs. High-performance CPUs, like AMD Ryzen 7 1700, have
shown to be able to perform real-time evaluation as well, but they perform
significantly worse than GPUs due to demanding I/O operations and input com-
putations performed on the CPU. Because low-performance GPUs are cheaper
than high-performance CPUs, we recommend the former, to use for performing
and scaling out biomedical deep learning analyses.



5
Conclusion
As a first step towards automated analyses for BreastScreen Norway, to develop
a deep learning algorithm, we need to extract mammograms from a pacs
at the University Hospital of North Norway (UNN). Before extraction, the
mammograms must be anonymized. We therefore wrote an extraction and
anonymization script, which is being authorized and finalized by Helsenord IKT.
Because of the lengthy application process, we did not get the mammograms
in time for this project.

Since we did not have a public mammogram data set we could use to de-
velop a breast cancer detection algorithm, we instead developed an algorithm
that detects diabetic retinopathy, which is a similar screening problem in the
biomedical field. Because, in general, designing a model architecture for a deep
learning algorithm from scratch is complicated, we attempted to replicate a
method from a high-impact article published in JAMA. We showed that this
method is non-replicable due to missing details in the reported methodology,
and the usage of different data to develop the algorithm. Our concern of chal-
lenges in replication of studies in the biomedical industry is supported by other
literature. We believe that replication challenges like we had, are likely to
occur when replicating methods from articles that state high-performance of
breast cancer detection algorithms as well. In the end, we introduced some
improvements to the algorithm by changing the data preprocessing methods.
This amplifies the suggestion of that the article’s methodology misreported
some details, but we cannot say this for certain. All in all, we have demonstrated
the importance of replication studies, suggesting to publish the source code
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and used data, so that other researchers can verify the results.

We used the diabetic retinopathy detection algorithm as a candidate to be
deployed for automated analyses, and we assess the resources necessary to
train the algorithm and run evaluation or analyses of unseen data on a larger,
national (Norwegian) scale. To orchestrate this, we gained access to several
environments with varying GPU set-ups. Our benchmark results have shown
that training the algorithm can be effectively scaled out to many GPUs to gain
sublinear training speed-ups, suggesting that training of a breast cancer detec-
tion algorithm can be performed in less than 17 hours with 4 GPUs. Moreover,
additional experiments show that data evaluation that is done batch-wise also
benefits sublinear speed-ups on many GPUs, and the higher performance one
GPU has, the higher the total performance becomes. However, our results have
shown that real-time analyses do not especially benefit from being run on high-
performance GPUs, and that lower-performance GPUs are sufficient for this task,
with visually instant prediction times of approximately 16 milliseconds.

5.1 Future Work
We make some suggestions for the breast cancer detection algorithm to be
developed when the anonymized mammograms have been extracted. We also
propose some literature to examine further.

The DREAM challenge [58] formalizes the breast cancer screening problem by
stating that out of every 1000 people screened, only 5 will have breast cancer,
but 100 are recalled for further testing. In Norway, 8 out of 1000 people screened
will have breast cancer, but 30 are recalled for testing. The objective is thus to
reduce the amount of false positives in screening. Hence, we suggest to start by
investigating earlier attempts that report methods for developing a detection
algorithm. There are numerous articles that report a deep learning approach to
reduce false positives in breast cancer screening [75, 76, 77, 78, 79, 80, 81, 82,
83, 84]. There are also other approaches that involve a deep learning approach
with different data, however with the same goal of reducing false positives
[85, 86, 87, 88]. A review study that gathers various deep learning approaches
for this problem has been published as well [89]. Furthermore, [90] proposes
a breast cancer localization algorithm. [91] describes other machine learning
approaches for classifying mammograms. [92, 93] publish general insights
into deep learning approaches and learning problems from the biomedical
industry. Other automated breast cancer detection methods are also described
[94, 95, 96, 97, 98, 99], and give insights into how a deep learning algorithm
should function. Lastly, [100, 101, 102] present background information and
statistics regarding breast cancer.
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To develop the deep learning algorithm, we suggest exploring earlier and
particularly the latest approaches. For instance, studying approaches from
the Kaggle competition was an efficient way to learn how to develop a deep
learning algorithm for diabetic retinopathy detection. Similarly, one could study
and get inspired by approaches used in the DREAM challenge. Ideally, some
submissions include a link to their source code, which can be used to quickly
verify their algorithm and results. Submissions that only include a report may
be replicated. The mammography data set from UNN is estimated to contain
files from 70 000 screenings, with each screening providing 4 DICOM files.
Machine learning frameworks are usually not able to use DICOM files as an
input for a computational pipeline, so the data needs to be converted to a
usable image file format. The DICOM images can for instance be converted to
JPEG, and be resized to a width and height of 512 pixels, which we think is
large enough for breast cancer detection. To optimize for disk I/O operations
and input pipeline, we recommend to convert the data set to a special data
format. In TensorFlow this format is TFRecord, and can be elegantly used
with their Dataset API. Also, images and grades preprocessing should be done
before training. Moreover, in our replication, we learned that small changes
in preprocessing can affect the resulting performance drastically. We therefore
recommend to experiment with various preprocessing methods, and to try to
understand why some methods work better than others. Look into how outliers
in the data affect the data after normalization. Even though we have not been
able to show this ourselves, the quality of the data, including the quality and
quantity of grades (annotations), also seem to be important factors. When
new data from the Cancer Registry becomes available to use for algorithm
development, we suggest to fine-tune the algorithm model on the new data,
until a certain validation threshold has been reached. Repeat this process for
all subsequent new data, but avoid training on validation data. To evaluate the
algorithm, independent data should be used, and preferably from a different
screening. In addition to the data from the DREAM challenge, publicly available
mammography databases can be used for algorithm evaluation [103].

The developed algorithm can be deployed in various ways. For real-time anal-
yses we suggest to deploy the algorithm in the form of a web service, which
assigns prediction tasks to one of a set of GPUs. We found that low-performance
GPUs are sufficient and cost-effective for real-time evaluation. If necessary, scale
out the number of GPUs and web service servers to balance the load. If data
does not need to be analyzed real-time, we recommend to perform the analyses
on a multi-GPU cluster, depending on the extent to what time constraints apply,
and the amount of data that needs to be evaluated. We believe TensorFlow-
Serving [104] is a promising tool to use for algorithm deployment for both batch
and real-time evaluation. However, what deployment tools are eligible depend
entirely on the framework used for algorithm training, as other frameworks
typically offer different solutions.
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