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CONFORMAL DIFFERENTIAL INVARIANTS

BORIS KRUGLIKOV

Abstract. We compute the Hilbert polynomial and the Poincaré
function counting the number of fixed jet-order differential invari-
ants of conformal metric structures modulo local diffeomorphisms,
and we describe the field of rational differential invariants separat-
ing generic orbits of the diffeomorphism pseudogroup action. This
resolves the local recognition problem for conformal structures.

Introduction

Differential invariants play a central role in the classification prob-
lems of geometric structures. Often the fundamental invariants have
tensorial character, but for resolution of the equivalence problem scalar
invariants are required to be derived from those.
For instance, the fundamental invariant of a Riemannian metric g on

a manifoldM is the Riemann tensor Rg ∈ Γ(Λ2T ∗M⊗so(TM)). Scalar
differential invariants are Weyl curvature invariants [15], separating
generic orbits of the diffeomorphism pseudogroup G = Diff loc(M) act-
ing on the space of jets of metrics J∞(S2

ndgT
∗M), where S2

ndgT
∗M is the

complement in S2T ∗M to the cone of degenerate quadrics, and they
are obtained by contractions of the tensor products of the covariant
derivatives of the curvature tensor Rg. Their number depending on the
jet-order was computed by Zorawski [16] and Haskins [5], see also [14].
In this paper we do the same for conformal metric structures (M, [g])

of arbitrary signature in dimensions n = dimM > 2. Notice that for
n = 2 the conformal group is too large and, due to Gauß theorem
on existence of isothermal coordinates, there are no local invariants of
conformal structures, and hence no differential invariants in 2D.
The fundamental invariants C of the conformal structure are the

Cotton tensor for n = 3 and the Weyl tensor for n > 3. Similarly to
Weyl scalar invariants for Riemannian metrics, one could expect scalar
invariants to be derived from the fundamental tensor invariants, and
this was done in [3, 1, 4], and will be discussed in the next section.
These scalar invariants are however defined on the (proper jet-lift of
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metric structure, Hilbert polynomial, Poincaré function.
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2 BORIS KRUGLIKOV

the) ambient space M̂ to ourM , dim M̂ = n+2, so that the constructed
scalars are covariants rather than invariants.
There is however an easy approach to construct differential invari-

ants for generic conformal structures. It is based on the folklore result
that in the domain U ⊂ M , where ‖C‖2g 6= 0 for some (and hence any)
representative g ∈ [g], one can uniquely fix (actually up to ± if the
signature is split) a metric g0 in the conformal class [g] by the nor-
malization ‖C‖2g0 = ±1 (the sign is always + in the Riemannian case,
but can be any in the indefinite case). Then the conformal invariants
are derived from the (pseudo-)Riemannian metric ones (Weyl curvature
invariants or those from [7, 10]).
This however does not yield the number1 of scalar differential in-

variants Hn(k) depending on the jet-order k (we count so-called ”pure
order”, see below). The classical approach to computing these num-
bers is the Lie method of elimination of group parameters (or algebra
parameters), see [5, 16, 12]. This involves calculation of ranks of large
matrices. Instead we rely on some simple algebraic ideas and compute
the Hilbert polynomial Hn(k), the first values of which are given below:

n \ k 1 2 3 4 . . . k

3 0 0 1 9 . . . k2 − 4

4 0 3 36 91 . . . 1
6
(k + 2)(k + 3)(5k − 7)

5 0 24 135 350 . . . 1
24
(k + 2)(k + 3)(k + 4)(9k − 11)

Then we derive the Poincaré function encoding these numbers. We
also indicate a different set of conformal differential invariants, now
rational, and describe the field they generate.

1. The algebras and fields of differential invariants

The scalar conformal invariants mentioned in the introduction are
constructed via the ambient metric construction of Fefferman and Gra-
ham [3] roughly as follows. Consider the bundle M̄ = M × R+ over
M consisting of all representatives g of [g] with its natural horizontal
metric ḡ (tautological structure: ḡg = g ◦ dgπ, where π : M̄ → M),

and let M̂ = M̄ × (−1, 1). The ambient metric ĝ is R+-scaling weight

2 homogeneous Ricci flat Lorentzian metric on M̂ restricting to ḡ on
M̄ × {0}. This exists on the infinite jet of M̄ × {0} ⊂ M̂ for odd n,

1We have to fix the signature (p, q) of [g], p+ q = n. The formulas for invariants
vary a bit with this (p, q), but the number of invariants depends only on n.
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and up to order n/2 for even n. Taking the Weyl metric curvature
invariants of ĝ yields scalar invariants of [g], which give a complete set
of polynomial invariants2 for odd n and the same to a finite order for
even n, see [1, 4]. The definite advantage of these invariants is that
they are defined for all conformal structures.
There are however two basic problems with these ambient Weyl con-

formal invariants, similar to the classical Weyl metric curvature invari-
ants. First of all, the algebra generated by these polynomial invariants
is not finitely generated. Secondly, it is not apriori clear which of these
differential invariants are separating for the orbits of the diffeomor-
phism pseudogroup action (on infinite or any finite jet-level).
The second problem is solved by passing to rational differential in-

variants: since the action is algebraic, its prolongations are algebraic
too [9], and in any finite jet-order there exists a rational quotient by
the action due to the Rosenlicht theorem [13]. From this viewpoint
the field F of rational differential invariants is useful and simpler. The
invariants obtained in this way will be presented below.
The first problem is a bit more complicated, as it is clear that the

transcendence degree trdeg(F) = ∞, so just passing to rational invari-
ants does not resolve infinite generation. In the early days of differential
invariants theory it was suggested and motivated by Sophus Lie and
Arthur Tresse that the algebra of differential invariants is generated by
a finite number of differential invariants I1, . . . , It and a finite number
of invariant derivations ∇1, . . . ,∇s. This was later proved in several
versions, see [9] and the references therein.
In more details, consider the algebra Al of differential invariants that

are rational by the jets of order ≤ l and polynomial by the jets of higher
order (l is determined by the structure in question, we will see that in
the case of conformal structures l = 4 for n = 3 and l = 3 for n > 3).
This Al is called the algebra of rational-polynomial invariants.
The main result of [9] states that Al is finitely generated by Ii,∇j,

i.e. any differential invariant from Al is a polynomial of∇JIi for ordered
multi-indices J = (j1, . . . , jr) with rational coefficients of Ik.
Now the field of rational differential invariants F is generated by Al

for some l, and so is also finitely generated in the Lie-Tresse sense as
above. The algebra Al separates the orbits of the G-action on the space
of jets of conformal structures J∞(CM), where

CM = S2
ndgT

∗M/R+,

2When we write ”polynomial” here and beyond we mean only with respect to
jets of order > 0, allowing division by the determinant of g everywhere.
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and we get a finite separating set of invariants∇JIi, |J | ≤ k−deg(Ii) for
the restriction of the action on Jk. Thus we obtain a set of generators
for the field Fk of rational invariants of order k that filter the field F.

2. Scalar invariants of conformal metric structures

Let us generate conformal differential invariants of generic conformal
structures [g]. This will in turn generate rational differential invariants
on the space of jets of all conformal structures J∞(CM).
We begin with the case n ≥ 4. Since there are no metric invariants

of order < 2, there are no conformal invariants of lower order too. The
lowest order conformal invariants live in 2-jets. It is well-known that the
complete invariant there is the conformal Weyl tensor C, considered as
a (3, 1) tensor. Indeed, the only invariant of the 2-jet of a Riemannian
metric g is the Riemann curvature tensor Rg (due to existence of normal
geodesic coordinates), and conformal re-scalings of g leave invariant
only the Weyl part of it [2].
The space of conformal Weyl tensors W (at one point) has dimension

dimW = 1
12
(n− 3)n(n+ 1)(n + 2), the conformal linear group CO(g)

acts effectively on W, and so the codimension of a generic orbits equals

Hn(2) = dimW − dimCO(n) = 1
12
(n4 − 13n2 − 12).

Since CO(g) = SO(g)×R+ is a reductive Lie group acting in algebraic
manner on W, the Hilbert invariant theorem [6] implies existence of
invariants separating generic orbits.
Moreover, SO(g)-invariants can be taken to be polynomial, but pres-

ence of R+-factor compels to extend to rational invariants (in this case,
however dividing by the determinant of metric is enough). The geo-
metric invariant theory [11] provides a method to construct these, and
we can choose among them Hn(2) functionally independent invariants
separating orbits on a Zariski open set in W.
Let us indicate first how to construct non-algebraic invariants, that

are obtained by a finite algebraic extension. Consider a generic element
C ∈ W, at this point meaning only ‖C‖2g 6= 0. Fix a metric g0 ∈ [g]

by the condition ‖C‖2g0 = ±1. Then we can convert C to a (2, 2) ten-
sor, interpreted as a linear map C : Λ2T → Λ2T , where T = TaM
is the tangent space to M at the considered point a. This map is g-
symmetric, traceless and has unit norm. Therefore its spectrum gives
d =

(

n
2

)

− 2 real scalar invariants λ1, . . . λd (alternatively, pass to al-
gebraic invariants Tr(C i), 1 < i ≤ d + 1). Notice that the spectrum
Sp(C) is simple for C from a Zariski open set in W.
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Let σi ∈ Λ2T be the eigenvectors corresponding to λi, normalized by
the condition3 ‖σi‖

2
g0
= ±1 (the sign again can be arbitrary in the case

of indefinite signature of [g]; our genericity assumption implicity implies
that ‖σi‖

2
g0

6= 0, so σi can be rescaled to get the desired normalization).

Then the operators Ai = g−1
0 σi carry a lot of invariants, for instance

Tr(Aσ) for Aσ = Ak1
1 · · ·Akd

d when σ = (k1, . . . , kd), and we can extract
Hn(2) independent among them.
Let us also notice that the normalized eigenbases of one these ope-

rators Aσ give us a canonical frame e1, . . . , en (provided that one of
them has simple spectrum - this is yet another requirement for C being
generic). This frame depends on the 2-jet of a conformal structure.

Remark . The skew-symmetric operators Ai have purely imaginary
spectrum, so one has to consider their products, or work in complex-
ification and take the real parts, to derive non-trivial real invariants.
The case n = 4 is however an exception (n = 3 is an exception too, to
be considered later).
In this case, due to exceptional isomorphism so(4) = so(3) ⊕ so(3),

the algebra of operators is the sum of these two algebras, interpreted as
the action of unit purely imaginary quaternions S2 ⊂ ImH from left and
right on H. Denote these operators by J left

i and J right
i , i = 1, .., 3. They

are in quaternionic relations and the left ones commute with the right
ones. The operators Bi = J left

i ·J right
i have Sp(Bi) = {±1,±1}, and the

corresponding eigenspace decomposition is T = Π−
i ⊕Π+

i , dimΠ±
i = 2.

The intersections Π±

i ∩ Π±

j yield the splitting of T into direct sum of
4 lines, whence the frame e1, . . . , e4 obtained by g0-normalization (a
residual finite symmetry related to numeration of ei and change of sign
remains here, but can be eliminated on further steps).

Writing the canonical representative g0 ∈ [g] in this frame we obtain
all other differential invariants. This can be formulated in the frame-
work of Lie-Tresse theorem, since ∇j = Dej (horizontal lift to J∞)
form the basis of invariant derivations, and we can choose Ii among
the second order invariants already constructed.
Now we achieve algebraicity as follows. The algebraic extension is

given by variables y1, . . . , yp that are in algebraic relations with vertical
coordinates on the space J2(CM). These enter both Ii and ∇j , but the
derived differential invariants ∇JIi are algebraic by higher order jets.
Considering the algebra of invariants generated by these on both second
and higher jets, we can eliminate (for instance, via a Gröbner basis)

3Here for σi as well as before for g0 a possible freedom of the sign choice is hidden.
This can be locked, but we prefer to ignore it for simplicity of the exposition.
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the y-variables and get a system of separating algebraic invariants that
generate the fields Fk for k = 2 and k > 2 by the Rosenlicht theorem.
We can also eliminate y-parameters in the coefficients of∇i = κj

iDj (by
taking linear combinations with invariant coefficients) to have rational
invariant derivations.
It is not difficult to see (it also follows from considerations in the next

section) that the denominators in the rational differential invariants can
be chosen supported in the 3rd jets for n > 3, and in the 4th jets for
n = 3. Hence we can take l = 3 in the algebra Al of rational-polynomial
invariants discussed in the previous section for n > 3, and l = 4 for
n = 3. This establishes the following statement for n ≥ 4.

Theorem 1. The algebra Al of rational-polynomial invariants for l =
3 + δn3 as well the field F of rational differential invariants of con-
formal metric structures are both generated by a finite number of (the
indicated) differential invariants Ii and invariant derivations ∇j, and
the invariants from this algebra/field separate generic orbits in J∞(CM).

Let us consider now the exceptional case n = 3 and justify the above
theorem in this case. There are no conformal invariants in 3D of order
2, and all differential invariants of order 3 are derived from the Cotton
tensor C considered as (3, 0) tensor. The space of Cotton tensors has
dimension 5, is acted upon effectively by CO(g) of dimension 4, so the
generic orbit has codimension H3(3) = 1 (this fact was also checked
independently by a straightforward computation in Maple).
For generic C we have ‖C‖2g 6= 0, and so we can fix the metric

representative g0 ∈ [g] by ‖C‖2g0 = ±1. Then we convert C, using the
Hodge ∗-operator of g0, to the (1, 1) Cotton-York tensor C : T → T .
Again by genericity the spectrum Sp(C) = {λ1, λ2, λ3} is simple, and
the relations

∑

λi = 0, max |λi| = 1 yield precisely one scalar invariant
of order 3; we can take, for instance, the polynomial invariant Tr(C2).
In addition, we have the (g-normalized) eigenbasis e1, e2, e3 (that

depends on the 3-jet of generic conformal structures). This produces
invariant derivations ∇1,∇2,∇3, as before, and writing g0 in this frame
we get all 4th and higher order differential invariants Ii sufficient for
Lie-Tresse generating property. These invariants will be indeed sepa-
rating, and eliminating non-algebraicity as before, we derive the fields
of rational invariants Fk with ∪kFk = F.

3. Stabilizers of generic jets

Our method to compute the number of independent differential in-
variants of order k follows the approach of [10]. We will use the jet-
language from the formal theory of PDE, and refer the reader to [8].
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Fix a point a ∈ M . Denote by Dk the Lie group of k-jets of dif-
feomorphisms preserving the point a. This group is obtained from
D1 = GL(T ) by successive extensions according to the exact 3-sequence

0 → ∆k −→ Dk −→ Dk−1 → {e},

where ∆k = {[ϕ]kx : [ϕ]k−1
x = [id]k−1

x } ≃ SkT ∗ ⊗ T is Abelian (k > 1).

Denote VM = T vert
[g] (CM) the tangent to the fiber of CM .

Lemma 2. The following is a natural isomorphism:

VM = Endsym
0 (T ) = {A : T → T | g(Au, v) = g(u,Av),Tr(A) = 0}.

Proof. For a curve [g + ǫ σ] = [g(1+ ǫ g−1σ)] in CM let us associate to
its tangent vector the endomorphism A = g−1σ − 1

n
Tr(g−1σ)1. Since

1+ǫg−1σ =
(

1+ ǫ
n
Tr(g−1σ)

)

1+ǫA =
(

1+ ǫ
n
Tr(g−1σ)

)

·
(

1+ ǫn
n+ǫTr(g−1σ)

A
)

removal of the trace part of σ (equivalent to conformal rescaling of
the representative) is in the kernel of this map. Since A is obviously
g-symmetric (for any representative g), this map is the required iso-
morphism. �

Thus the symbol of the bundle Jk(CM) is

gk = Ker[dπk,k−1 : TJ
k(CM) → TJk−1(CM)] = SkT ∗ ⊗ VM .

The differential group Dk+1 acts on Jk
a (CM), and hence ∆k+1 acts on gk.

Let ak ∈ Jk
a (CM) be a generic point. The next statement is obtained

by a direct computation of the symbol of Lie derivative.

Lemma 3. The space ∆k+1 · ak ⊂ gk is the image Im(ζk) of the map
ζk that is equal to the following composition

Sk+1T ∗ ⊗ T
δ

−→ SkT ∗ ⊗ (T ∗ ⊗ T )
1⊗Π
−→ SkT ∗ ⊗ VM .

Here δ is the Spencer operator and Π : T ∗ ⊗ T → VM ⊂ T ∗ ⊗ T is the
projection given by

〈p,Π(B)u〉 = 1
2
〈p, Bu〉+ 1

2
〈u♭, Bp♯〉 − 1

n
Tr(B)〈p, u〉,

where u ∈ T, p ∈ T ∗, B ∈ T ∗⊗T are arbitrary, 〈·, ·〉 denotes the pairing
between T ∗ and T , and we use the musical isomorphisms ♭ (flat) and
♯ (sharp) that depend on the choice of representative g ∈ [g], but the
right-hand side is independent of it. In the index notations:

Π(B)ij =
1
2
(Bi

j + gikBl
kglj)−

1
n
Bk

kδ
i
j .
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One should, of course, check that the image of Π belongs to VM , but
this is straightforward. Recall that i-th prolongation of a Lie algebra
h ⊂ End(T ) is defined by the formula h(i) = Si+1T ∗⊗T ∩SiT ∗⊗h. As
is well-known, for the conformal algebra of [g] of any signature (p, q),
n = p+ q > 2, it holds: co(g)(1) = T ∗ and co(g)(i) = 0 for i > 1.

Lemma 4. We have: Ker(ζk) = 0 for k > 1.

Proof. If ζk(Ψ) = 0, then δ(Ψ) ∈ SkT ∗ ⊗ co(g), where co(g) ⊂ End(T )
is the conformal algebra. This means that Ψ ∈ co(g)(k+1) = 0, if k > 1.
Thus we conclude injectivity of ζk. �

Denote by Stk ⊂ Dk+1 the stabilizer of a generic point ak ∈ Jk
a (CM),

and by St0k its connected component of unity. Then Lemma 4 implies
that ∆k+1 ∩ Stk = {e} for k > 1, so the projectors ρk+1,k : Dk+1 → Dk

induce the injective homomorphisms Stk → Stk−1 and St0k → St0k−1.
The stabilizers of low order (for any n ≥ 3) are the following. For

any a0 ∈ CM its stabilizer is St0 = CO(g). Next, the stabilizer St1 ⊂ D2

of a1 ∈ J1(CM) is the extension (by derivations) of St0 by co(g)(1) =

T ∗
ι
→֒ ∆2, where ι : T ∗ → S2T ∗ ⊗ T is given by

ι(p)(u, v) = 〈p, u〉v + 〈p, v〉u− 〈u♭, v〉p
♯,

for p ∈ T ∗, u, v ∈ T , or by using indices: ι(p)jkl = pkδ
j
l + plδ

j
k − gijpigkl.

In other words, we have St1 = CO(g)⋉ T .
Notice also that for n = 3 due to absence of second order differential

invariants and equality dim∆3 = dim g2 we have St02 = St01. Then by
dimensional reasons St2 for n ≥ 4 and St3 for n = 3 are nontrivial
(dimD3 > dim J2

a(CM)−Hn(2) for n > 3, resp. dimD4 > dim J3
a (CM)−

H3(3) for n = 3).

Lemma 5. If k ≥ 3, n ≥ 4 of if k ≥ 4, n = 3, then St0k = {e}.

Proof. In Section 2 we constructed a canonical frame e1, . . . , en on T
depending on (generic) jet ai ∈ J i(CM), where i = 2 for n > 3 and
i = 3 for n = 3. In other words, we constructed a frame on the bundle
π∗
i TM over a Zariski open set in J i(CM).
The elements from St0i shall preserve this frame. Since St0i ⊂ St1 =

CO(g)⋉ T this eliminates the liner conformal freedom (first factor).
Choosing a point ai+1 ∈ π−1

i+1,i(ai) ∈ J i+1(CM) the elements of St0i+1 ⊂
St1 should also stabilize 1-jet of this frame (realized via the canonical
lift L(ai+1) ⊂ TaiJ

i(CM) of T = TaM), and this eliminates the remain-
ing freedom co(g)(1) = T , yielding St0i+1 = 0 (we take the connected
component because of the undetermined signs ± in the normalizations
above). Hence the stabilizers St0k for k ≥ i+ 1 are trivial as well. �
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4. Hilbert polynomial and Poincaré function

Now we can compute the number of independent differential invari-
ants. Since G acts transitively on M , the codimension of the orbit of
G in Jk(CM) is equal to the codimension of the orbit of Dk+1 in Jk

a (CM)
(where a ∈ M is a fixed point). Denoting the orbit of G through a
generic point ak ∈ Jk

a (CM) by Ok ⊂ Jk
a (CM) we have:

dim(Ok) = dimDk+1 − dimStk .

Notice that

codim(Ok) = dim Jk
a (CM)− dim(Ok) = trdeg Fk

is the number of functionally (or, in our context, algebraically) inde-
pendent scalar differential invariants of order k.
The Hilbert function is the number of “pure order” k differential in-

variants Hn(k) = trdeg Fk− trdeg Fk−1. It is known to be a polynomial
(we refer to [9] for the proof in our context), so we will refer to it as
the Hilbert polynomial.
The results of Section 3 and the formulae above allow to compute

the values Hn(k), giving the table in the introduction.

Theorem 6. For n > 3 the number of ord=2 differential invariants is

Hn(2) =
1
12
(n4 − 13n2 − 12),

the number of “pure” order 3 differential invariants is

Hn(3) =
1
24
n(n4 + 2n3 − 5n2 − 14n− 32),

and the number of “pure” order k > 3 differential invariants is

Hn(k) =
n(k − 1)

2

(

n+ k − 1

k + 1

)

−

(

n + k − 1

k

)

.

For the exceptional case n = 3 we have:

H3(3) = 1, H3(4) = 9, and H3(k) = k2 − 4 for k ≥ 5.

Notice that Hn(k) ∼
n2−n−2

2
1

(n−1)!
kn−1, which confirms the (obvious)

fact that moduli of conformal structures are parametrized by
(

n
2

)

− 1
functions of n arguments.

Proof. From Lemma 5 we have: Hn(3) = dim J3
a (CM)−dimD4−Hn(2)

for n ≥ 4 and H3(4) = dim J4
a(CM)− dimD5 −H3(3) for n = 3. These

numbers are positive, and we have by Lemma 5: Hn(k) = dim gk −
dim∆k+1 for k > 3, n ≥ 4 and for k > 4, n = 3. �
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The Poincaré function is the generating function for the Hilbert poly-
nomial, defined by Pn(z) =

∑∞

k=0Hn(k)z
k. This is a rational function

with the only pole z = 1 of order equal to the minimal number of
invariant derivations in the Lie-Tresse generating set [9].
Depending on dimension n > 2 the Poincaré functions are:

P3(z) =
z3(1 + 6z − 3z2 − 5z3 + 3z4)

(1− z)3
,

P4(z) =
z2(3 + 24z − 35z2 + 8z3 + 9z4 − 4z5)

(1− z)4
,

P5(z) =
z2(24 + 15z − 85z2 + 74z3 − 10z4 − 14z5 + 5z6)

(1− z)5
.

Pn(z) =
(n+ 1)nz − 2(n+ z)

2z(1− z)n
+ n

(1

z
+ z − z3

)

+
(

(

n
2

)

+ 1
)

(1− z2).

5. Conclusion

We have described the lowest degree differential invariants: 1 invari-
ant I1 of order k = 3 for n = 3, 3 invariants I1, I2, I3 of order k = 2 for
n = 4, etc. How to see the next invariants of order (k + 1)?
For n = 3 there are 9 differential invariants of “pure” order 4. They

can be extracted from ∇j(I1) (∇j = êj) and the structure constants ckij
given by [ei, ej ] = ckijek. This gives 3 + 9 > 9 invariants of order 4.

For n = 4 we can take ∇j(Ii), structure constants ckij , but we can

also add the Christoffel symbols Γk
ij of the Levi-Civita connection of

the normalized metric g0 in the basis {ei} as invariants of order 3. This
gives 12 + 24 + 40 > 36 invariants of order 3.
However the amount of invariants obtained in this way exceeds the

number of the independent invariants we have found. This is because
there exist algebraic relations between them (like differential Bianchi’s
identity). In terms of Lie-Tresse representation of invariants, these
relations are called differential syzygies. The important problem of
understanding these syzygies remains open.
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Mathématiques d’Adjourd’hui, Astérisque, 95-116 (1985).
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