
Faculty of Science and Technology
Department of Computer Science

Metrix: Real-time Analysis of Physical Performance Parametersin Elite Soccer
—
Kim Hartvedt Andreassen
INF-3981 Master’s Thesis in Computer Science, June 2018

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“I have not failed. I’ve just found 10,000 ways that won’t work.”
–Thomas A. Edison

“I’ll create a GUI interface using Visual Basic to see if I can track an IP address.”
–CSI: New York

Abstract
In recent years, technology has had a vast impact on the sports industry,
particularly in soccer. Elite soccer teams utilize digital information systems to
quantify performancemetrics, in order to assess their strengths andweaknesses.
Applied methods mostly rely on post-game analytics, allowing coaches to
review games in retrospect and implement corrections to their team thereafter.
However, this method is inadequate in its ability to provide immediate feedback
for coach intervention during match or training.

This thesis presents Metrix, a computerized toolkit for coaches to monitor their
players during match or practice. The system performs real-time analysis on
captured sensor data, used to quantify specific movement patterns of players
during games. Performance parameters are instantly available to coaches
through the Metrix client, accessible on the field through their mobile devices.
Metrix provides coaches with a toolkit to individualize training load to different
playing positions on the field, or to the player himself.

Metrix is developed for, and in close collaboration with, the coaches in the elite
soccer club Tromsø Idrettslag (til). The functionalities our system provides
are implemented based on their specified requirements, and further customized
to their needs.

This thesis describe the requirement, design and implementation of Metrix.
We evaluate the performance of our system, as well as its usefulness to our
end-users. Our results show that Metrix is able to quantify player performance
parameters and propagate it to coaches, in real-time, during match or practice.
The coaches express that this is a valuable asset in day-to-day work.

Acknowledgements
First, and foremost, I would like to thank my supervisor Professor Dag Jo-
hansen. Your advice, guidance and continuous motivation throughout this year
is invaluable. Your passion is truly inspiring!

Further, I wish to thank my co-advisor Professor Pål Halvorsen for his assistance
and general guidance regarding ForzaSys technology.

A big thanks to Ivan Baptista and Svein-Arne Pettersen for a great collaboration
throughout this thesis. Your help with everything regarding TIL, sports science
and general soccer related research have been very helpful to me during my
work.

To the people of the Corpore Sano lab: Thank you for your input and advice,
and for providing an excellent academic environment to work in.

I would also like to thank my fellow classmates, especially Helge Hoff, Jon Foss
Mikalsen and Christoffer Hansen. Thank you for your general presence, and
for using your precious time to help me, even though you were busy with your
own thesis. A special thanks goes to Marius Andreassen, for your friendship
and collaboration through the first three years of this degree. I would not have
gotten this far without you!

And finally, I would like to thank to my girlfriend Martine Guttormsen for her
endless love, support and motivation throughout my studies.

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Code Listings xi

List of Abbreviations xiii

1 Introduction 1
1.1 Problem Definition . 2
1.2 Scope and Limitations . 3
1.3 Methodology . 3
1.4 Context . 4
1.5 Outline . 5

2 Background 7
2.1 Quantified Soccer . 7

2.1.1 Methods . 7
2.1.2 Physical Demands 9

2.2 ZXY Sports Tracking . 10
2.3 Bagadus . 11
2.4 Summary . 13

3 Requirement Specification 15
3.1 TIL: A Casy Study . 15
3.2 User Specification . 17

3.2.1 Event Type Definition 18
3.3 System Specification . 21

3.3.1 Functional Requirements 21
3.3.2 Non-functional Requirements 21

3.4 Summary . 22

vii

viii CONTENTS

4 Architecture 23
4.1 ZXY Data Input . 24
4.2 Backend . 25
4.3 Frontend . 26
4.4 Client . 26
4.5 Summary . 27

5 Design and Implementation 29
5.1 Backend . 29

5.1.1 Data Receiver . 30
5.1.2 Data Processing . 31
5.1.3 Video Service . 35
5.1.4 Storage . 36

5.2 Frontend . 39
5.2.1 Message Manager 39
5.2.2 Web Server . 43

5.3 Client . 44
5.3.1 Layout . 45
5.3.2 Training Schedule 46
5.3.3 Week Planner . 47
5.3.4 Live Session . 48

5.4 Summary . 50

6 Evaluation 53
6.1 Performance . 53

6.1.1 Experimental Setup 54
6.1.2 Results . 54

6.2 User Evaluation . 56
6.2.1 Assessors . 57
6.2.2 Results . 57

6.3 Summary . 60

7 Conclusion 61
7.1 Future Work . 62

Bibliography 63

Appendices 71

A User Survey 71

List of Figures
2.1 ZXY radio receiver mounted on antennas around Alfheim sta-

dium . 11
2.2 Illustration of the Bagadus system 12

3.1 Speed-graph illustrating the definition of HIR and Sprint events. 19
3.2 Acceleration-graph illustrating the definition of an Accelera-

tion event. 20

4.1 Metrix architecture . 24

5.1 Backend components and subcomponents 30
5.2 Distribution of ZXY sensor data to workers 33
5.3 Per-player state machine . 34
5.4 A sub-graph storing a player’s data 38
5.5 Frontend components and subcomponents 39
5.6 Client components and subcomponents 45
5.7 Grid of active players . 46
5.8 Interface for scheduling training periods. 46
5.9 Interface for planning weekly training load for individual play-

ers . 47
5.10 Detailed view of a single player card 49
5.11 Detailed view of session events 50

6.1 End-to-end latency with 11 and 25 active players. 55
6.2 End-to-end latency with 11 and 25 active players, without

periodic client updates every five seconds 55
6.3 Survey results of Metrix functionality. 58
6.4 Survey results of Metrix design. 59
6.5 Survey results of overall attitude towards Metrix. 60

ix

List of Code Listings
5.1 Pseudo-code of how Metrix use states to detect run-events . 35
5.2 Example query for listing a player’s week progression 38
5.3 Simplified example of the init-message structure 42

xi

List of Abbreviations
ajax Asynchronous JavaScript and XML

api Application Programming Interface

cet Central European Time

cql Cypher Query Language

crud Create, Read, Update, Delete

gdpr General Data Protection Regulations

gui Graphical User Interface

hci Human-Computer Interaction

hir High Intensity Run

hls HTTP Live Streaming

html5 Version 5 of the HyperText Markup Language

http Hypertext Transfer Protocol

json JavaScript Object Notation

mvc Model-view-controller

nff Norwegian Football Association

os Operating System

ptw Pre-Training Wellness

xiii

xiv L IST OF ABBREV IAT IONS

rpe Rating of Perceived Exertion

sgx Software Guard Extensions

tcp Transmission Control Protocol

til Tromsø Idrettslag

uit University of Tromsø

url Uniform Resource Locator

ux User Experience

vm Virtual Machine

1
Introduction
Advancements in digital technology are changing the face of the sports industry.
Digital information systems are widely adopted in the field of sports science,
being used to solve sport-related problems in both research and applied aspects,
effectively bridging the gap between theory and practice.

Elite sports teams are constantly in search for comparative differentiators;
new techniques, strategies or methods that give them a competitive advantage
to their opponents. Popular sports such as football, baseball and basketball
are examples of team sports driven by innovation and change, leveraging
technology for pinpointing the recipe for success. Soccer, the most popular
sport in the world, is no different. Research shows an increased demand of elite
soccer players physical performance in the last decade [1], thus indicating that
the bar is continuously being raised as the sport evolves. Through technological
advances in the use of quantified data and associated analytics, teams obtain
valuable insight into performance metrics, serving as a foundation for evidence-
based decisions regarding team improvements. The volume and immediate
availability of such data allows coaches and sports scientists to make more
informed decisions about current and future needs, thus increasing the teams’
potential to perform.

Due to the non-linear flow of a soccer match, automated analysis is inherently
difficult. There are just too many parameters to consider, including anything
between pre-game nutrition to post-game recovery. A most common approach
is player-centric analysis, where teams collect large volumes of performance

1

2 CHAPTER 1 INTRODUCT ION

metrics regarding each individual player. Larger sports organizations are known
to, in worst case, employ one analyst per player on the field, in order to collect
and study individual performances to provide personal feedback. This is not an
option for smaller teams, due to insufficient resources or funds. Teams create
extensive profiles on their players, holding information the coaches deem
relevant for maintaining and increasing player performance. As data volume
and complexity grow, efficient tools for automated high-precision retrieval
become essential.

Data quantification methods mostly relies on post-game analytics, using au-
tomated or semi-automated tools to study performance metrics. This is often
achieved through video based analysis tools or data captured by sensor devices
[2]. Posterior evaluation is great for hindsight notation, allowing coaches to
apply corrections thereafter. Its weakness, however, is the lack of immediate
feedback during match or practice, in situations that might require swift action
from the coaches.

This thesis presents Metrix, a system providing live monitoring of player per-
formance metrics on the soccer field. Parameters considered imperative by
coaches is captured by our system, and immediately made accessible through
mobile devices or laptops operated on the field during match or practice.

1.1 Problem Definition
Currently applied sports analysis tools are largely focused on providing coaches
with player performance statistics summaries, reviewed in retrospect after
match or trainings. We wish to investigate a solution for providing instant
feedback on physical exercises as they unfold, allowing coaches to continuously
follow up on their players during physical activity. Hence, we formalize the
following definition:

"This thesis shall design, implement and evaluate a system supporting live monitor-
ing of player performance metrics in soccer, facilitating real-time analysis during
match or practice. Our goal is to provide coaches with a computerized toolkit to
quantify specific movement patterns of players, in relation to individual training
goals and physical demands of different playing positions on the field."

1.2 SCOPE AND L IM ITAT IONS 3

1.2 Scope and Limitations
This thesis shall specify requirements, design, implement and evaluate a proto-
type application for performing real-time data analysis of elite soccer players
in Tromsø Idrettslag (til). The system shall capture and analyze physical per-
formance parameters deemed as highly relevant by the coaching staff.

The system shall provide a vertical software supporting lower-level sensor
processing and higher-level data visualization. This involves procedures that
enable data transformation and processing, communication primitives for han-
dling data flow, and visualization of the analysis results.

Our main focus is to provide a robust processing backend, featuring both
efficient and accurate detection of on-field physical events. Secondly, our focus
will concern presentation of the data output with regards to User Experience
(ux). While this might be consideredmore important to our users, the provision
of exotic user interfaces will not be our main concern.

In addition, we will investigate possibilities for providing real-time video play-
back of the captured field-events. This involves integration with currently
deployed video systems at Alfheim, the home arena of til’s.

We require our system to support a small amount of users, namely the coaches
in til. However, we will still investigate how our system scales with regards
to a larger amount of users and players on the field.

The system will not implement a strong analysis tool for historical data, such as
graphs and reports of long-term performance parameters. The focus remains
on short-term analysis and tracking of current physical performance.

While security and data privacy are important subjects when working with
player health data, we will not address these issues in this thesis. We defer
these problems to future work.

1.3 Methodology
In their final report [3], the ACM Task Force presents a scientific framework
for describing the discipline of computer science and computer engineering.
The report defines the discipline through three major paradigms, forming the
basis of scientific work within computing:

Theory is rooted in mathematics, where a valid theory is described through

4 CHAPTER 1 INTRODUCT ION

defining the objects, hypothesize possible relationships among them,
proving said relationships, and finally interpreting the results.

Abstraction is rooted in the experimental scientific method, focusing on the
investigation of phenomenons. Its method involves designing experi-
ments from collected data and performing analysis, based on an initial
hypotheses.

Design is rooted in engineering, applicable to the construction of a system or
device. The steps involve stating requirements and specifications of the
system, designing and implementing it, and finally testing it.

This thesis is rooted in the area of systems engineering, consequently using
methods that closely relates to the design paradigm. We will start by specifying
our requirements, with regards to both the end-users and to system features.
Then, we will design and implement our solution through an iterative process,
based on our preset requirements. Finally, through experiments and evaluations,
we will demonstrate our system’s capabilities and usefulness.

1.4 Context
This project is written as a part of the Corpore Sano Centre1, a centre for
sport and health technology at University of Tromsø (uit). The centre focuses
on innovations within computer science, sport science and medicine, namely
holistic systems and solutions targeting topics like security, fault-tolerance and
privacy in a human-centric context.

Corpore Sano has a vertical focus, ranging from low-level infrastructure soft-
ware such as Operating Systems (oss) and Virtual Machines (vms), to higher
level cloud services and video streaming. Our work with os architectures in-
clude Vortex [4], which instantiates the omni-kernel architecture, providing
fine-grained scheduler control of resource allocation.

Further, we have done extensive work within the area of distributed data
processing [5, 6] and mobile agents [7, 8]. Early work includes the TACOMA
project [9], which concerns itself with implementing os support for agents,
processes that migrate through a network. More recent work include Cogset
[10, 11], providing an efficient and generic engine for reliable storage and
parallel processing of data, enabled by the MapReduce-model.

1. http://www.corporesano.no

1.5 OUTL INE 5

In the area of security and fault-tolerance, our work includes Fireflies [12],
an intrusion tolerant overlay network protocol, providing a secure and scal-
able gossip and membership service. From this, we built Firepatch [13], a
secure software dissemination system which limits adversaries attack window
while issuing security patches. Our work in data security [14] includes research
addressing the performance characteristics of trusted computing in cloud infras-
tructures, using Intel’s new Software Guard Extensions (sgx) platform.

Research more related to this thesis is Davvi [15], which presents a novel
end-to-end prototype of an Internet based video system in the sports domain.
Davvi supports keyword-based search on large video archives, allowing users
to find and select specific soccer events, and further combine them into a single
logically composed video. The collection and aggregation of video content
effectively implements personalized video streams, played back to the user in
soft real-time.

Further work in the soccer domain includes Muithu [16, 17], a non-invasive
notational analysis system, and Bagadus [18, 19, 20], a real-time sports analysis
system. We talk more about these systems in Section 2.3.

The privacy of the soccer players are preserved through our work with Code
capabilities [21], a mechanism for embedding executable code fragments in
cryptographically protected capabilities, implemented in user-space. This en-
ables flexible discretionary access control in cloud-like computing infrastruc-
tures.

Other partners in this thesis involve ForzaSys2, a company spawned from the
Simula Research Laboratory3 in collaboration with UiT. ForzaSys (through
Simula) have a wide competence with large-scale multimedia systems, now
focusing on delivering next generation multimedia platforms to enhance the
relationship between sport clubs and their followers.

1.5 Outline
The remainder of this thesis is structured as follows.

Chapter 2 contains relevant background information regarding technologies
used in soccer, and how it endorse methods for quantifying the sport.
Additionally, we explain some of the existing technologies in use by til.

2. http://www.forzasys.com
3. http://www.simula.no

6 CHAPTER 1 INTRODUCT ION

Chapter 3 outlines the coaches motivation behind the implementation of
Metrix, and their requirements to application features. Based on their
input,we define a set of functional and non-functional properties required
by our system.

Chapter 4 describes the overall architecture of our system, outlining the major
components and how they relate to each other.

Chapter 5 describes the design and implementation of Metrix, giving details
of all components in the system. We discuss different approaches to our
design and the reasoning behind our choices.

Chapter 6 evaluates the applicability and performance of Metrix through
experiments and a user survey.

Chapter 7 concludes our thesis and outlines future work.

2
Background
2.1 Quantified Soccer
Match analysis in soccer generally refers to the objective measurements and
analysis of discrete events during training or competition [22]. It can be di-
vided into three separate subcomponents; technical, tactical and physical. The
technical components involve quality of skills executed by players in a match.
The tactical component refers to overall strategy and style of play. The phys-
ical component incorporates measured movement patterns and efforts made
by players on the field. A match analysis may range from individual focus
regarding specific players, to composite analysis of the interplay between all
the players in the team.

2.1.1 Methods
Motion analysis is the most common approach for player analysis, focusing on
the measurement of individual activity andmovement patterns during a session.
Typical parameters include total distance covered, number of turns, and number
of efforts performed in varying movement categories (i.e. jogging, running,
sprinting) [23, 24]. This information is used to develop extensive player activity
profiles [25], outlining average physical demands of each player and their
playing position on the field. The activity profiles aid coaches, sport scientists
and other practitioners to monitor changes to physical performance parameters
over time, enabling them to quantify player training load, or compare players

7

8 CHAPTER 2 BACKGROUND

with similar attributes (i.e. teammate or opponent).

Structured match analysis dates back to the 1970’s [26], where coaches used
notational analysis to capture field events. This involved observers on the
sideline documenting player or team activity on the field using pen and paper.
Not only does this involve tedious manual labor, but requires extensive human
resources. The method is also limited in its ability to provide data regarding
velocity or speed metrics.

An improvement to the classic notational analysis is video-based time-motion
analysis, involving players to be filmed during match or training [27]. Footage
is analyzed post-game, allowing observers to pause, review and slow down the
videos for a closer look. We typically separate between two classes of video
analysis; individual and collective. With individual recordings, one camera
follows a single player. Its disadvantages include the requirement of a camera
operator, as well as missing contextual information with regards to the team
as a whole. The collective approach solves this by using one or more cameras
providing an overview of the field, able to capture videos of all the players at
once. The downside with this is the difficulty of accuratelymeasuring individual
movement patterns.

With the advancements of digital technology, more semi-automated systems
have replaced the manual approach of collecting player data. The most renown
system is ProZone [28] (now called STATS), who in the early 2000’s introduced
a semi-automated video tracking solution using multiple cameras placed in
fixed positions at the stadium, covering the entire field. Through video image
analysis, player trajectory is determined through x and y coordinates,measured
in meters from the center circle on the pitch at a sampling rate of 10 Hz [29].
This allows for calculation of distance covered and average speed between
samples, effectively quantifying players speed and distance metrics. Even today,
semi-automated video tracking is still a popular approach for assessing player
movement patterns. However, the systems are limited by their requirement of
an observer for cleaning, structuring and verifying the captured data, which
is a time-consuming process. Consumers of such analysis must often expect
a 24 hour delay before it is available to them. Another downside is the lack
of portable system components, limiting game analysis to specific training
facilities that employs the static camera setup.

Another common approach for quantifying player movement patterns is the
use of radio-based sensor systems [30]. Here, each player wear a data chip with
sensors during physical activity. The sensors send signals to radio receivers,
typically mounted on antennas located around the perimeter of the pitch.
Using Radio Frequency-based technology, observers can track players with
high precision. Some systems also support integration with supplementary

2.1 QUANT IFIED SOCCER 9

equipment, such as heart-rate monitors or accelerometers, providing additional
data of player performance metrics. The most renown system to employ radio-
based systems is ZXY Sports Tracking [31], which we talk about in detail
in Section 2.2. Similar to that of semi-automated video systems, most radio-
based systems are deployed as fixed installations, which limits their usage
to specific training facilities. Though its downsides include complexity of
deployment, radio-based systems are considered accurate and non-invasive to
the players.

In later years, commercially available GPS units designed for sports tracking
have become increasingly popular for quantifying player performance met-
rics [32, 33]. The most renown systems using this technology includes ZXY
Sports Tracking [31], GPSports [34], CatapultSports [35] and StatSports [36].
With advancements in GPS technology, the sensor components have decreased
dramatically in size, now considered non-invasive for players to wear under-
neath their clothing during physical activity. With high-frequency sampling
rates, sensor units capture physical performance parameters at high accuracy,
providing information such as speed, acceleration and distance covered, as
well as positional data to track players on the field. Opposite to the more
semi-automated solutions, GPS units are portable, allowing them to be used
at both home and away matches. Sensor data is automatically captured and
stored, allowing for automated analysis software to further process its content
through data aggregation and filtering.

Through notable advancements in technology, the evolution of motion analysis
has progressed from data initially collected with pen and paper to fully auto-
mated computer systems capable of capturing fine-grained movement patterns
on the field. These advancements have increased efficiency, reliability and
accuracy of quantifying soccer players during match or practice.

2.1.2 Physical Demands
While technology accommodates different means of acquiring accurate mea-
surements, it is up to the sports scientists to decide which parameters they
deem most relevant for evaluating player performance. Through match analy-
sis, physical performance metrics are quantified in order to determine the load
players experience in a competitive setting.

The movement demands of players have been much researched over the years
[37, 38, 39], using a variety of match analysis methods. In general, the total
distance covered by professional male soccer players is approximately 11 000
meters, ranging between 9000-12 000 meters. Typically, 75 to 85% of the to-
tal distance is covered at speeds classified as low intensity, such as walking

10 CHAPTER 2 BACKGROUND

and jogging. This leads researchers to conclude that movement demands in
soccer are generally aerobic in nature. However, the remaining movements
are classified as anaerobic, consisting of high-intensity efforts such as accelera-
tions, decelerations, sprints, etc. These high-intensity movements are, for many,
considered critical for the outcome of success, for both team and individual
player performance [40, 41, 42]. For this reason, lots of research have focused
on quantifying these movements, in order to establish physical demands of
their players. Through such measurements, coaches may adjust and plan their
trainings accordingly, to best simulate a competitive setting.

Further, research show a statistical difference in physical demands between
different playing positions on the field [43, 40]. This information gives coaches
an incentive to individualize training programs to the demands required by
the specific roles on the field. Hence, coaches require a method for monitoring
individual players in real-time during practice, allowing them to do personalized
intervention to each player’s training load.

2.2 ZXY Sports Tracking
The ZXY Sports Tracking system [31] is a product of ChyronHego, providing
advanced technology solutions for sports teams to monitor their athletes dur-
ing sports events. Their product targets the soccer community in particular,
providing an assortment of commodities, like tracking players and balls on the
field, monitor physical performance of players, and providing statistical data
for post-session analytics.

ZXY Arena uses Radio Frequency-based technology and is designed for fixed
installations, such as dedicated training facilities or competition arenas. This
system is currently deployed at Alfheim stadium, and consists of eleven station-
ary radio receivers mounted around the stadium area, as depicted in Figure 2.1.
Each receiver has approximately 90 degrees field-of-view, forming overlapping
zones of the soccer field to provide high immunity to signal blocking and
occlusion.

2.3 BAGADUS 11

Figure 2.1: ZXY radio receiver mounted on antennas around Alfheim stadium

The current installation is based on the 2.45 GHz ISM band for radio commu-
nications and signal transmissions. Each radio receiver computes the position
data based on the radio signal from the sensor belts worn by the players on the
field. The belts are issued with accelerometers, a gyro, a heart-rate monitor
and a compass. Combined, they provide valuable performance metrics and
positional data of active players on the field.

ZXY provides high precision tracking data with sampling rates of up to 100 Hz.
At Alfheim, the sampling rate is currently set to 20 Hz, transmitting data
records in real-time to a relational database for storage.

2.3 Bagadus
Bagadus [18, 19, 20] is a real-time sports analysis system deployed and in use
by til at Alfheim stadium. The system supports automatic processing and
retrieval of events in the sports arena, with their novel integration of three
sub-systems; a video system, a sensor system (ZXY) and a soccer analytics
annotations system.

The video sub-system consists of a camera array which covers the entire field.
Videos are further processed by stitching the camera output together in real-
time, encoding it and persisting it to storage.

12 CHAPTER 2 BACKGROUND

Using ZXY technology, the sensor system collects data from sensor belts used by
players on the field. The sensor data enables Bagadus to perform statistics on
players, like total length run, number of sprints, foot frequency, etc., in addition
to tracking players on the field.

Figure 2.2: Illustration of the Bagadus system. The camera array captures video from
the field. Video events can be extracted by performing queries on the ZXY
database containing captured sensor data.

The annotation sub-system is a subset of Muithu [16, 17], a light-weight, non-
invasive notational analysis system deployed at Alfheim stadium some years
ago. Muithu is based on the concept of hindsight recording. Multiple cameras
are installed on the field, recording full matches or practices. Whenever the
coach have witnessed an event worth capturing, he uses the phone to mark
the end of that particular event. The system will later use this marking to find
the beginning of the event, typically configured to 15 seconds prior to the end
notation (but may be adjusted). Finally, all tagged events are extracted from
the raw video footage and persisted to a database.

Bagadus uses Muithu technology for event-based tagging. The video data is,
however, captured from Bagadus’ own cameras and processed entirely by their
own video sub-system.

Bagadus presents a holistic platform where videos are captured and processed,
then further coupled with sensor data of the involving athletes. Annotated
video sequences are automatically pushed to cloud storage within seconds and
made publicly available online1 or privately to the annotator.

1. http://til.forzasys.com

2.4 SUMMARY 13

2.4 Summary
In this chapter, we have described several different methods for quantifying
physical performance parameters in soccer, illustrating their strengths and
weaknesses with regards to accuracy and efficiency. We also explained how
the physical demand of players is often measured by quantifying their high-
intensity efforts on the field. Further, we have given an overview of the ZXY
Sensor System and Bagadus, technologies currently in use by til today.

3
Requirement Specification
This chapter describes the motivation behind the development of Metrix and
establishes a series of requirements, both system-wise and with regards to the
coaches in til, the end users. Section 3.1 explains the coaches’ motives for the
implementation of Metrix, influenced by their latest research and observations
in the field. Further, Section 3.2 encapsulates a set of application requirements
set by the coaching staff, followed by a detailed explanation of the physical
parameters they wish to monitor. Lastly, Section 3.3 defines the functional and
non-functional requirements of Metrix, based on the established specifications
set by the coaches.

3.1 TIL: A Casy Study
Metrix is built in close collaboration with the intended users, namely the
coaching staff in til. The application has gone through several stages of im-
plementation, where different solutions have been reviewed and discussed in
an open dialogue throughout the process. The most frequent correspondence
have been with Ivan Andre Matias Do Vale Baptista, the assistant coach re-
sponsible for player development, and effectively appointed as til’s "numbers
guy". Between matches and training, Baptista spends numerous hours breaking
down team statistics regarding anything from performance metrics to player
wellness, looking for correlating patterns between the different classes of data.
Through analytics, Baptista aims to improve team performance by identifying

15

16 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

both short-term goals concerning upcoming matches, and long-term goals with
regards to player development.

Through his work and studies, Baptista discovered significant differences in
physical parameters across playing positions during match play [44, 45, 46].
In the study, 18 players from til were tracked in 23 home matches using the
ZXY sensor system. The captured parameters illustrated that, for example, the
wide mid-fielders had higher accounts of accelerations than others, and that
full-backs performed more accounts of long distance hir’s than central backs.
These observations, among many others, provide the foundation for developing
a coach toolkit to customize individual training load to playing positions.

til’s collection of sensor data spans several seasons, consequently reflecting
evolvement or changes in the team. The most apparent one is perhaps the
appointment of a new head coach, which subsequently induced a new style
of play using different tactics and formations. This further affects the position
specific demands, where the players’ role on the field might require a more
passive or aggressive oriented play-style, requiring a different set of qualities
than before. There is a consensus in sports sciences that the most effective
training for preparing athletes for competition is that which most closely repli-
cates competitive performance conditions. Hence, the coaches are responsible
for implementing training program cycles that are most relevant to match-play.
With the observed differences of physical requirements across playing positions,
Baptista underlines the importance of individualizing these training programs.
The first step is role-specific individualization, but the ultimate goal is to be
able to further adjust trainings to the player himself, recognizing his physical
limitations and form.

Naturally, trainings are scheduled intermediate of official matches. For til, this
involves one day of restitution, followed by daily sessions of physical workout.
Trainings are carefully planned and executed with regards to physical load and
intensity. It is the coaches responsibility to find the balance between obtaining
the desired training goals, and wearing out the players before an official match.
Coaches have expressed the need for a computerized toolkit to define periodic
training goals for individual players, and further monitor their progression
throughout multiple sessions. E.g. a coach may require the central mid-fielders
to achieve 70% of match-load over a period of four days. By quantifying specific
load-intensive performance metrics, coaches can better monitor their players
on a granular level. Players who are pushing themselves too close to the limit
can be rested from specific drills, while those who underperform can receive
additional physical load.

3.2 USER SPEC IFICAT ION 17

3.2 User Specification
Through continuous discussions and consultations with the coaches in til, we
have pinpointed a set of functionalities Metrix should provide. With their expert
knowledge within the field of sports, we regard their specified requirements as
most important when designing Metrix. Following is a list of user requirements,
interpreted from coach input:

Progress The application should provide a method for displaying progression
of physical activity performed during training weeks. The progress should
be relevant to an input training goal for each individual, set by coaches
beforehand. Progress should be measured over a finite timespan, namely
the periods intermediate of, and including official matches.

Physical load The weekly training load (or goal) for an individual player
should be based on the player’s all-time best performance in official
match play. For each measured physical parameter, coaches should be
able to specify a percentage of the best performance value, effectively
setting the player’s specific goal for the week. For example, if a player’s
highest account of sprints in an official match is 50, and coaches expects
him to perform 50% of that during the week, his goal will be to achieve
at least 25 sprints. The initial best-performance values are gathered from
historical match data, provided by ZXY.

Simplicity The user interface should provide an intuitive visualization of
player progress, and should be easy to use for non-technical personnel.
The application should not be bloated with extensive statistical data, but
only contain simple illustrations of captured data.

Event Captured physical parameters should adhere to a set of predetermined
conditions. These are further explained in detail in the following subsec-
tion.

Instant The captured physical parameters from the the field should be instantly
propagated to coach-operated devices, enabling them to monitor their
players in real-time.

Accessible Coaches must be able to access the application from the field. This
implies that Metrix should be available for use on mobile devices, such
as pads or cellular phones.

18 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

3.2.1 Event Type Definition
There are three different physical parameters til’s coaches wish to monitor
with Metrix; hir, Sprints and Accelerations. For the remainder of this thesis
we will refer to these as events. For each event type we classify two sub-
categories; the number of completed events and distance covered during them.
This makes a total of six physical parameters observable by coaches during
match or practice.

The next two subsections will explain more detailed definitions of each event
type.

Runs
Run-events can be either hirs or Sprints. Figure 3.1 show an example graph of
a typical run-event captured by ZXY data. A run is defined by six event markers,
described as follows:

A: The speed increases above the run speed limit of 4.0 m/s. This marks the
start of the run event. Distance metrics is being calculated from this
point.

B: The speed increases above the hir speed limit of 5.5 m/s. This is required
for the run to be counted as a valid run event. Also, the player must be
in this zone for at least 1 second (E − B > 1).

C: The speed increases above the sprint speed limit of 7.0 m/s. Crossing this
threshold conforms the run event into a valid Sprint event.

D: The speed decreases below the sprint speed limit.

E: The speed decreases below the hir speed limit.

F: The speed decreases below the run-speed limit. This marks the end of the
run event.

3.2 USER SPEC IFICAT ION 19

0 m/s

1.0 m/s

2.0 m/s

3.0 m/s

4.0 m/s

5.0 m/s

6.0 m/s

7.0 m/s

1 2 3 4 5 6 7 8 9 10 11 12

Time (s)

Speed (m/s)
Running speed Run limit HIR limit Sprint limit

A

B

C D

F

E

Figure 3.1: Speed-graph illustrating the definition of hir and Sprint events.

During event processing, timestamps from event markers A, B, E and F are
captured. The time from A to F defines the duration of the event, while the
time from B to E asserts a valid run.

The following data is captured and stored at event completion:

• Timestamp of event start (A)
• Timestamp of event end (F)
• Duration of the event (A to F)
• Distance covered during event (A to F)
• Maximum achieved speed during event

Accelerations
An acceleration event is similar to the run event, but is derived from different
sensor parameters. The event is defined by the following four event mark-
ers:

A: The acceleration reaches the minimum acceleration limit of 1.0 m/s2. This
marks the start of the acceleration event.

20 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

B: The acceleration reaches the acceleration limit of 2.0 m/s2. The value must
exceed this limit to be counted as a valid acceleration event.

C: Acceleration value decreases below the acceleration limit. It is required to
remain above the acceleration limit for at least half a second (C−B > 0.5).

D: The acceleration value falls below the minimum acceleration limit. This
marks the end of the event.

0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12

Time (s)

Acceleration (m/s²) Acceleration Minimum acceleration Acceleration limit

A

B C

D

Figure 3.2: Acceleration-graph illustrating the definition of an Acceleration event.

The following data is stored in the ZXY Session after a completed acceleration
event:

• Timestamp of event start (A)
• Timestamp of event end (D)
• Duration of the event (A to D)
• Distance covered during event (A to D)
• Initial speed on acceleration event start (A)
• Speed on acceleration event end (D)

3.3 SYSTEM SPEC IFICAT ION 21

3.3 System Specification
From the established user specifications we derive a set of requirements to
Metrix, in order to support the functionalities imperative to til. We divide
the system specification into two categories; functional and non-functional
requirements.

3.3.1 Functional Requirements
The following list describes the functional requirements of our design, regarding
behavior on input and output data.

Live view Player performance metrics should be processed and displayed in
real-time to coaches on the field, through a visual interface accessible by
mobile devices.

Historical view Coaches should be able to examine live player data in context
of previous trainings. An overview of physical parameters from previously
executed trainings must be accessible, in order to give further detail to
the current progression.

Training goals The system should support external input for administering
periodic training goals for each individual player. In effect, this should
provide short-term goals the player should achieve in a variable amount
of days. The goals should be visible in the live view, defining a target for
players to progress towards.

Video playback The application should provide video playback of captured
field-events. Videos should be accessible in soft real-time, provided at
coaches request.

Persist data Performancemetrics captured during a session should be stored in
a database for subsequent aggregation. This is vital for tracking physical
performance data that spans multiple training sessions.

3.3.2 Non-functional Requirements
Non-functional requirements specifies a set of qualities demanded by our
system, relative to how it is perceived by the users.

Applicability The system should be applicable for the coaching staff to use on
a daily basis, during trainings and matches.

22 CHAPTER 3 REQU IREMENT SPEC IFICAT ION

User-friendly The application should be intuitive and easy to use for the
coaching staff. The design should be simplistic, displaying only relevant
information to coaches.

Scalability The system should be able to scale relative to a finite amount of
players on the field, and a limited amount of coaches monitoring them.

Real-time The output data from Metrix should keep up with the flow of input
ZXY sensor data, providing analytics in real-time. This means optimizing
the data processing and communication, so that field-events may be
propagated to the view instantly. The application output must not fall
farther and farther behind the input sensor data stream as the session
progresses.

3.4 Summary
This chapter has described the coaches motivation behind the implementation
of Metrix. We outline their requirements regarding features that Metrix should
support, which we further use to establish our system’s functional and non-
functional requirements.

4
Architecture
This chapter outlines the overall architecture of Metrix. We define a three-
tiered architecture, composed of a Backend, a Frontend and Clients. Using
a three-tiered architecture provides a conceptual segregation between the
services our system must support, as well as a logical seperation between their
subcomponents. Implementing each service as independent modules makes
the application easier to develop, extend and maintain, as changes to one tier
does not have to affect the other.

The following sections will give a general description of each tier in the Metrix
architecture, outlining their major components and how they interact with
each other.

Figure 4.1 illustrates an overview of the architectural composition. Data flows
through the system in a bottom-up fashion. Raw sensor data (1) is received and
processed by the Backend (2), who pushes aggregated data to the Frontend
(3), further responsible for updating the Clients (4). We use this figure as a
visual reference point for the following sections, which gives further details to
each tier.

23

24 CHAPTER 4 ARCH ITECTURE

Frontend

Client

Message Manager Web Server

Web Page

Backend

Data Receiver

Data Processing 2.2 Video Service 2.3 Storage 2.4

ZXY Sensor
Data (1)

4.1

3.23.1

2.1

(2)

(3)

(4)

Figure 4.1: Metrix architecture

4.1 ZXY Data Input
The ZXY sensor data input (1) consists ofmeasured parameters regarding player
activity on the soccer field. Prior to a match or practice, coaches distribute
sensor belts among the players and activates them through a designated ZXY
subsystem. The output data records contain measurements from exactly one
ZXY sensor belt. Belts are uniquely identified by a tag id, and each player wears
exactly one belt.

The current ZXY Sensor System setup at Alfheim uses a sampling rate of 20 Hz.
In effect, this means that Metrix receives 20 data records per player, per second.
For a 90-minute soccer match with eleven players on the field, this equals to
220 data records per second, a total of roughly 1.2 million records for the entire
match.

A data record is comprised of an array of sixteen unique data fields, measured
by the sensor technology. The fields include positioning, direction, speed, etc.
In our system, we need only concern ourselves with a subset of the data. Only

4.2 BACKEND 25

those values relevant for measuring the events described in Subsection 3.2.1 are
required by our system. The relevant values from the sensor data are defined
as follows:

tag_id (int) - ID of the ZXY sensor belt.

timestamp (string) - Local unix Central European Time (cet) encoded as
ISO-8601 format.

speed (float) - Current speed of the player. Measured in meters per second
(m/s).

acceleration (float) - Current acceleration of the player. Measured in meters
per second per second (m/s2)

total_distance (float) - Cumulative distance the player have traveled so far.

During the development of Metrix we have used a substitute sensor data input
source. We have created a simple server that outputs real ZXY sensor data,
acquired from a published dataset [47] that contains sensor data captured from
official matches in 2013. In production, this component will be substituted by
the real ZXY output stream, with little to no effort.

4.2 Backend
The system backend constitutes the core service of our application. The Backend
(2) is comprised of a series of data resources, processing units and a single
storage device. We divide the backend into four main components; a data
receiver (2.1), a processing service (2.2), a video service (2.3) and a storage service
(2.4). Together, these components constitute a ZXY Session, initiated by coaches
during soccer match or practice.

The data receiver (2.1) is the initial entry point for the incoming ZXY data
stream. It is responsible for parsing sequentially received data records, and
transform its content into logical application structures.

The processing service (2.2) performs live, per-record, data analysis in real-
time. Transformed data records are distributed amongst a series of processing
units, whose main functionality is to detect on-field events executed by players
during match or practice. Observed events are pushed to the Frontend message
manager (3.1), who subsequently updates clients with the new data.

26 CHAPTER 4 ARCH ITECTURE

The video service (2.3) provides instant video playback of registered field
events. Clients may request videos of individual events for visual feedback of
player performance. The service is responsible for seeking through raw video
recordings from Alfheim, assemble the specified content, transcode the video
data into a html5-compatible format, and finally produce a coherent video
sequence of the specific event.

Players’ performance metrics are aggregated through captured events and
persisted to a database maintained by the storage service (2.4). The stored
data is subsequently used for accumulating weekly performance statistics for
individual players.

4.3 Frontend
The Frontend (3) layer sits between the Client application and the Backend
services. It implements communication primitives for distributing captured
field data from the underlying ZXY Session to connected clients.

We divide the Frontend into two components; a message manager (3.1) that
handles data transmission and communication between the Backend and the
Clients, and a web server (3.2) implementing a framework for displaying the
data in a web page.

The message manager (3.1) supervises clients that subscribe to an on-going
ZXY Session, and is responsible for serving them live updates from on-field
events. When a new event is propagated from the Backend, the message
manager serializes its content into pre-definedmessage structures and forwards
it to connected clients. The message service is also responsible for handling
client-side requests on further details regarding events or weekly performance
metrics.

The web server (3.2) implements web page specific logic and functionality. It is
responsible for processing user input and serve static page content accordingly.
Further, the web server handles user sessions and authentication, limiting the
application to coaches only.

4.4 Client
The Client (4) is a web application providing a Graphical User Interface (gui)
for users to interact with Metrix. Users connect to the client through standard

4.5 SUMMARY 27

web browsers by visiting a url to the application web page (4.1). The Client
view presents a visual representation of data served by the Frontend, through
graphical and textual elements. Users may interact with the system through
input from a keyboard, mouse or touch interface.

Users must log in by submitting their user name and password. When au-
thenticated, a coach may navigate the main page content, such as administer
training periods, set player-specific training goals and start or stop live ZXY
sessions.

The live training session interface relies heavily on client-side scripting for
updating the page dynamically when new data is received. The Client does
not perform any processing, nor does it cache previous data records. It relies
solely on frequently received updates from the Frontend, and response from
user-triggered requests.

4.5 Summary
This chapter has described the general architecture of Metrix. We defined a
three-tiered architecture, composed of a Backend, Frontend and Client layer.
We further explained each tier in closer detail, outlining their subcomponents
and how they interact with each other. We also illustrated the data flow in
Metrix, giving an overview of how the input ZXY data is processed and further
distributed to connected clients.

5
Design andImplementation
In this chapter, we present the design and implementation of Metrix. With
our established three-tier architecture, we will now dive deeper into each
system component, giving further details of how they are implemented and
our reasoning behind our methods.

The following sections will present Metrix in a bottom-up fashion. We illustrate
each tier in detail through highlighted figures as we go along. First, we will
describe the Backend services, involving data transformation, processing and
management. Next, we take a closer look at the Frontend services, responsible
for processing user input and distribute data to clients. Finally, we will explain
the Client properties and its methods for visualizing live, on-field events to its
users.

5.1 Backend
The Backend lies at the core of Metrix, responsible for parsing incoming data
and perform analysis on its content. We divide the Backend into several main
components that are further comprised of a series of smaller subcomponents,
as illustrated in Figure 5.1. Through this section we will explain each of them

29

30 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

in turn, giving reason to our chosen design.

Frontend

Client

Backend

Data Receiver

Data Processing Video service

Web Server

Parser

Processing Units Player state

Orchestrator

ComposerAssembler

Web Page

Deserializer

ZXY Sensor
Data

Storage

Graph
Database

Message Manager

Figure 5.1: Backend components and subcomponents

5.1.1 Data Receiver
The data receiver is the entry point for the input ZXY Sensor Data. When a coach
starts a new training session, the data receiver will connect to the ZXY Sensor
system server and listen for incoming data, received through a tcp connection.
Raw sensor data is received as a stream of single data records, formatted
as string segments with space-separated sensor data points (as described in

5.1 BACKEND 31

Section 4.1).

The data receiver has two main tasks. First, it parses data records by splitting
the string into independent data points. This involves type-casting data point
values into their respective formats (i.e. integers, floats, time, etc.). Then, the
parsed values are deserialized into internal, session-specific data structures,
and indexed for further processing.

Parsing and deserializing timestamps is particularly complex, due to the strict
syntax of built-in time conversion libraries. Since timestamps are encoded
as ISO-8601 formatted strings, which has microsecond granularity, the parser
must handle all the special cases. For example, if the input microsecond unit is
represented with five digits instead of six (56384 ms vs. 563840 ms), or when
the hour/minutes string 09:34 is parsed as 9:34.

The data receiver component is hand-tailored to the format of the dataset
described in Section 4.1. In production,we expect some changes to the incoming
data format, which leads to minor changes to the current data parser.

5.1.2 Data Processing
Preprocessed sensor data is further managed by the data processing component,
responsible for analyzing the data in order to detect on-field events. Similar to
the classic Master-Slave model, the data processing component is comprised
of a single session orchestrator (master) and multiple processing units (slaves).
From this point forward, we will refer to the processing units as workers.

Orchestrator
The orchestrator is a single-threaded routine administering an active ZXY
Session. Its responsibilities involve setup and tear-down of the session, in-
cluding initialization of workers and distribution of data records they need to
process.

The orchestrator handles automatic detection and initialization of active players
on the field. When a data record with an unidentified belt id is received, the
orchestrator performs a lookup in the database, in order to match the belt
with the specific player assigned to it. Retrieved player data consists of the
following:

Personalia Attributes identifying the player, such as name, player id and his
position on the field.

32 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

Week summary Aggregated training data from the current training week.
These are accumulated at initialization, summarizing the players weekly
progression, defining the starting point from which they can progress.

Weekly goals The training goals for the player in the current period, defined
and set by the coaching staff through Metrix.

Best performance The player’s all-time best performance in official match-
play.

Player data is fetched and stored in memory for the duration of the on-going
session, indexed through a map. Once a player has been identified, the orches-
trator initiates a new worker assigned to the specific player, further elaborated
in the following subsection.

When a shutdown signal is received, the session orchestrator will close the
connection to the ZXY data stream, shut down the workers and persist the
captured performance data to storage.

Worker Pool
The analytical components consist of a series of worker-routines, responsible
for processing the data records to detect and analyze on-field events.

We assign one worker-routine per active ZXY belt,meaning eachworker handles
all data records regarding one particular player. As a result, the number of
concurrently processing worker-routines is equal to the amount of active players
on the field.

Our design is similar to the classic producer-consumer paradigm. Each worker
is assigned a message-channel, in which they receive new records to process,
as shown in Figure 5.2. The session orchestrator distributes sensor data records
to its designated worker by pushing the records into the channel. Job-channels
are non-blocking for the producer, so the orchestrator does not have to wait for
workers to finish previously distributed tasks. Each worker will continuously
fetch new data records from the message channel and process its content. If no
new tasks are available, the worker will block and wait for more tasks.

5.1 BACKEND 33

WorkerWorker...

Message channel

WorkerOrchestrator

Figure 5.2: Illustration of how the orchestrator distributes ZXY data records to con-
current worker-routines through a message channel

Using per-player worker threads leverage concurrency, facilitating our require-
ment of serving player feedback in real-time. Assuming the server uses multiple
cores, we achieve parallelism on a critical path in the data pipeline, ensuring
low processing duration of field events.

Assigning distinct worker routines to specific players in the session provides
a logical separation between system components, both conceptually (code-
wise) and concretely. Such a design lessens the necessity for frequent use of
data synchronization primitives between worker-threads, as each worker only
concerns itself with a unique subset of the data. Hence, the design allows us to
programmatically avoid data race conditions, as each concurrent worker only
modifies values within their own separate part of the address space.

Processing Units
Opposite to post-match analysis on static datasets, detecting player events from
a live data stream is more complex. In example, there is no way to measure
the duration of a run-event before it is fully completed. There are several
approaches to achieve live data analysis, some of which we contemplated at
early stages of implementation. One is to store all the received data records in
memory and continuously poll the dataset for specific events. The downside
with such a design is the excessive use of memory, as well as complexity of
searching through the dataset as it grows larger. A second solution, based on
the sliding-window protocol, is to cache data records for a limited timespan,
and search for events within that particular time-frame. Processing will be
more efficient as the data subset is small, but more complex to maintain due to
adjustments of the window size. If the window is too big we get higher search
complexity, if it is too small we are prone to miss critical parts of the event. E.g.
if the window is ten seconds, but a player performs a sprint for fifteen seconds,
we have already discarded the first five seconds of the event.

Our current solution implements each worker routine as a finite state machine
[48]. A state machine is described as any device storing the status of something

34 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

at a given time. The status changes based on inputs, providing the resulting
output for the implemented changes. In Metrix, each worker routine maintains
the current state of the player on the field, monitoring changes to his state as
it progresses. Figure 5.3 illustrates our implemented state machine.

Accelerating

Idle

Above run-speed
threshold

New sample

Below run-speed
threshold

New sample

Running New sample

Above acceleration
threshold

Below acceleration
threshold

Figure 5.3: Per-player state machine

Each player has three different states; idle, running and accelerating. Idle is
the default state, denoting that the player has not exceeded the speed or
acceleration thresholds defined in Subsection 3.2.1. The running state and
acceleration state are mutually inclusive, meaning the player can be in both
states at once, or only one of them. This results in two separate state classifiers,
monitoring each state independently during processing.

Code Listing 5.1 shows a pseudo-code of how a single sensor data record
is processed by Metrix. When a player exceeds the run-speed threshold, we
change the players state to running, and mark the start of the event by storing
the timestamp and the current distance covered. When the player speed de-
creases to below the threshold, it marks the end of the event, computes relevant
event-values and pushes the update to the web-client. Other metrics, such as
top speed and hir-duration are continuously monitored from start to end,
ensuring events fulfill the requirements specified in Subsection 3.2.1.

Monitoring players in real-time with a state machine is possible due to the
high data sampling rate. The close intervals between measurements results
in small changes to values from one reading to the next. A significantly lower
sampling rate may cause mis-readings, as the implemented algorithms will

5.1 BACKEND 35

Code Listing 5.1: Pseudo-code of how Metrix use states to detect run-events

// Player has started running
if player.state != RUNNING && speed >= runThreshold {

player.state = RUNNING
event = startNewEvent()

// Player is still running
} else if player.state == RUNNING && record.speed >= hirThreshold {

// Run qualified as a High Intensity Run
event.isHir = true

// Player has stopped running
} else if player.state == RUNNING && record.speed < runThreshold {

// Duration of run not long enough to be valid
if event.hirDuration < time.Second {

player.state = IDLE
return

}

storeHirEvent(event)
sendToClient(event)
player.state = IDLE

}

have problems distinguishing one event from another. E.g. if a player performs
subsequent run-events in a short timespan, the system will count it as one long
run-event.

5.1.3 Video Service
The video service allows coaches to request video playback of player events
during an on-going session. As of today, the video component is conceptual,
demonstrating that it is possible for real-time video playback of transpired
events during trainings or matches. The service is based on the Bagadus
architecture, that records and stores video data on a daily basis. We infer that
a closer integration with the Bagadus video system will provide our system
with the video backend required to serve videos from on-going sessions. This
will involve routing our video handler to a currently non-existing, Bagadus
end-point, that can serve video requests based on given timestamps, similar to
their methods in [49].

Our implemented video service is based on the dataset, previously mentioned
in Section 4.1, where sensor data is coupled with Bagadus video recordings
from a soccer match at Alfheim. The video repository setup is similar to the
Bagadus system, consisting of 3-second, H.264-encoded video segments, stored
locally at the server. Video file names have a monotonically increasing segment
number as its prefix, followed by an ISO-8601 formatted timestamp of the
recording.

36 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

The video service includes two modules; an assembler and a composer. Clients
use a captured field-event’s start and stop timestamp to issue a video request to
the service. The assembler uses these timestamps to search the video repository
for the specific video segments within the given time frame. The received time
frame is adjusted by setting an offset of 3 seconds both prior and subsequent
to the event. This provides some context to the event in the video, as well as
ensuring inclusion of one additional 3-second segment at both start and end
of the depicted event. The assembler identifies the matching video segments
by the timestamp in their file name, and further collects their name in a text
document for further processing by the composer.

The composer use FFmpeg1 to concatenate and transcode video segments into
the html5 supported mp4-video format. FFmpeg is a free software library
used for handling multimedia data, built on top of the libav2 video processing
toolkit. The text document output by the composer is a required input to the
FFmpeg command-line tool, which further concatenates and transcodes the
listed segments into a full video sequence. At completion, the composer returns
the path to the composed video to the http-handler, which serves the video
back to the client.

Concatenating and transcoding video segments on the fly works adequately,
presuming field-events are short in duration. However, the service scales poorly
with regards to video length, unsuitable for longer video sequences. This results
in noticeable latency for end-users, worst case scenario being thehttp-request
times out and does not serve anything at all. A suggested improvement is to
use HTTP Live Streaming (hls), a protocol that complements the segmented
video structure by arranging subsequent video clips in a playlist, and further
stream them as one continuous video.

5.1.4 Storage
For storing player data we have chosen Neo4j [50] as our underlying database.
Neo4j is a state-of-the-art transactional graph database that offers high perfor-
mance and scalability, while having the same ACID properties as a traditional
database. It is structured according to the property graphmodel: entities (edges
or nodes) hold attributes and represent roles, and those entities are directionally
connected by one or several relationships (vertices). By leveraging index-free
adjacency [51], Neo4j is able to query a subset of the graph data by traversing
relationships, opposed to searching through the entire graph dataset.

1. https://www.ffmpeg.org/
2. https://www.libav.org/

5.1 BACKEND 37

We chose Neo4j due to its expressive structure and inherent properties. It
provides a so-called "whiteboard-friendly" data model, meaning that the imple-
mented model maps closely to how one would draw it on a whiteboard. In our
experience, this simplifies the development process. Also, the Cypher Query
Language (cql) is intuitive and easy to use, making complex queries seem
simple. While other database solutions are equally capable of modeling our
class of data, they may introduce more complex methods of querying collec-
tions of data. For example, relational databases like MySQL would suffer from
extensive join tables which would be inconvenient both performance-wise and
during implementation.

Data Model
The implemented datamodels accommodate basic Create, Read,Update,Delete
(crud) operations (or some subset of it). The graph structure is comprised
of several, per-player subgraphs, containing collections of player related data.
Each sub-graph includes the following nodes:

Player A single player node, storing player-related attributes such as name,
id, position, etc.

Week Multiple week nodes, containing attributes delimiting week duration,
as well as the players training goals for the week.

Session Summary Variable amount of session summary nodes, holding accu-
mulated performance data from sessions the player has attended.

Figure 5.4 illustrates a sub-graph for a single player. The Player node is con-
nected to a series of Week nodes by an in relationship, which is further
connected to multiple Session Summaries nodes in that particular week by a
part_of relationship.

38 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

Session
Summary

Week

Player

Week Week

Session
Summary

Session
Summary

Session
Summary

Session
Summary

...

...
IN IN IN

PART OFPART OF PART OFPART OFPART OF

Figure 5.4: Illustration of a sub-graph storing a single player’s data

The Player node attributes specifies a players identity and role, as well as
his all-time best performance for each event type. Week nodes hold a unique
week identifier, timestamps defining the span of the training period, and the
player’s goals for that specific period. As its name suggest, Session Summary
nodes store summaries of measured performance metrics from a single training
session that the player has participated in.

Code Listing 5.2: Example query for listing a player’s week progression

MATCH (p:Player {pid: 62})-[:IN]->
(w:Week {week_id: 3})<-[:PART_OF]-(s:SessionSummary)

RETURN s
ORDER BY s.date

With no distinct relationship between players, themodel essentially implements
players as first-class citizens. Since most queries are executed from a player-
specific context in the ZXY Session, this design makes queries both simple and
intuitive. Code Listing 5.2 shows an example of a query for collecting a players
weekly progression.

5.2 FRONTEND 39

5.2 Frontend
The Frontend is the connecting point between interacting clients and the
Backend services. It is composted of a variety of external communication
primitives, as well as an independent web server implementing the client
interfaces.

Frontend

Client

Backend

Data Receiver

Message Manager

Data Processing Video service

Websocket Broker HTTP
Handler

Web Server

Model

Web Page

ZXY Sensor
Data

Controller

Storage

View

Figure 5.5: Frontend components and subcomponents

5.2.1 Message Manager
The message manager administers the communication primitives between
Backend processing components and connected clients. We divide it into two
parts; a push-based service using WebSockets to send data updates, and a

40 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

pull-based service handling http-requests from clients.

Our design suits the specifications defined by coaches in til. Their requirement
for instant propagation of player performance parameters, combined with their
request for keeping the data visualization simplistic, dictates our communica-
tion model design. In our solution, vital data points are pushed to users at all
times, while less significant data is request-based. For example, the occurrence
of a sprint-event is pushed at once, while details regarding the sprint (duration,
top speed, etc.) can be further requested by coaches when needed.

Messages are encoded in JavaScript Object Notation (json), a widely adopted
data-interchange format that provides seamless and effective data object com-
munication between our detached services.

Websocket
The WebSocket protocol [52] provides full-duplex communication channels
over a single tcp connection, enabling interaction between a web client (such
as a browser) and a web server, with low overhead. It provides a standardized
way for the server and client to exchange messages without requiring the data
recipient to perform requests on the content beforehand. Essentially, it provides
a push-based message service, allowing messages to be passed back and forth
while keeping the channel open.

The message manager utilizes the WebSocket protocol to achieve real-time
data transfer of live updates from the field. It is employed as a unidirectional
message channel from Backend processing units to connected clients, provid-
ing efficient dissemination of session-specific events and performance metrics.
Client management is handled by a broker. Newly connected clients subscribe
to the broker, who keeps track of whom to push updates to. This allows multiple
coaches to receive updates on player performance parameters to their personal
device on the field, simultaneously.

Initialization-messages are sent from the data processing orchestrator the
moment a new ZXY belt is detected at the field. Update messages regarding
on-field events and general performance metrics are generated and forwarded
from the data processing units to the message manager, who further dis-
patches messages to connected clients. Updates are not batched, but sent
individually.

We use six distinct message types to differentiate between the various message
data content. They are uniquely identified by an attribute in the message body.
The different message types are as follows:

5.2 FRONTEND 41

Init Initialization of a new player in the session. Contains the player’s person-
alia, training week progress, weekly training goals and best performance
metrics.

Init State Initialization of the current state of the player within the on-going
training session. Typically sent subsequent of the Init message.

Update Per-player update message. Contains the player’s total distance cov-
ered and top speed so far during the session. Since coaches deem these
parameters as less urgent, we only push these updates every five seconds.
We infer that this interval is frequent enough for being perceived as live,
while avoiding spamming clients with too many updates.

HIR-event Event-triggered message. Sends the new number of hirs for a
specific player.

Sprint-event Same as hir-event, but with sprints.

Acceleration-event Same as hir-event, but with accelerations.

Using distinct message types for separating between various data content is
a scaling technique based on the principle of upstream evaluation [53]. By
providing expressive data filtering as close as possible to the data source, we
avoid redundant data transfer between the server and the clients. A simpler
solution is pushing all player-relevant data at frequent intervals, but this will
result in larger data transfers, as well as additional client-side complexity of
constantly updating the view, often on data that has not even changed. Code
Listing 5.3 shows an example of the init-message structure. As the example
illustrates, a large portion of player data are static, never changing during an
active session. This data needs only be sent once per connected client, in order
to setup the current view of the session. By separating between live and static
data we minimize the amount of updates sent, as well as reducing the size of
messages. This allows for better horizontal scaling with regards to numerous
connected clients.

There are two separate circumstances that prompt the initialization of players,
causing the need for two distinct init-messages; one is server-side initialization
and the other is client-side initialization. In server-side initialization, the Back-
end detects a new player on the field and notifies the clients to update their
view accordingly. Here, a single init-message is sufficient, as the player has not
yet been involved in any new events this session. In client-side initialization,
a new client connects to an already active session, where new field events
have already occurred. Hence, the new client requires initial player data to
append them to the view, as well as a snapshot of measured parameters from

42 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

Code Listing 5.3: Simplified example of the init-message structure.

{
"message_type": "init",
"belt_id": 6,
"player_name": "John Doe",
"best_performance": {

"best_num_hir": 210,
"best_hir_dist": 3405,
"best_num_sprints": 150,
...
},

"week_progress": [
{

"day": "monday",
"date": "2017−05−14",
"session_type": "training",
"num_hir": 35,
"num_sprints": 20,
...

},
{

"day": "tuesday",
"date": "2017−05−15",
...

}
]
"aggregated_week_progress": {

"agg_num_hir": 150,
"agg_num_sprints": 120,
...

},
"week_goals": {

"num_hir_goal": 75,
"num_sprints_goal": 67,
...

},
}

the currently progressing session. Because current session data only resides in
memory, such read operations require some form of data synchronization to
avoid race conditions on continuously updated session variables. Simply using
synchronization primitives (i.e. locks) will avoid races, but decrease processing
efficiency through frequent thread suspension and lock contention. To preserve
processing efficiency, we utilize message channels for data synchronization.
When a new client connects, the message manager signals each processing unit
through individual channels, telling them to push a snapshot of their data to
the new client. This way no locks is required and clients are eventually brought
up to speed through lazy propagation.

5.2 FRONTEND 43

Request-based API
The pull-based communication model is supported through a http server in
the message manager. It implements a RESTful interface used by clients to
request additional information regarding training week progression, or details
about completed events from an on-going session.

As explained earlier, event data from an on-going session (such as hirs or
sprints) resides in memory, requiring synchronization primitives to prevent
race conditions on read operations. Unlike the push based WebSocket, the
http server handles requests synchronously, contrary to lazily propagating
response data to the end user. As a consequence, we choose to handle data
synchronization through locks instead of message channels on user requested
data. To minimize lock contention, the server acquires the lock only to retrieve
a copy of the required data, further processing the request through a memory-
safe duplicate.

A downside of using locks for synchronization is the exposure to user-generated
contention. A substantial amount of concurrent user requests (generated by
web page interactions) can force frequent suspensions of processing units,
causing the threads to wait for the lock rather than processing sensor data.
While this is not a genuine concern considering the small amount of coaches in
til using the application simultaneously, we still recognize it as a vulnerability
in the data path.

In hindsight, we suggest an alternate solution through client-side caching. This
can be achieved by pushing extended event data along with update-messages,
store the data at the client and retrieve it locally at user request. Such a scheme
will offload request handling from the Frontend to the Client, as well as avoid
potential user-generated contention. Its downsides include a more complex
client implementation, as well as increased update-message sizes, resulting in
larger communication overhead. Also, if coaches do not require explicit event
details, data is cached redundantly.

5.2.2 Web Server
The web server is a simple html5 web-application. It is implemented using
Blueprint3, a Model-view-controller (mvc) framework for Go. Further, the gui
is designed using Bootstrap 4⁴ to support smaller devices such as mobile phones
or tablets, primarily used by coaches when they are on the field.

3. https://blue-jay.github.io/
4. https://www.getbootstrap.com/

44 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

The framework consist of the following:

The model is represented by two databases. One is a MySQL database that
holds user credentials for client authentication. The other is the graph
database that resides in the Backend, used for populating view variables.

The view displays static web page content to the users.

The controller makes api calls to our backend service, as well as handling
user I/O on interactive components (i.e. buttons, forms).

Using the mvc design pattern simplifies implementation due to the strong
coupling between the Frontend and the Backend layers. By connecting the
controller directly to the Backend ZXY Session we can interact with session-
specific functionality without the need to call procedures remotely. Though
this tight coupling makes our system more error prone and complex, it serves
well for a first version of a proof-of-concept application.

5.3 Client
The Client is the main point of interaction for users of Metrix. Users access
the web page served by the Frontend through standard web browsers. Authen-
ticated users are presented with several interfaces allowing them to interact
with Metrix. Through this section we will explain each interface and the func-
tionality they provide.

5.3 CL IENT 45

Frontend

Client

Backend

Data Receiver

Message Manager

Data Processing Video service

Web Server

Web Page

Week Scheduler Live Session Player Goals

Storage

ZXY Sensor
Data

Figure 5.6: Client components and subcomponents

5.3.1 Layout
The web application interfaces are designed according to our non-functional
requirements of being user-friendly, with the user requirement regarding sim-
plicity in mind. This is achieved through the principles from the field of
Human-Computer Interaction (hci) [54]. We use a light color theme for page
bodies, while the header is red corresponding to til’s team colors. We use
the same color palette across the different application interfaces to create a
uniform design across pages.

Elements within the page use the Bootstrap grid system for placement and
alignment. The grid is dynamic and adjusts accordingly with the supported
screen resolution of the user’s device. The use of grids and white space in the

46 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

canvas creates the perception of a simple and user-friendly interface, directing
the focus to important elements in the view. The layout of the player-grid from
a live ZXY Session is shown in Figure 5.7.

Figure 5.7: Grid of active players

5.3.2 Training Schedule
The match schedule of elite soccer teams is frequently altered throughout
the season. As trainings are scheduled intermediate of official matches, the
training schedule is naturally affected by this. For Metrix to accurately track
player progression throughout the training week, our system is dependent on
knowing the dates of when the weeks start and end. To relieve coaches from
the tedious task of manually updating the Metrix training schedule every time
a match date changes, we have implemented an automated solution.

Figure 5.8: Interface for scheduling training periods.

Our implemented Training Schedule interface allows coaches to input the url
to the official season match schedule. The schedule is a spreadsheet issued by

5.3 CL IENT 47

Norwegian Football Association (nff), and is publicly available through their
web page.⁵ The input schedule is parsed and stored in the database, updating
the start and stop points of trainingweeks automatically. If the schedule changes
during the season, the trainer must manually re-post the new schedule.

5.3.3 Week Planner
Adhering to our functional requirement, the Week Planner interface provides
coaches with a method to set player-specific training goals within the current
training period. The page displays a table of all the players in the team. Each
player has adjustable sliders ranging from 0-100 percent. Coaches may adjust
these individually to the player, specifying the exercise load in each of the mea-
sured physical performance parameters, further illustrated in Figure 5.9.

Figure 5.9: Interface for planning weekly training load for individual players

Coherent with our specified user requirement, the percentage is calculated
based on each player’s all-time best performance. The default setting is pro-
visional, set to 75% for all event parameters. These may further be adjusted
manually by the coaches throughout the training period. Submitted goals asso-
ciated with the current training period are stored in the database. These values
are further used to portray the players goal on the progress bar during a live
ZXY session, as we later illustrate in 5.3.4. When a new training period begins,
the player goals is reset to its default setting.

5. https://www.fotball.no

48 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

5.3.4 Live Session
The Live Session interface displays live data of players participating in an
on-going match or training session. The interface satisfies our functional re-
quirement of providing coaches with a live view of their players while operating
on the field. When a user navigates to the session page he is met with the
option to start a new session by clicking a button. If a session is already started,
the coach is immediately connected to the on-going one. During an active
session the start button is replaced by a stop button, allowing coaches to end it.
Pressing the button will send a stop signal to the Backend, who subsequently
persists session data and resets.

Unlike the rest of the web application, the session interface is dynamically
rendered using client-side scripting. Native JavaScript⁶ and jQuery⁷ is used to
handle dynamic creation and update of page elements, while http requests
to the Frontend is performed by Asynchronous JavaScript and XML (ajax)⁸.
The view is constantly changing in response to received updates through the
WebSocket, displaying player performance metrics to the end-user.

The Live Session page implements our most complex user interface. We are
challenged by our requirement for displaying the player performance metrics
in a orderly fashion. On one hand we want to present player data through
graphic elements (i.e. progress bars), which are easy for users to comprehend.
On the other hand, we see the need for displaying the explicit data values
through plain numbers. In an attempt to do both, we experience how easy the
view becomes unorganized and cluttered. Hence, our current design focuses
on displaying the data through graphic elements, and only display numbers
where it is most needed.

6. https://www.javascript.com/
7. http://jquery.com/
8. http://api.jquery.com/jQuery.ajax/

5.3 CL IENT 49

[8]

[1]

[2]

[3]

[4] [5] [6]

[7]

Figure 5.10: Detailed view of a single player card

The players are displayed as an array of cards, as depicted in Figure 5.7. Each
card is a small square container showing live, player-specific data. Figure 5.10
illustrates a single player card. The header of the card contains the player’s
name (1), belt id (2) and a button (3) for listing detailed performance data from
previous training sessions in the current week. The detailed info is displayed in
a popover, only visible through user interaction. This feature responds to our
functional requirement of providing a historical view of previously executed
trainings. The card body consists of six progress bars, visualizing number of
conducted hir (4), sprint and acceleration events, as well as distance covered
during them. Progress bars display accumulated performance metrics from
the entirety of the training week. A small marker on the bar (5) indicates
the preset goal that coaches have set for the player for the current training
period. The end of the progress bar (6) is defined by the player’s all-time best

50 CHAPTER 5 DES IGN AND IMPLEMENTAT ION

performance. Taking into account that the player may exceed this limit we
also show the values explicitly with a label (7) in the center of the bar. The
label show accomplished value out of weekly goal (e.g. 126 / 225 hirs in the
figure).

Figure 5.11: Detailed view of session events

Users may request a detailed view of completed events by the click of a button
(8). Detailed data is comprised of single events, arranged in a table, containing
additional information on each of them. Event details are displayed in a popover,
shown and hidden by user interactions. Figure 5.11 shows an example of a
detailed view on completed sprints for a specific player. Each event in the
detailed view is coupled with a button for playing a video of the performed
event. When pressed, a video player will pop up and display the requested
content.

5.4 Summary
This chapter has given a detailed description of the design and implementation
of Metrix. We have explained how the Backend processes the input from the

5.4 SUMMARY 51

ZXY sensor data stream by utilizing a worker pool of concurrent processing
units, administered by an orchestrator. We further described a conceptual video
service that allows coaches to request video playback of captured field-events.
We have described the Frontend layer, explaining how data is served to the
clients through both push and pull-based services. Lastly, we described our
Client and its supported user interfaces, giving details to how performance
parameters are displayed to its users.

6
Evaluation
In this chapter, we evaluate the performance and usefulness of Metrix. We
are particularly interested in evaluating our system with regards to our non-
functional requirements concerning scalability, real-time responsiveness, appli-
cability and user-friendliness. The evaluation includes a conducted user survey,
as well as performance experiments.

6.1 Performance
The performance evaluation of Metrix concerns the systems capability of pro-
cessing physical performance parameters anddelivering the results, in real-time,
to connected clients. We want to investigate if the system output keeps up with
the continuous input stream of ZXY sensor data, without falling farther and
farther behind as the match or training session progresses.

The data input volume scales linearly with the number of players on the field,
consequently affecting system behavior. Our experiments cover two realistic
scenarios; an official match and a training session. The difference between
the two are the number of active players on the field, differing from 11 to 25,
respectively. While there are never more than 11 players on the field during
a match, the number of players attending trainings will vary from session to
session. We set this number to 25, which covers full attendance from the entire
team. Additionally, we are interested in how our system scales with regards

53

54 CHAPTER 6 EVALUAT ION

to an increasing amount of coaches using Metrix simultaneously. Even though
til only have a limited amount of coaches, we are still curious of how Metrix
performs when serving a substantial amount of clients.

6.1.1 Experimental Setup
In order to test real-time viability we measure end-to-end latency, from a player
executes an event on the field until it is received by the clients. Our test setup
involves a simulated ZXY server with real ZXY sensor data, feeding raw data
records into Metrix. Also, we use a separate program for simulating numerous
clients receiving the processed data from Metrix. Both are hosted on the same
PC to synchronize time readings. This allows us to measure the time span
between the data record marking the end of an event is sent, until its content
is received by the clients after it is processed by Metrix. As each client will
receive events consecutively, we only measure the longest latency across all
clients for each event.

The simulated ZXY server transmits data records at 20 Hz, similar to the setup
installed at Alfheim. Our ZXY test data is one half (45 minutes) of a real soccer
match from 2013. Hence, each experiment is equally long as the period. For
the 11-player experiment, there is a total of 221 events captured by Metrix,
distributed among the players. In the 25-player experiment we have duplicated
some of the player data, resulting in a total of 525 captured events.

Metrix is deployed on a desktop computer with an Intel Core i7-2600 processor,
32GB DDR3 RAM, connected to a 1 Gb/s Ethernet network. The databases are
deployed locally at the server, using a Samsung 850 EVO30 SSD hard drive
as storage. Our ZXY data server and client simulations runs on a workstation
with an Intel Core i5-4200M, 2,50 GHz CPU connected by a 1 Gb/s Ethernet
network. All units use the same network, consequently resulting in close to
zero wide-area latency.

6.1.2 Results
Figure 6.1 shows the results of the end-to-end latency on captured events from
the match. The graphs show that the latency scales linearly with the increasing
amount of clients. Average latency during the 45 minute session is below 100
milliseconds, with both 11 (a) and 25 (b) players on the field, and up to 1000
clients using Metrix. Further, the graphs show how end-to-end latency increase
with the added number of players on the field. We observe that the average
latency approximately doubles when increasing from 11 to 25 players.

6.1 PERFORMANCE 55

1 100 200 300 400 500 600 700 800 900 1000
Clients

0

20

40

60

80

100

120

La
te

nc
y

(m
s)

(a) 11 players, 221 events

1 100 200 300 400 500 600 700 800 900 1000
Clients

0

20

40

60

80

100

120

La
te

nc
y

(m
s)

(b) 25 players, 525 events

Figure 6.1: End-to-end latency with 11 and 25 active players. Error bars show the
95th-percentile confidence interval

The error bars in the graphs show a significant deviation in latency between
each received event. When taking a closer look at the numbers we observe
mostly stable latencies, but also sudden spikes occurring at regular intervals.
These findings led us to perform a follow-up experiment in order to investigate
the variance more closely.

As we mentioned in subsubsection 5.2.1, we periodically push an update-
message to all clients at 5-second intervals. Observing that the occurrence
of latency spikes were so consistent, being almost predictable, we suspected it
to be correlated with these continuous updates. Figure 6.2 shows the results
of performing the same experiment again, but without Metrix pushing the
periodic update-messages to the clients.

1 100 200 300 400 500 600 700 800 900 1000
Clients

0

20

40

60

80

100

120

La
te

nc
y

(m
s)

(a) 11 players, 221 events

1 100 200 300 400 500 600 700 800 900 1000
Clients

0

20

40

60

80

100

120

La
te

nc
y

(m
s)

(b) 25 players, 525 events

Figure 6.2: End-to-end latency with 11 and 25 active players, without periodic client
updates every five seconds. Error bars show the 95th-percentile confidence
interval

56 CHAPTER 6 EVALUAT ION

The graphs show a significant improvement to average latency, as well as amajor
decrease in variation between measurements. From our second experiment,
we gather that the message manager is a bottleneck in Metrix. When multiple
updates are pushed from the Backend simultaneously, they are put in a message
queue at the Frontend, further dispatched sequentially by order of first come,
first served. Hence, the variation we observe in our first experiment is due to the
shifting queue time. This affects the end-to-end latency of all push-based client
updates that should occur simultaneously, including initialization of newly
connected clients and events captured from the field. A potential solution
is pushing updates concurrently, which induce alterations to the message
manager and its current data synchronization primitives. Another solution is to
batch updates, involving changes to our message format and communication
model.

As our end-to-end latency is measured between devices operating on the same
network,wide-area latency is not properly assessed through our experiments. In
a real-world deployment, we expect the general latency to increase, depending
on factors such as clients bandwidth or their proximity to the server.

From our experiments we conclude that Metrix satisfies our requirement of
performing player analysis in real-time. The latency from an event occurs
on the field until it is propagated to Metrix clients are low and does not fall
behind as the session progresses. We have shown that our system can handle
up to at least 1000 clients, without compromising user experience. With the
limited amount of coaches in til, we regard Metrix performance as more than
proficient, satisfying our requirement regarding scalability. The high variance
in latency is negligible, as the differences are sub one-hundred milliseconds.
We conjecture that this is not perceived by the end user.

6.2 User Evaluation
We have previously described how everything from the requirements to system
implementations have been guided by continuous feedback from the coaches
in til. Since Metrix has been developed for, and in collaboration with, its
end-users, we infer that the most suitable way to evaluate the system is to
perform user surveys targeting these end-users.

Since Metrix is not yet in operational use, we are unable to evaluate first-
hand user experience of the application. Instead, we base our evaluation on
a user-oriented presentation, involving an extensive demonstration of Metrix
and its implemented features. The demo was conducted at Alfheim stadium,
where the assessors were given a realistic demo based on simulated ZXY data

6.2 USER EVALUAT ION 57

input. Mock-up profiles were made for each simulated player, illustrating how
Metrix aggregates performance parameters from previous trainings with the
live data. The demo was followed by a questionnaire, evaluating Metrix by
three main categories; functionality, design and overall interest in using Metrix.
The questions focuses particularly on attitudes regarding the availability of
player performance parameters in real-time during match or practice, opposite
to only having them post-game.

The user survey consists of statements regarding Metrix, each rated using a
balanced 5-point Likert scale,1 with the following mapping of each rating.

• 1 Strongly Disagree
• 2 Disagree
• 3 Neutral
• 4 Agree
• 5 Strongly Agree

The plotted charts show the average rating, with error bars indicating the
lowest and highest registered ratings. The full questionnaire is available in
Appendix A.

6.2.1 Assessors
The assessors participating in the evaluation includes three coaches from til’s
elite soccer team, and one former coach of the Norwegian national soccer team,
now a sports scientist working with quantification of player data. All partici-
pants are considered experts in their respective field, with first-hand experience
in player development, soccer analysis and physical training disciplines.

6.2.2 Results
The first category of our survey examines the functionality of Metrix. The two
first questions concern the general usefulness of having a computerized toolkit
for monitoring players live during match or practice. The assessors were in
agreement that having access to data instantly on the field is a valuable asset
for monitoring physical load on individual players. Further, they indicate that
such a toolkit would be useful for doing personalized intervention, such as
resting players, or increase individual load through alternative drills.

1. https://en.wikipedia.org/wiki/Likert_scale

58 CHAPTER 6 EVALUAT ION

Q1 Q2 Q3 Q4 Q5 Q6
Question

0

1

2

3

4

5
Ra

tin
g

Figure 6.3: Survey of Metrix functionality.

Questions three through six examines how the assessors consider Metrix as
a viable toolkit for real-time monitoring of players. The results indicates that
the assessors believes Metrix will improve objective monitoring of player load,
and can be very useful for identifying suitable training drills in order to
accomplish weekly training goals. The survey also indicates that the assessors
were diverged on our question about Metrix enhancing the individualization
of training programs during trainings. Some assessors Strongly Agreed, while
others were Neutral. We speculate that this variance might be rooted in how
coaches prepare the trainings in advance. Making alteration to a planned
training program midway, specialized to each individual at that, might seem
less practical for some.

Our question regarding the usefulness of video playback of events also showed a
diversity between assessors opinion. Some Strongly Agreed that such a feature
would be useful, while others were Neutral. From this we conjecture that
access to video snippets is more of a nice-to-have than a need-to-have feature.
However, we believe that such a feature must be experienced in practice in
order for the users to rate its applicability in day-to-day use.

The next category in our survey evaluates the Metrix design. The questions

6.2 USER EVALUAT ION 59

make inquiries regarding user experience of the Metrix interface, as well as
how the player data is presented. We were particularly interested in evaluating
if the users understood the player performance data through the implemented
progress bars and its supportive elements.Figure 6.4 shows the gathered results
from the design category.

Q1 Q2 Q3
Question

0

1

2

3

4

5

Ra
tin

g

Figure 6.4: Survey of Metrix design.

The results show an overall agreement between the assessors, conveying that
Metrix provides a user friendly interface, with neatly presented data. All of
the assessors also answered that the progress bars made player performance
data easy to comprehend. From our gathered results we conclude that Metrix
satisfies our non-functional requirement of being user-friendly. Additionally,
we fulfill the user requirement regarding simplicity, by visualizing player data
in an intuitive way.

Our last category summarizes the assessors overall attitude towards Metrix as
a coaching toolkit. Figure 6.5 shows the results of the inquiry.

60 CHAPTER 6 EVALUAT ION

Q1 Q2
Question

0

1

2

3

4

5
Ra

tin
g

Figure 6.5: Survey of overall attitude towards Metrix.

From our results, we gather that all the assessors believe Metrix will have great
impact on individual training load monitoring, and that it enhances coach
intervention during match or trainings. All the assessors state that they would
use Metrix on a daily basis if provided. These results emphasize the necessity
for putting Metrix in operational use.

6.3 Summary
This chapter has evaluated Metrix with regards to our non-functional require-
ments concerning scalability, real-time responsiveness, applicability and user-
friendliness. Through performance experiments, we have shown that Metrix
is able to detect and propagate on-field events to clients with low end-to-end
latency, and that it scales to a high amount of users. The results from a con-
ducted user survey show that end-users are happy with Metrix functionality,
and find it easy to use. Assessors state that they would use Metrix on a daily
basis, if provided.

7
Conclusion
This thesis have presented the development of Metrix, a system supporting
real-time monitoring of elite soccer players’ performance parameters during
match or practice. Metrix provides coaches with a toolkit to quantify specific
movement patterns of individual players, enabling them to analyze their train-
ing load in relation to preset training goals. Additionally, we have provided a
method for coupling captured events with video recordings, allowing coaches
to view replays of player-performed events.

Metrix has been developed in close collaboration with its end-users; the coaches
in til. Through their expert knowledge we were able to establish user require-
ments of Metrix, which further implicated our chosen system design, graphical
interface and implemented features.

Through a performance evaluation we have shown that Metrix is able to
efficiently perform real-time analysis on player performance metrics, provided
by the ZXY sensor system. Metrix is able to detect, process and propagate
captured field-events with minimal end-to-end latency. Further, a conducted
user evaluation shows that coaches find Metrix highly useful for monitoring
physical performance parameters, and has great impact on the individualization
of physical training load. Users express they would use Metrix on a daily basis,
if provided.

61

62 CHAPTER 7 CONCLUS ION

7.1 Future Work
Through the development of Metrix we have discovered several areas of im-
provement, as well as additional features that could prove useful. This section
will address the potential future work for making Metrix better.

Deployment In the future, we plan on putting Metrix in operational use at
Alfheim stadium. The current prototype is fully functional, but requires
minor integrations with the actual ZXY data stream. We also believe
that giving coaches first-hand experience with Metrix will reveal further
tweaks and improvements to the system.

Privacy As we mentioned in Section 1.2, the privacy of players is not addressed
in this thesis. Future work will involve extensive improvements to data
privacy, adhering to the newGeneral Data Protection Regulations (gdpr)
[55]. This will involve more secure data processing, communication and
storage.

Video Integration While Metrix have exemplified how using video replays
of events is possible in real-time, we currently have no access to the
recorded content stored at Alfheim. Future work will involve a closer
integration with the Bagadus video system, allowing us to request videos
from their service, in real-time on the field.

pmSys Through pmSys [56], a player monitoring system used by til, players
register daily Rating of Perceived Exertion (rpe) and Pre-Training Well-
ness (ptw) reports. Coaches have expressed the usefulness of having
these reports displayed in the Metrix live tool. These reports, coupled
with Metrix performance parameters, would further portray the players
physical form and exertion.

Bibliography
[1] C. Barnes, D. Archer, M. Bush, R. Hogg, and P. Bradley, “The evolution

of physical and technical performance parameters in the english premier
league,” International Journal of Sports Medicine, vol. 35, pp. 1–6, 2014.

[2] H. D. Johansen,S. A. Pettersen,P. Halvorsen,andD. Johansen, “Combining
video and player telemetry for evidence-based decisions in soccer,” Proc.
of icSPORTS, 2013.

[3] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R.
Young, “Computing as a discipline,” Commun. ACM, vol. 32, pp. 9–23, Jan.
1989.

[4] Å. Kvalnes, D. Johansen, R. van Renesse, F. B. Schneider, and S. V. Valvag,
“Omni-kernel: An operating system architecture for pervasive monitoring
and scheduling,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 10, pp. 2849–2862, 2015.

[5] S. V. Valvåg and D. Johansen, “Oivos: Simple and efficient distributed
data processing,” in High Performance Computing and Communications,
2008. HPCC’08. 10th IEEE International Conference on, pp. 113–122, IEEE,
2008.

[6] S. V. Valvag and D. Johansen, “Update maps–a new abstraction for high-
throughput batch processing,” in Networking, Architecture, and Storage,
2009. NAS 2009. IEEE International Conference on, pp. 431–438, IEEE,
2009.

[7] D. Johansen, K. Marzullo, and K. Lauvset, “An approach towards an agent
computing environment,” in Electronic Commerce and Web-based Applica-
tions/Middleware, 1999. Proceedings. 19th IEEE International Conference
on Distributed Computing Systems Workshops on, pp. 78–83, IEEE, 1999.

[8] D. Johansen, H. Johansen, and R. van Renesse, “Environment mobility:
moving the desktop around,” in Proceedings of the 2nd workshop on Mid-

63

64 B IBL IOGRAPHY

dleware for pervasive and ad-hoc computing, pp. 150–154, ACM, 2004.

[9] D. Johansen, R. Van Renesse, and F. B. Schneider, “Operating system sup-
port formobile agents,” inHot Topics in Operating Systems, 1995.(HotOS-V),
Proceedings., Fifth Workshop on, pp. 42–45, IEEE, 1995.

[10] S. V. Valvag and D. Johansen, “Cogset: A unified engine for reliable storage
and parallel processing,” in Network and Parallel Computing, 2009. NPC’09.
Sixth IFIP International Conference on, pp. 174–181, IEEE, 2009.

[11] S. V. Valvåg, D. Johansen, and Å. Kvalnes, “Cogset: a high performance
mapreduce engine,” Concurrency and Computation: Practice and Experi-
ence, vol. 25, no. 1, pp. 2–23, 2013.

[12] H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies:
A secure and scalable membership and gossip service,” ACM Transactions
on Computer Systems (TOCS), vol. 33, no. 2, p. 5, 2015.

[13] H. Johansen, D. Johansen, and R. van Renesse, “Firepatch: Secure and
time-critical dissemination of software patches,” in IFIP International
Information Security Conference, pp. 373–384, Springer, 2007.

[14] A. T. Gjerdrum, R. Pettersen, H. D. Johansen, and D. Johansen, “Perfor-
mance of trusted computing in cloud infrastructures with intel sgx,” in
Proceedings of the 7th International Conference on Cloud Computing and
Services Science. Porto, Portugal: SCITEPRESS, pp. 696–703, 2017.

[15] D. Johansen, P. Halvorsen, H. Johansen, H. Riiser, C. Gurrin, B. Olstad,
C. Griwodz, Å. Kvalnes, J. Hurley, and T. Kupka, “Search-based composi-
tion, streaming and playback of video archive content,” Multimedia Tools
and Applications, vol. 61, no. 2, pp. 419–445, 2012.

[16] D. Johansen,M. Stenhaug,R. B. Hansen,A. Christensen, and P.-M. Høgmo,
“Muithu: Smaller footprint, potentially larger imprint,” in Digital Infor-
mation Management (ICDIM), 2012 Seventh International Conference on,
pp. 205–214, IEEE, 2012.

[17] M. Stenhaug, Y. Yang, C. Gurrin, and D. Johansen, “Muithu: A touch-
based annotation interface for activity logging in the norwegian premier
league,” in International Conference on Multimedia Modeling, pp. 365–368,
Springer, 2014.

[18] H. K. Stensland,V. R. Gaddam,M. Tennøe,E. Helgedagsrud,M. Næss,H. K.
Alstad,A. Mortensen,R. Langseth, S. Ljødal,Ø. Landsverk, et al., “Bagadus:

B IBL IOGRAPHY 65

An integrated real-time system for soccer analytics,” ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM),
vol. 10, no. 1s, p. 14, 2014.

[19] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. Kristensen, A. Eichhorn,
M. Stenhaug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, et al.,
“Bagadus: an integrated system for arena sports analytics: a soccer case
study,” in Proceedings of the 4th ACM Multimedia Systems Conference,
pp. 48–59, ACM, 2013.

[20] S. Sægrov, A. Eichhorn, J. Emerslund, H. K. Stensland, C. Griwodz, D. Jo-
hansen, and P. Halvorsen, “Bagadus an integrated system for soccer anal-
ysis,” in Distributed Smart Cameras (ICDSC), 2012 Sixth International
Conference on, pp. 1–2, IEEE, 2012.

[21] R. van Renesse, H. Johansen, N. Naigaonkar, and D. Johansen, “Secure
abstraction with code capabilities,” in Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International Conference on,
pp. 542–546, IEEE, 2013.

[22] C. Carling, T. Reilly, and A. M. Williams,Handbook of soccer match analysis:
A systematic approach to improving performance. Routledge, 2007.

[23] W. R. Data, “The role of motion analysis in elite soccer,” Sports Med,
vol. 38, no. 10, pp. 839–862, 2008.

[24] D. B. Dwyer and T. J. Gabbett, “Global positioning system data analysis:
Velocity ranges and a new definition of sprinting for field sport athletes,”
The Journal of Strength & Conditioning Research, vol. 26, no. 3, pp. 818–824,
2012.

[25] P. S. Bradley, M. Di Mascio, D. Peart, P. Olsen, and B. Sheldon, “High-
intensity activity profiles of elite soccer players at different performance
levels,” The Journal of Strength & Conditioning Research, vol. 24, no. 9,
pp. 2343–2351, 2010.

[26] T. Reilly and V. Thomas, “A motion analysis of work rate in different
positional roles in professional football match play,” vol. 2, pp. 87–97, 01
1976.

[27] J. Bangsbo, L. Nørregaard, and F. Thorsoe, “Activity profile of competition
soccer.,” Canadian journal of sport sciences= Journal canadien des sciences
du sport, vol. 16, no. 2, pp. 110–116, 1991.

66 B IBL IOGRAPHY

[28] “Sports data company | sports technology, data feeds, content | stats.”
https://www.stats.com. [Online].

[29] D. S. Valter, C. Adam, M. Barry, and C. Marco, “Validation of prozone®:
A new video-based performance analysis system,” International Journal
of Performance Analysis in Sport, vol. 6, no. 1, pp. 108–119, 2006.

[30] S. Wang and G. Zhou, “A review on radio based activity recognition,”
Digital Communications and Networks, vol. 1, no. 1, pp. 20–29, 2015.

[31] “Sports tracking - chyronhego.” https://chyronhego.com/products/sports-
tracking. [Online].

[32] B. Wisbey, P. G. Montgomery, D. B. Pyne, and B. Rattray, “Quantifying
movement demands of afl football using gps tracking,” Journal of science
and Medicine in Sport, vol. 13, no. 5, pp. 531–536, 2010.

[33] M. Pentz, “Sounders among pioneers in mls with analytics, training,”
August 2015. [Online; posted 03-August-2015].

[34] “Gps tracking systems for elite sports | globally positioning sport since
2001.” http://www.gpsports.com. [Online].

[35] “World leader in sport technology for elite sports | catapult sports.”
http://www.catapultsports.com. [Online].

[36] “Statsports | GPS player tracking and performance analysis.”
http://www.statsports.com. [Online].

[37] J. Bangsbo, M. Mohr, and P. Krustrup, “Physical and metabolic demands
of training and match-play in the elite football player,” Journal of sports
sciences, vol. 24, no. 07, pp. 665–674, 2006.

[38] B. Drust, T. Reilly, and E. Rienzi, “Analysis of work rate in soccer,” vol. 4,
pp. 151–155, 11 1998.

[39] T. Reilly and D. Gilbourne, “Science and football: a review of applied
research in the football codes,” Journal of sports sciences, vol. 21, no. 9,
pp. 693–705, 2003.

[40] V. Di Salvo, R. Baron, H. Tschan, F. C. Montero, N. Bachl, and F. Pigozzi,
“Performance characteristics according to playing position in elite soccer,”
International journal of sports medicine, vol. 28, no. 03, pp. 222–227, 2007.

B IBL IOGRAPHY 67

[41] P. S. Bradley, W. Sheldon, B. Wooster, P. Olsen, P. Boanas, and P. Krustrup,
“High-intensity running in english fa premier league soccer matches,”
Journal of sports sciences, vol. 27, no. 2, pp. 159–168, 2009.

[42] P. S. Bradley, C. Carling, D. Archer, J. Roberts, A. Dodds, M. Di Mascio,
D. Paul, A. Gomez Diaz, D. Peart, and P. Krustrup, “The effect of playing
formation on high-intensity running and technical profiles in english fa
premier league soccer matches,” Journal of sports sciences, vol. 29, no. 8,
pp. 821–830, 2011.

[43] C. Lago-Peñas, E. Rey, J. Lago-Ballesteros, L. Casais, and E. Domínguez,
“Analysis of work-rate in soccer according to playing positions,” Interna-
tional Journal of Performance Analysis in Sport, vol. 9, no. 2, pp. 218–227,
2009.

[44] I. Baptista, D. Johansen, A. Seabra, and S. A. Pettersen, “Position specific
player load during match-play in a professional football club,” PLOS ONE,
vol. 13, pp. 1–10, 05 2018.

[45] I. Baptista, A. Seabra, D. Johansen, and S. A. Pettersen, “Position specific
player load during match in a professional football club,” in The city of
Rennes (France) is immensely honored to host the Vth World Congress in
Science and Soccer, after Portland (2014) and Copenhagen (2015) and before
Melbourne (2019)., p. 65.

[46] I. Baptista, A. Seabra, D. Johansen, and S. A. Pettersen, “A comparison of
weekly training load andmatch performance in selected physical variables
in elite soccer players,” in The city of Rennes (France) is immensely honored
to host the Vth World Congress in Science and Soccer, after Portland (2014)
and Copenhagen (2015) and before Melbourne (2019)., p. 359.

[47] S. A. Pettersen,D. Johansen,H. Johansen,V. Berg-Johansen,V. R. Gaddam,
A. Mortensen, R. Langseth, C. Griwodz, H. K. Stensland, and P. Halvorsen,
“Soccer video and player position dataset,” in Proceedings of the 5th ACM
Multimedia Systems Conference, pp. 18–23, ACM, 2014.

[48] F.Wagner,R. Schmuki, T.Wagner, and P.Wolstenholme,Modeling software
with finite state machines: a practical approach. CRC Press, 2006.

[49] A. Mortensen, V. R. Gaddam, H. K. Stensland, C. Griwodz, D. Johansen,
and P. Halvorsen, “Automatic event extraction and video summaries from
soccer games,” in Proceedings of the 5th ACM Multimedia Systems Confer-
ence, pp. 176–179, ACM, 2014.

68 B IBL IOGRAPHY

[50] “The neo4j graph platform - the #1 platform for connected data.”
https://www.neo4j.com. [Online].

[51] D. Montag, “Understanding neo4j scalability,”White Paper, Neotechnology,
2013.

[52] I. Fette and A. Melnikov, “The websocket protocol,” RFC 6455, RFC Editor,
December 2011. http://www.rfc-editor.org/rfc/rfc6455.txt.

[53] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evaluation
of a wide-area event notification service,” ACM Transactions on Computer
Systems (TOCS), vol. 19, no. 3, pp. 332–383, 2001.

[54] C. D. Wickens, J. Lee, Y. D. Liu, and S. Gordon-Becker, Introduction to
Human Factors Engineering (2Nd Edition). Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 2003.

[55] G. D. P. Regulation, “Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46,” Official Journal of the European
Union (OJ), vol. 59, pp. 1–88, 2016.

[56] T. T. Hoang, “pmsys: Implementation of a digital player monitoring sys-
tem,” Master’s thesis, 2015.

http://www.rfc-editor.org/rfc/rfc6455.txt

Appendices

69

A
User Survey

71

Generally: A computerized toolkit for individual
athlete performance monitoring and training load
planning during practice can be useful for
personalized intervention (e.g. resting an athlete
from specific drills or exercise at the end of a
practice; adding extra physical load to an athlete
that has underperformed).

Metrix potentially improves the objective monitoring
of players' physical load during match or practice.

Metrix potentially enhances the individualization of
training programs during practice (e.g. to the player
himself or playing position on the field).

Metrix is useful for evaluating and identifying
suitable training drills during a training session.

Access to video playback of events (coupled to
specific load monitoring events) is useful during
match or practice (e.g. show the video of player X
when sprinting over 20 meters).

The application has a user friendly interface.

The physical parameters of players are neatly
presented.

The progress bars are easy to comprehend.

We will use this toolkit on a daily basis if provided.

This toolkit potentially has impact on individual
training load monitoring and intervention.

METRIX QUESTIONNAIRE
Please indicate to what extent you agree or disagree with each statement:

1.

2.

Generally: Having access to objective player
performance parameters live during match or
practice is valuable for physical load monitoring (as
opposed to afterwards).

3.

1

Strongly
Disagree

2

Disagree

3 4 5

Neutral Agree
Strongly
Agree Functionality:

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
4.

5.

6.

Design:

Overall:

1.

2.

3.

1.

2.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

	Abstract
	Acknowledgements
	List of Figures
	List of Code Listings
	List of Abbreviations
	1 Introduction
	1.1 Problem Definition
	1.2 Scope and Limitations
	1.3 Methodology
	1.4 Context
	1.5 Outline

	2 Background
	2.1 Quantified Soccer
	2.1.1 Methods
	2.1.2 Physical Demands

	2.2 ZXY Sports Tracking
	2.3 Bagadus
	2.4 Summary

	3 Requirement Specification
	3.1 TIL: A Casy Study
	3.2 User Specification
	3.2.1 Event Type Definition

	3.3 System Specification
	3.3.1 Functional Requirements
	3.3.2 Non-functional Requirements

	3.4 Summary

	4 Architecture
	4.1 ZXY Data Input
	4.2 Backend
	4.3 Frontend
	4.4 Client
	4.5 Summary

	5 Design and Implementation
	5.1 Backend
	5.1.1 Data Receiver
	5.1.2 Data Processing
	5.1.3 Video Service
	5.1.4 Storage

	5.2 Frontend
	5.2.1 Message Manager
	5.2.2 Web Server

	5.3 Client
	5.3.1 Layout
	5.3.2 Training Schedule
	5.3.3 Week Planner
	5.3.4 Live Session

	5.4 Summary

	6 Evaluation
	6.1 Performance
	6.1.1 Experimental Setup
	6.1.2 Results

	6.2 User Evaluation
	6.2.1 Assessors
	6.2.2 Results

	6.3 Summary

	7 Conclusion
	7.1 Future Work

	Bibliography
	Appendices
	A User Survey

