Bruk av hormonelleprevensjonsmidler og
Staphylococcus aureus nesebærerskap.
Tromsøundersøkelsen: Fit Futures 2

Dina Benedicte Berg Stensen

MED-3950 5.-årsoppgaven – Profesjonsstudiet i medisin ved Universitetet i Tromsø
Veileder: Anne-Sofie Furberg, Lars Småbrekke og Karina Olsen

30.05.16 Tromsø
Innholdsfortegnelse

Resymé ... 4

Liste over forkortelser og akronymer ... 5

1. Introduksjon .. 6
 1.1 Bakgrunn .. 6
 1.2 Formål og hypotese .. 6
 1.3 S. aureus ... 7
 1.3.1 Infeksjoner med S. aureus ... 7
 1.3.2 Nesebærerskap ... 8
 1.4 Hormonelle prevensjonsmidler .. 9
 1.4.1 Kjønnshormoner .. 9
 1.4.2 Hormonell prevensjon ... 9

2. Materiale og metoder .. 11
 2.1 Arbeidsprosessen .. 11
 2.2 Studiepopulasjon: Fit Futures .. 12
 2.3 Målinger .. 12
 2.3.1 Vurdering av S. aureus nesebærerskap 12
 2.4 Intervju .. 13
 2.4.1 Prevensjonsbruk ... 13
 2.4.2 Antibiotikabruk siste 24 timer ... 15
 2.5 Elektronisk spørreskjema ... 15
 2.5.1 Røyking .. 15
 2.5.2 Snusbruk .. 15
 2.5.3 Fysisk aktivitet .. 15
 2.6 Klinisk undersøkelse .. 16
 2.7 Statistisk analyse .. 16
 2.7.1 Modellseleksjon .. 16
 2.7.2 Variabler ... 16
 2.7.3 Rensing av datasett .. 18
 2.8 Etikk ... 19

3. Resultater ... 20

4. Diskusjon ... 25
 4.1 Hovedfunn .. 25
 4.1.1 Hormonell prevensjon og bærerskap av S. aureus 25
 4.2 Valg av Kovariater ... 26
 4.2.1 Alder ... 26
 4.2.2 Fysisk aktivitet .. 26
 4.2.3 Tobakksbruk .. 26
 4.3 Intern validitet .. 27
 4.3.1 Studiedesign ... 27
 4.3.2 Tilfeldige feilkilder og presisjon .. 27
 4.3.3 Seleksjonsbias .. 27
 4.3.4 Informasjonsbias .. 28
 4.3.5 Modellseleksjon .. 29
 4.3.6 Interaksjon ... 29
 4.4 Ekstern validitet .. 30
 4.5 Konklusjon ... 31

5. Tabeller .. 32

6. Figurer .. 32
7. Referanser .. 33
Vedlegg.. 38
Resymé
Nesebærerskap av Staphylococcus aureus (S. aureus) er et samspill av bakterie- og vertsfaktorer. Det har vært publisert artikler som viser sammenheng mellom bruk av hormonell prevensjon og nesebærerskap hos voksne kvinner. Formålet med denne oppgaven er å undersøke om denne sammenhengen kan gjenfinnes hos en norsk ungdomspopulasjon, og å undersøke om det er en sammenheng mellom preparatenes hormoninnhold og bærerskap.

Utvalg/metode
Fit Futures 2 (FF2) er en befolkningsundersøkelse som ble gjennomført i tidsrommet 2012-2013. Fra 868 deltakere ble 775 deltakere inkludert i denne oppgaven. Av disse var 427 kvinner og 348 menn, med en gjennomsnittsalder på henholdsvis 18,2 og 18,3 år. Sammenhengen mellom hormonell prevensjon og nesebærerskap av S. aureus ble undersøkt med logistisk regresjonsanalyse, og odds ratio (OR) for nesebærerskap ble justert for kjente risikofaktorer.

Resultater
Prevalens av S. aureus var 51,6%. Prevalensen var noe høyere hos menn og hos kvinner som brukte hormonell prevensjon, sammenlignet med kvinner som ikke brukte hormonell prevensjon. Det var også signifikant høyere prevalens hos kvinner som brukte kombinasjonspreparater i forhold til kvinner som brukte progestin-preparater. Justert OR for kvinner som brukte kombinasjonspreparater, var 2,2 (95% konfidensintervall (KI)=1,4-3,3) i forhold til kvinner som ikke brukte hormonell prevensjon.

Konklusjon
Disse data gir holdepunkter for økt odds for nesebærerskap av S. aureus hos brukere av hormonelle kombinasjonspreparater i forhold til kvinner som ikke bruker hormonell prevensjon, eller kvinner som bruker progestin-preparater. FF2 er en tverrsnittstudie, og det trengs videre undersøkelser for å avdekke om det er en kausal sammenheng mellom bærerskap og hormonell prevensjon.
Liste over forkortelser og akronymer

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Forklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIC</td>
<td>Akaike information criterion</td>
</tr>
<tr>
<td>AIDS</td>
<td>Aquired immune deficiency syndrome</td>
</tr>
<tr>
<td>ATC-kode</td>
<td>Anatomisk terapeutisk kjemisk kode</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
</tr>
<tr>
<td>Df</td>
<td>Frihetsgrader</td>
</tr>
<tr>
<td>FF1</td>
<td>Fit Futures 1</td>
</tr>
<tr>
<td>FF2</td>
<td>Fit Futures 2</td>
</tr>
<tr>
<td>FSH</td>
<td>Follikelstimulerende hormon</td>
</tr>
<tr>
<td>HIV</td>
<td>Humant immunsviktvirus</td>
</tr>
<tr>
<td>HP</td>
<td>Hormonell prevensjon</td>
</tr>
<tr>
<td>kg</td>
<td>Kilogram</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidensiintervall</td>
</tr>
<tr>
<td>KMI</td>
<td>Kroppsmasseindeks</td>
</tr>
<tr>
<td>LH</td>
<td>Luteiniserende hormon</td>
</tr>
<tr>
<td>MRSA</td>
<td>Meticillinresistente Staphylococcus aureus</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumklorid</td>
</tr>
<tr>
<td>NORM</td>
<td>Norsk overvåkningssystem for antibiotikaresistens hos mikrober</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>OT</td>
<td>Oppfølgingsstjenesten</td>
</tr>
<tr>
<td>PTSAg</td>
<td>Pyrogenic toxin superantigen</td>
</tr>
<tr>
<td>REK</td>
<td>Regionale komitéer for medisinsk og helsefaglig forskningsetikk</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>UNN</td>
<td>Universitetssykehuset Nord-Norge</td>
</tr>
<tr>
<td>VG1</td>
<td>Videregående skole trinn 1</td>
</tr>
<tr>
<td>VG3</td>
<td>Videregående skole trinn 3</td>
</tr>
</tbody>
</table>
1. Introduksjon

1.1 Bakgrunn

Staphylococcus aureus (*S. aureus*) er en potensielt patogen bakterie som kan detekteres i nesen hos 20-30% i en frisk voksen befolkning (1). *S. aureus* er hyppigste årsak til postoperative sårinfeksjoner, og er også en viktig årsak til nosokomiale pneumonier og nosokomial sepsis (2). Kunnskap om faktorer som påvirker kolonisering med bakterien, kan bidra til å forebygge infeksjoner, til fordel for både pasient og helsevesen.

Det har vært kjent i en årrekke at prevalens av *S. aureus* nesebærerskap varierer med kjønn (3) og alder (4). Prevalensen er høyest hos menn og avtar med økende alder. Det er derfor spekulert i om endogene kjønnshormoner kan være årsak til kjønns- og aldersforskjellene, og en studie fra 2012 undersøkte om også eksogene kjønnshormoner kan påvirke bærerskap(5). Forfatterne fant signifikant høyere frekvens av *S. aureus* bærerskap hos kvinner som brukte hormonell prevensjon i forhold til de som ikke brukte hormonell prevensjon. Undersøkelsen fant ikke forskjeller i bærerskap mellom kombinasjonspreparater, etinyløstradiol-dose eller type progestin i preparatene.

1.2 Formål og hypotese

Studien skal belyse en eventuell assosiasjon mellom bruk av hormonell prevensjon hos unge kvinner og nesebærerskap av *S. aureus*.

Hovedhypotesen er: "Bruk av hormonelle prevensjonsmidler hos unge kvinner er assosiert med høyere forekomst av *S. aureus* nesebærerskap"
Delhypoteser:

1. Oddsen for bærerskap av *S. aureus* er forskjellig mellom prevensjon som inneholder bare progestiner og kombinasjonspreparater.

2. Oddsen for bærerskap av *S. aureus* er assosiert til hormonnivået i prevensjonspreparatene.

Dette er en problemstilling som er lite undersøkt, og dette datasettet gir anledning til å studere en eventuell sammenheng mellom hormonell prevensjon og nesebærerskap hos ungdom.

1.3 *S. aureus*

S. aureus er en gram-positiv kokk først identifisert i 1880 av Sir Alexander Ogston (8). *S. aureus* produserer en mengde virulensfaktorer som gir vevsskade, hovedsakelig enzymer og toksiner. Enzymer som protease, lipase og hyaluronidase gir vevsdestruksjon. Eksotoksiner produsert av *S. aureus* er eksempelvis PTSAg som induserer toksisk sjøkk syndrom og exfoliatiner som er involvert i staphylococcal-scaled skin syndrome (2).

β-laktamase er et enzym som inaktiverer ulike β-laktamaantibiotika (2). I en rapport fra NORM i 2014 var 72,9% av *S. aureus*-isolatene fra blodkultur β-laktamaseproduserende (9). En høy andel av *S. aureus* isolatene er resistente mot mange ulike antibiotika og *Methicillin-resistente S. aureus* (MRSA) er en stor utfordring globalt. Selv om prevalensen av MRSA i blodkultur-isolater fortsatt er lav i Norge, har den økt fra 0% i år 2000 (10) til 1-5% i år 2014 (11).I NORM-rapporten for 2014 er MRSA-prevalensen i blodkultur noe lavere på 0,8%, men angir også tall fra laboratorienes datasystemer som har en MRSA-prevalens i blodkultur på 1,4%(9). I store deler av Europa er MRSA prevalensen i blodkultur-isolater i 2014 over 10 % (11).

1.3.1 Infeksjoner med *S aureus*

I 80% av tilfellene er infeksjoner med *S. aureus* forårsaket av en mikrobe som allerede finnes på hud eller slimhinne hos pasienten (12). I tråd med retningslinjer for infeksjonsovervåkning i Norge og Europa, kan infeksjoner med *S. aureus* grupperes i samfunnsassosierte infeksjoner og helsetjenesteassosierede
infeksjoner. Samfunnsassosierede infeksjoner defineres som infeksjonsstart under 48 timer etter sykehusinnleggelse eller infeksjonsstart utenfor sykehus (13). Helsetjenesteassosierede infeksjoner debuterer 48 timer (inkubasjonsfase) etter innleggsing i sykehus eller sykehjem; infeksjonen kan avdekkes mens pasienten fremdeles er i helseinstitusjon eller først etter utskrivelse (14).

Helsetjenesteassosierede infeksjoner fører til økte utgifter for samfunnet og ulemper for pasienten ved at sykehusoppholdet blir lengre, økt risiko for reinnleggelse, samt økt morbiditet og mortalitet (15). En analyse fra CDC estimerte direkte medisinske kostnader av helseassosierede infeksjoner i amerikanske sykehus mellom 28-45 milliarder dollar per år i 2009 (16).

Tall fra norske sykehus i 2014 viste at omkring 1 av 20 pasienter fikk en infeksjon i operasjons-området(17). Siste rapport for forekomst av infeksjoner blant inneliggende pasienter i sykehus og sykehjem i Norge høsten 2015, viste prevalens på henholdsvis 5,1% (18)og 6,1%(19). I en tidligere kartlegging av infeksjoner i norske sykehjem i 2001 utgjorde S. aureus 33,1% av alle undersøkte isolater (20). I NORM 2014 utgjorde S. aureus 14,2% av alle blodkulturisolater når hudflora var ekskludert(9).

1.3.2 Nesebærerkap
Neseslimhinnen er den overflaten som er mest aktuell når det gjelder smitteoverføring (13).

Bærerkapot av S. aureus har tradisjonelt vært delt i tre kategorier; persistente, intermitterende og ikke-bærere. Undersøkelser har vist at rundt 20% av friske voksne er persistente bærere, rundt 60% er intermitterende bærere og rundt 20% er ikke-bærere (22). Disse tallene varierer noe, hovedsakelig fordi det er omdiskutert hvor mange prøver som skal tas og med hvilket tidsintervall, for å skille persistente og intermitterende bærere. Nyere forskning har derimot vist at
det er mer riktig å dele inn bærerskap av *S.aureus* i to kategorier; persistente bærere og andre (23). Dette er viktig fordi persistente bærere har høyere risiko for å utvikle infeksjoner med *S.aureus* (12, 24).

Overflateproteinet protein A som ofte brukes i hurtigtestere for å differensiere *S. aureus* fra andre stafylokokker og finnes i signifikant høyere nivåer hos stammer som gir nesebærerskap (29). Både adhesionsfaktorer og virulensfaktorer, og nivåer av disse er mulige bakterielle faktorer som kan ha betydning for bærerskap av *S. aureus* (25).

1.4 Hormonelle prevensjonsmidler

1.4.1 Kjønnshormoner
Kjønnshormoner regulerer de seksuelle funksjonene og utviklingen av sekundære kjønnsstegn, samt har en beskyttende effekt på eksempelvis immunsystem, kardiovaskulærsystemet, sentralsystemet, beinvev og metabolisme. De mannlige kjønnshormonene er omtalt som androgener som blant annet testosteron. De kvinnelige kjønnshormonene er hovedsakelig østrogener og progesteroner (30).

1.4.2 Hormonell prevensjon
Hormonell prevensjon deles ofte opp i kombinasjonspreparater (østrogen- og progestinderivater) og preparater som bare inneholder progestin. Progestin og etinyløstradiol gir hemming av ovulasjonen via hemming av midtsyklisk follikkelstimulerende hormon (FSH) og luteiniserende hormon (LH). Dette gir en endring i det sykliske hormonnivået man vanligvis ser i en naturlig
menstruasjonssyklus. Lave nivåer av LH og FSH inhiberer også utvikling av follikler, der etinyløstradiol har større effekt enn progestin. Progestin-preparater har også effekt på endometriet ved å gjøre det mindre mottakelig for implantasjon og endrer cervixsekretet slik at spermier har vanskeligheter med å trenge gjennom (31).

Kombinasjonspreparater har en progestinkomponent som fungerer på samme måte som i progestin-preparater, men der etinyløstradiol i tillegg øker hemmingen av ovulasjonen i mye større grad enn progestin alene (32). Progestin er syntetisk progestagen (gestagen) som har effekt lik progesteron. Det er flere progestiner som brukes i hormonell prevensjon i Norge. Levonorgestrel, dropspirenon og desogestrel er eksempler på disse, og hvert virkestoff har en ulik progestagen og androgen effekt (33). Etinyløstradiol er et syntetisk derivat av østradiol og er i dag vanligste østrogen i hormonell prevensjon. Etinyløstradiol har høy biotilgjengelighet fra tarm og lang halveringstid og egner seg godt til bruk i eksempelvis oral prevensjon (34).
2. Materiale og metoder

2.1 Arbeidsprosessen

<table>
<thead>
<tr>
<th>Tabell 1 Tidsbruk 5. års oppgave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeidsoppgaver</td>
</tr>
<tr>
<td>Litteratursøk og bearbeiding av litteratur</td>
</tr>
<tr>
<td>Bearbeiding av rådata og statistisk analyse</td>
</tr>
<tr>
<td>Tekstarbeid sammen med veileder</td>
</tr>
</tbody>
</table>
2.2 Studiepopulasjon: *Fit Futures*
Tromsøundersøkelsen ble startet i 1974 og besto av seks undersøkelser med invitasjon av alle innbyggere innenfor en spesifikk aldersgruppe (35). Fit Futures er en del av *Tromsøundersøkelsen* og er den største somatiske helseundersøkelsen av ungdom i Nord-Norge. Dette er en longitudinal studie som skal undersøke hvordan blant annet oppvekst, sosialt nettsverk og livsstil påvirker fysisk og mental helse, tannhelse og skolefrafall. Det samles også inn informasjon om eksem, astma, allergi, kviser, infeksjoner, gen-modifisert mat, fysisk aktivitet, overvekt, D-vitamin, jernmangel, miljøgifter, smerte, beintetthet, diabetes, medisinbruk, øresus, personlighet og helseadferd (36). Fit Futures 1 (FF1) ble gjennomført i 2010-11, der VG1 elever fra alle videregående skoler i Tromsø kommune og Balsfjord kommune ble inviteret til å delta. Det var 1038 ungdommer som deltok, noe som svarer til 92,8% av de inviterete. FF2 pågikk 2012-13, der alle deltagere i FF1 og alle nye elever i VG3 hovedsakelig mellom 17-23 år ble inviteret. Blant 1117 inviterte deltok 868 i FF2. Dette tilsvarer at 77,7% av de inviterte (36, 37). All datainnsamling foregikk ved Forskningsposten Universitetssykehuset Nord-Norge (UNN), Tromsø.

2.3 Målinger

2.3.1 Vurdering av *S. aureus* nesebæreskap
2.4 Intervju

2.4.1 Prevensjonsbruk

Type prevensjon ble kategorisert etter spørsmålet til kvinner: "Hvis du bruker prevensjon, hvilke typer? (Tabletter/P-sprøyte/P-stav/Kondom/P-plaster/P-ring/Spiral/Annet). Ingen personer svarte at de brukte spiral under intervjuet og spiral ble derfor ikke inkludert i videre analyser og rekoding. Type prevensjon ble rekodet til "Hormonell prevensjon type" (Tabletter/P-sprøyte/P-stav/P-plaster/P-ring) der "Kondom/Annet" ble ekskludert. Type prevensjon ble også rekodet til "Hormonell prevensjon" (Ja/Nei) der "Tabletter/P-sprøyte/P-stav/P-plaster/P-ring" ble definert som "Ja".

Type oral prevensjon ble definert av spørsmålet: "Hvis du bruker p-pill, hva er navnet på medisinen?" (Yasmin®/Microgynon®/Marvelon®/Diane®/Cerazette®/Loette 28®/Mercilon®/Yasminelle®/Oralcon®/Qlaira®/Synfase®/annet). Type P-sprøyte ble kategorisert etter spørsmålet: "Hvis du bruker P-sprøyte, hva er navnet på medisinen?" (Depo-provera®). Type P-stav ble kategorisert etter spørsmålet: "Hvis du bruker P-stav, hva er navnet på medisinen?" (Implanon®/Jadelle®). Ingen deltakere brukte Jadelle®, og dette preparatet ble ekskludert fra videre rekoding og analyser. Type P-plaster ble kategorisert etter

Informasjon om etinyløstradiolnivået i kombinasjonspreparatene ble hentet fra nettsidene til Statens legemiddelverk (39) og Felleskatalogen (40). Kombinasjonspreparat ble definert som et preparat som inneholder østrogen og progestin. Alle typer hormonell prevenjon ble inkludert. Lavt etinyløstradiolnivå ble definert som 20 μg eller mindre og høyt etinyløstradiolnivå som over eller lik 30 μg (se Tabell 2). Én person brukte Qlaira® som inneholder østradiolvalerat og ikke etinyløstradiol og ble derfor ekskludert fra analyses som involverte østrogeninnhold. Tre personer svarte ”Annet” på spørsmålet om oral prevenjon og ble også ekskludert, samt to personer som ikke svarte på spørsmålet på hvilken type oral prevenjon de brukte.

<table>
<thead>
<tr>
<th>Tabell 2 Innhold av etinyløstradiol i kombinasjonspreparater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innhold av etinyløstradiol i kombinasjonspreparater</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Lav (≤20 μg etinyløstradiol)</td>
</tr>
<tr>
<td>Høy (≥30 μg etinyløstradiol)</td>
</tr>
</tbody>
</table>

Informasjon om preparater som bare inneholder progestin og kombinasjonspreparater ble hentet fra nettsidene til Statens legemiddelverk (39) og Felleskatalogen (40) (se tabell 3).

<table>
<thead>
<tr>
<th>Tabell 3 Kombinasjonspreparater og progestin-preparater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innhold i hormonell prevenjonstyper</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Kombinasjonspreparater: Inneholder både progestiner og etinyløstradiol/østradiolvalerat</td>
</tr>
<tr>
<td>Preparater som kun inneholder progestiner</td>
</tr>
</tbody>
</table>
2.4.2 Antibiotikabruk siste 24 timer
Antibiotikabruk siste 24 timer ble kategorisert etter spørsmålet: "Har du tatt antibiotikum(tabletter, mikstur, nesesalve, øyedråper eller øyesalve) de siste 24 timer?" (Ja/Nei). Deltakere ble ekskluert hvis de svarte: "Ja" på dette spørsmålet.

2.5 Elektronisk spørreskjema
2.5.1 Røyking
Røykestatus ble kategorisert ut fra spørsmålet: "Røyker du?" (Nei, aldri/Tidligere, ikke nå/Noen ganger/Daglig). Dette ble rekodet til "Nåværende røykestatus" (Aldri/Noen ganger/Daglig), der deltagere som oppga "Tidligere, ikke nå" ble plassert under kategorien "Aldri".

2.5.2 Snusbruk
Snusbruk ble kategorisert ut fra spørsmålet: "Bruker du snus" (Nei, aldri/Tidligere, ikke nå/Noen ganger/Daglig). Dette ble rekodet til "Daglig snusbruk" (Nei/Ja) der "Nei, aldri/Tidligere, ikke nå/Noen ganger" ble plassert under kategorien "Nei".

2.5.3 Fysisk aktivitet
2.6 Klinisk undersøkelse
Høyde ble målt i centimeter (cm) og vekt i kilogram (kg). Høyde ble målt av sykepleier med standard måleapparat, der deltakers høyde måles uten sko inntil vegg. Høyde ble registrert til nærmeste millimeter. Vekt ble målt elektronisk med lette klær og uten sko til nærmeste 0,1 enhet. KMI ble kalkulert etter vekt i kg dividert med høyde i meter\(^2\) (kg/m\(^2\)).

2.7 Statistisk analyse
Analysene ble gjort med SPSS (Statistical Package of Social Sciences) versjon 22. Alle hypotesetester er to-sidige og signifikansnivået ble satt til 0,05. Kji-kvadrattest ble brukt for å beregne statistisk signifikans i beskrivelsen av studiepopulasjonen i tabell 7. I tabell 8 ble det brukt logistisk regresjon med multivariabel odds ratio (OR) og 95% konfidensintervall (KI) for å undersøke hvilke faktorer som var assosiert med bærerskap. Det ble også beregnet to-sidig interaksjonsanalyse for variablene i tabell 8.

2.7.1 Modellseleksjon
Ved hjelp av programvaren DAGitty 2.3 (42) kan man visualisere den kausale strukturen i en statistisk modell, og programvaren er ett av flere hjelpemidler for å vurdere hvilke kovariater man skal inkludere i modellen(43). Utgangspunktet var kjente vertsfaktorer for nesebærerskap, og programvaren foreslår et minimum av kovariater avhengig av kovariatenes status i modellen og om man vil undersøke direkteeffekt eller totaleffekt. I tillegg kan man undersøke konsekvensen av en eller flere umålte variabler, for eksempel sosialt nettverk (se vedlegg 1).

Akaike Information Criterion (AIC) er et hjelpemiddel for å sammenligne flere statistiske modeller. AIC gir en skår som avhenger av antall inkluderte kovariater og hvor mye av variasjonen som forklares av modellen. AIC «straffer» bruk av kovariater som bidrar lite til modellen, slik at anbefalt modell er en avveining mellom kompleksitet og i hvilken grad modellen fanger variasjonen i datasettet. AIC ble brukt med variablene i tabell 8.

2.7.2 Variabler
Det ble gitt tilgang til 110 variabler i datassetet fra FF2 som kunne være aktuelle for oppgaven. Av disse ble 31 brukt i oppgaven. Fem nye variabler ble kalkulert etter informasjonen fra de opprinnelige 31 (se tabell 4).
Tabell 4 Variabelliste

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Type</th>
<th>Deskriptive målinger</th>
<th>Analytiske målinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjønn</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Alder</td>
<td>Kontinuerlig</td>
<td>Gjennomsnitt, standardavvik</td>
<td></td>
</tr>
<tr>
<td>Samtykkeerklæring</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltakelsesdato</td>
<td>Dato format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotikabruk siste 24 t</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menstruasjon</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevensjon</td>
<td>Kategorisk</td>
<td>Andel</td>
<td></td>
</tr>
<tr>
<td>Prevensjonstype</td>
<td>Kategorisk</td>
<td>Andel</td>
<td></td>
</tr>
<tr>
<td>Oral prevensjontype, navn</td>
<td>Kategorisk</td>
<td>Andel</td>
<td></td>
</tr>
<tr>
<td>Injisert prevensjontype, navn</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subdermal prevensjontype, navn</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-plaster, navn</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal prevensjon, navn</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral, navn</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral prevensjon, ATC-kode</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injisert prevensjon, ATC-kode</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subdermal prevensjon ATC-kode</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-plaster, ATC-kode</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal prevensjon, ATC-kode</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral, ATC-kode</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Høyde</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vekt</td>
<td>Kontinuerlig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vest på kontrollskål, neseprøve</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vekst på S. aureus selektiv agar, neseprøve</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Koagulase test, neseprøve</td>
<td>Kategorisk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endelig Staphylococcus aureus status for neseprøve med bakterievekst</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Kommentarer, lab Staphylococcus aureus</td>
<td>Kontinuerlig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus, dato for analyse</td>
<td>Dato format</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KMI (kalkulert)</td>
<td>Kontinuerlig</td>
<td>Gjennomsnitt, standardavvik</td>
<td></td>
</tr>
<tr>
<td>KMI - grupper</td>
<td>Kategorisk</td>
<td>Andel</td>
<td></td>
</tr>
<tr>
<td>Røyking</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Snusbruk</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Fysisk aktivitet</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Hormonell prevensjon (kalkulert)</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Hormonnivå kombinasjonspreparater (kalkulert)</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
<tr>
<td>Hormonell prevensjon, kombinasjonspreparater og preparater som bare inneholder progestin (kalkulert)</td>
<td>Kategorisk</td>
<td>Andel</td>
<td>Regresjon</td>
</tr>
</tbody>
</table>
2.7.3 Rensing av datasett

Av de 1117 potensielle deltakere som var invitert til FF2 deltok 868. Av de opprinnelige 868 deltakerne, ble deltakere ekskludert etter predefinerte kriterier (se figur 2).

![Flytdiagram over studiepopulasjonen](image)

- Ekskluderte 249 (22.3%) som ikke møtte opp
- Ekskluderte deltakere uten neseprøve
- Ekskluderte deltakere med alder over 21 år
- Ekskluderte deltakere med ugyldig neseprøve (negativ kontrollprøve)
- Ekskluderte kvinner som manglet data på hormonell prevensjon. To deltakere rapporterte ingen menstruasjon og en deltaker hadde ingen data på hormonell prevensjonsbruk
- Ekskluderte deltakere som hadde brukt antimikrobielle midler de siste 24 t (11 deltakere) og deltakere som ikke hadde data på antimikrobielle midler siste 24 t (3 deltakere)

Figur 2 Flytdiagram over studiepopulasjonen
2.8 Etikk
3. Resultater
Studiepopulasjonen i FF2 besto av 348 menn og 427 kvinner. Av kvinnene var det 185 som ikke brukte hormonell prevensjon og 242 som brukte hormonell prevensjon. Gjennomsnittsalderen var 18,2-18,3 år (se tabell 5). Det var 21 og 19 personer svarte ikke i spørreskjema om røyking og snusbruk, og totalt antall i røyke- og snusvariablen er derfor 754 og 756. Åtte personer svarte ikke i spørreskjema om fysisk aktivitet og totalt antall i fysisk aktivitetvariablen er derfor 767.

<table>
<thead>
<tr>
<th>Tabell 5 Karakterisitika av studiepopulasjonen FF2 (n=775*). Verdier er antall (%), gjennomsnitt eller (standardavvik, SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvinner (n=427)</td>
</tr>
<tr>
<td>Ikke-brukere(n=185)</td>
</tr>
<tr>
<td>Alder, år</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>Alder kontinuerlig</td>
</tr>
<tr>
<td>KMI-kategori, kg/m2</td>
</tr>
<tr>
<td><18,5</td>
</tr>
<tr>
<td>18,5-<25</td>
</tr>
<tr>
<td>25-<30</td>
</tr>
<tr>
<td>30 +</td>
</tr>
<tr>
<td>KMI kontinuerlig</td>
</tr>
<tr>
<td>Røyking</td>
</tr>
<tr>
<td>Daglig</td>
</tr>
<tr>
<td>Av og til</td>
</tr>
<tr>
<td>Aldri</td>
</tr>
<tr>
<td>Daglig snusbruk</td>
</tr>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>Nei</td>
</tr>
<tr>
<td>Fysisk aktivitet i fritid</td>
</tr>
<tr>
<td>Lavt nivå</td>
</tr>
<tr>
<td>Middels nivå</td>
</tr>
<tr>
<td>Høyt nivå</td>
</tr>
</tbody>
</table>

* Antall kan variere pga missing
Av de 242 kvinnene som brukte hormonell prevensjon var det overvekt av orale preparater. Av de orale preparatene var de hyppigst brukte Microgynon®, Loette 28® og Cerazette® (se tabell 6).

Tabell 6 Nåværende bruk av hormonell prevensjon FF2 (n=242)

<table>
<thead>
<tr>
<th>Hormonell prevensjonstype</th>
<th>Antall (n)</th>
<th>Prosent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (tabletter)</td>
<td>216</td>
<td>89,3</td>
</tr>
<tr>
<td>P-sprøyte</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>P-stav</td>
<td>15</td>
<td>6,2</td>
</tr>
<tr>
<td>P-plaster</td>
<td>6</td>
<td>2,5</td>
</tr>
<tr>
<td>P-ring</td>
<td>4</td>
<td>1,7</td>
</tr>
<tr>
<td>Spiral</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Oral hormonell prevensjon (n=214)

<table>
<thead>
<tr>
<th></th>
<th>Antall (n)</th>
<th>Prosent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerazette</td>
<td>22</td>
<td>10,3</td>
</tr>
<tr>
<td>Diane</td>
<td>4</td>
<td>1,9</td>
</tr>
<tr>
<td>Loette 28</td>
<td>54</td>
<td>25,2</td>
</tr>
<tr>
<td>Marvelon</td>
<td>2</td>
<td>0,9</td>
</tr>
<tr>
<td>Mercilon</td>
<td>14</td>
<td>6,5</td>
</tr>
<tr>
<td>Microgynon</td>
<td>83</td>
<td>38,8</td>
</tr>
<tr>
<td>Oralcon</td>
<td>14</td>
<td>6,5</td>
</tr>
<tr>
<td>Qlaira</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>Synfase</td>
<td>2</td>
<td>0,9</td>
</tr>
<tr>
<td>Yasmin</td>
<td>6</td>
<td>2,8</td>
</tr>
<tr>
<td>Yasminelle</td>
<td>9</td>
<td>4,2</td>
</tr>
<tr>
<td>Annet</td>
<td>3</td>
<td>1,4</td>
</tr>
</tbody>
</table>

*2 deltakere brukte oral hormonell prevensjon, men oppga ikke type preparat i intervjuet.

Prevalens av *S. aureus* nesebærerskap for den totale studiepopulasjonen var 51,6%. Blant kvinner som brukte hormonell prevensjon var 56,2% nesebærere av *S. aureus*, mens tilsvarende 42,2% hos kvinner som ikke brukte hormonell prevensjon. Denne forskjellen var signifikant (p= 0,01; tabell 7). Andelen nesebærere blant menn var 53,4%. Det var også en signifikant forskjell i prevalens for bærerskap i forhold til hormonell prevensjonstype (p=0,004). I gruppen som brukte kombinasjonspreparater, var det 61,3% som var nesebærere sammenlignet med 34,2% hos gruppen som brukte progestin-preparater. Bærerskap var ikke signifikant assosiert med eksogent østrogennivå (p=0,19)
I gruppen med lavt fysisk aktivitetsnivå var 65,0% bærere, 44,9% var bærere i gruppen med middels nivå og 51,4% i gruppen med høyt nivå. Forskjellene var statistisk signifikante (p=0.026) (se tabell 7).

<table>
<thead>
<tr>
<th>Tabell 7 Karakterisitika av studiepopulasjonen etter S. aureus nesebærerskap. FF2 (kvinner; n=427*).</th>
<th>Ikke-bærer n (%)</th>
<th>Bærer n (%)</th>
<th>P-verdi**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalpopulasjon: (n=775)</td>
<td></td>
<td></td>
<td>0,010</td>
</tr>
<tr>
<td>Kjønn og HP-bruk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvinne, ikke-bruker</td>
<td>107 (57,8)</td>
<td>78 (42,2)</td>
<td></td>
</tr>
<tr>
<td>Kvinne, bruker</td>
<td>106 (43,8)</td>
<td>136 (56,2)</td>
<td></td>
</tr>
<tr>
<td>Menn</td>
<td>162 (46,6)</td>
<td>186 (53,4)</td>
<td></td>
</tr>
<tr>
<td>Kvinner: (n=427)</td>
<td></td>
<td></td>
<td>0,190</td>
</tr>
<tr>
<td>Eksogent østrogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavt nivå</td>
<td>36 (44,4)</td>
<td>45 (55,6)</td>
<td></td>
</tr>
<tr>
<td>Høyt nivå</td>
<td>40 (34,2)</td>
<td>77 (65,8)</td>
<td></td>
</tr>
<tr>
<td>HP-type</td>
<td></td>
<td></td>
<td>0,004</td>
</tr>
<tr>
<td>Kombinert</td>
<td>77 (38,7)</td>
<td>122 (61,3)</td>
<td></td>
</tr>
<tr>
<td>Progestin-preparater</td>
<td>25 (65,8)</td>
<td>13 (34,2)</td>
<td></td>
</tr>
<tr>
<td>Alder, år</td>
<td></td>
<td></td>
<td>0,118</td>
</tr>
<tr>
<td>17</td>
<td>11 (78,6)</td>
<td>3 (21,4)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>156 (48,8)</td>
<td>164 (51,2)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>35 (53,0)</td>
<td>31 (47,0)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5 (31,3)</td>
<td>11 (68,8)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6 (54,4)</td>
<td>5 (45,5)</td>
<td></td>
</tr>
<tr>
<td>KMI-kategori, kg/m2</td>
<td></td>
<td></td>
<td>0,547</td>
</tr>
<tr>
<td>< 18,5</td>
<td>12 (57,1)</td>
<td>9 (42,9)</td>
<td></td>
</tr>
<tr>
<td>18,5-<25</td>
<td>149 (47,8)</td>
<td>163 (52,2)</td>
<td></td>
</tr>
<tr>
<td>25-<30</td>
<td>35 (55,6)</td>
<td>28 (44,4)</td>
<td></td>
</tr>
<tr>
<td>30+</td>
<td>17 (54,8)</td>
<td>14 (45,2)</td>
<td></td>
</tr>
<tr>
<td>Røyking</td>
<td></td>
<td></td>
<td>0,153</td>
</tr>
<tr>
<td>Daglig</td>
<td>7 (70,0)</td>
<td>3 (30,0)</td>
<td></td>
</tr>
<tr>
<td>Av og til</td>
<td>43 (56,6)</td>
<td>33 (43,4)</td>
<td></td>
</tr>
<tr>
<td>Aldri</td>
<td>159 (47,5)</td>
<td>176 (52,5)</td>
<td></td>
</tr>
<tr>
<td>Daglig snusbruk</td>
<td></td>
<td></td>
<td>0,059</td>
</tr>
<tr>
<td>Ja</td>
<td>47 (41,6)</td>
<td>66 (58,4)</td>
<td></td>
</tr>
<tr>
<td>Nei</td>
<td>163 (52,6)</td>
<td>147 (47,4)</td>
<td></td>
</tr>
<tr>
<td>Fysisk aktivitet i fritid</td>
<td></td>
<td></td>
<td>0,026</td>
</tr>
<tr>
<td>Lavt nivå</td>
<td>21 (35,0)</td>
<td>39 (65,0)</td>
<td></td>
</tr>
<tr>
<td>Middels nivå</td>
<td>98 (55,1)</td>
<td>80 (44,9)</td>
<td></td>
</tr>
<tr>
<td>Høyt nivå</td>
<td>89 (48,6)</td>
<td>94 (51,4)</td>
<td></td>
</tr>
</tbody>
</table>

*Antall kan variere pga missing **Kji-kvadrat-test
Logistisk regresjon med et interaksjonsledd mellom alder og snusbruk ble gjort for å undersøke sammenhengen mellom bruk av hormonell prevensjon og nesebærerskap. Kvinner som brukte kombinasjonspreparat, hadde en justert OR for nesebærerskap av *S. aureus* på 2,2 (95% KI=1,4-3,3). Kvinner som brukte progestin-preparater hadde en OR for nesebærerskap på 0,7 (95% KI= 0,3-1,5). Det var signifikant høyere OR ved lav fysisk aktivitet og økende alder (se tabell 8).

| Tabell 8 Hormonell prevensjonsbruk og *S. aureus* nesebærerskap. OR og (95% KI) fra multivariabel logistisk regresjonsanalyse. FF2 kvinner (n=422*). |
|----------------------------------|-----------------|
| **Hormonell prevensjonsgruppe** | **OR** | **95% KI** |
| Ikke bruker | 1,0 | (ref) |
| Bruker av kombinasjonspreparat | 2,15 | 1,40-3,31 |
| Bruker av progestin-preparat | 0,69 | 0,33-1,48 |
| **Alder, år** | 1,49 | 1,05-2,11 |
| **Røyking** | | |
| Daglig | 0,24 | 0,06-1,06 |
| Av og til | 0,59 | 0,34-1,02 |
| Aldri | 1,0 | (ref) |
| **Daglig snusbruk** | | |
| Ja | 1,53 | 0,94-2,50 |
| Nei | 1,0 | (ref) |
| **Fysisk aktivitet i fritid** | | |
| Lavt nivå | 2,42 | 1,24-4,71 |
| Middels nivå | 1,0 | (ref) |
| Høyt nivå | 1,34 | 0,86-2,07 |
| **Interaksjon** | | |
| Alder x snusbruk | 0,50 | 0,25-1,00 |

OR= odds ratio. KI= konfidensintervall. *Ekskluderte 2 deltakere som ikke oppga preparatnavn på oral hormonell prevensjon og 3 deltakere som svarte “annet” i oral hormonell prevensjonsvariabelen.

Akaike Information Criterion (AIC) ble brukt for å sammenlignge flere statistiske modeller i datasettet. KMI var den variabelen som bidro minst til å forklare variasjonen i bærerskap (se tabell 9).
Tabell 9 AIC for statistiske modeller

<table>
<thead>
<tr>
<th>Effekt</th>
<th>Modell skår</th>
<th>Likelihood ratio tester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIC av</td>
<td>BIC av</td>
</tr>
<tr>
<td></td>
<td>redusert</td>
<td>redusert</td>
</tr>
<tr>
<td></td>
<td>modell</td>
<td>modell</td>
</tr>
<tr>
<td>Intercept</td>
<td>271,883</td>
<td>320,193</td>
</tr>
<tr>
<td>Snusbruk</td>
<td>272,637</td>
<td>316,922</td>
</tr>
<tr>
<td>Hormonbruk</td>
<td>286,781</td>
<td>327,040</td>
</tr>
<tr>
<td>Alder</td>
<td>272,041</td>
<td>316,326</td>
</tr>
<tr>
<td>KMI</td>
<td>267,162</td>
<td>303,395</td>
</tr>
<tr>
<td>Røyking</td>
<td>273,582</td>
<td>313,841</td>
</tr>
<tr>
<td>Fysisk aktivitet</td>
<td>274,473</td>
<td>314,731</td>
</tr>
</tbody>
</table>
4. Diskusjon
Det er ikke tidligere undersøkt om det er en sammenheng mellom hormonell prevensjon og nesebærerskap av *S. aureus* i en ungdomspopulasjon. I en tysk studie fant forfatterene en positiv assosiasjon mellom hormonell prevensjon og bærerskap blant kvinner i alderen 22-29 år(5). Blant de inkluderte i FF2 er det en statistisk signifikant sammenheng mellom hormonell prevensjon og bærerskap. Dette funnet diskuteres i følgende avsnitt.

4.1 Hovedfunn

4.1.1 Hormonell prevensjon og bærerskap av *S. aureus*
Denne studien viser for første gang en assosiasjon mellom bruk av hormonell prevensjon og nesebærerskap av *S. aureus* også i en ungdomspopulasjon. Kvinner som bruker kombinasjonspreparater har høyere odds for nesebærerskap enn kvinner som ikke bruker hormonell prevensjon og kvinner som bruker progestin-preparater. Odds for bærerskap ved bruk av progestin-preparater er lavere enn for kvinner som ikke bruker hormonell prevensjon, men denne assosiasjonen er ikke statistisk signifikant. Hvorvidt progestin-preparater har en beskyttende effekt for bærerskap bør undersøkes i studier med egnet design. FF1 og FF2 er en longitudinell studie som, kanskje kan brukes til å undersøke den eventuelle kausale sammenhengen ved å følge utviklingen av nesebærerskap i forhold til oppstart på hormonell prevensjon.

Det var ingen signifikant assosiasjon mellom etinyløstradioldose og nesebærerskap av *S. aureus*. Prevalensen av nesebærerskap for kvinner som bruker prevensjon med høyt etinyløstradiol er 65,8%, som er en av de høyeste prevalensene i undergruppene som er testet. Prevalensen for nesebærerskap er også i overkant av ti prosentpoeng høyere enn for kvinner som bruker prevensjon med lavt etinyløstradiol. Det er derfor nærliggende å tenke at prevalensen av nesebærerskap øker ved høyere etinyløstradiol-dose. Denne studien har ikke nok statistisk styrke for å påvise en sammenheng.

Tidligere studier har beskrevet hormonell prevensjon som en risikofaktor for symptomatisk infeksjon, noe som tyder på at hormonell prevensjon kan ha en
immunmodulerende effekt (45-50). Denne effekten gjør at det kan være en
kausal sammenheng mellom hormoninntak og bærerskap av S. aureus. Lavere
nivåer av antimikrobielle peptider uttrykt av keratinocyter er en viktig faktor
for nesebærerskap av S. aureus (51). Det er også vist at kjønnshormoner
påvirker antimikrobielle peptider i genitaltraktus (52-54). Hvordan hormonell
prevensjon påvirker immunsystem og bærerskap trengs ytterligere studier på.

4.2 Valg av kovariater
4.2.1 Alder
I denne studien ønsket man å undersøke en ungdomspopulasjon, og deltagere på
over 21 år ble derfor ekskludert fra analysen. Tidligere undersøkelser har vist at
ung alder predikerer for nesebærerskap av S. aureus(4). I motsetning til tidligere
undersøkelser ser vi at prevalens av nesebærerskap øker med alderen, noe som
kan ha sammenheng med at vi studerer en ungdomspopulasjon med et
aldersspenn på bare fire år. Prevalensen i hele utvalget er høyere for bærerskap
av S.aureus enn hva som tidligere er målt hos voksne i norske undersøkelser
(55).

4.2.2 Fysisk aktivitet
Det er tidligere vist at fysisk aktivitet som involverer nærkontakt og risiko for
mindre skader, er positivt assosiert med bærerskap av S. aureus (56). Vi fant
signifikant høyere odds for bærerskap av S. aureus ved lav fysisk aktivitet.
Variabelen fysisk aktivitet skiller ikke kontaktidrett med risiko for skader fra
idrett uten nærkontakt og uten skaderisiko og dette kan gi skjevhet i materialet..
Det er i tillegg relevante umålte variabler som eksempelvis sosialt nettverk som
kan være assosiert til bærerskap.

4.2.3 Tobakksbruk
To justeringsvariabler for tobakksbruk var tatt med i analysen, snusbruk og
røyking. Det har ikke vært mulig å finne litteratur om at snusbruk tidligere har
vært sett i sammenheng med nesebærerskap av S.aureus. I resultatene fra denne
undersøkelsen ser man høyere odds for bærerskap av S.aureus ved daglig bruk
av snus, men denne tendensen er ikke statistisk signifikant. Dette er en mulig
risikofaktor for nesebærerskap av S.aureus som bør undersøkes videre i andre
studier.
Røyking har i tidligere undersøkelser vist å være en av de sterkeste miljøfaktorene som hemmer nesebærerskap av *S.aureus* (26, 28, 57). I vår undersøkelse var det kun ti kvinner som røykte daglig, og det er derfor ikke statistisk styrke til å påvise denne sammenhengen. Vi ser likevel samme tendens som tidligere studier har vist ved at røyking er en beskyttende faktor for bærerskap av *S.aureus*.

En forskjell i bærerskap for snusbruk og røyking kan si noe om mekanismen for at røyking beskytter for nesebærerskap. En forklaring kan være at snusbruk påvirker lokalt i munnhule og oralslimhinne, mens sigarettrøyk i større grad involverer hele luftveien, inkludert nese og neseslimhinne. Noen forklaringer til den beskyttende effekten til røyking er baktericid effekt av sigarettrøyk (57), samt økt immunaktivitet assosiert med hypoksi induseret av sigarettrøyking (26).

4.3 Intern validitet

4.3.1 Studiedesign

FF2 er en tverrsnittstudie på en frisk populasjon av unge individer. Deltakelsen er høy, og det er mye informasjon tilgjengelig om hver deltaker. Tverrsnittstudier måler eksposisjon og utfall samtidig, og man kan derfor ikke fastslå kausale sammenhenger med et slikt studiedesign.

4.3.2 Tilfeldige feilkilder og presisjon

Detaljerte protokoller ble utviklet av Fit Futures administrasjon før studiestart for å minimalisere tilfeldige feil. Studien var utført på Forskningsposten som er en spesialisert avdeling ved UNN. Alle som samlet inn prøver og data var trent i prosedyrer. Stor studiepopulasjon gjør risikoen mindre for effekt av tilfeldig feil. Ved manglende vekst på blodagar (kontroll) ved laboratoriet ble prøven vurdert som ugyldig, og ikke inkludert i denne studien. Man antar at manglende bakterievkst skyldes at prøven er tatt på feil måte eller at det er noe galt med utstyret som er brukt.

4.3.3 Seleksjonsbias

Høy andel (77,7%) av de invitéte ungdommene deltok på studien, noe som kan være med på å redusere seleksjonsbias. Gjennomsnittsalder er også representativt for ungdomsgruppen. Imidlertid er det funnet sammenheng mellom høyere KMI i FF1 og lavere fremmøte til FF2 blant jenter i
studieforberedende utdanning (58). Dette kan tyde på forskjeller i motivasjon til å delta i undersøkelsen, kan foreligge, der eksempelvis individer med mange risikofaktorer ikke ønsker å delta i en helseundersøkelse for å få bekræftet dårlig helsestatus. En artikkel basert på Tromsøundersøkelsen fant høyere mortalitet hos de som deltok bare på den siste av fire undersøkelser, enn hos personer som deltok på alle undersøkelser (59). Dette gjør at man kanskje ser på en friskere ungdomsbefolkning enn gruppen som ikke deltok i undersøkelsen.

Yrkesfaglige studieretninger var underrepresentert i FF2, sannsynligvis på grunn av at yrkesfaglige studieretninger har lærlingtid på VG3. Om det er forskjeller i helsestatus eller miljøfaktorer mellom yrkesfaglige studieretninger og studiespesialiserende studieretninger kan man få en feilfordeling av populasjonen.

4.3.4 Informasjonsbias

Innsamlingen og analysearbeidet av neseprøvene var gjort av trente sykepleiere og laboratorieteknikere som etter opplæring benyttet en skriftlig protokoll for korrekt utførelse av arbeidet. Ved manglende vekst på blodagar (kontroll) ved laboratoriet ble prøven vurdert som ugyldig, og ikke inkludert i denne studien. Man antar at manglende bakterievekst skyldes at prøven er tatt på feil måte eller at det er noe galt med utstyret som er brukt.

Deltakere som hadde brukt antibiotika de siste 24 timer ble ekskludert fra denne studien på grunn av at man kan anta at slike preparater kan påvirke bakterieflora i neseslimhinne og gi informasjonsbias.

Det ble kun tatt én neseprøve, noe som gjør at det ikke er mulig å skille mellom persistente og intermitterende bærere. Dette kan føre til misklassifisjon av bærerstatus. Dette kan forklare at prevalensen for bærerskap i totalpopulasjonen er noe høyere enn forventet ut fra tidligere studier på voksne (55, 60).

I variablene både i intervju og spørreskjema, kan det tenkes at deltakere både underrapporterer og overrapporterer. Det er kjent fra andre undersøkelser at deltakere gjerne underrapporterer faktorer som kan gi helserisiko, slik som
røyking og snusbruk (61), mens de overrapporterer fysisk aktivitet som kan gi helsegevinst (62).

4.3.5 Modellseleksjon
Den kausale strukturen foreslått av DAGitty, anbefaler programmet minimum å justere for fysisk aktivitet, alder, KMI, røyking og snusbruk (se vedlegg 1). I denne modellen er det minst tre umålte variabler som kan påvirke estimatet. Sosialt nettverk er eneste variabel som er assosiert til både eksposisjon og nesebærerskap (63). Verken direkte effekt eller total effekt kan estimeres uten bias når det mangler data på denne variablen. Dette vil gi noe bias i den valgte modellen, men det er usikkert i hvilken størrelse eller retning.

Den kausale sammenhengen mellom variablene trenger ikke være åpenbar. I den gjeldende modellen (se vedlegg 1) er det for eksempel valgt at pilen skal gå fra fysisk aktivitet til KMI, det vil si at fysisk aktivitet påvirker KMI. Hvis eksempelvis pilen snus slik at KMI påvirker fysisk aktivitet blir modellen annerledes og DAGitty angir at total effekt ikke kan estimeres uten bias.

AIC skåren viste at KMI bidro minst til å forklare variasjonen i nesebærerskap og KMI ble derfor ikke tatt med i regresjonsanalysen.

4.3.6 Interaksjon
For å undersøke mulige interaksjoner mellom variabler, ble det gjort en interaksjonsanalyse med to-veis interaksjoner mellom alle variablene i en multiplikativ modell. En interaksjon mellom snusbruk og alder var signifikant (p = 0,050). Det ble besluttet å ta dette interaksjonsleddet med i modellen. Dette påvirket AIC skåren i liten grad.

Noe av sammenhengen man kan se mellom hormonell prevensjon kan komme av ukjente interaksjoner og confoundere, spesielt seksuell aktivitet som undersøkelsen ikke har data om. Den omvendte effekten på bærerskap som finnes mellom brukere av kombinasjonspreparater og brukere av progestin-preparater taler mot at seksuell aktivitet spiller er stor rolle som potensiell confounder.
Diabetes mellitus er en kjent risikofaktor for nesebærerskap av *S. aureus* (25). I ungdomspopulasjonen var det kun to deltakere som anga diagnosen diabetes mellitus type 1, og det vil derfor ikke ha hatt noen effekt som kovariat på analysen. D-vitamin nivå er også en kjent risikofaktor (28). Denne ble ikke inkludert grunnet uferdige analyser av blodprøven og vil kunne gi et bias av ukjent styrke og retning.

Sammenhengen som finnes mellom eksogene kjønnshormoner og nesebærerskap av *S. aureus* gjør at det er sannsynlig at endogent hormonnivå også kan ha effekt på bærerskap. Dette kan være et potensielt kovariat som kan være med på å gi bias av ukjent styrke i denne undersøkelsen.

4.4 Ekstern validitet
Dette er en studie som inviterte alle elever ved 3. året videregående skole samt de som deltok i FF1 der 93% av alle VG1 elever deltok. Dette gjør at det er et ukjent antall ungdommer i samme aldersgruppe som ikke ble invitert grunnet at de ikke startet videregående skole i tidsrommet jamfør seleksjonsdiskusjonen ovenfor. Tall fra oppfølgingstjenesten (OT) fra skoleåret 2011/2012 da FF1 ble gjennomført sier at 919 ungdommer i Troms fylke var meldt til OT grunnet at de ikke var i arbeid eller opplæring (64). Hvor mange av disse som gjelder Tromsø kommune og hvor mange som potensielt kunne vært invitert til undersøkelsen er usikkert.

Med så høy deltagelse, er det likevel holdepunkter for at studien er representativ for aldersgruppen både på lokalt og nasjonalt nivå. Den er muligens også representativ for andre kaukasiske ungdommer med tilnærmet samme levestandard i andre vestlige land.
4.5 Konklusjon
I ungdomspopulasjonen i FF2 er det en signifikant sammenheng mellom bruk av hormonell prevensjon og økt odds for nesebærerskap. Denne sammenhengen avhenger av type preparat og blir sterkere når man kun ser på kvinner som bruker kombinasjonspreparater. Undersøkelsen ga ikke signifikante funn om eksogent østrogennivå i kombinasjonspreparater predikerer bærerskap, men andelen bærere er høyest hos kvinner som bruker preparater med høyere hormonnivå. På grunn av for liten studiepopulasjon er det ikke statistisk styrke til å påvise en mulig assosiasjon.

Det er umålte variabler som kan gi bias i estimatene, men nivå og retning er ukjent. En annen svakhet ved studiet er mulig missklassifikasjonsbias ved at det bare er tatt en neseprøve. Dette gjør det umulig å skille persisterende fra intermittende bærere. FF2 er en tverrsnittstudie og det kreves derfor videre studier med andre studiedesign for å avdekke kausalitet. Grunnet høy deltagelse i undersøkelsen er det holdepunkter for at studien er representativ for aldersgruppen.

Man vet lite om virkningsmekanismen for assosiasjonen mellom hormonell prevensjon og bærerskap av *S. aureus*, og det trengs ytterligere studier for å undersøke om det er en kausal sammenheng. Siden det er en klar sammenheng mellom bruk av hormonell prevensjon og nesebærerskap av *S. aureus* vil det være aktuelt å undersøke om den samme sammenhengen underbygges ved måling av endogene kjønnshormoner.

Takk til deltakere i Fit Futures, Forskningsposten UNN Tromsø, Tromsøundersøkelsen; Fit Futures ledelse, Raul Primicerio, mamma, pappa og mine veiledere Lars Småbrekke, Karina Olsen og Anne-Sofie Furberg.
5. Tabeller

Tabell 1 Tidsbruk 5. års oppgave .. 11
Tabell 2 Innhold av etinyløstradiol i kombinasjonspreparater .. 14
Tabell 3 Kombinasjonspreparater og progestin-preparater .. 14
Tabell 4 Variabelliste .. 17
Tabell 5 Karakterisitika av studiepopulasjonen .. 20
Tabell 6 Nåværende bruk av hormonellprevensjon ... 21
Tabell 7 Karakterisitika av studiepopulasjonen etter nesebærerskap .. 22
Tabell 8 Hormonell prevensjonsbruk og *S. aureus* nesebærerskap ... 23
Tabell 9 AIC for statistiske modeller .. 24

6. Figurer

Figur 1 Skåler brukt ved laboratoriet .. 13
Figur 2 Flytdiagram over studiepopulasjonen ... 18
7. Referanser

38. Fit Futures 2 T. Prosedyre for utsæd av nese og halsprøver(nese1 og hals1). 2012.

44. 2 FF. Samtykkeerklæring 2014 [updated 13.06.1422.05.16]. Available from: https://uit.no/Content/320450/SamtykkeFF2012.pdf.

64. Utdanningsdirektoratet. Status fra oppfølgingstjenesten per 15. juni 2012 - analyse med tabeller og figurer 2012 [26.04.16]. Available from:
Figur 3 DAGitty modell