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1 Abstract 

Key-value stores have a very large variation in their design and implementation, while 
still adhering to the key-value abstraction. The available generic benchmarks cannot 
truly represent the performance a key-value store will have with a specific application, 
unless your application happens to have the exact same configuration and workloads as 
the benchmark. Moreover, most benchmarks only measure throughput and latency, 
ignoring performance metrics like energy efficiency and space efficiency.  
Introducing MELT: The multidimensional key-value store evaluation framework, which 
can take any applications usage characteristics of a key-value store and test it on 
multiple different key-value store implementations with different concurrency and 
throughputs settings. In addition, it measures four MELT performance metrics, memory, 
energy, latency and throughput. With this evaluation framework the assumption is that 
concurrency is better than serial key-value stores in all situations. Here will be shown 
results that support the claim that for certain applications, with throughput demands 
less than 10 million operations per second, serial hopscotch implementation 
outperforms the concurrent Libcuckoo on most of the MELT performance metrics. 
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2 Introduction 

2.1 The problem  

Key-value stores are a widely used data structure in modern computing. It is a simple 
key to value mapping that offers a simple interface, easily adapted to most applications 
needs. This simplicity hides the large variation in implementations, and the importance 
of the key type and length. What datatype the key is, will to a large degree impact 
performance. Comparing integer based with string based key-value stores, is not an 
apples to apples comparison. However the same goes for the access pattern (workload), 
number of entries and the throughput rate (number of requests per second), not to be 
confused with maximum throughput which is the key-value stores, maximum number of 
requests that can be handled per second. Benchmarking usually only cares about the 
maximum throughput, even though it is likely that an application will not need that 
maximum throughput. What are the performance metrics at lower throughput rates? 
Truly evaluating a key-value store in a way that is representative for actual use cases, is 
a complex issue. All the interaction characteristics of applications used of a key-value 
store needs to be considered. 

2.2 Motivation  

Here is presented an evaluation framework that can take the interaction characteristics 
of any application’s use of a key-value store and benchmark it on any key-value store, 
simulating different throughput rates and threads in use. Providing a full 
multidimensional analysis of the performance metrics of multiple key-value stores, on a 
specific dataset that simulate the access pattern of an application. Not only providing 
performance metrics like throughput and latency, but also reporting energy use and 
memory efficiency. It is extensible so that any data structure that uses CRUD (create, 
read, update and delete) operations.  
It is often assumed that concurrent key-value store implementations are better than the 
serial ones. It is true that when measuring their maximum throughput, serial 
implementations cannot compete on modern hardware that focuses on parallel 
computing. This assumption does not consider that a lot of applications will never use a 
key-value store at anything close to the maximum throughput. Nor does it consider that 
managing concurrency is not free. It has not been shown that concurrent key-value 
stores are better than serial ones at lower throughput rates. 
 
In the rapidly evolving ecosystem of different devices, which to larger and larger 
degrees are based on mobility and battery power, energy efficiency and power use is 
becoming a first class concern[1]. From HPC environments where him power use is a 
large part of the systems lifetime monitoring, to mobile phones where getting the 
battery to last the entire day is challenging with the computational demands of today. 
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2.3 Existing solutions 

Every application is different in its workloads and in what performance metrics are the 
most important. Testing and evaluating multiple key-value stores is time-consuming. It 
is easy to forget to consider certain metrics and ensuring that the measurements are 
correctly implemented, and to consider all important factors is not a trivial task. This 
framework attempts to streamline this process in a portable way that can provide a 
holistic insight into the different characteristics of different key-value stores for the 
specific use case of an application, not a generic workload on a generic benchmark 
where certain interaction characteristics may differ from the application in question. 
The benchmarking tools like YCSB[2] provides some of this functionality, it can generate 
string key based workloads that can represent most applications. However, it only 
measures throughput and latency and its primary focus is large-scale cloud-based key-
value stores and databases. It does not provide insights into all dimensions of a key-
value store total spectrum of performance metrics. This evaluation framework provides 
a general purpose to four evaluating key-value stores.  

2.4 Contributions  

This paper has the following contributions: 

 Here is documented the initial implementation of the MELT evaluation framework, and an 

analysis of this implementation.  

 The benefits and drawbacks of using YCSB to generate workloads for use in this evaluation 

framework.  

 Experiments using two theoretical application workloads, to test the benefits using this 

evaluation framework.  

 Experiments to evaluation of concurrent versus serial key-value stores, to investigate if 

nonconcurrent key-value store still has a place in modern computing where multicore 

architectures are the norm. 
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3 Background 

3.1 Key-value abstraction 

The key-value abstraction is commonly used in computer science. It is essentially a key 
to value mapping where a unique key is linked to a unique value when an application 
uses a key-value store. Its use of the key-value store can be described as the access 
pattern, also called the workload. 

3.2 Access pattern(workload) 

The access pattern of any key-value store can be described as the percentages of the 
different CRUD operations. For example, an access pattern can be 50% reads, 25% 
inserts and 25% delete.  YCSB[2] creates its traces from such a description and is 
derived by tracking the different CRUD operations performed on the key-value store 
over a duration of time. Therefore, it is in fact the average access pattern over the given 
duration to be precise. If the application has different access pattern at the start and end 
of its execution time, it can be described as two different access patterns, for its first half 
and second half. If this is divided into even more durations, you can accurately track 
applications access pattern over time. This is not commonly done when describing 
access patterns, instead it describes the average access pattern of the application’s 
interaction with a key-value store for the whole duration of the applications runtime. 

3.2.1 Operation failures 

To be completely accurate there are more than four types of operations that can occur 
on key-value stores. That is operation failures, read, update and delete operations can 
fail because the key used has not previously been inserted, and I could theoretically be 
applications where these cases occur, it is however most likely very rare, and therefore 
insignificant. The operation failures aspect of access pattern is not used in practice. 
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3.2.2 Distributions 

The access pattern is also defined by its distribution; distribution is the frequency of 
which the same keys are used. YCSB[2] defines three types of distributions: 

 Uniform: All keys equally likely to be chosen. 

 Zipfian: some keys are much more likely than others. 

 Latest: the keys recently inserted are the most likely to be chosen. 

3.3 Hash tables 

Key-value stores can theoretically use just about any underlying data structure. 
However, by far the most prevalent data structure is the hash table as it in general 
performs the better. Tree structures are also not uncommon, for example Masstree[3]. 
The key-value stores in this report are all hash tables and this section will describe 
different concurrency schemes and hashing schemes of hash tables. 

3.3.1 Concurrency schemes 

In the current age of multicore architectures and parallel computing, concurrency is an 
important component. Hash tables can manage concurrency through a couple of 
different schemes that can roughly be divided into lock based and lock free 
implementations.  

Figure 3-1 illustration of different distributions. 
illustration taken from[2] 
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3.3.1.1 Lock based 

The traditional approach to avoid potential race conditions is to create critical sections 
protected by locks. With this approach, the granularity of the locks is important. Each 
entry could have its lock or a range of entries can share a lock. This last approach is 
commonly called lock striping, and used in the  Java’s concurrent Hash map library[4]. 
From a performance standpoint, it is important to balance the number of locks used 
with the number of threads accessing it. Even though lock free solutions are gaining 
popularity, locks are still widely used[1][3][4][7]. 
3.3.1.2 Lock free 

Lock free solutions avoid using locks, instead using atomic operations in specific 
sequences that insure that race conditions are avoided. These solutions often rely upon 
pointer based data structures like chaining (see section 3.3.2.1.2), combined with linked 
list structures like the Split ordered list[8]. The downside with lock free solutions is that 
they often get very complex when dealing with issues like deletion and garbage 
collection, there is also the lock-free resizing problem which has been the topic of these 
papers [8]–[10]. 

3.3.2 Hashing scheme 

This section describes the most common hashing schemes, and highlights the core 
elements of each algorithm and there key differences. 
3.3.2.1 Memory organisation in Hashing scheme 

3.3.2.1.1 Open addressing 

Open addressing schemes store the entries in sequential arrays. These arrays can be 
organized in one of two ways. Either with two arrays where the keys are stored in one 
array and the values in the other, or in a single array where the key and value are stored 
as a pair (See Figure 3-2). Which one performs better is dependent upon the other 
elements of the hashing scheme. The key difference is that with one array both key and 
value can be retrieved in a single memory operation, as they can both be contained 
within one cache line. Whereas with two arrays, key-value pair cannot be retrieved with 
less than two memory operations. However, in certain cases this may be beneficial, for 
example if the load factor is high, and the value is large. The single array solution may 
have to read more cache lines than the two array approach because the keys are 
adjacent. One array may need to read several values it does not need, but on the other 
hand, it may benefit from prefetching hardware.  
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There are hashing schemes that store metadata with the key-value pair [7]. This will 
then typically be stored with the key in two array solutions. 

3.3.2.1.2 Chaining 

A different solution to memory organization is chained hashing. It uses an array of 
buckets were each key will uniquely identify to one bucket. Within each bucket there is a 
secondary data structure storing key-value pairs. This is usually a list structure but 
could theoretically be any structure, Figure 3-3 is an illustration of this with a simple 
unordered list as the data structure.  

 

Figure 3-3 The simplest form of a hash chaining implementation. Using simple linked list approach in each bucket. 

Figure 3-2 Example of memory organization in one or two arrays. 
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3.3.2.2 Linear Probing 

Linear probing uses open addressing to organize the key-value pairs. Each entry has an 
optimal position within the index. This position is calculated based on its hash. A 
collision occurs if two keys have the same optimal position, to resolve the collision the 
index is scanned for the next free position. How many entries need to be scanned before 
a free position is found will depend on the load factor. The average number of positions 
that need to be scanned, can be described by the following equation[11]. 

𝐶௡ ≈
ଵ

ଶ
 ቀ1 + 

ଵ

ଵ ି௅
ቁ  (successful search); 

𝐶′௡ ≈
ଵ

ଶ
 ൬1 +  ቀ

ଵ

ଵ ି௅
ቁ

ଶ

൰  (unsuccessful search). 

n is the size of the index and, L is the load factor. 
At a load factor of L = 0.7, it is expected that 2.17 entries will be probed to find an 
existing entry in the table and 6.05 probes if it is not. However, the exact details will 
depend on the implementation details and the hardware used. Linear probing can be 
said to be inherently cache oblivious[11] since it scans memory sequentially. When the 
hash table with linear probing reaches a load factor of 60%, it tends to cluster[12]. That 
is when several entries in a row get offset from their optimal position, this leads to 
longer lookup times. 
3.3.2.2.1 Deletion  

Deletion is problematic for linear probing since entries cannot simply be removed if 
they have entries offset from their optimal position after them. At this will breakout 
linear probing scans, the common solution to this is using tombstones. Tombstones 
indicate that this entry is deleted, but subsequent entries may need to be probed. This 
solves the issue but can lead to contamination[7]. As the number of tombstones increase 
over time more and more entries will be unnecessarily skipped, leading to longer lookup 
times.  
The most common solution to this is to rehash the table, either partially or completely, 
which will remove tombstones. Another approach[12] which can delay contamination, is 
to check whether the next item is empty when deleting and only placing tombstones 
when necessary, reducing the chance of connecting clusters of entries.  
3.3.2.3 Quadratic probing 

Quadratic probing works on the same principal as linear probing, instead of scanning 
sequentially it scans quadratic. When collisions occur, it takes its current position and 
adds 𝐼ଶ , where I is the number of probes attempted. This is the approach used by 
Google’s SparseHash[13] and is proven to be less prone to clustering[12]. 

3.3.3 Chained hashing 

Chained hashing uses the chained data structure. It is hard to generalize about hash 
chaining as the underlying data structure is very important. The focus will instead be on 
the newer Lock-Free Extensible Hash Table[8] the structure, and the more recent 
derived work that builds upon it [9][10]. 
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The key innovation of Lock-Free Extensible Hash Tables[8], is the Split-Ordered Lists 
that is continuous for all buckets. The buckets primarily work as an index for the list, 
and as this expands, more buckets pointing to the list can be added without having to 
change the list. The implications of this is that the lock-free resizing problem[8] is 
alleviated, and that the search speed can be kept low by adding buckets as the list 
increases in size.  
Pointer chasing is still an issue as the underlying structure is still a link-list. However, 
link-list structures are well suited to be lock free, and is therefore a common approach 
for lock free hash tables.  

3.3.4 Hopscotch hashing 

Similar to linear probing and quadratic probing with the key difference, each entry has a 
bitmap of size H. This bitmap indicates which of the H -1 next entries optimally should 
be stored in that position. Therefore, when scanning only the positions indicated in the 
bitmap needs to be probed. This also means that when entries are displaced from their 
optimal position, they cannot be displaced more than H -1 from that position. If this is 
not possible, existing entry must be shifted to another position (see Figure 3-5). If this 
fails the hash table needs to be resized and rehashed. 

Figure 3-4 a Split ordered a hash table[8]. 
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3.4 Energy monitoring 

The energy use of a system has over time become a first-class concern[1]. In large 
computing clusters the energy use has become a large part of the total monthly cost of 
the system. Laptops and smaller devices like smart phones are all now battery-powered, 
and maximizing the usage time of a charge is a priority form application and OS 
developers alike.  To enable this hardware manufacturers, have over time made APIs 
that allow for measurements of power use like Intel’s performance counter 
monitor(PCM)[14].  However, different hardware platforms have implemented different 
solutions using different APIs, which all require custom code to be used in application. 
Libraries like energymon[1], heartbeats[15] and the PAPI[16] support energy 
monitoring in our portable manner. 

3.4.1 Cuckoo hashing 

Cuckoo hashing also an open addressed hashing scheme, which used multiple hashing 
functions. Where each entry can be placed in one of H positions, were H’s the number of 

Figure 3-5 The blank entries are empty, all others contain items. Here, H is 4. In part (a), we add item v with hash value 6. 
A linear probe finds entry 13 is empty. Because 13 is more than 4 entries away from 6, we look for an earlier entry to 
swap with 13. The first place to look is H − 1 = 3 entries before, at entry 10. That entry’s hop information bit-map 
indicates that w at entry 11 can be displaced to 13, which we do. Entry 11 is still too far from entry 6, so we examine 
entry 8. The hop information bit-map indicates that z at entry 9 can be moved to entry 11. Finally, x at entry is moved to 
entry 9. Part (b) shows the table state just before adding v.” Figure and quote for[7].  
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different hashing functions employed. If all H positions are occupied, one of the entries 
in the occupied position, is moved to one of its H possible positions. Traditionally the 
number of hashing functions employed has been H=2, but more recent implementations 
have used H = 4 or greater. This is because with H = 2 performance starts decreasing at 
load factors greater than 50%, but with H = 4 it starts degrading at 90%[12]. However, 
performance generally decreases the higher the H value. Another approach to cuckoo 
hashing is using set-associativity, which is a hybrid open addressing solution, Where 
Each entry is a bucket of multiple entries. Organizing the entries in this way the number 
of hashing functions can be reduced to H = 2 with load factors of 90% or higher without 
a performance degradation[6]. 

3.4.2 Energymon 

Energymon[1] is a lightweight cross-platform energy monitoring utility, which allows 
for the monitoring of energy use across any supported platform. It hides underlying 
variations in the different hardware platforms in the simple API. 

3.4.3 Performance Application Programming Interface (PAPI) 

PAPI is a large cross-platform performance monitoring utility. The API exposes 
performance counters hardware available found in most major microprocessors and it 
can monitor performance in real-time. It also has software components that can used for 
monitoring across the hardware and software stack. It has a primary focus on clusters 
and HPC environments. 

3.4.4 Heartbeats 

Heartbeat-simple[15], is a subset of the heartbeat[17] API, that does performance and 
power tracking. The larger heartbeat API is a framework for dynamic power 
management of applications and is developed by the carbon research group at MIT. It is 
used by poet for this POET[18]. So heartbeat is initially designed for more than just 
energy monitoring. 

3.5 Yahoo! cloud serving benchmark 

YCSB was originally developed by Yahoo![2] and later made open source[19]. It is a Java 
base framework for evaluating and comparing the performance of primarily no SQL 
database management systems. It currently natively supports a large amount of 
databases including Cassandra, Voldemort, MongoDB and DynamoDB and is designed to 
be extensible so that more can be added.  
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3.6 Core workloads 

YCSB has defined six different core workloads, where E and F do not apply to a key-
value abstraction and are not listed. Following is descriptions of each, quotes are all how 
YCSB describes these workloads 
Workload A: Update heavy workload 
“This workload has a mix of 50/50 reads and writes. An application example is a session 
store recording recent actions.”[19] 
Workload B: Read mostly workload 
“This workload has a 95/5 reads/write mix. Application example: photo tagging; add a 
tag is an update, but most operations are to read tags.” [19] 
Workload C: Read only 
“This workload is 100% read. Application example: user profile cache, where profiles 
are constructed elsewhere (e.g., Hadoop).” [19] 
Workload D: Read latest workload 
“In this workload, new records are inserted, and the most recently inserted records are 
the most popular. Application example: user status updates; people want to read the 
latest.” [19] 
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4 The evaluation problem  

the issue with evaluating a key-value store implementations is that there are a set of 
interaction characteristics, that all constitute all the aspects of an application can use it. 
Even given the same key-value store implementation, variations these characteristics 
will impact the performance metrics. In applications unique use of a key-value store, can 
be can be described by six different characteristic variables: 
 The size key and value. 
 The access pattern. 
 The access throughput. 
 Number of entries. 
 Number of threads used. 
 Underlying hardware 

4.1 Interaction characteristics  

Below is described why each of these characteristics will impact the performance 
metrics, and therefore why one cannot do simple apples to apples comparisons when 
these characteristics are different. 

4.1.1 Key and value 

The key size and type is a very important aspect. You cannot compare the performance 
of two key-value store implementations. When one uses integer based keys and another 
fixed size the strings, the integer based key only requires one comparison to operations, 
while the strings would require one compare for each character. By the same logic you 
cannot compare implementations with different string lengths, the performance 
characteristics of a 16 by key versus a 32 by key are not comparable. They will at best be 
indicators. If the string is of variable length, this will also impact performance as each 
key is likely to be referenced by a pointer which could quickly lead to pointer chasing 
when key collisions occur. 
The same goes for the value, as a blob of data of a fixed or variable size, in the overall 
performance metrics, will naturally be affected by the time it takes to transfer the value 
to and from the key-value store. 

4.1.2 Access pattern 

The different key-value operations have different performance costs associated with 
them. An insert operation is typically more expensive performance wise than a read 
operation. The same goes for updates and delete and the difference between them will 
depend upon the design and implementation used. Now the access pattern can be 
described as the percentage of different crud operations and their distribution (see 
section 0.) 

4.1.3 Access throughput 

Key-value stores are used in all types of applications. The key-value stores maximum 
throughput is mostly only interesting for high performance computing systems and 
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dedicated key-value stores like RAMCloud[20].  Most applications access the key-value 
store at some average throughput, which will usually be determined by external 
requests to the application or the speed at which the application processes the data 
stored, thereby limiting the throughput at which the key-value store is accessed.  
An hypothetical example is an application which performs relatively heavy calculation 
on data sets stored in a key-value store. It reads data, performance calculation on the 
data and update or inserts a new value. If it uses 50% of the available data, its 
computational capacity running the calculation algorithm, and the rest of the capacity, is 
used to access the key-value store. It would only use 50% of the maximum throughput 
the key-value store could achieve on systems hardware, this assuming it’s not bound by 
memory and buss speeds. For this application, the key-value stores performance metrics 
at maximum throughput are not relevant. However, the performance at 50% of 
maximum is highly relevant when benchmarking which key-value store implementation 
best fits the application. 

4.1.4 Number of entries 

The number of entries in a key-value store is relevant as it affects performance, most 
obviously if the size of the key-value stores is too big to store in memory, and secondary 
storage must be used. However, there are more subtle implications. It is not uncommon 
for key-value stores, especially hash table implementations, to increase in size by a 
power of two[9][6]. If the amount of entries are relatively fixed, around and amount, 
that is just larger than the power of two incremental resize point. The load factor will be 
just over 50%, where as if the amount of entries is just under the resize point, it would 
be closer to 100% see Figure 4-1.  

 
Figure 4-1 illustrates a structure that resizes when full by a power of two. It shows how the load factor is very different, 
even though the amount of data stored is almost the same. 

 
However, this is a simplification as it does not consider that the load factor often is what 
triggers resize operations in many implementations. The load factor also affects 
performance[12], a load factor of 50% will likely perform better than a load factor closer 
to the 100%. That is performance in terms of throughput and latency. As an example 
Google’s dense hash[13] sacrifices space efficiency for performance, and sparse hash 
does the opposite sacrificing performance for space efficiency. 

4.1.5 Number of threads 

Number of threads that simultaneously accesses a key-value store will affect 
performance. How many threads an application uses and how many of them access the 
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key-value store will depend on the architecture of the application. There are two 
elements that determine how threads affect performance: The hardware on which the 
system is running, which will be discussed in more detail in the next section, and 
concurrency design of the key-value store. When it comes to hardware the number of 
cores and whether they are hyper-threaded, are likely to be the most important factor 
for performance when it comes to thread count. However, the concurrency design will 
also play a role here, particularly in how well a key-value store scales with the number 
of threads. In general terms there are to main variance of concurrency design lock 
based[3][5][7][6] and lock free implementations[5][8][10]. It is reasonable to believe 
that they will have different performance metrics. 

4.1.6 Underlying hardware 

How the system ultimately behaves is always based on the hardware. What CPU, GPU 
and memory is in use, and at what buss speeds they communicate. Is it an Intel x86, ARM 
or other architecture, how many cores do the CPU have and how are they 
interconnected? Which level of cash are shared between which cores? The complexity 
quickly becomes unmanageable; therefore, there is only one practical way to test how an 
application performs on different hardware. That is to test it on the hardware it will be 
running on. In most cases the algorithm is the most important factor and very large 
variations are not very likely on similar hardware systems. 
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5 Design 

Key-value store evaluation is difficult. This details the design of a key-value store 
evaluation framework that can take the characteristics of any application’s use of a key-
value store, used CRUD Operations (Create, Read, Update, Delete) and use these 
characteristics to test it against multiple different key-value implementations, to 
determine different performance characteristics of each implementation. 

5.1 Goal 

The goal of this evaluation framework is to provide a tool to evaluate different key-value 
store implementations. Not by using static or synthetic benchmarks, but rather a 
benchmark based on their applications used characteristics of a key-value store, 
providing them with a better understanding of the performance characteristics of 
different key-value store implementations. This allows the evaluation of different 
performance trade-offs’ specifically for an application, that as closely as possible reflects 
the real world performance of a key-value store. 

5.2 Is concurrency better  

It is assumed that concurrent key-value stores are the viable choice for new 
applications. A lot of work has been done in improving and coming up with new 
approaches for concurrent key-value store implementations[3], [5]–[10], [20], [21].  In 
this work, the performance metrics that is optimized for is maximum throughput, and in 
some instances latency, particularly for “cloud” or distributed key-value stores, where 
latency is a much larger problem than on local undistributed systems. However, for 
desktop, smart phones, and other small and mobile devices, maximum throughput might 
not be the key concern. Other metrics might be equally important, metrics like energy 
efficiency and space efficiency. 

 My hypothesize is that depending on applications' throughput demand, there can exist a 

point, at which nonconcurrent key-value store outperforms a concurrent key-value store on 

some or all performance metrics.  

The reasoning behind this hypothesis is that concurrency comes with extra overhead. 
Overhead in synchronization between threads, lock and lock free concurrent 
implementations. All rely on costlier atomic compare and swap operation as their 
fundamental building block, even though modern CPU architectures all have to rely on 
multiple cores with multiple threads. It is not thereby certain that the undoubted 
performance benefits this provides in high throughput systems, also applies for 
applications with a lower throughput need. 
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5.3 Evaluation benchmark design  

Most of these input characteristics are assumed to be relatively constant for most 
applications. Even so, the throughput rate and the number of threads are the most 
dynamic of these characteristics and the ones that can easiest be modified to fit the 
applications needs. The framework will therefore evaluate, keeping the other 
interaction characteristics constant, while varying the number of threads and the 
throughput. Each possible variation of these variables constitutes a unique 
configuration, and each unique configuration has three different phases. The flow of the 
evaluation framework is easiest list described through pseudocode as seen below. 
 
//the range of threads to be tested 

for Threads in ThreadsRange { 

 // the range of throughput rates to tested 

for throughput in ThroughputRange { 

 // number of samples take for each unique configuration of threads and throughput 

for sample in sampleRange { 

 //phase one measures the idle energy of the system 

phase one : idle 

//phase two load the key-value store and measures the process 

phase two : load 

// phase three runs the operations in the trace for the test duration 

           phase three : run 

  } 

// stops testing if the maximum throughput is achieved. If 

 if throughput target not achieved 

  break 

 } 

} 

 

To get the most representative results the tests need to run for a significant amount of time. This hides 
any in precision in the measurement results of the hardware. The data set, should be large enough to 
ensure that the are enough operations to run for the entire test duration. Ideally up to several minutes. 

5.3.1 Evaluation phases 

The three faces evaluate different parts of the workload and system. The key is 
initialized prior to phase 1 and deleted after phase 3, to ensure the different samples 
cannot affect each other. 
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5.3.1.1 Phase 1 idle 

Phase 1 measures the idle energy use of the system. This provides the baseline power 
use of the system. If the idle energy use is not constant during the evaluation, it can 
indicate that other processes might be running. 
5.3.1.2 Phase 2 load 

This phase pre-loads the key-value store at maximum throughput, measures the energy 
and time used and at regular intervals measures space efficiency. 
5.3.1.3 Phase 3 run 

Runs the operations based on the access pattern evenly at the throughput specified for 
the specified time duration, during which it measure time, energy and latency used, and 
the space efficiency at regular intervals.  
 

5.4 Performance metrics specification  

 Latency 

o The time it takes for a single operation to complete, for all the individual CRUD 

operations, described as percentiles. 

 Energy 

o The energy in joules, measured as number of joules over time duration. 

 Throughput 

o The amount of operations performed over time duration, not specified to individual 

CRUD operations. 

 Space efficiency 

o The percentage of total amount of memory used, Divided by the total size of all key-

value pair entries in the store. This differs from the load factor in that it includes all 

the size of the data structure itself, see definition below. 

  
்௢௧௔௟ ௦௜௭௘ ௢௙ ௔௟௟ ௄௘௬ି௏௔௟௨௘ ௣௔௜௥ ௘௡௧௥௜௘௦ ௜௡ ௦௧௢௥௘

்௢௧௔௟ ௠௘௠௠௢௥௬ ௨௦௘ ௢௙ ௄௘௬ି௩௔௟௨௘ ௦௧௢௥௘
= 𝑆𝑝𝑎𝑐𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑎𝑛𝑐𝑦  
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5.5 Extensibility 

The evaluation framework needs to be extensible to support any key-value store 
implementation that support CRUD operations and it needs to do this dynamically 
enough to support different configurations of the same key-value store 
implementations. Many key-value store implementations allow for customizations like 
choosing which memory allocator and hash function to use which of course will impact 
performance. There are also more fine-grained settings that are unique to each 
implementation. Libcuckoo[22], for example, allows configurations  on the compiler 
level of the number of slots per bucket, the initial size, the lock granularity and the 
minimum load factor. For most applications, this type of fine-grained union is necessary, 
but specialized applications might have need to fine-tune their key-value store and the 
evaluation framework should be flexible enough to support this. 

5.6 Results evaluation 

The extensive result output this evaluation framework will produce, leads to a challenge 
in parsing and analysing the data. However, by taking a specific use case and testing it by 
varying the throughput and the number of threads used, it should be possible to create 
an understanding of how they interact and how they impact performance metrics, for 
data specific use cases. 
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6 Analysis 

Implementing the design for this evaluation framework has three main parts. The first 
part is taking the access pattern and generating a trace which can be tested by the 
evaluation framework. The second part is using the trace to run the benchmark, and 
measure all the performance metrics at different throughput rates and with different 
number of threads. The last part is taking the results and parsing it in such a way that it 
can be useful for the end-user.  

6.1 Part 1. Access pattern 

The trace is the access pattern described as a sequence of operations. In this 
implementation it is assumed that the access pattern of the application to be 
benchmarked is known. There are two viable options to choose from, either make a 
trace generation tool from scratch or use existing solutions. In this case, the existing 
solution is Yahoo’s cloud serving benchmark (YCSB) which is a widely used 
benchmarking tool for database systems. For implementation of this framework, YCSB is 
used. The reasoning for this is detailed below. 

6.1.1 Trace generator 

Making a trace generator that generates random keys and values, is not very challenging 
and would allow for the customization of the key type and length. However, supporting 
different usage distributions is more challenging it would be more time-consuming. 
 

6.1.2 YCSB 

The YCSB benchmark can be used to generate a trace based on an access pattern. The 
YCSB benchmark supports a wider range of database options, but can be configured to 
support the key-value abstraction. However, it does not natively support delete 
operations, but support for it can be added. YCSB also provides some core workloads 
that are meant to be reflective of some use cases (see section 0). 
The YCSB trace file is generated from the following inputs 

 Percentage of read operations 

 Percentage of insert operations 

 Percentage of update operations 

 Number of records (for preloading) 

 Number of operations 

 Usage distribution 

Two trace files are generated, a “load” and a “run” file. The “load” file is for the pre-
loading stage and it contains only insert operations. It contains the number of records 
specified to be preloaded into the key-value store prior to the benchmark. The “run” file 
contains all the operations specified by read insert and update operations as dictated by 
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the percentages. The YCSB benchmark ensures that read and insert operations are only 
performed on keys already inserted. It also supports different usage distributions.  
YCSB biggest drawback is that it does not support multiple types of keys and lengths and 
does not natively support delete operations. However, its core workloads are the ones 
that will be used in the experiments, and it does at this point in time suit the needs of the 
operation framework. Except for inability to change key type and length, it supports all 
the interaction characteristics the framework needs. 

6.2 Part 2. Throughput rate 

The benchmark is designed around the concept of varying the throughput rate and the 
number of threads. Of these elements, controlling the throughput rate is the most 
challenging. The problem is evenly distributed the throughput over time duration. 
Naively running all the operations to be performed within the second to completion, and 
then sleeping for the rest of the second. It means you have run maximum throughput 
early part of the duration and then nothing for the last period of the duration see Figure 
6-1. 

 
Figure 6-1 Illustration of a one second test duration, with an average throughput target of 1 million operations per 
second, on a system that can handle a maximum throughput of 500,000 operations per second. 

In theory, you could get an even distribution if the thread slept a small amount after 
each operation. However, the amount of kernel calls is prohibitive and would in 
themselves skew the measured performance. The goal is to simulate an even throughput 
throughout the test duration.  

6.2.1 Intervals 

Dividing the total test duration up into small intervals that perform the number of 
operations that would on average have been performed in that time duration of the 
interval, and then sleeping for the duration of the interval. The proportion of time 
running versus time sleeping will depend on the throughput rate. 

 

Figure 6-2 Illustration of three consecutive intervals, each interval will be a fixed time duration. 

Interval
State run sleep run sleep run sleep

1 2 3

Time ->
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Figure 6-3 Illustration of a one second test duration divided into five intervals, with an average throughput of 1 million 
operations per second. 

6.2.2 Interval offsets 

Intervals mitigate the issues with throughput. However, when multiple threads run at 
the same intervals, they will all access the key-value store at the start of the interval, a 
situation that is unlikely to occur in the actual application. To mitigate this and achieve 
an as even as possible throughput throughout the test duration, each thread is offset 
slightly form each other so that their intervals do not stop and start at the same time. As 
illustrated by Figure 6-4. The first interval for every thread will have a different duration 
but the remaining intervals are of fixed length. In theory, this will make the throughput 
rate as even if as possible throughout the duration of the test. As illustrated by Figure 
6-5, this is the technique which will be used to control throughput in the 
implementation of the evaluation framework. 
 

Treads
Tread 1 run sleep run sleep run sleep

Tread 2 run sleep run sleep run sleep run sleep

Tread 3 run sleep run sleep run sleep run

Tread 4 run sleep run sleep run sleep run

Time ->

Figure 6-4 Illustration of multiple threads with offset intervals 
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6.2.3 Power measurements  

Measuring and collecting the performance metrics, depend upon the ability to measure 
time and energy use. Time measurement is well understood and supported on all 
platforms and programming languages. Energy measurements, however, does not have 
the same native support, each platform if it supports energy measurements as a unique 
API of providing energy measurements. There are three candidates that support energy 
monitoring heartsbeat-simple[15], POPI[16] and energymon[1] all described in section 
3.3. Of these POPI and energymon are the most viable. However, POPI is a general 
performance monitoring framework primarily focused on high-performance computing, 
whereas energymon is a simple and portable energy monitoring system which is simple 
to implement and is portable across multiple platforms which is exactly what is needed 
for this evaluation framework. 
 

6.3 Part 3. Results handling 

As this framework will measure all the different performance metrics, and as there 
might be correlations and interesting observations made across all these metrics, no 
more than the necessary calculations are performed. As far as possible all the raw 
observation data will be output in the result files. That means that large results output 
will have to be processed afterwards in a spreadsheet application. 

  

Figure 6-5 Illustration of four threads with offset intervals, running up throughput of 1 million 
operations per second. 
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7 Implementation 

The evaluation framework takes as its input a two binary trace files which is generated 
from a YCSB trace file by a small utility application implemented specifically for this 
purpose. The entire trace gets loaded into memory prior to running the benchmark. As 
the different benchmark samples complete they are outputted to a results file. The 
implementation details of all these steps will be detailed below. 
The design specifies measuring space efficiency, but measurement of this performance 
metric is not implemented in this version of the evaluation framework. 

7.1 Language and library details 

The evaluation framework is implemented in C and C++ to ensure maximum portability 
and performance. All concurrency code is implemented using pthreads. In addition  

 All statistical calculations are performed with the GNU scientific library(GSL)[23]. 

 All calculations and conversion of time datatypes are using a subset of the csoft of general-

purpose library[24]. 

7.2 Delete operation 

The YCSB core workloads will be used for testing and experiments, and they do not use 
delete operations. Delete support has not been added to YCSB, however the entire 
evaluation framework has added delete support as far as practically possible, and 
deletion support can be added at a later date with minor modifications. 

7.3 Trace file preparation 

There are two trace files generated by the YCSB is the framework a “load” and a “run” 
file. The trace file generated contains a lot of unnecessary characters, so a small binary 
trace generator utility was made to generate a smaller binary trace only containing the 
necessary information. Header with metadata followed by all the key-value entries. This 
is done to minimize the memory and CPU footprint of the evaluation framework. The flat 
structure can be loaded directly into the evaluation framework without any pre-
processing, and the  file size of the YCSB core workload traces is reduced by 27% and 
54% approximately. 

Header 
generated by the 

Type Key Value Type Key Type Key Value Type Key 

Struct insert key 
a 

value 
a 

read key 
a 

update key 
a 

value 
b 

delete key 
a 

Figure 7-1 Binary trace file structure, each entry has an operation type and key field. The value is only set for insert and 
update operation types. 

The header is a C struct containing most importantly the number of key-value entries 
and their relative size in the binary trace. In addition, it also contains the relevant trace 
configuration parameters. The length between entries is not fixed, an operation with a 
value is larger than an operation without the value. The keys produced by YCSB is of the 
format “USER123781857088687” where the number of numbers after the “USER” string 
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can vary from 5 to 20[19]. During testing the observed variation was between 15 and 
20.  Therefore, the binary trace generator sets a fixed length key size, padding where 
necessary to achieve this. The libcuckoo[22] key-value store had issues with variable 
length keys. 

7.4 Evaluation framework  

The evaluation framework loads the binary trace files (load, run) and stores them in 
memory. The benchmark is then run in a series of loops as described in the section 0. 
Each unique configuration runs a number of samples, each sample consists of three 
phases. Each of the phases are described in detail in sections below. In addition, how all 
performance metrics are measured and calculated. 
To make it possible for different key-value store implementations to be tested, an 
interface layer is employed. This interface can be configured with any library that 
conforms to CRUD operations. This layer of abstraction will be referred to as the 
interface. Details of the interface and the different implemented interfaces will be 
discussed in section 7.6. 

7.4.1 Configuration parameters 

The table describes each configuration parameter the framework supports. 

The variables marked with a “*” are currently configurable through arguments to the 
framework. The rest are variables in the code, the intent was to create a configuration 
file for all the variables.  

7.4.2 Time and sleep measurements 

All measurements of time are done using the “clock_gettime” function defined by 
POSIX[25], using the clock ID “CLOCK_MONOTONIC” which is not subject to change 

Configuration variable Description 

Test duration* The maximum amount in seconds the to execute. 

Idle duration The amount of seconds the background power measurements 
lasts 

Interval duration The duration of each interval in milliseconds. 

Starting throughput rate The lowest throughput tested for 

Throughput increase rates The increment at which throughput is increased for each new 
configuration. 

Maximum throughput rate The maximum throughput tested for. 

Number of samples per configuration Number of samples collected for each unique configuration. 

Minimum number of threads* The lowest number of threads tested with. 

Maximum number of threads* The highest number of threads tested with. 

Latency sampling interval The number of intervals between each sampling of latency. 
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during the running of the benchmark as the “CLOCK_REALTIME” to ensure maximum 
possible accuracy. All sleep calls are done using “clock_nanosleep” function define by 
POSIX[25], which is the highest resolution sleep function available. All references to 
measurement of time and sleep are implemented using these functions. Both provide a 
resolution in nanoseconds, however the accuracy is limited by kernel implementation 
and the CPU model architecture.  

7.4.3 Energy measurements 

All energy measurements are done using the energymon library[26][1]. Energymon 
allows for the sampling of the number of micro joules used since its initialization. All 
measurements of energy are done by sampling the energy used before and after a phase 
as completed. The difference between the samples is the amount of energy used, the 
main thread and not individual worker threads do the energy measurements. 

7.5 Configuration and samples 

The first configuration is set to the minimum number of threads specified and the 
minimum throughput specified. For each configuration, the set number of samples are 
executed. If the target throughput is not achieved or the maximum throughput is 
achieved, the thread number is incremented and the throughput is reset to its minimum 
value. This continues for the range of threads specified by the configuration parameters. 
See pseudocode in section  0. 

7.5.1 Samples 

Prior to the execution of a sample, a newly initialized instance of the key-value store 
interface is created. After the sample has completed, all entries in the interface instance 
are deleted and the instances self is deallocated. This is done using the initializes and 
destroy function of the interface, see section 7.6. 

7.5.2 Phase synchronization and measurements 

Apart from phase 1 the execution of a phase relies on multiple threads. It is organized by 
one main thread that manages the threads that execute the traces. The execution of a 
trace is started when the main threads creates the number of threads which is set to 
execute the trace in the current configuration. Each thread initializes and waits on a 
barrier; the main thread also waits on this barrier. Therefore, when all threads have 
reached the barrier the trace is ready to be executed. All threads are released from the 
barrier; the main thread gets the starting time of the execution and sets it in a global 
variable accessible to all threads. The remaining threads immediately re-enter the 
barrier. When the main thread has set the global starting time it enters the same barrier 
triggering its release. Now all the threads can execute the trace, with the starting times 
set by the main thread. The main thread then enters the barrier waiting for the 
remaining threads to complete execution of the trace. As the remaining threads 
complete execution, they enter the barrier. When all threads have entered the barrier 
the phase has completed. The main thread has measured time and energy used for the 
duration of the execution.  

 To do add figur 
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7.5.3 Phase 1: idle energy 

This phase measures the idle energy of the system when the framework is not doing any 
work by measuring the energy used over the specified idle duration, in which the main 
thread is sleeping. During this duration, no other threads are initialized or active.  

7.5.4 Phase 2: preloading 

This phase preloads the key-value store with the key-value entries in the load trace. The 
records are loaded by the active threads with no limitations on throughput, measuring 
the time and energy used across the insertion period. 
Each time the number of threads in a configuration increases, the number of records in 
the load trace is divided among the threads in the configuration. If the number of 
records is not dividable by the number of threads, the remainder is divided among a 
subset of the threads. Therefore, the threads may not have the exact same number of 
records to load, but it can only vary by one. 

7.5.5 Phase 3: execution 

Execution is initialized as described in detail in section (7.5.2). When execution has 
started, each thread uses the global start time, calculate its offset based on its thread ID 
and executes an initial shortened interval to initiate the offset (see Figure 6-5).  Each 
thread continues to execute intervals till all operations have been executed or the tests 
duration has passed, which is triggered by a signal sent by at timer thread initialized by 
the main thread. This signal prompts any sleeping thread to wake, and any operation in 
progress will be completed before the thread ceases execution. 
7.5.5.1 Interval target throughput 

Trace is executed in intervals, each interval lasts a fixed duration defined by the 
configuration. Each interval has a target number of operations to be executed. This 
number is calculated from the throughput target. Taking into account number of 
intervals per second and the number of threads, the target number of operation is set so 
that the overall throughput per second target will be reached. Due to the conversion 
from floating-point numbers to integers, this number can be slightly lower than the set 
target throughput. 
7.5.5.2 Sleep intervals 

Each sleep interval is performed using the “clock_nanosleep” function as mentioned in 
section 7.4.2. The interval for which to sleep is not calculated from the point in time 
where all the intervals target operations are completed, but rather as a multiple of the 
global start time and the interval duration. This is possible using the “TIMER_ABSTIME” 
functionality of “clock_nanosleep” [25]. It sets the time the thread should wake rather 
than how long it should sleep, and by using the global start time as a reference, the 
intervals will not drift relative to each other due to timing imprecision. However, an 
estimate of how long a thread will sleep is calculated and added to sum of the total time 
this thread has slept during execution. 
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7.5.5.3 Iterating through the trace  

Iteration through the trace is linear, the operation type is checked and the subsequent 
key and value depending on operation type, is executed. Execution continues by 
checking the next operation type. 
7.5.5.4 Latency sampling 

The configuration sets how often a latency sample should be collected. So, if it is set to 
three, a latency sample will be collected every third interval excluding the initial 
interval. Latency is measured by timing a single operation of the intervals target 
operations. Which operation type that is sampled will be random, but each type is stored 
in separate arrays. This does however mean that if 5% of the operations are insert on 
average, only 5% of the total number of samples are from insert operations. 

7.5.6 Maximum throughput criteria 

After all samples in the current configuration has finished, the amount of time all the 
threads have slept is summed up. If none of the threads has slept the maximum 
throughput is reached, and testing with the current number of threads end. This is 
because if threads have not slept in any interval, it has not reached its target interval 
throughput in any interval. Inherently this means it has reached the maximum 
throughput at the current number of threads. 

7.6 Interfaces 

The evaluation framework needs to be extensible. Therefore an interface layer is added 
between each key-value store implementation and the evaluation framework. This is 
implemented using an interface header file. This header file provides the following 
functions: 

 Initialize  
 Destroy 
 Read 
 Insert 
 Update 
 Delete 

In addition to the basic CRUD operations, there is an initialize and destroy function. 
They are the method used before and after a sample execute. The initialize function 
initializes the specific key-value store implementation, in accordance with the API of 
that implementation. The same goes for the destroy function, using the key-value store 
implementations API the key-value store is cleared of all entries. Then its memory 
structure is deallocated. This ensures each sample uses an identical key-value store 
interface, as discussed in section 7.5.1.  
The key-value store implementations must be implemented to perform their equivalent 
API calls for each of these six functions. In separate files, and by using pre-compilation 
definitions, the evaluation framework is compiled using one of the key-value store 
interfaces. The interfaces are all implemented using default settings, there configuration 
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is intentionally customized as little as possible so that their default performance is 
reflected. It is not feasible to optimize each configuration as there were too many 
variables to configure. 

7.6.1 Key-value entries  

The type of key-value entry needs to be individually implemented in each interface. All 
the interfaces here are implemented with the same key and value type. Both key and 
value are character arrays of a size set by pre-compilation definitions. The key-value 
entries also need to have defined hashing function. And the hashing function used on all 
interfaces is CityHash[27].  

7.6.2 Libcuckoo 

Libcuckoo library[22] used was developed by the original offers concurrent cuckoo 
hashing papers [6][28]. And they refer to this library “this source code is now the 
definitive reference.”[22]. The C++ and the C port version were both implemented, but 
only the C++ version is used. Whenever Libcuckoo is reference, it is the c++ 
implementation version that is referred to. 

7.6.3 Google Sparse Hash (and Denes) 

Google sparseHash is a library developed by Google and later made open sourced[13]. 
The library contains two different versions, the sparse and the dense version. Both are 
implemented. 

7.6.4 Hopscotch 

The hopscotch library[29] used is a single threaded implementation, based on the 
hopscotch algorithm[7]. 

7.6.5 Unordered map 

The concurrent map implementation is the standard C++ and unordered map are also. 

7.6.6 Dummy 

There are two dummy implementations, one which imposes a fixed delay and one which 
returns immediately upon being called. They have primarily been used for debugging, 
but the one that does not have a fixed delay can be used to benchmark the evaluation 
framework itself. Since it does no actual work, it can provide insights in to the 
performance metrics of the framework.  

7.7 Results handling 

After each sample completes, the output is written to a CSV file. The list below details all 
the data outputted: 

 General sample information  

 Name of interface used. 

 Name of the workload used. 

 Configuration ID, the unique number of threads and target throughput of the 

system. 
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 Number of threads used. 

 Phase 1 results - Idle  

 The baseline idle energy use of system. 

 Phase 2 results - preloading 

 Total number of records to preload (number of entries in the YCSB load trace). 

 Total time used in seconds preloading the key-value store interface. 

 Total energy used preloading key-value store interface. 

 Operations per second while preloading. 

 Joules per operation while preloading. 

 Phase 3 results – execution 

 Total number of operations (number of entries in that YCSB run trace). 

 Total number of operations executed. 

 Target throughput rate 

 Adjusted target throughput rate (target throughput rate when divided across 

intervals and threads section 7.5.5.1). 

 Target duration of the execution (the configured duration of the execution). 

 Measured runtime of the execution (as measured by the main thread). 

 Average runtime per thread (the average runtime measured by all threads) 

 Average time slept per thread. 

 Total energy used over execution runtime. 

 Operations per second 

 Joules per operation (due to bug this is incorrectly calculated) 

 Latency measurements, all the following values are individually listed for each operation 

type (read, insert and update), but for simplicity they are all referred to here under the 

single name operation type. 

 Operation type latency samples collected. 

 Operation type latency mean. 

 Operation type latency median. 

 Operation type latency 10.0th percentile - latency 90.0th percentile. (In 10th percentile 

increments by default, is configurable through pre-compilation definitions) 

To maximize the accuracy of the results which use floating-point datatypes, their results 
is outputted as exponential numbers instead of decimal point numbers. This reduces the 
loss of accuracy to a minimum. 
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8 Experiments 

The experiments are done with the YCSB core workloads, specifically A, B, C and D. 
These workloads were used with all the implemented interfaces executing them with 
every relevant combination of number of threads and throughput targets. Test machine 
specifications was a Lenovo ThinkStation P500 running a Intel® Xeon® Processor E5-
1603 v3 @ 2.80ghz With 16 GB Ram at 1866 MHz. Running Ubuntu version 16.04 LTS. 
During testing the machine was disconnected from the network to avoid any 
background operations being triggered by a remote connection. 
The evaluation framework had the following configuration: 

 

  

Configuration variable Value 

Test duration 30 seconds. 

Idle duration 5 seconds. 

Interval duration 25 ms. 

Starting throughput rate 1 million operations per second. 

Throughput increase rates 1 million operations per second. 

Maximum throughput rate No upper limit.  

Number of samples per configuration Five samples. 

Minimum number of threads 1. 

Maximum number of threads 8 (when the interface was concurrent). 

Latency sampling interval 1 per interval. 
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9 Results 

All the relevant results from the experiments will be described in this section. First 
results can validate the evaluation framework implementation. A brief mentioning of the 
preload phase results, and then all the results from the execution phase are presented, 
as well as two theoretical applications use cases. 

9.1 Implementation validation 

9.1.1 Execution time 

 

Figure 9-1 This graph shows the execution time at different throughput target rates. The number prior to the interface 
name is the number of threads tested with. 

This graph shows the average running time of the different interfaces. As target 
throughput increases, the time used to complete the one million entries drops rapidly 
for all single threaded interfaces. Each thread used executes 1 million operations each, 
so the execution time increases as the number of threads increases. As an example, the 
fourth threaded Libcuckoo executes 4 million operations. The lower execution times for 
especially single threaded interfaces has implications for the measuring of latency, as 
will be shown in section 9.1.3.  
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9.1.2 Throughput control 

 

Figure 9-2 This graph shows the actual throughput at different throughput target rates. The number prior to the interface name 
is the number of threads tested with. 

As seen in Figure 9-2, the throughput and the throughput target, matches, well up to the 
point where interfaces approaches its maximum throughput. Here they flatten out and 
end as the maximum throughput is reached, except for interfaces running with more 
than four threads, which is the number of cores the CPU has. The maximum throughput 
criteria fails to end execution, so the threads continued to run, even though they are not 
meeting the throughput targets. 
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Figure 9-3 This graph shows the number of operations in deviation from the throughput target rates. The number 
prior to the interface name is the number of threads tested with. 

 

Figure 9-4 This graph shows the number of percentage of deviation from the throughput target rate. The number prior to 
the interface name is the number of threads tested with. 
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Figure 9-3 and Figure 9-4 show the deviation from the target rate in operations and 
percentage. The most interesting observation here is in the percentage of deviation in 
graph Figure 9-4. Prior to an interface reaching its maximum throughput, the percentage 
of deviation is constant at 1% when using one thread, and then using more than one 
thread it is slightly better closer to 0,5%. The most natural correlation with this result is 
that the number of operations performed is greater when more than one thread is used. 
Therefore, the execution time is longer.  In addition to this there seems to be a slight 
deviation at the lowest throughput target of 1 million operation per second. 
9.1.3 Latency sampling 

 

Figure 9-5 This graph shows the number of insert operation latency samples collected, which is the individual 
measurement of latency during execution with different throughput target rates. The number prior to the interface 
name is the number of threads tested with. 

Latency results are calculated from a set of individual latency samples. Figure 9-5 shows 
the average number of samples in the set of latency samples, which the statistical 
latency results are derived from. All single threaded interfaces follow the exact same 
line, this is an artefact of how latency samples are taken, and that they all use the same 
trace which make this deterministic. Since workload B is 95% reads and 5% updates, 
only 5% of the total amount of latency samples are insert samples. When combined with 
the fact that the execution time decreases with the target throughput, so does the 
number of collected latency samples. This means that for workload B the number of 
insert samples taken is too low to be statistically significant. 
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9.2 Phase 2 preload 

 

Figure 9-6 This graph shows the average time used to preload different workloads. As the preload phase is insert only, 
there is effectively no difference between the workloads. 

Figure 9-6 shows time used to preload a million records into the key-value store. It is 
important to note that the variations between the different workloads are random. As 
the preload phase has no variation across workloads, they are all 1 million insert 
operations. The variations are likely to be there due to random fluctuations. The time 
durations are so short that the following graphs of energy per operation and operations 
per second, is likely to be inaccurate, and only general trends are in line with the results 
from the execution phase. 
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Figure 9-7 This graph shows the average operations per second used to preload different workloads. As the preload 
phase is insert only, there is effectively no difference between the workloads. It is uncertain why workload A stands out 
in this graph. This warrants investigation. 

 

 

Figure 9-8 This graph shows the average energy use per operations used when preloading different workloads. As the 
preload phase is insert only, there is effectively no difference between the workloads. It is uncertain why workload A 
stands out in this graph which warrants investigation. 
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9.3 Phase 3 execution 

9.3.1 Correcting for background energy use 

 

Figure 9-9 graph shows the energy use of three interfaces. The energy use per second while executing and the energy 
background energy use prior to execution, also per second. Number prior to interface name is the number of threads 
used. 

The background energy use of the system is constant as can be observed in Figure 9-9. 
Whereas the energy use of the interfaces during execution starts just higher than the 
background energy, and increases at different rates as the throughput targets increase. 
If the background energy use is not considered when calculating energy per operation, 
results will be skewed so that lower throughput’s get worse energy per operation 
(results see Figure 9-10). All the subsequent (accept Figure 9-10 ) results of energy per 
operation, correct for the background energy use. By subtracting the background energy 
from the total energy before dividing the number of executed operations.  
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Figure 9-10 Graph shows energy per operation where the background energy is not subtracted for the total energy 
used prior to dividing it by on the number of operations. This skews the results negatively for lower throughput 
targets. Number prior to interface name is the number of threads used. 
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9.3.2 Energy per operation 

 

Figure 9-11 The energy use per operation for throughput targets up to 9 million operations per second. It includes 
Libcuckoo with more than four threads. Number prior to interface name is the number of threads used. 

Figure 9-11 shows an interesting behaviour of Libcuckoo. Libcuckoo with more than 4 
threads outperforms Libcuckoo with four threads on the hardware which has 4 cores 
that are not hyper- threaded. Likely because of lower throughput, the CPU has time to 
context which between threads to hide latency. For the rest of the results, Libcuckoo 
with more than four threads will not be shown, as this is the only interesting insight 
their results contributes. 
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Figure 9-12 The energy use per operation for all throughput targets with workload A. Number prior to interface name 
is the number of threads used. 

 

Figure 9-13 The energy use per operation for all throughput targets with workload A. Number prior to interface name 
is the number of threads used. 
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The results for both workload A and C are quite similar. Hopscotch is slightly better than 
Google’s dense hash. Libcuckoo performance better the more threads it uses, but still 
not with large variations, with the exception for with one thread. Moreover, there is an 
interesting point at the throughput target of between five and 6 million, where the 
results of the libcuckoo interfaces are almost identical, and after which its results 
steadily improve. 
 
It is important to be aware that the line where these plots end, which is highest 
throughput target reached the interface. This point does not reflect the average 
maximum throughput, but rather the single highest target throughput reached for the 
given interface. This result should be seen in conjunction with Figure 9-14 which gives 
the average maximum throughput results. 
 

9.3.3 Maximum throughput 

 

Figure 9-14 This graph shows the average maximum throughput measured with different workloads. The number 
beneath the interface name is the number of threads used. 

With one thread, hopscotch performs best with all workloads. The concurrent Libcuckoo 
does performs best with four threads which is the number of cores in the system. 
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9.3.4 Latency 

The latency is measured in nanoseconds and the resolution of the clock on the system is 
1 nanosecond. Please note that all drafts and plots in the section start at 600 ns, no 
observations were as low as 600 ns. When percentile is used in the following graphs and 
plots, it means the percentage of operations were faster than that. For example, if the 
70th percentile is 700 ns, 70% of operations had latency lower than 700 ns.  

 

Figure 9-15 This plot illustrates how that latency percentiles are distributed across all the throughput targets. 
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The evaluation framework makes it possible to get a multi-dimensional insight into the 
latency distribution. Figure 9-15Feil! Fant ikke referansekilden. and Figure 9-16 
illustrates this. This makes it possible to identify variations in latency more precisely at 
different throughputs. Figure 9-15 illustrates this best; it has a rapid decrease in latency 
across all percentiles when the target throughput is from 1 million to 5 million 
operations per second from where it flattens out with a slight peak again at 11 million 
operations per second. The same drop and flatting out can be seen in Figure 9-16, at the 
same target throughput of 5 million as in Feil! Fant ikke referansekilden.. When all 
the latency distribution plots are examined (not show in rapport to due to lack of space), 
the relative distribution of percentile does not vary a lot with target throughput. 
Therefore, averaging the percentile distribution of all target throughput is 
representative for the different interfaces see Figure 9-17. This graph shows that serial 
interfaces have the best latency results, all of them outperforming the concurrent 

 

 

 
 

 

Figure 9-16 This plot illustrates how that latency percentiles are distributed across all the throughput targets. 
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libcuckoo. Also note that the standard C++ unordered map which has the worst results 
overall in other performance metrics, are among the best in latency. 
 

Figure 9-17 This graph shows the results average percentile distribution across all throughput target rates with 
workload A. 
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The 90th percentile is an interesting metric of latency, as it reliably informs us of what 
latency you can expect 90% of the time. Figure 9-18 shows some interesting results for 
latency across the different target throughputs. The best performers are again 
hopscotch and Google dense hash, the unordered map is not performing well in this 
percentile. However, Libcuckoo with up to 4 threads, matches Google dense hash for 
some target throughputs. Before Libcuckoo latency increased to around 900 ns, it 
remained constant for the remaining throughput targets. In general, the serial interfaces 
has the best latency, with hopscotch as the best flattening out at around 760 ns. It is 
important to note that the latency drop both Google dense hash and hopscotch have 
when approaching their maximum throughput, is likely due to outliers in the data set 
and should not be considered reliable. 
There is ,however, a general trend all interfaces have in common. They have a relatively 
constant decrease in latency from the lowest throughput target to around 5 to 6 million 
operations per second. The initial latency for the lowest throughput also seems to 
increase the more threads are in use. This will be discussed further in section 10.2. 
  

z  

Figure 9-18 this graph shows the 90th percentile for all throughput targets with workload A. 
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9.4 The theoretical use cases 

The results will now focus around one of the intended use cases for the evaluation 
framework, evaluating an application’ specific interaction characteristics with the key-
value store. As I have no real world application data to take from, there are created two 
theoretical use cases based on the YCSB core workloads. From the characteristics of 
these theoretical use cases, the best interface for that application can be determined 
based on the performance metrics. 

9.4.1 Application A 

Theoretical application A is an application that conforms to YCSB core workload A, and 
has an average throughput that varies between eight and 10 million operations per 
second. 

 

Figure 9-19 This graph shows energy per operation with all the interfaces that can deliver the performance required 
by application A. The colours represent different throughput targets. The dense interface does not have a grey 
(10000000) graph as its average maximum throughput is lower than 10 million operations per second. 
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Figure 9-20 This graph shows read latency percentiles with all the interfaces that can deliver the performance 
required by application A.  

 

Figure 9-21 This graph shows Update latency percentiles with all the interfaces that can deliver the performance 
required by application A. 
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Figure 9-19, Figure 9-20 and Figure 9-21 show the different interfaces which can 
perform the throughputs that application A need, with the exception of Google dense 
hash which cannot reliably perform 10 million operations per second. On all 
performance metrics, hopscotch performed the best. However, if application A and some 
point can expect to need to run at higher throughputs, only the Libcuckoo can achieve 
that. 
 

9.4.2 Application B 

Theoretical application B is an application which conforms to YCSB core workload C, and 
has an average throughput that varies between 2 and 3 million operations per second. 

Figure 9-22 This graph shows energy per operation with all the interfaces that can deliver the performance required 
by application B. 

 
Figure 9-22, Figure 9-23 and Figure 9-24 show all interfaces that meet applications B 
throughput requirements. At this low throughput, the difference between interfaces is 
quite small, hopscotch is slightly better than Google’s dense hash for energy efficiency. 
As for latency the unordered map is slightly better than hopscotch, especially for 
updates. However, overall hopscotch is the best interface for application B needs. 
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Figure 9-23  This graph shows read latency percentiles with all the interfaces that can deliver the performance 
required by application B. 

 

Figure 9-24 This graph shows Update latency percentiles with all the interfaces that can deliver the performance 
required by application B. 
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10 Discussion 

10.1 The evaluation framework 

In this section, the pros and cons of the implementation and the different aspects of the 
value for evaluation framework, is discussed. Starting with the design and 
implementation of the throughput control, the issues with using YCSB the trace 
workloads, and how these issues affect the implemented method of latency measuring. 

10.1.1 Throughput control through intervals. 

As the results show, the implemented method of controlling the throughput worked 
well. Deviation from the target throughput is relatively constant at approximately 1%, 
and when deviating from this main, within 0% to 2%, up to the point where the target 
throughput and the maximum throughput of the interface meet and the interface was 
unable to meet the target throughput, and as expected deviating below 0%. 
10.1.1.1 Problems with the target throughput termination criteria 

There was however, one problem with the implementation, and that was the maximum 
throughput criteria. The idea was that up until the maximum throughput, each thread 
would have lesser and lesser time at the end of the interval to sleep after the interval 
target is reached, at which point the threads would not sleep for any duration. Indicating 
the maximum throughput was reached, however, this only holds true for single threaded 
executions. When the number of threads increases, this assumption fails when the 
number of threads were equal lower to a number of cores in the CPU. The framework 
attempted a few throughput target iterations past maximum throughput. However, if the 
number of threads exceeded the number of cores on the CPU, the framework attempted 
several more throughput target iterations beyond the maximum throughput. 
This effect is believed to be due to the context switching between threads, and that some 
threads managed to complete their intervals and therefore sleep whilst other threads 
were unable to reach their target throughput. The reason the sleep time was used, was 
that it may be an interesting metric to keep track of, and that by using it as a termination 
criteria, the maximum throughput measured would not be affected. In retrospect, 
keeping track of sleep time give no interesting insights, and the termination criteria 
should probably have been based on the average throughput of all samples in a 
configuration.  
This does not affect the results in any other way than that there are some measurements 
that need to be discarded. In addition, the execution time of the framework is 
unnecessarily increased, something that should be avoided as the execution time is 
already extensive. 

10.1.2 Issues with using YCSB for trace generation 

One assumption of the design was that the data set would be large enough to run for the 
entire test duration. This assumption underestimated that the speed of modern key-
value stores, using YCSB to generate a trace of 100 million operations, was not enough 
to run for 60 seconds. It is only enough operations to run for 60 seconds at the 
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throughput of 1 million operations per second. Generating a larger file is possible but 
impractical. Each workload takes an hour to generate, and the largest one is over 11 GB 
in size. There were also concurrency issues which will be discussed in the next section, 
considering that to execute for 60 seconds at close to the highest maximum throughput, 
measured at 20 million operations per second would require a data set of 1.2 billion 
operations, which is completely unfeasible in a pre-generated file. 
The usual solution to this problem is simply to loop through the trace file several times. 
The distribution and the access pattern will be the same. This is true, but with one very 
important exception. The pattern will be the same as long as there are no insert 
operations in the pattern. The following example illustrates this: The YCSB core 
workload D is 95% reads and 5% inserts. The first time this trace is iterated through 5% 
of the keys, will be insert operations. However, the second time the trace is iterated 
through, the 5% of keys that are set to be inserts have already been inserted. In other 
words they are now effectively updates, and this would be true for every consecutive 
iteration through the trace. So, insert and update operations are effectively simplified to 
generic put operations. Insert implies that the access pattern will increase the size of the 
key-value store over time.  
Using the example given earlier with 20 million operations a second as the throughput 
running for 60 seconds, a 100 million operations trace will have to be looped through 12 
times. If that trace has 5% inserts they will only actually perform insert operations for 
first iteration of the loop. That is 8.3% of the total number of operations that reflect the 
access pattern, the remaining 91,7% will perform 5% update operations. For this 
evaluation framework, which primary purpose is to correctly simulate applications 
interaction characteristics with the key-value store, this is an unacceptably large 
deviation, and I would generally argue that it is  incorrect to perform experiments with 
insert operations in this way. 
10.1.2.1 Concurrency issues 

The by far the biggest benefit of using YCSB is that it can produce access patterns with 
different distributions. A necessity when trying to simulate an application’s interaction 
characteristics with the key-value store and was the primary reason it was chosen to 
generate traces from the access patterns. The initial implementation divided the 
operations of trace between the number of threads so that each thread executes its own 
segment of the trace. This did however create some concurrency issues for access 
patterns with insert operations. As the trace is designed as a sequential execution of 
operations, threads starting in later sections of the trace would attempt to read keys that 
have not been inserted yet. As this insert operation is in an earlier section which another 
thread has not yet reached in its execution, this will cause a read failure. In itself this 
might not be such a large issue, read failures can after all occur, but these are 
unspecified read failures, and they would occur more frequently the more threads that 
are used. It would incorrectly represent in applications interaction characteristics with 
the key-value store. It could be argued that the access pattern should also contain failure 
operations see section (3.2), but operation failures are probably rare and I’m not aware 
of any work on the subject. 
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10.1.2.2 Possible solution with YCSB. 

If YCSB must be used, the best solution for this issue will be to generate one trace files 
generated for each of the threads in any configuration. So, if you have one thread you 
only require one trace file, when you have three threads you would require three trace 
files. With this solution the concurrency issue’s  would have been solved, as each thread 
has its own segregated trace to perform. However, this is still not a perfect solution. It is 
reasonable to believe that a key inserted by one thread might be updated or read by 
other threads. Therefore, this solution could theoretically create less contention than is 
realistic in a real word scenario. The reason this method was not implemented, it’s that 
it is cumbersome and would require a reimplementation of the trace generation input of 
the evaluation framework. It would also require the generation of more YCSB trace files, 

testing with 1 to n number of threads  would require 𝑇௡ =
௡(௡ାଵ)

ଶ
 .  For example, testing 

with up to 8 threads with the 4 workloads used here, would require 36 separate files, of 
a total size 944 gb. which is unfeasible. So it would likely have to be implemented by 
creating a pool of multiple trace files, so small that they could be divided evenly among 
the current amount of threads in the configuration by some form of trace management 
solution. There was not enough time to do this. If there had been time, it would probably 
be better to create an internal trace generator.  
10.1.2.3 Implemented solution 

The solution actually implemented was to have each thread the use the same trace, so 
each thread reads sequentially from the same thread, which is stored sequentially in 
memory. The inherent consequence of this is that the number of operations to be 
executed, increases for each extra thread that is used. That they all use the same trace, 
has some important ramifications. Each thread will use the same keys in the same order, 
which, if it hadn’t been for the fact that each threads execution is offset from each other, 
would have caused contention issues as all threads access the same keys simultaneously. 
These contention issues would have unfairly negatively influenced on the performance 
of a concurrent implementations. However, since they are upset it would have the 
opposite effects, as the first thread which is not offset would have caused each entry to 
be loaded in the CPU cache. So, all subsequent key upset threads can read the entries 
from CPU cache instead of main memory which in all likelihood benefits its 
performance, possibly to a large degree. Minimizing memory operations is an important 
factor in the development of key-value stores, for hash tables in particular the amount of 
cache misses is a significant part of the retrieval time of entry. 
Solution also suffers from the problems discussed in section 10.1.2, only to slightly 
lesser degree. The first thread which is not offset is the only one that performance 
inserts, all the other upset threads will effectively perform updates. It is therefore clear 
that YCSB is unsuited for this evaluation framework. 

10.1.3 Latency 

The benefit of measuring each type of operation individually, is that the latency 
differences between CRUD operations can be observed. However, latency measurements 
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was implemented under the previously discussed assumption that the execution time 
would be fixed. Latency measurements samples can be take no more then each interval 
depending on configuration. Since the execution time is much shorter than assumed it 
would be, the amount of latency samples collected is reduced as the target throughput 
increases. If execution time can be extended by using a different trace generation 
solution than YCSB, this Would not be a problem. However, it is obvious that latency 
samples should be collected every interval regardless. It also has the added benefit of 
reducing the complexity of the execution loop. But in my opinion latency should be 
sampled at a fixed rate per interval, and not at a fixed rate per operation. Per interval 
because the amount of work each interval, and thereby each thread, uses to measure 
latency is constant over the execution time, and not a variable of throughput. This 
minimizes the impact the implementation of the operation framework has on the 
results. 
10.1.3.1 Results handling 

Latency results are collected and calculated at the completion of each sample in a 
configuration, which means that the latency results are an average of 5 samples. For 
example, the method read latency displayed in the results is the average of 5 mean 
calculations from 5 sets of latency samples. In other words, instead of summing up all 
the latency samples, it uses a subset of five smaller latency samples which could 
negatively affect the accuracy of the results. However, if the number of samples is great 
enough this is not a big issue. Even so, this is an implementation oversight that can and 
should be fixed. 
For the results of this experiment, this problem might be an issue for the YCSB core 
workloads where one operation type consists of 5% of the total. Because in this case, 
only 5% of the latency samples will on average be from this operations and that can 
make the sample size too small to be statistically relevant, especially when the execution 
time is shorter see figure (placeholder)   

10.1.4 The evaluation framework conclusion 

To summarize and conclude the evaluation framework discussion: Using a pre-
generated file to describe the access pattern does not scale for higher throughput 
targets. YCSB provided the very important aspect of being able to generate different 
distribution; it is also its only benefits. It makes the workflow of the framework more 
complicated, and it cannot truly support insert operations in an adequate matter. If a 
custom solution for generating traces can be designed and implemented, it could 
feasibly natively support different types of keys and length and provide scalability at 
higher throughput. This should not be up to a complex problem, however making it 
support different distributions might be.  This will also resolve the issues with latency 
measurements. 

10.2 Results observations 

Reviewing the results there were a few observations in the data that warrant further 
discussion. Particularly the latency results see section (todo), but also in the energy 
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results the section (todo). In both of these performance metrics, libcuckoo’s 
performance changes at the throughput targets of around 5 to 6 million operations. The 
energy per operation increasing up to this point, and decreasing afterwards, a trend not 
observed in the serial key-value stores which had a more constant energy per operation. 
This observation is not very significant, however if this peak is correlated with the 
latency observations, a pattern can be seen. All the key-value stores has a drop-in 
latency from the initial throughput target of 1 million operations per second, to 5 million 
operations per second after which it remains almost constant see (todo). Not the graph 
you might expect when measuring throughput and latency.  At higher throughput should 
expect the latency to increase, as contention and the available hardware capacity 
decreases, not what is observed here.  
10.2.1.1 Possible cause  

My hypothesis are that this is caused by the CPU cache. The reason the latency drops the 
higher the throughput rate is, is likely caused by that at lower throughput rates it takes 
more time for the CPU cache to be loaded with entries from the key-value store. When 
the CPU cache mostly contains entries from the key-value store, the likelihood of finding 
an entry in cache reaches a maximum percentage. Which supports that the latency will 
flatten out at a certain throughput target, as seen in (todo). The counterargument to this 
is that all entries were preloaded in phase 2 and should therefore already reside in 
cache. However, that would only be the last entries inserted in the preload phase, and 
the distribution is Zipfian (see section 0), which means that some entries are more 
popular than others, and over time these entries will gradually dominate the entries in 
cache. As they are the most frequently accessed, which at a certain point will depend on 
the cache size, they will constitute some maximum percentage of the entries that reside 
in cache, at which point the increase in performance will end, and remain constant for 
the rest of the execution. 
10.2.1.2 Possible solution 

If this is correct it means that the latency measurements at lower throughput are 
incorrectly skewed from what you would expect in real world conditions and these are 
the conditions the evaluation framework is meant to simulate. To improve upon this, a 
warm up phase could be introduced. After preloading and prior to execution, the 
experiment could run a set number of operations to ensure that the cache is adequately 
populated with representative entries from the key-value store. 

10.3 The theoretical use cases  

The theoretical use cases presented in section (TODO!) serves as a proof of concept for 
the evaluation framework. Selecting an applications specific interaction characteristic 
with the key-value store, and then running experiments at these settings, resulted in a 
set of graphs that shows the performance trade-offs of the different key-value stores. 
This evaluation framework could be developed further to be a useful benchmarking and 
decision-support for developers. 
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10.4 Is concurrency better 

The initial hypothesis was as follows: 

 My hypothesis is that depending on applications' throughput demand, there can exist a 

point at which nonconcurrent key-value store outperforms a concurrent key-value store on 

some or all performance metrics.  

The results of the experiments confirm this hypothesis, naturally limited to the key-
value stores tested in this implementation. The hopscotch and Google dense hash key-
value stores did generally outperform Libcuckoo on all performance metrics measured, 
up to their respective maximum throughputs. Libcuckoo did, at its best energy per 
operation metric, not outperform hopscotch. Libcuckoo did of course outperform all 
serial key-value stores when it came to maximum throughput, but at the throughput 
demands lower than 10 million operations per second, hopscotch outperform all other 
key-value store implementations on all performance metrics. 

10.5 Limitations of simulation 

Any benchmark or evaluation framework have some limitations in how realistic they 
simulate real world use. This evaluation framework has taken great effort, to as closely 
as possible simulate a real world applications use of a key-value store. However, since 
the evaluation is separate from the application, in that the applications memory and CPU 
use is subtracted from the evaluation, the evaluation framework cannot truly represent 
how a key-value store will perform in use. This can only be achieved by testing a key-
value stores implementation within the application. The reason for this is best 
illustrated by an example: Take the observations that link the number of entries loading 
cache and the latency discussed in section 10.2. Where the size of the cache was relevant 
to the minimum latency, if an application was running this key-value store, it would 
reduce the amount of available cache as it would naturally use some portion of it, for the 
work it does that is not related to the key-value store. However, taking this into account, 
the evaluation framework still gives the best possible representation of a key-value 
stores performance, given these limitations. 
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11 Future work 

11.1 Additional interfaces 

This framework presents many future research opportunities. It would be very 
interesting to test even more key-value store implementations, to test the performance 
of lock free[6][9][10] versus lock based[7][5] concurrency implementations, and a tree 
based key-value stores[3] to see if it performs well on some performance metrics. 

11.2 Space efficiency 

Space efficiency measuring of the different key-value stores is a performance metric that 
can be valuable especially when evaluating Google SparseHash[13] which showed 
relatively mediocre results in the experiments. However, since Google SparseHash is 
designed to be primarily space efficient, its true benefits cannot be evaluated until the 
space efficiency metric is added.  

11.3 Custom trace generator 

To improve the evaluation framework, a custom trace generator is needed, which 
randomly can generate any key type at the scale needed to test for longer durations to 
get better accuracy and generating different distributions which might be a difficult 
algorithmic problem. 

12 Conclusion 

This implementation of the MELT key-value store evaluation framework has some 
limitations and issues that require improvement. However, the concept of a 
multidimensional evaluation of key-value stores have provided interesting results and 
has potential to be a relevant framework for evaluating different key-value stores for 
specific applications. In addition to this, the results of the experiments support the 
claims of my hypothesis. There seems to be a range of throughputs where serial key-
value stores outperform concurrent ones. 
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