

–

Faculty of Science and Technology
Department of Computer Science

MELT: The multidimensional key-value store
performance evaluation framework
MELT: memory, energy, latency, and throughput
—
Tobias Blomli-Edvardsen
INF-3981 Master's Thesis in Computer Science - June 2017

P a g e 2 | 69

P a g e 3 | 69

Content

Content .. 3

1 Abstract .. 7

2 Introduction .. 9

2.1 The problem ... 9

2.2 Motivation ... 9

2.3 Existing solutions .. 10

2.4 Contributions .. 10

3 Background ... 11

3.1 Key-value abstraction ... 11

3.2 Access pattern(workload)... 11

3.2.1 Operation failures .. 11

3.2.2 Distributions .. 12

3.3 Hash tables .. 12

3.3.1 Concurrency schemes .. 12

3.3.2 Hashing scheme .. 13

3.3.3 Chained hashing ... 15

3.3.4 Hopscotch hashing .. 16

3.4 Energy monitoring ... 17

3.4.1 Cuckoo hashing ... 17

3.4.2 Energymon .. 18

3.4.3 Performance Application Programming Interface (PAPI) .. 18

3.4.4 Heartbeats ... 18

3.5 Yahoo! cloud serving benchmark ... 18

3.6 Core workloads .. 19

4 The evaluation problem ... 21

4.1 Interaction characteristics .. 21

4.1.1 Key and value ... 21

4.1.2 Access pattern ... 21

4.1.3 Access throughput ... 21

4.1.4 Number of entries .. 22

4.1.5 Number of threads ... 22

4.1.6 Underlying hardware ... 23

5 Design .. 25

5.1 Goal ... 25

P a g e 4 | 69

5.2 Is concurrency better .. 25

5.3 Evaluation benchmark design ... 26

5.3.1 Evaluation phases .. 26

5.4 Performance metrics specification .. 27

5.5 Extensibility .. 28

5.6 Results evaluation .. 28

6 Analysis ... 29

6.1 Part 1. Access pattern ... 29

6.1.1 Trace generator .. 29

6.1.2 YCSB ... 29

6.2 Part 2. Throughput rate ... 30

6.2.1 Intervals ... 30

6.2.2 Interval offsets .. 31

6.2.3 Power measurements .. 32

6.3 Part 3. Results handling ... 32

7 Implementation ... 33

7.1 Language and library details .. 33

7.2 Delete operation .. 33

7.3 Trace file preparation ... 33

7.4 Evaluation framework .. 34

7.4.1 Configuration parameters .. 34

7.4.2 Time and sleep measurements ... 34

7.4.3 Energy measurements ... 35

7.5 Configuration and samples ... 35

7.5.1 Samples .. 35

7.5.2 Phase synchronization and measurements .. 35

7.5.3 Phase 1: idle energy .. 36

7.5.4 Phase 2: preloading ... 36

7.5.5 Phase 3: execution ... 36

7.5.6 Maximum throughput criteria .. 37

7.6 Interfaces ... 37

7.6.1 Key-value entries ... 38

7.6.2 Libcuckoo .. 38

7.6.3 Google Sparse Hash (and Denes) ... 38

7.6.4 Hopscotch .. 38

P a g e 5 | 69

7.6.5 Unordered map ... 38

7.6.6 Dummy ... 38

7.7 Results handling .. 38

8 Experiments .. 40

9 Results ... 41

9.1 Implementation validation ... 41

9.1.1 Execution time ... 41

9.1.2 Throughput control ... 42

9.1.3 Latency sampling ... 44

9.2 Phase 2 preload ... 45

9.3 Phase 3 execution ... 47

9.3.1 Correcting for background energy use ... 47

9.3.2 Energy per operation.. 49

9.3.3 Maximum throughput .. 51

9.3.4 Latency ... 52

9.4 The theoretical use cases ... 56

9.4.1 Application A .. 56

9.4.2 Application B .. 58

10 Discussion .. 61

10.1 The evaluation framework ... 61

10.1.1 Throughput control through intervals. ... 61

10.1.2 Issues with using YCSB for trace generation .. 61

10.1.3 Latency ... 63

10.1.4 The evaluation framework conclusion .. 64

10.2 Results observations ... 64

10.3 The theoretical use cases ... 65

10.4 Is concurrency better .. 66

10.5 Limitations of simulation .. 66

11 Future work .. 67

11.1 Additional interfaces ... 67

11.2 Space efficiency ... 67

11.3 Custom trace generator.. 67

12 Conclusion ... 67

13 References ... 68

P a g e 6 | 69

P a g e 7 | 69

1 Abstract

Key-value stores have a very large variation in their design and implementation, while
still adhering to the key-value abstraction. The available generic benchmarks cannot
truly represent the performance a key-value store will have with a specific application,
unless your application happens to have the exact same configuration and workloads as
the benchmark. Moreover, most benchmarks only measure throughput and latency,
ignoring performance metrics like energy efficiency and space efficiency.
Introducing MELT: The multidimensional key-value store evaluation framework, which
can take any applications usage characteristics of a key-value store and test it on
multiple different key-value store implementations with different concurrency and
throughputs settings. In addition, it measures four MELT performance metrics, memory,
energy, latency and throughput. With this evaluation framework the assumption is that
concurrency is better than serial key-value stores in all situations. Here will be shown
results that support the claim that for certain applications, with throughput demands
less than 10 million operations per second, serial hopscotch implementation
outperforms the concurrent Libcuckoo on most of the MELT performance metrics.

P a g e 8 | 69

P a g e 9 | 69

2 Introduction

2.1 The problem

Key-value stores are a widely used data structure in modern computing. It is a simple
key to value mapping that offers a simple interface, easily adapted to most applications
needs. This simplicity hides the large variation in implementations, and the importance
of the key type and length. What datatype the key is, will to a large degree impact
performance. Comparing integer based with string based key-value stores, is not an
apples to apples comparison. However the same goes for the access pattern (workload),
number of entries and the throughput rate (number of requests per second), not to be
confused with maximum throughput which is the key-value stores, maximum number of
requests that can be handled per second. Benchmarking usually only cares about the
maximum throughput, even though it is likely that an application will not need that
maximum throughput. What are the performance metrics at lower throughput rates?
Truly evaluating a key-value store in a way that is representative for actual use cases, is
a complex issue. All the interaction characteristics of applications used of a key-value
store needs to be considered.

2.2 Motivation

Here is presented an evaluation framework that can take the interaction characteristics
of any application’s use of a key-value store and benchmark it on any key-value store,
simulating different throughput rates and threads in use. Providing a full
multidimensional analysis of the performance metrics of multiple key-value stores, on a
specific dataset that simulate the access pattern of an application. Not only providing
performance metrics like throughput and latency, but also reporting energy use and
memory efficiency. It is extensible so that any data structure that uses CRUD (create,
read, update and delete) operations.
It is often assumed that concurrent key-value store implementations are better than the
serial ones. It is true that when measuring their maximum throughput, serial
implementations cannot compete on modern hardware that focuses on parallel
computing. This assumption does not consider that a lot of applications will never use a
key-value store at anything close to the maximum throughput. Nor does it consider that
managing concurrency is not free. It has not been shown that concurrent key-value
stores are better than serial ones at lower throughput rates.

In the rapidly evolving ecosystem of different devices, which to larger and larger
degrees are based on mobility and battery power, energy efficiency and power use is
becoming a first class concern[1]. From HPC environments where him power use is a
large part of the systems lifetime monitoring, to mobile phones where getting the
battery to last the entire day is challenging with the computational demands of today.

P a g e 10 | 69

2.3 Existing solutions

Every application is different in its workloads and in what performance metrics are the
most important. Testing and evaluating multiple key-value stores is time-consuming. It
is easy to forget to consider certain metrics and ensuring that the measurements are
correctly implemented, and to consider all important factors is not a trivial task. This
framework attempts to streamline this process in a portable way that can provide a
holistic insight into the different characteristics of different key-value stores for the
specific use case of an application, not a generic workload on a generic benchmark
where certain interaction characteristics may differ from the application in question.
The benchmarking tools like YCSB[2] provides some of this functionality, it can generate
string key based workloads that can represent most applications. However, it only
measures throughput and latency and its primary focus is large-scale cloud-based key-
value stores and databases. It does not provide insights into all dimensions of a key-
value store total spectrum of performance metrics. This evaluation framework provides
a general purpose to four evaluating key-value stores.

2.4 Contributions

This paper has the following contributions:

 Here is documented the initial implementation of the MELT evaluation framework, and an

analysis of this implementation.

 The benefits and drawbacks of using YCSB to generate workloads for use in this evaluation

framework.

 Experiments using two theoretical application workloads, to test the benefits using this

evaluation framework.

 Experiments to evaluation of concurrent versus serial key-value stores, to investigate if

nonconcurrent key-value store still has a place in modern computing where multicore

architectures are the norm.

P a g e 11 | 69

3 Background

3.1 Key-value abstraction

The key-value abstraction is commonly used in computer science. It is essentially a key
to value mapping where a unique key is linked to a unique value when an application
uses a key-value store. Its use of the key-value store can be described as the access
pattern, also called the workload.

3.2 Access pattern(workload)

The access pattern of any key-value store can be described as the percentages of the
different CRUD operations. For example, an access pattern can be 50% reads, 25%
inserts and 25% delete. YCSB[2] creates its traces from such a description and is
derived by tracking the different CRUD operations performed on the key-value store
over a duration of time. Therefore, it is in fact the average access pattern over the given
duration to be precise. If the application has different access pattern at the start and end
of its execution time, it can be described as two different access patterns, for its first half
and second half. If this is divided into even more durations, you can accurately track
applications access pattern over time. This is not commonly done when describing
access patterns, instead it describes the average access pattern of the application’s
interaction with a key-value store for the whole duration of the applications runtime.

3.2.1 Operation failures

To be completely accurate there are more than four types of operations that can occur
on key-value stores. That is operation failures, read, update and delete operations can
fail because the key used has not previously been inserted, and I could theoretically be
applications where these cases occur, it is however most likely very rare, and therefore
insignificant. The operation failures aspect of access pattern is not used in practice.

P a g e 12 | 69

3.2.2 Distributions

The access pattern is also defined by its distribution; distribution is the frequency of
which the same keys are used. YCSB[2] defines three types of distributions:

 Uniform: All keys equally likely to be chosen.

 Zipfian: some keys are much more likely than others.

 Latest: the keys recently inserted are the most likely to be chosen.

3.3 Hash tables

Key-value stores can theoretically use just about any underlying data structure.
However, by far the most prevalent data structure is the hash table as it in general
performs the better. Tree structures are also not uncommon, for example Masstree[3].
The key-value stores in this report are all hash tables and this section will describe
different concurrency schemes and hashing schemes of hash tables.

3.3.1 Concurrency schemes

In the current age of multicore architectures and parallel computing, concurrency is an
important component. Hash tables can manage concurrency through a couple of
different schemes that can roughly be divided into lock based and lock free
implementations.

Figure 3-1 illustration of different distributions.
illustration taken from[2]

P a g e 13 | 69

3.3.1.1 Lock based

The traditional approach to avoid potential race conditions is to create critical sections
protected by locks. With this approach, the granularity of the locks is important. Each
entry could have its lock or a range of entries can share a lock. This last approach is
commonly called lock striping, and used in the Java’s concurrent Hash map library[4].
From a performance standpoint, it is important to balance the number of locks used
with the number of threads accessing it. Even though lock free solutions are gaining
popularity, locks are still widely used[1][3][4][7].
3.3.1.2 Lock free

Lock free solutions avoid using locks, instead using atomic operations in specific
sequences that insure that race conditions are avoided. These solutions often rely upon
pointer based data structures like chaining (see section 3.3.2.1.2), combined with linked
list structures like the Split ordered list[8]. The downside with lock free solutions is that
they often get very complex when dealing with issues like deletion and garbage
collection, there is also the lock-free resizing problem which has been the topic of these
papers [8]–[10].

3.3.2 Hashing scheme

This section describes the most common hashing schemes, and highlights the core
elements of each algorithm and there key differences.
3.3.2.1 Memory organisation in Hashing scheme

3.3.2.1.1 Open addressing

Open addressing schemes store the entries in sequential arrays. These arrays can be
organized in one of two ways. Either with two arrays where the keys are stored in one
array and the values in the other, or in a single array where the key and value are stored
as a pair (See Figure 3-2). Which one performs better is dependent upon the other
elements of the hashing scheme. The key difference is that with one array both key and
value can be retrieved in a single memory operation, as they can both be contained
within one cache line. Whereas with two arrays, key-value pair cannot be retrieved with
less than two memory operations. However, in certain cases this may be beneficial, for
example if the load factor is high, and the value is large. The single array solution may
have to read more cache lines than the two array approach because the keys are
adjacent. One array may need to read several values it does not need, but on the other
hand, it may benefit from prefetching hardware.

P a g e 14 | 69

There are hashing schemes that store metadata with the key-value pair [7]. This will
then typically be stored with the key in two array solutions.

3.3.2.1.2 Chaining

A different solution to memory organization is chained hashing. It uses an array of
buckets were each key will uniquely identify to one bucket. Within each bucket there is a
secondary data structure storing key-value pairs. This is usually a list structure but
could theoretically be any structure, Figure 3-3 is an illustration of this with a simple
unordered list as the data structure.

Figure 3-3 The simplest form of a hash chaining implementation. Using simple linked list approach in each bucket.

Figure 3-2 Example of memory organization in one or two arrays.

P a g e 15 | 69

3.3.2.2 Linear Probing

Linear probing uses open addressing to organize the key-value pairs. Each entry has an
optimal position within the index. This position is calculated based on its hash. A
collision occurs if two keys have the same optimal position, to resolve the collision the
index is scanned for the next free position. How many entries need to be scanned before
a free position is found will depend on the load factor. The average number of positions
that need to be scanned, can be described by the following equation[11].

𝐶௡ ≈
ଵ

ଶ
 ቀ1 +

ଵ

ଵ ି௅
ቁ (successful search);

𝐶′௡ ≈
ଵ

ଶ
 ൬1 + ቀ

ଵ

ଵ ି௅
ቁ

ଶ

൰ (unsuccessful search).

n is the size of the index and, L is the load factor.
At a load factor of L = 0.7, it is expected that 2.17 entries will be probed to find an
existing entry in the table and 6.05 probes if it is not. However, the exact details will
depend on the implementation details and the hardware used. Linear probing can be
said to be inherently cache oblivious[11] since it scans memory sequentially. When the
hash table with linear probing reaches a load factor of 60%, it tends to cluster[12]. That
is when several entries in a row get offset from their optimal position, this leads to
longer lookup times.
3.3.2.2.1 Deletion

Deletion is problematic for linear probing since entries cannot simply be removed if
they have entries offset from their optimal position after them. At this will breakout
linear probing scans, the common solution to this is using tombstones. Tombstones
indicate that this entry is deleted, but subsequent entries may need to be probed. This
solves the issue but can lead to contamination[7]. As the number of tombstones increase
over time more and more entries will be unnecessarily skipped, leading to longer lookup
times.
The most common solution to this is to rehash the table, either partially or completely,
which will remove tombstones. Another approach[12] which can delay contamination, is
to check whether the next item is empty when deleting and only placing tombstones
when necessary, reducing the chance of connecting clusters of entries.
3.3.2.3 Quadratic probing

Quadratic probing works on the same principal as linear probing, instead of scanning
sequentially it scans quadratic. When collisions occur, it takes its current position and
adds 𝐼ଶ , where I is the number of probes attempted. This is the approach used by
Google’s SparseHash[13] and is proven to be less prone to clustering[12].

3.3.3 Chained hashing

Chained hashing uses the chained data structure. It is hard to generalize about hash
chaining as the underlying data structure is very important. The focus will instead be on
the newer Lock-Free Extensible Hash Table[8] the structure, and the more recent
derived work that builds upon it [9][10].

P a g e 16 | 69

The key innovation of Lock-Free Extensible Hash Tables[8], is the Split-Ordered Lists
that is continuous for all buckets. The buckets primarily work as an index for the list,
and as this expands, more buckets pointing to the list can be added without having to
change the list. The implications of this is that the lock-free resizing problem[8] is
alleviated, and that the search speed can be kept low by adding buckets as the list
increases in size.
Pointer chasing is still an issue as the underlying structure is still a link-list. However,
link-list structures are well suited to be lock free, and is therefore a common approach
for lock free hash tables.

3.3.4 Hopscotch hashing

Similar to linear probing and quadratic probing with the key difference, each entry has a
bitmap of size H. This bitmap indicates which of the H -1 next entries optimally should
be stored in that position. Therefore, when scanning only the positions indicated in the
bitmap needs to be probed. This also means that when entries are displaced from their
optimal position, they cannot be displaced more than H -1 from that position. If this is
not possible, existing entry must be shifted to another position (see Figure 3-5). If this
fails the hash table needs to be resized and rehashed.

Figure 3-4 a Split ordered a hash table[8].

P a g e 17 | 69

3.4 Energy monitoring

The energy use of a system has over time become a first-class concern[1]. In large
computing clusters the energy use has become a large part of the total monthly cost of
the system. Laptops and smaller devices like smart phones are all now battery-powered,
and maximizing the usage time of a charge is a priority form application and OS
developers alike. To enable this hardware manufacturers, have over time made APIs
that allow for measurements of power use like Intel’s performance counter
monitor(PCM)[14]. However, different hardware platforms have implemented different
solutions using different APIs, which all require custom code to be used in application.
Libraries like energymon[1], heartbeats[15] and the PAPI[16] support energy
monitoring in our portable manner.

3.4.1 Cuckoo hashing

Cuckoo hashing also an open addressed hashing scheme, which used multiple hashing
functions. Where each entry can be placed in one of H positions, were H’s the number of

Figure 3-5 The blank entries are empty, all others contain items. Here, H is 4. In part (a), we add item v with hash value 6.
A linear probe finds entry 13 is empty. Because 13 is more than 4 entries away from 6, we look for an earlier entry to
swap with 13. The first place to look is H − 1 = 3 entries before, at entry 10. That entry’s hop information bit-map
indicates that w at entry 11 can be displaced to 13, which we do. Entry 11 is still too far from entry 6, so we examine
entry 8. The hop information bit-map indicates that z at entry 9 can be moved to entry 11. Finally, x at entry is moved to
entry 9. Part (b) shows the table state just before adding v.” Figure and quote for[7].

P a g e 18 | 69

different hashing functions employed. If all H positions are occupied, one of the entries
in the occupied position, is moved to one of its H possible positions. Traditionally the
number of hashing functions employed has been H=2, but more recent implementations
have used H = 4 or greater. This is because with H = 2 performance starts decreasing at
load factors greater than 50%, but with H = 4 it starts degrading at 90%[12]. However,
performance generally decreases the higher the H value. Another approach to cuckoo
hashing is using set-associativity, which is a hybrid open addressing solution, Where
Each entry is a bucket of multiple entries. Organizing the entries in this way the number
of hashing functions can be reduced to H = 2 with load factors of 90% or higher without
a performance degradation[6].

3.4.2 Energymon

Energymon[1] is a lightweight cross-platform energy monitoring utility, which allows
for the monitoring of energy use across any supported platform. It hides underlying
variations in the different hardware platforms in the simple API.

3.4.3 Performance Application Programming Interface (PAPI)

PAPI is a large cross-platform performance monitoring utility. The API exposes
performance counters hardware available found in most major microprocessors and it
can monitor performance in real-time. It also has software components that can used for
monitoring across the hardware and software stack. It has a primary focus on clusters
and HPC environments.

3.4.4 Heartbeats

Heartbeat-simple[15], is a subset of the heartbeat[17] API, that does performance and
power tracking. The larger heartbeat API is a framework for dynamic power
management of applications and is developed by the carbon research group at MIT. It is
used by poet for this POET[18]. So heartbeat is initially designed for more than just
energy monitoring.

3.5 Yahoo! cloud serving benchmark

YCSB was originally developed by Yahoo![2] and later made open source[19]. It is a Java
base framework for evaluating and comparing the performance of primarily no SQL
database management systems. It currently natively supports a large amount of
databases including Cassandra, Voldemort, MongoDB and DynamoDB and is designed to
be extensible so that more can be added.

P a g e 19 | 69

3.6 Core workloads

YCSB has defined six different core workloads, where E and F do not apply to a key-
value abstraction and are not listed. Following is descriptions of each, quotes are all how
YCSB describes these workloads
Workload A: Update heavy workload
“This workload has a mix of 50/50 reads and writes. An application example is a session
store recording recent actions.”[19]
Workload B: Read mostly workload
“This workload has a 95/5 reads/write mix. Application example: photo tagging; add a
tag is an update, but most operations are to read tags.” [19]
Workload C: Read only
“This workload is 100% read. Application example: user profile cache, where profiles
are constructed elsewhere (e.g., Hadoop).” [19]
Workload D: Read latest workload
“In this workload, new records are inserted, and the most recently inserted records are
the most popular. Application example: user status updates; people want to read the
latest.” [19]

P a g e 20 | 69

P a g e 21 | 69

4 The evaluation problem

the issue with evaluating a key-value store implementations is that there are a set of
interaction characteristics, that all constitute all the aspects of an application can use it.
Even given the same key-value store implementation, variations these characteristics
will impact the performance metrics. In applications unique use of a key-value store, can
be can be described by six different characteristic variables:
 The size key and value.
 The access pattern.
 The access throughput.
 Number of entries.
 Number of threads used.
 Underlying hardware

4.1 Interaction characteristics

Below is described why each of these characteristics will impact the performance
metrics, and therefore why one cannot do simple apples to apples comparisons when
these characteristics are different.

4.1.1 Key and value

The key size and type is a very important aspect. You cannot compare the performance
of two key-value store implementations. When one uses integer based keys and another
fixed size the strings, the integer based key only requires one comparison to operations,
while the strings would require one compare for each character. By the same logic you
cannot compare implementations with different string lengths, the performance
characteristics of a 16 by key versus a 32 by key are not comparable. They will at best be
indicators. If the string is of variable length, this will also impact performance as each
key is likely to be referenced by a pointer which could quickly lead to pointer chasing
when key collisions occur.
The same goes for the value, as a blob of data of a fixed or variable size, in the overall
performance metrics, will naturally be affected by the time it takes to transfer the value
to and from the key-value store.

4.1.2 Access pattern

The different key-value operations have different performance costs associated with
them. An insert operation is typically more expensive performance wise than a read
operation. The same goes for updates and delete and the difference between them will
depend upon the design and implementation used. Now the access pattern can be
described as the percentage of different crud operations and their distribution (see
section 0.)

4.1.3 Access throughput

Key-value stores are used in all types of applications. The key-value stores maximum
throughput is mostly only interesting for high performance computing systems and

P a g e 22 | 69

dedicated key-value stores like RAMCloud[20]. Most applications access the key-value
store at some average throughput, which will usually be determined by external
requests to the application or the speed at which the application processes the data
stored, thereby limiting the throughput at which the key-value store is accessed.
An hypothetical example is an application which performs relatively heavy calculation
on data sets stored in a key-value store. It reads data, performance calculation on the
data and update or inserts a new value. If it uses 50% of the available data, its
computational capacity running the calculation algorithm, and the rest of the capacity, is
used to access the key-value store. It would only use 50% of the maximum throughput
the key-value store could achieve on systems hardware, this assuming it’s not bound by
memory and buss speeds. For this application, the key-value stores performance metrics
at maximum throughput are not relevant. However, the performance at 50% of
maximum is highly relevant when benchmarking which key-value store implementation
best fits the application.

4.1.4 Number of entries

The number of entries in a key-value store is relevant as it affects performance, most
obviously if the size of the key-value stores is too big to store in memory, and secondary
storage must be used. However, there are more subtle implications. It is not uncommon
for key-value stores, especially hash table implementations, to increase in size by a
power of two[9][6]. If the amount of entries are relatively fixed, around and amount,
that is just larger than the power of two incremental resize point. The load factor will be
just over 50%, where as if the amount of entries is just under the resize point, it would
be closer to 100% see Figure 4-1.

Figure 4-1 illustrates a structure that resizes when full by a power of two. It shows how the load factor is very different,
even though the amount of data stored is almost the same.

However, this is a simplification as it does not consider that the load factor often is what
triggers resize operations in many implementations. The load factor also affects
performance[12], a load factor of 50% will likely perform better than a load factor closer
to the 100%. That is performance in terms of throughput and latency. As an example
Google’s dense hash[13] sacrifices space efficiency for performance, and sparse hash
does the opposite sacrificing performance for space efficiency.

4.1.5 Number of threads

Number of threads that simultaneously accesses a key-value store will affect
performance. How many threads an application uses and how many of them access the

P a g e 23 | 69

key-value store will depend on the architecture of the application. There are two
elements that determine how threads affect performance: The hardware on which the
system is running, which will be discussed in more detail in the next section, and
concurrency design of the key-value store. When it comes to hardware the number of
cores and whether they are hyper-threaded, are likely to be the most important factor
for performance when it comes to thread count. However, the concurrency design will
also play a role here, particularly in how well a key-value store scales with the number
of threads. In general terms there are to main variance of concurrency design lock
based[3][5][7][6] and lock free implementations[5][8][10]. It is reasonable to believe
that they will have different performance metrics.

4.1.6 Underlying hardware

How the system ultimately behaves is always based on the hardware. What CPU, GPU
and memory is in use, and at what buss speeds they communicate. Is it an Intel x86, ARM
or other architecture, how many cores do the CPU have and how are they
interconnected? Which level of cash are shared between which cores? The complexity
quickly becomes unmanageable; therefore, there is only one practical way to test how an
application performs on different hardware. That is to test it on the hardware it will be
running on. In most cases the algorithm is the most important factor and very large
variations are not very likely on similar hardware systems.

P a g e 24 | 69

P a g e 25 | 69

5 Design

Key-value store evaluation is difficult. This details the design of a key-value store
evaluation framework that can take the characteristics of any application’s use of a key-
value store, used CRUD Operations (Create, Read, Update, Delete) and use these
characteristics to test it against multiple different key-value implementations, to
determine different performance characteristics of each implementation.

5.1 Goal

The goal of this evaluation framework is to provide a tool to evaluate different key-value
store implementations. Not by using static or synthetic benchmarks, but rather a
benchmark based on their applications used characteristics of a key-value store,
providing them with a better understanding of the performance characteristics of
different key-value store implementations. This allows the evaluation of different
performance trade-offs’ specifically for an application, that as closely as possible reflects
the real world performance of a key-value store.

5.2 Is concurrency better

It is assumed that concurrent key-value stores are the viable choice for new
applications. A lot of work has been done in improving and coming up with new
approaches for concurrent key-value store implementations[3], [5]–[10], [20], [21]. In
this work, the performance metrics that is optimized for is maximum throughput, and in
some instances latency, particularly for “cloud” or distributed key-value stores, where
latency is a much larger problem than on local undistributed systems. However, for
desktop, smart phones, and other small and mobile devices, maximum throughput might
not be the key concern. Other metrics might be equally important, metrics like energy
efficiency and space efficiency.

 My hypothesize is that depending on applications' throughput demand, there can exist a

point, at which nonconcurrent key-value store outperforms a concurrent key-value store on

some or all performance metrics.

The reasoning behind this hypothesis is that concurrency comes with extra overhead.
Overhead in synchronization between threads, lock and lock free concurrent
implementations. All rely on costlier atomic compare and swap operation as their
fundamental building block, even though modern CPU architectures all have to rely on
multiple cores with multiple threads. It is not thereby certain that the undoubted
performance benefits this provides in high throughput systems, also applies for
applications with a lower throughput need.

P a g e 26 | 69

5.3 Evaluation benchmark design

Most of these input characteristics are assumed to be relatively constant for most
applications. Even so, the throughput rate and the number of threads are the most
dynamic of these characteristics and the ones that can easiest be modified to fit the
applications needs. The framework will therefore evaluate, keeping the other
interaction characteristics constant, while varying the number of threads and the
throughput. Each possible variation of these variables constitutes a unique
configuration, and each unique configuration has three different phases. The flow of the
evaluation framework is easiest list described through pseudocode as seen below.

//the range of threads to be tested

for Threads in ThreadsRange {

 // the range of throughput rates to tested

for throughput in ThroughputRange {

 // number of samples take for each unique configuration of threads and throughput

for sample in sampleRange {

 //phase one measures the idle energy of the system

phase one : idle

//phase two load the key-value store and measures the process

phase two : load

// phase three runs the operations in the trace for the test duration

 phase three : run

 }

// stops testing if the maximum throughput is achieved. If

 if throughput target not achieved

 break

 }

}

To get the most representative results the tests need to run for a significant amount of time. This hides
any in precision in the measurement results of the hardware. The data set, should be large enough to
ensure that the are enough operations to run for the entire test duration. Ideally up to several minutes.

5.3.1 Evaluation phases

The three faces evaluate different parts of the workload and system. The key is
initialized prior to phase 1 and deleted after phase 3, to ensure the different samples
cannot affect each other.

P a g e 27 | 69

5.3.1.1 Phase 1 idle

Phase 1 measures the idle energy use of the system. This provides the baseline power
use of the system. If the idle energy use is not constant during the evaluation, it can
indicate that other processes might be running.
5.3.1.2 Phase 2 load

This phase pre-loads the key-value store at maximum throughput, measures the energy
and time used and at regular intervals measures space efficiency.
5.3.1.3 Phase 3 run

Runs the operations based on the access pattern evenly at the throughput specified for
the specified time duration, during which it measure time, energy and latency used, and
the space efficiency at regular intervals.

5.4 Performance metrics specification

 Latency

o The time it takes for a single operation to complete, for all the individual CRUD

operations, described as percentiles.

 Energy

o The energy in joules, measured as number of joules over time duration.

 Throughput

o The amount of operations performed over time duration, not specified to individual

CRUD operations.

 Space efficiency

o The percentage of total amount of memory used, Divided by the total size of all key-

value pair entries in the store. This differs from the load factor in that it includes all

the size of the data structure itself, see definition below.


்௢௧௔௟ ௦௜௭௘ ௢௙ ௔௟௟ ௄௘௬ି௏௔௟௨௘ ௣௔௜௥ ௘௡௧௥௜௘௦ ௜௡ ௦௧௢௥௘

்௢௧௔௟ ௠௘௠௠௢௥௬ ௨௦௘ ௢௙ ௄௘௬ି௩௔௟௨௘ ௦௧௢௥௘
= 𝑆𝑝𝑎𝑐𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑎𝑛𝑐𝑦

P a g e 28 | 69

5.5 Extensibility

The evaluation framework needs to be extensible to support any key-value store
implementation that support CRUD operations and it needs to do this dynamically
enough to support different configurations of the same key-value store
implementations. Many key-value store implementations allow for customizations like
choosing which memory allocator and hash function to use which of course will impact
performance. There are also more fine-grained settings that are unique to each
implementation. Libcuckoo[22], for example, allows configurations on the compiler
level of the number of slots per bucket, the initial size, the lock granularity and the
minimum load factor. For most applications, this type of fine-grained union is necessary,
but specialized applications might have need to fine-tune their key-value store and the
evaluation framework should be flexible enough to support this.

5.6 Results evaluation

The extensive result output this evaluation framework will produce, leads to a challenge
in parsing and analysing the data. However, by taking a specific use case and testing it by
varying the throughput and the number of threads used, it should be possible to create
an understanding of how they interact and how they impact performance metrics, for
data specific use cases.

P a g e 29 | 69

6 Analysis

Implementing the design for this evaluation framework has three main parts. The first
part is taking the access pattern and generating a trace which can be tested by the
evaluation framework. The second part is using the trace to run the benchmark, and
measure all the performance metrics at different throughput rates and with different
number of threads. The last part is taking the results and parsing it in such a way that it
can be useful for the end-user.

6.1 Part 1. Access pattern

The trace is the access pattern described as a sequence of operations. In this
implementation it is assumed that the access pattern of the application to be
benchmarked is known. There are two viable options to choose from, either make a
trace generation tool from scratch or use existing solutions. In this case, the existing
solution is Yahoo’s cloud serving benchmark (YCSB) which is a widely used
benchmarking tool for database systems. For implementation of this framework, YCSB is
used. The reasoning for this is detailed below.

6.1.1 Trace generator

Making a trace generator that generates random keys and values, is not very challenging
and would allow for the customization of the key type and length. However, supporting
different usage distributions is more challenging it would be more time-consuming.

6.1.2 YCSB

The YCSB benchmark can be used to generate a trace based on an access pattern. The
YCSB benchmark supports a wider range of database options, but can be configured to
support the key-value abstraction. However, it does not natively support delete
operations, but support for it can be added. YCSB also provides some core workloads
that are meant to be reflective of some use cases (see section 0).
The YCSB trace file is generated from the following inputs

 Percentage of read operations

 Percentage of insert operations

 Percentage of update operations

 Number of records (for preloading)

 Number of operations

 Usage distribution

Two trace files are generated, a “load” and a “run” file. The “load” file is for the pre-
loading stage and it contains only insert operations. It contains the number of records
specified to be preloaded into the key-value store prior to the benchmark. The “run” file
contains all the operations specified by read insert and update operations as dictated by

P a g e 30 | 69

the percentages. The YCSB benchmark ensures that read and insert operations are only
performed on keys already inserted. It also supports different usage distributions.
YCSB biggest drawback is that it does not support multiple types of keys and lengths and
does not natively support delete operations. However, its core workloads are the ones
that will be used in the experiments, and it does at this point in time suit the needs of the
operation framework. Except for inability to change key type and length, it supports all
the interaction characteristics the framework needs.

6.2 Part 2. Throughput rate

The benchmark is designed around the concept of varying the throughput rate and the
number of threads. Of these elements, controlling the throughput rate is the most
challenging. The problem is evenly distributed the throughput over time duration.
Naively running all the operations to be performed within the second to completion, and
then sleeping for the rest of the second. It means you have run maximum throughput
early part of the duration and then nothing for the last period of the duration see Figure
6-1.

Figure 6-1 Illustration of a one second test duration, with an average throughput target of 1 million operations per
second, on a system that can handle a maximum throughput of 500,000 operations per second.

In theory, you could get an even distribution if the thread slept a small amount after
each operation. However, the amount of kernel calls is prohibitive and would in
themselves skew the measured performance. The goal is to simulate an even throughput
throughout the test duration.

6.2.1 Intervals

Dividing the total test duration up into small intervals that perform the number of
operations that would on average have been performed in that time duration of the
interval, and then sleeping for the duration of the interval. The proportion of time
running versus time sleeping will depend on the throughput rate.

Figure 6-2 Illustration of three consecutive intervals, each interval will be a fixed time duration.

Interval
State run sleep run sleep run sleep

1 2 3

Time ->

P a g e 31 | 69

Figure 6-3 Illustration of a one second test duration divided into five intervals, with an average throughput of 1 million
operations per second.

6.2.2 Interval offsets

Intervals mitigate the issues with throughput. However, when multiple threads run at
the same intervals, they will all access the key-value store at the start of the interval, a
situation that is unlikely to occur in the actual application. To mitigate this and achieve
an as even as possible throughput throughout the test duration, each thread is offset
slightly form each other so that their intervals do not stop and start at the same time. As
illustrated by Figure 6-4. The first interval for every thread will have a different duration
but the remaining intervals are of fixed length. In theory, this will make the throughput
rate as even if as possible throughout the duration of the test. As illustrated by Figure
6-5, this is the technique which will be used to control throughput in the
implementation of the evaluation framework.

Treads
Tread 1 run sleep run sleep run sleep

Tread 2 run sleep run sleep run sleep run sleep

Tread 3 run sleep run sleep run sleep run

Tread 4 run sleep run sleep run sleep run

Time ->

Figure 6-4 Illustration of multiple threads with offset intervals

P a g e 32 | 69

6.2.3 Power measurements

Measuring and collecting the performance metrics, depend upon the ability to measure
time and energy use. Time measurement is well understood and supported on all
platforms and programming languages. Energy measurements, however, does not have
the same native support, each platform if it supports energy measurements as a unique
API of providing energy measurements. There are three candidates that support energy
monitoring heartsbeat-simple[15], POPI[16] and energymon[1] all described in section
3.3. Of these POPI and energymon are the most viable. However, POPI is a general
performance monitoring framework primarily focused on high-performance computing,
whereas energymon is a simple and portable energy monitoring system which is simple
to implement and is portable across multiple platforms which is exactly what is needed
for this evaluation framework.

6.3 Part 3. Results handling

As this framework will measure all the different performance metrics, and as there
might be correlations and interesting observations made across all these metrics, no
more than the necessary calculations are performed. As far as possible all the raw
observation data will be output in the result files. That means that large results output
will have to be processed afterwards in a spreadsheet application.

Figure 6-5 Illustration of four threads with offset intervals, running up throughput of 1 million
operations per second.

P a g e 33 | 69

7 Implementation

The evaluation framework takes as its input a two binary trace files which is generated
from a YCSB trace file by a small utility application implemented specifically for this
purpose. The entire trace gets loaded into memory prior to running the benchmark. As
the different benchmark samples complete they are outputted to a results file. The
implementation details of all these steps will be detailed below.
The design specifies measuring space efficiency, but measurement of this performance
metric is not implemented in this version of the evaluation framework.

7.1 Language and library details

The evaluation framework is implemented in C and C++ to ensure maximum portability
and performance. All concurrency code is implemented using pthreads. In addition

 All statistical calculations are performed with the GNU scientific library(GSL)[23].

 All calculations and conversion of time datatypes are using a subset of the csoft of general-

purpose library[24].

7.2 Delete operation

The YCSB core workloads will be used for testing and experiments, and they do not use
delete operations. Delete support has not been added to YCSB, however the entire
evaluation framework has added delete support as far as practically possible, and
deletion support can be added at a later date with minor modifications.

7.3 Trace file preparation

There are two trace files generated by the YCSB is the framework a “load” and a “run”
file. The trace file generated contains a lot of unnecessary characters, so a small binary
trace generator utility was made to generate a smaller binary trace only containing the
necessary information. Header with metadata followed by all the key-value entries. This
is done to minimize the memory and CPU footprint of the evaluation framework. The flat
structure can be loaded directly into the evaluation framework without any pre-
processing, and the file size of the YCSB core workload traces is reduced by 27% and
54% approximately.

Header
generated by the

Type Key Value Type Key Type Key Value Type Key

Struct insert key
a

value
a

read key
a

update key
a

value
b

delete key
a

Figure 7-1 Binary trace file structure, each entry has an operation type and key field. The value is only set for insert and
update operation types.

The header is a C struct containing most importantly the number of key-value entries
and their relative size in the binary trace. In addition, it also contains the relevant trace
configuration parameters. The length between entries is not fixed, an operation with a
value is larger than an operation without the value. The keys produced by YCSB is of the
format “USER123781857088687” where the number of numbers after the “USER” string

P a g e 34 | 69

can vary from 5 to 20[19]. During testing the observed variation was between 15 and
20. Therefore, the binary trace generator sets a fixed length key size, padding where
necessary to achieve this. The libcuckoo[22] key-value store had issues with variable
length keys.

7.4 Evaluation framework

The evaluation framework loads the binary trace files (load, run) and stores them in
memory. The benchmark is then run in a series of loops as described in the section 0.
Each unique configuration runs a number of samples, each sample consists of three
phases. Each of the phases are described in detail in sections below. In addition, how all
performance metrics are measured and calculated.
To make it possible for different key-value store implementations to be tested, an
interface layer is employed. This interface can be configured with any library that
conforms to CRUD operations. This layer of abstraction will be referred to as the
interface. Details of the interface and the different implemented interfaces will be
discussed in section 7.6.

7.4.1 Configuration parameters

The table describes each configuration parameter the framework supports.

The variables marked with a “*” are currently configurable through arguments to the
framework. The rest are variables in the code, the intent was to create a configuration
file for all the variables.

7.4.2 Time and sleep measurements

All measurements of time are done using the “clock_gettime” function defined by
POSIX[25], using the clock ID “CLOCK_MONOTONIC” which is not subject to change

Configuration variable Description

Test duration* The maximum amount in seconds the to execute.

Idle duration The amount of seconds the background power measurements
lasts

Interval duration The duration of each interval in milliseconds.

Starting throughput rate The lowest throughput tested for

Throughput increase rates The increment at which throughput is increased for each new
configuration.

Maximum throughput rate The maximum throughput tested for.

Number of samples per configuration Number of samples collected for each unique configuration.

Minimum number of threads* The lowest number of threads tested with.

Maximum number of threads* The highest number of threads tested with.

Latency sampling interval The number of intervals between each sampling of latency.

P a g e 35 | 69

during the running of the benchmark as the “CLOCK_REALTIME” to ensure maximum
possible accuracy. All sleep calls are done using “clock_nanosleep” function define by
POSIX[25], which is the highest resolution sleep function available. All references to
measurement of time and sleep are implemented using these functions. Both provide a
resolution in nanoseconds, however the accuracy is limited by kernel implementation
and the CPU model architecture.

7.4.3 Energy measurements

All energy measurements are done using the energymon library[26][1]. Energymon
allows for the sampling of the number of micro joules used since its initialization. All
measurements of energy are done by sampling the energy used before and after a phase
as completed. The difference between the samples is the amount of energy used, the
main thread and not individual worker threads do the energy measurements.

7.5 Configuration and samples

The first configuration is set to the minimum number of threads specified and the
minimum throughput specified. For each configuration, the set number of samples are
executed. If the target throughput is not achieved or the maximum throughput is
achieved, the thread number is incremented and the throughput is reset to its minimum
value. This continues for the range of threads specified by the configuration parameters.
See pseudocode in section 0.

7.5.1 Samples

Prior to the execution of a sample, a newly initialized instance of the key-value store
interface is created. After the sample has completed, all entries in the interface instance
are deleted and the instances self is deallocated. This is done using the initializes and
destroy function of the interface, see section 7.6.

7.5.2 Phase synchronization and measurements

Apart from phase 1 the execution of a phase relies on multiple threads. It is organized by
one main thread that manages the threads that execute the traces. The execution of a
trace is started when the main threads creates the number of threads which is set to
execute the trace in the current configuration. Each thread initializes and waits on a
barrier; the main thread also waits on this barrier. Therefore, when all threads have
reached the barrier the trace is ready to be executed. All threads are released from the
barrier; the main thread gets the starting time of the execution and sets it in a global
variable accessible to all threads. The remaining threads immediately re-enter the
barrier. When the main thread has set the global starting time it enters the same barrier
triggering its release. Now all the threads can execute the trace, with the starting times
set by the main thread. The main thread then enters the barrier waiting for the
remaining threads to complete execution of the trace. As the remaining threads
complete execution, they enter the barrier. When all threads have entered the barrier
the phase has completed. The main thread has measured time and energy used for the
duration of the execution.

 To do add figur

P a g e 36 | 69

7.5.3 Phase 1: idle energy

This phase measures the idle energy of the system when the framework is not doing any
work by measuring the energy used over the specified idle duration, in which the main
thread is sleeping. During this duration, no other threads are initialized or active.

7.5.4 Phase 2: preloading

This phase preloads the key-value store with the key-value entries in the load trace. The
records are loaded by the active threads with no limitations on throughput, measuring
the time and energy used across the insertion period.
Each time the number of threads in a configuration increases, the number of records in
the load trace is divided among the threads in the configuration. If the number of
records is not dividable by the number of threads, the remainder is divided among a
subset of the threads. Therefore, the threads may not have the exact same number of
records to load, but it can only vary by one.

7.5.5 Phase 3: execution

Execution is initialized as described in detail in section (7.5.2). When execution has
started, each thread uses the global start time, calculate its offset based on its thread ID
and executes an initial shortened interval to initiate the offset (see Figure 6-5). Each
thread continues to execute intervals till all operations have been executed or the tests
duration has passed, which is triggered by a signal sent by at timer thread initialized by
the main thread. This signal prompts any sleeping thread to wake, and any operation in
progress will be completed before the thread ceases execution.
7.5.5.1 Interval target throughput

Trace is executed in intervals, each interval lasts a fixed duration defined by the
configuration. Each interval has a target number of operations to be executed. This
number is calculated from the throughput target. Taking into account number of
intervals per second and the number of threads, the target number of operation is set so
that the overall throughput per second target will be reached. Due to the conversion
from floating-point numbers to integers, this number can be slightly lower than the set
target throughput.
7.5.5.2 Sleep intervals

Each sleep interval is performed using the “clock_nanosleep” function as mentioned in
section 7.4.2. The interval for which to sleep is not calculated from the point in time
where all the intervals target operations are completed, but rather as a multiple of the
global start time and the interval duration. This is possible using the “TIMER_ABSTIME”
functionality of “clock_nanosleep” [25]. It sets the time the thread should wake rather
than how long it should sleep, and by using the global start time as a reference, the
intervals will not drift relative to each other due to timing imprecision. However, an
estimate of how long a thread will sleep is calculated and added to sum of the total time
this thread has slept during execution.

P a g e 37 | 69

7.5.5.3 Iterating through the trace

Iteration through the trace is linear, the operation type is checked and the subsequent
key and value depending on operation type, is executed. Execution continues by
checking the next operation type.
7.5.5.4 Latency sampling

The configuration sets how often a latency sample should be collected. So, if it is set to
three, a latency sample will be collected every third interval excluding the initial
interval. Latency is measured by timing a single operation of the intervals target
operations. Which operation type that is sampled will be random, but each type is stored
in separate arrays. This does however mean that if 5% of the operations are insert on
average, only 5% of the total number of samples are from insert operations.

7.5.6 Maximum throughput criteria

After all samples in the current configuration has finished, the amount of time all the
threads have slept is summed up. If none of the threads has slept the maximum
throughput is reached, and testing with the current number of threads end. This is
because if threads have not slept in any interval, it has not reached its target interval
throughput in any interval. Inherently this means it has reached the maximum
throughput at the current number of threads.

7.6 Interfaces

The evaluation framework needs to be extensible. Therefore an interface layer is added
between each key-value store implementation and the evaluation framework. This is
implemented using an interface header file. This header file provides the following
functions:

 Initialize
 Destroy
 Read
 Insert
 Update
 Delete

In addition to the basic CRUD operations, there is an initialize and destroy function.
They are the method used before and after a sample execute. The initialize function
initializes the specific key-value store implementation, in accordance with the API of
that implementation. The same goes for the destroy function, using the key-value store
implementations API the key-value store is cleared of all entries. Then its memory
structure is deallocated. This ensures each sample uses an identical key-value store
interface, as discussed in section 7.5.1.
The key-value store implementations must be implemented to perform their equivalent
API calls for each of these six functions. In separate files, and by using pre-compilation
definitions, the evaluation framework is compiled using one of the key-value store
interfaces. The interfaces are all implemented using default settings, there configuration

P a g e 38 | 69

is intentionally customized as little as possible so that their default performance is
reflected. It is not feasible to optimize each configuration as there were too many
variables to configure.

7.6.1 Key-value entries

The type of key-value entry needs to be individually implemented in each interface. All
the interfaces here are implemented with the same key and value type. Both key and
value are character arrays of a size set by pre-compilation definitions. The key-value
entries also need to have defined hashing function. And the hashing function used on all
interfaces is CityHash[27].

7.6.2 Libcuckoo

Libcuckoo library[22] used was developed by the original offers concurrent cuckoo
hashing papers [6][28]. And they refer to this library “this source code is now the
definitive reference.”[22]. The C++ and the C port version were both implemented, but
only the C++ version is used. Whenever Libcuckoo is reference, it is the c++
implementation version that is referred to.

7.6.3 Google Sparse Hash (and Denes)

Google sparseHash is a library developed by Google and later made open sourced[13].
The library contains two different versions, the sparse and the dense version. Both are
implemented.

7.6.4 Hopscotch

The hopscotch library[29] used is a single threaded implementation, based on the
hopscotch algorithm[7].

7.6.5 Unordered map

The concurrent map implementation is the standard C++ and unordered map are also.

7.6.6 Dummy

There are two dummy implementations, one which imposes a fixed delay and one which
returns immediately upon being called. They have primarily been used for debugging,
but the one that does not have a fixed delay can be used to benchmark the evaluation
framework itself. Since it does no actual work, it can provide insights in to the
performance metrics of the framework.

7.7 Results handling

After each sample completes, the output is written to a CSV file. The list below details all
the data outputted:

 General sample information

 Name of interface used.

 Name of the workload used.

 Configuration ID, the unique number of threads and target throughput of the

system.

P a g e 39 | 69

 Number of threads used.

 Phase 1 results - Idle

 The baseline idle energy use of system.

 Phase 2 results - preloading

 Total number of records to preload (number of entries in the YCSB load trace).

 Total time used in seconds preloading the key-value store interface.

 Total energy used preloading key-value store interface.

 Operations per second while preloading.

 Joules per operation while preloading.

 Phase 3 results – execution

 Total number of operations (number of entries in that YCSB run trace).

 Total number of operations executed.

 Target throughput rate

 Adjusted target throughput rate (target throughput rate when divided across

intervals and threads section 7.5.5.1).

 Target duration of the execution (the configured duration of the execution).

 Measured runtime of the execution (as measured by the main thread).

 Average runtime per thread (the average runtime measured by all threads)

 Average time slept per thread.

 Total energy used over execution runtime.

 Operations per second

 Joules per operation (due to bug this is incorrectly calculated)

 Latency measurements, all the following values are individually listed for each operation

type (read, insert and update), but for simplicity they are all referred to here under the

single name operation type.

 Operation type latency samples collected.

 Operation type latency mean.

 Operation type latency median.

 Operation type latency 10.0th percentile - latency 90.0th percentile. (In 10th percentile

increments by default, is configurable through pre-compilation definitions)

To maximize the accuracy of the results which use floating-point datatypes, their results
is outputted as exponential numbers instead of decimal point numbers. This reduces the
loss of accuracy to a minimum.

P a g e 40 | 69

8 Experiments

The experiments are done with the YCSB core workloads, specifically A, B, C and D.
These workloads were used with all the implemented interfaces executing them with
every relevant combination of number of threads and throughput targets. Test machine
specifications was a Lenovo ThinkStation P500 running a Intel® Xeon® Processor E5-
1603 v3 @ 2.80ghz With 16 GB Ram at 1866 MHz. Running Ubuntu version 16.04 LTS.
During testing the machine was disconnected from the network to avoid any
background operations being triggered by a remote connection.
The evaluation framework had the following configuration:

Configuration variable Value

Test duration 30 seconds.

Idle duration 5 seconds.

Interval duration 25 ms.

Starting throughput rate 1 million operations per second.

Throughput increase rates 1 million operations per second.

Maximum throughput rate No upper limit.

Number of samples per configuration Five samples.

Minimum number of threads 1.

Maximum number of threads 8 (when the interface was concurrent).

Latency sampling interval 1 per interval.

P a g e 41 | 69

9 Results

All the relevant results from the experiments will be described in this section. First
results can validate the evaluation framework implementation. A brief mentioning of the
preload phase results, and then all the results from the execution phase are presented,
as well as two theoretical applications use cases.

9.1 Implementation validation

9.1.1 Execution time

Figure 9-1 This graph shows the execution time at different throughput target rates. The number prior to the interface
name is the number of threads tested with.

This graph shows the average running time of the different interfaces. As target
throughput increases, the time used to complete the one million entries drops rapidly
for all single threaded interfaces. Each thread used executes 1 million operations each,
so the execution time increases as the number of threads increases. As an example, the
fourth threaded Libcuckoo executes 4 million operations. The lower execution times for
especially single threaded interfaces has implications for the measuring of latency, as
will be shown in section 9.1.3.

0

10

20

30

40

50

60

70

Se
co

nd
s

Throughput target

Execution time- Workload A (50% read,50% update)

1 - CPPUNORDERED_MAP

1 - DENSE

1 - HOPSCOTH

1 - LIBCUCKOO

1 - SPARSE

2 - LIBCUCKOO

3 - LIBCUCKOO

4 - LIBCUCKOO

5 - LIBCUCKOO

6 - LIBCUCKOO

7 - LIBCUCKOO

8 - LIBCUCKOO

P a g e 42 | 69

9.1.2 Throughput control

Figure 9-2 This graph shows the actual throughput at different throughput target rates. The number prior to the interface name
is the number of threads tested with.

As seen in Figure 9-2, the throughput and the throughput target, matches, well up to the
point where interfaces approaches its maximum throughput. Here they flatten out and
end as the maximum throughput is reached, except for interfaces running with more
than four threads, which is the number of cores the CPU has. The maximum throughput
criteria fails to end execution, so the threads continued to run, even though they are not
meeting the throughput targets.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000
11000000
12000000
13000000
14000000
15000000
16000000
17000000
18000000
19000000

T
hr

ou
gh

pu
t

Throughput target

Throughput target vs actual throughput
Workload A (50% read,50% update)

1 - CPPUNORDERED_MAP

1 - DENSE

1 - HOPSCOTH

1 - LIBCUCKOO

1 - SPARSE

2 - LIBCUCKOO

3 - LIBCUCKOO

4 - LIBCUCKOO

5 - LIBCUCKOO

6 - LIBCUCKOO

7 - LIBCUCKOO

8 - LIBCUCKOO

P a g e 43 | 69

Figure 9-3 This graph shows the number of operations in deviation from the throughput target rates. The number
prior to the interface name is the number of threads tested with.

Figure 9-4 This graph shows the number of percentage of deviation from the throughput target rate. The number prior to
the interface name is the number of threads tested with.

-5000000,00

-4000000,00

-3000000,00

-2000000,00

-1000000,00

0,00

1000000,00

O
pe

ra
ti

on
s

of
 d

ev
ia

ti
on

Throughput target

Deviation from throughput target
Workload A (50% read,50% update)

1 - CPPUNORDERED_MAP

1 - DENSE

1 - HOPSCOTH

1 - LIBCUCKOO

1 - SPARSE

2 - LIBCUCKOO

3 - LIBCUCKOO

4 - LIBCUCKOO

5 - LIBCUCKOO

6 - LIBCUCKOO

7 - LIBCUCKOO

8 - LIBCUCKOO

-10%

-9%

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

Pe
rc

en
ta

ge
 o

f d
ev

ia
ti

on

Throughput target

Percentage of deviation from throughput target
Workload A (50% read,50% update)

1 - CPPUNORDERED_MAP 1 - DENSE 1 - HOPSCOTH
1 - LIBCUCKOO 1 - SPARSE 2 - LIBCUCKOO
3 - LIBCUCKOO 4 - LIBCUCKOO 5 - LIBCUCKOO
6 - LIBCUCKOO 7 - LIBCUCKOO 8 - LIBCUCKOO

P a g e 44 | 69

Figure 9-3 and Figure 9-4 show the deviation from the target rate in operations and
percentage. The most interesting observation here is in the percentage of deviation in
graph Figure 9-4. Prior to an interface reaching its maximum throughput, the percentage
of deviation is constant at 1% when using one thread, and then using more than one
thread it is slightly better closer to 0,5%. The most natural correlation with this result is
that the number of operations performed is greater when more than one thread is used.
Therefore, the execution time is longer. In addition to this there seems to be a slight
deviation at the lowest throughput target of 1 million operation per second.
9.1.3 Latency sampling

Figure 9-5 This graph shows the number of insert operation latency samples collected, which is the individual
measurement of latency during execution with different throughput target rates. The number prior to the interface
name is the number of threads tested with.

Latency results are calculated from a set of individual latency samples. Figure 9-5 shows
the average number of samples in the set of latency samples, which the statistical
latency results are derived from. All single threaded interfaces follow the exact same
line, this is an artefact of how latency samples are taken, and that they all use the same
trace which make this deterministic. Since workload B is 95% reads and 5% updates,
only 5% of the total amount of latency samples are insert samples. When combined with
the fact that the execution time decreases with the target throughput, so does the
number of collected latency samples. This means that for workload B the number of
insert samples taken is too low to be statistically significant.

0

100

200

300

400

500

600

N
um

be
r

of
 la

te
nc

y
sa

m
pl

es

Throughput target

Number of insert latency samples -
Workload B(95% read,5% update)

1 - CPPUNORDERED_MAP
1 - DENSE
1 - HOPSCOTH
1 - LIBCUCKOO
1 - SPARSE
2 - LIBCUCKOO
3 - LIBCUCKOO
4 - LIBCUCKOO

P a g e 45 | 69

9.2 Phase 2 preload

Figure 9-6 This graph shows the average time used to preload different workloads. As the preload phase is insert only,
there is effectively no difference between the workloads.

Figure 9-6 shows time used to preload a million records into the key-value store. It is
important to note that the variations between the different workloads are random. As
the preload phase has no variation across workloads, they are all 1 million insert
operations. The variations are likely to be there due to random fluctuations. The time
durations are so short that the following graphs of energy per operation and operations
per second, is likely to be inaccurate, and only general trends are in line with the results
from the execution phase.

P a g e 46 | 69

Figure 9-7 This graph shows the average operations per second used to preload different workloads. As the preload
phase is insert only, there is effectively no difference between the workloads. It is uncertain why workload A stands out
in this graph. This warrants investigation.

Figure 9-8 This graph shows the average energy use per operations used when preloading different workloads. As the
preload phase is insert only, there is effectively no difference between the workloads. It is uncertain why workload A
stands out in this graph which warrants investigation.

P a g e 47 | 69

9.3 Phase 3 execution

9.3.1 Correcting for background energy use

Figure 9-9 graph shows the energy use of three interfaces. The energy use per second while executing and the energy
background energy use prior to execution, also per second. Number prior to interface name is the number of threads
used.

The background energy use of the system is constant as can be observed in Figure 9-9.
Whereas the energy use of the interfaces during execution starts just higher than the
background energy, and increases at different rates as the throughput targets increase.
If the background energy use is not considered when calculating energy per operation,
results will be skewed so that lower throughput’s get worse energy per operation
(results see Figure 9-10). All the subsequent (accept Figure 9-10) results of energy per
operation, correct for the background energy use. By subtracting the background energy
from the total energy before dividing the number of executed operations.

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

M
ic

ro
 jo

ul
es

Target Throughput

Energy per second
Workload A (50% read, 50% update)
Backgound enegry per second - 1 - HOPSCOTH

Backgound enegry per second - 1 - LIBCUCKOO

Backgound enegry per second - 4 - LIBCUCKOO

Total energy per second - 1 - HOPSCOTH

Total energy per second - 1 - LIBCUCKOO

Total energy per second - 4 - LIBCUCKOO

P a g e 48 | 69

Figure 9-10 Graph shows energy per operation where the background energy is not subtracted for the total energy
used prior to dividing it by on the number of operations. This skews the results negatively for lower throughput
targets. Number prior to interface name is the number of threads used.

0

1

2

3

4

5

6

7

8

9

10

11

M
ic

ro
 jo

ul
es

Throughput target

Energy per operation not corrected for background
energy Workload C (100% read)

1 - CPPUNORDERED_MAP

1 - DENSE

1 - HOPSCOTH

1 - LIBCUCKOO

1 - SPARSE

2 - LIBCUCKOO

3 - LIBCUCKOO

4 - LIBCUCKOO

P a g e 49 | 69

9.3.2 Energy per operation

Figure 9-11 The energy use per operation for throughput targets up to 9 million operations per second. It includes
Libcuckoo with more than four threads. Number prior to interface name is the number of threads used.

Figure 9-11 shows an interesting behaviour of Libcuckoo. Libcuckoo with more than 4
threads outperforms Libcuckoo with four threads on the hardware which has 4 cores
that are not hyper- threaded. Likely because of lower throughput, the CPU has time to
context which between threads to hide latency. For the rest of the results, Libcuckoo
with more than four threads will not be shown, as this is the only interesting insight
their results contributes.

0

1

2

3

1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000

M
ic

ro
 jo

ul
es

Throughput target

Energy per operation
Workload B (95% read,5% update)

1 - CPPUNORDERED_MAP
1 - DENSE
1 - HOPSCOTH
1 - LIBCUCKOO
1 - SPARSE
2 - LIBCUCKOO
3 - LIBCUCKOO
4 - LIBCUCKOO
5 - LIBCUCKOO
6 - LIBCUCKOO
7 - LIBCUCKOO
8 - LIBCUCKOO

P a g e 50 | 69

Figure 9-12 The energy use per operation for all throughput targets with workload A. Number prior to interface name
is the number of threads used.

Figure 9-13 The energy use per operation for all throughput targets with workload A. Number prior to interface name
is the number of threads used.

0

1

2

3

M
ic

ro
 jo

ul
es

Throughput target

Energy per operation - Workload A(50% read,
50%update) 1 - CPPUNORDERED_MAP

1 - DENSE
1 - HOPSCOTH
1 - LIBCUCKOO
1 - SPARSE
2 - LIBCUCKOO
3 - LIBCUCKOO
4 - LIBCUCKOO

0

1

2

3

M
ic

ro
 jo

ul
es

Throughput target

Energy per operation - Workload C (100% read)
1 - CPPUNORDERED_MAP
1 - DENSE
1 - HOPSCOTH
1 - LIBCUCKOO
1 - SPARSE
2 - LIBCUCKOO
3 - LIBCUCKOO
4 - LIBCUCKOO

P a g e 51 | 69

The results for both workload A and C are quite similar. Hopscotch is slightly better than
Google’s dense hash. Libcuckoo performance better the more threads it uses, but still
not with large variations, with the exception for with one thread. Moreover, there is an
interesting point at the throughput target of between five and 6 million, where the
results of the libcuckoo interfaces are almost identical, and after which its results
steadily improve.

It is important to be aware that the line where these plots end, which is highest
throughput target reached the interface. This point does not reflect the average
maximum throughput, but rather the single highest target throughput reached for the
given interface. This result should be seen in conjunction with Figure 9-14 which gives
the average maximum throughput results.

9.3.3 Maximum throughput

Figure 9-14 This graph shows the average maximum throughput measured with different workloads. The number
beneath the interface name is the number of threads used.

With one thread, hopscotch performs best with all workloads. The concurrent Libcuckoo
does performs best with four threads which is the number of cores in the system.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

10000000
11000000
12000000
13000000
14000000

CP
PU

N
O

R
D

ER
ED

_M
A

P

D
EN

SE

H
O

PS
CO

TH

LI
B

CU
CK

O
O

SP
A

R
SE

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t

Number of threads and name of interface

Average maximum throughput

workloada

workloadb

workloadc

workloadd

P a g e 52 | 69

9.3.4 Latency

The latency is measured in nanoseconds and the resolution of the clock on the system is
1 nanosecond. Please note that all drafts and plots in the section start at 600 ns, no
observations were as low as 600 ns. When percentile is used in the following graphs and
plots, it means the percentage of operations were faster than that. For example, if the
70th percentile is 700 ns, 70% of operations had latency lower than 700 ns.

Figure 9-15 This plot illustrates how that latency percentiles are distributed across all the throughput targets.

10th

20th

30th

40th

50th

60th

70th

80th

90th

600
650
700
750
800
850
900
950

1000
1050
1100

1150

10
00

00
0

20
00

00
0

30
00

00
0

40
00

00
0

50
00

00
0

60
00

00
0

70
00

00
0

80
00

00
0

90
00

00
0

10
00

00
00

11
00

00
00

12
00

00
00

13
00

00
00

14
00

00
00

15
00

00
00

16
00

00
00

17
00

00
00

18
00

00
00

19
00

00
00

Percentile

N
an

os
ec

on
d

s

Target Throughput

Distribution of read latency with Libcuckoo(4 Threads)
workload A(50% read,50%update)

1100-1150 1050-1100 1000-1050
950-1000 900-950 850-900
800-850 750-800 700-750
650-700 600-650

P a g e 53 | 69

The evaluation framework makes it possible to get a multi-dimensional insight into the
latency distribution. Figure 9-15Feil! Fant ikke referansekilden. and Figure 9-16
illustrates this. This makes it possible to identify variations in latency more precisely at
different throughputs. Figure 9-15 illustrates this best; it has a rapid decrease in latency
across all percentiles when the target throughput is from 1 million to 5 million
operations per second from where it flattens out with a slight peak again at 11 million
operations per second. The same drop and flatting out can be seen in Figure 9-16, at the
same target throughput of 5 million as in Feil! Fant ikke referansekilden.. When all
the latency distribution plots are examined (not show in rapport to due to lack of space),
the relative distribution of percentile does not vary a lot with target throughput.
Therefore, averaging the percentile distribution of all target throughput is
representative for the different interfaces see Figure 9-17. This graph shows that serial
interfaces have the best latency results, all of them outperforming the concurrent

Figure 9-16 This plot illustrates how that latency percentiles are distributed across all the throughput targets.

10th

20th

30th

40th

50th

60th

70th

80th
90th

600

650

700

750

800

850

900

Percentile

N
an

os
ec

on
d

s

Target Throughput

Distribution of read latency with Hopscoth(1 Threads)
workload A(50% read,50%update)

850-900

800-850

750-800

700-750

650-700

600-650

P a g e 54 | 69

libcuckoo. Also note that the standard C++ unordered map which has the worst results
overall in other performance metrics, are among the best in latency.

Figure 9-17 This graph shows the results average percentile distribution across all throughput target rates with
workload A.

600,00

650,00

700,00

750,00

800,00

850,00

900,00

950,00

1000,00

10th 20th 30th 40th 50th 60th 70th 80th 90th

N
an

o
se

co
un

ds

Percentiles

Read latency percentiles average for all throughput target
workload A(50% read,50%update)

1 - CPPUNORDERED_MAP 1 - DENSE

1 - HOPSCOTH 1 - LIBCUCKOO

1 - SPARSE 2 - LIBCUCKOO

3 - LIBCUCKOO 4 - LIBCUCKOO

5 - LIBCUCKOO 6 - LIBCUCKOO

7 - LIBCUCKOO 8 - LIBCUCKOO

P a g e 55 | 69

The 90th percentile is an interesting metric of latency, as it reliably informs us of what
latency you can expect 90% of the time. Figure 9-18 shows some interesting results for
latency across the different target throughputs. The best performers are again
hopscotch and Google dense hash, the unordered map is not performing well in this
percentile. However, Libcuckoo with up to 4 threads, matches Google dense hash for
some target throughputs. Before Libcuckoo latency increased to around 900 ns, it
remained constant for the remaining throughput targets. In general, the serial interfaces
has the best latency, with hopscotch as the best flattening out at around 760 ns. It is
important to note that the latency drop both Google dense hash and hopscotch have
when approaching their maximum throughput, is likely due to outliers in the data set
and should not be considered reliable.
There is ,however, a general trend all interfaces have in common. They have a relatively
constant decrease in latency from the lowest throughput target to around 5 to 6 million
operations per second. The initial latency for the lowest throughput also seems to
increase the more threads are in use. This will be discussed further in section 10.2.

z

Figure 9-18 this graph shows the 90th percentile for all throughput targets with workload A.

600

700

800

900

1000

1100

1200

N
an

o
se

cn
ou

ns

Target throughput

Read latency 90th percentiles
workload A(50% read,50%update)

1 - CPPUNORDERED_MAP 1 - DENSE
1 - HOPSCOTH 1 - LIBCUCKOO
1 - SPARSE 2 - LIBCUCKOO
3 - LIBCUCKOO 4 - LIBCUCKOO
5 - LIBCUCKOO 6 - LIBCUCKOO
7 - LIBCUCKOO 8 - LIBCUCKOO

P a g e 56 | 69

9.4 The theoretical use cases

The results will now focus around one of the intended use cases for the evaluation
framework, evaluating an application’ specific interaction characteristics with the key-
value store. As I have no real world application data to take from, there are created two
theoretical use cases based on the YCSB core workloads. From the characteristics of
these theoretical use cases, the best interface for that application can be determined
based on the performance metrics.

9.4.1 Application A

Theoretical application A is an application that conforms to YCSB core workload A, and
has an average throughput that varies between eight and 10 million operations per
second.

Figure 9-19 This graph shows energy per operation with all the interfaces that can deliver the performance required
by application A. The colours represent different throughput targets. The dense interface does not have a grey
(10000000) graph as its average maximum throughput is lower than 10 million operations per second.

0

0,5

1

1,5

2

2,5

DENSE HOPSCOTH LIBCUCKOO LIBCUCKOO LIBCUCKOO

1 2 3 4

M
ic

ro
 jo

ul
es

Number og threads and Interface

Energy per operation

8000000

9000000

10000000

P a g e 57 | 69

Figure 9-20 This graph shows read latency percentiles with all the interfaces that can deliver the performance
required by application A.

Figure 9-21 This graph shows Update latency percentiles with all the interfaces that can deliver the performance
required by application A.

600,00

650,00

700,00

750,00

800,00

850,00

900,00

950,00

10th 20th 30th 40th 50th 60th 70th 80th 90th

N
an

os
ec

no
nd

Percentile

Read latency percentiles

1 - DENSE

1 - HOPSCOTH

2 - LIBCUCKOO

3 - LIBCUCKOO

4 - LIBCUCKOO

600,00

650,00

700,00

750,00

800,00

850,00

900,00

950,00

1000,00

10th 20th 30th 40th 50th 60th 70th 80th 90th

N
an

os
ec

no
nd

Percentile

Update latency percentiles

1 - DENSE

1 - HOPSCOTH

2 - LIBCUCKOO

3 - LIBCUCKOO

4 - LIBCUCKOO

P a g e 58 | 69

Figure 9-19, Figure 9-20 and Figure 9-21 show the different interfaces which can
perform the throughputs that application A need, with the exception of Google dense
hash which cannot reliably perform 10 million operations per second. On all
performance metrics, hopscotch performed the best. However, if application A and some
point can expect to need to run at higher throughputs, only the Libcuckoo can achieve
that.

9.4.2 Application B

Theoretical application B is an application which conforms to YCSB core workload C, and
has an average throughput that varies between 2 and 3 million operations per second.

Figure 9-22 This graph shows energy per operation with all the interfaces that can deliver the performance required
by application B.

Figure 9-22, Figure 9-23 and Figure 9-24 show all interfaces that meet applications B
throughput requirements. At this low throughput, the difference between interfaces is
quite small, hopscotch is slightly better than Google’s dense hash for energy efficiency.
As for latency the unordered map is slightly better than hopscotch, especially for
updates. However, overall hopscotch is the best interface for application B needs.

0

0,5

1

1,5

2

2,5

3

CP
PU

N
O

R
D

ER
ED

_M
A

P

D
EN

SE

H
O

PS
CO

TH

LI
B

CU
CK

O
O

SP
A

R
SE

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

LI
B

CU
CK

O
O

1 2 3 4 5 6 7 8

M
ic

ro
 jo

ul
es

Number og threads and Interface

Energy per operation

2000000

3000000

P a g e 59 | 69

Figure 9-23 This graph shows read latency percentiles with all the interfaces that can deliver the performance
required by application B.

Figure 9-24 This graph shows Update latency percentiles with all the interfaces that can deliver the performance
required by application B.

600,00

650,00

700,00

750,00

800,00

850,00

900,00

950,00

1000,00

1050,00

1100,00

10th 20th 30th 40th 50th 60th 70th 80th 90th

N
an

o
se

co
un

d

Percentile

Read latency percentile
1 - CPPUNORDERED_MAP 1 - DENSE
1 - HOPSCOTH 1 - LIBCUCKOO
1 - SPARSE 2 - LIBCUCKOO
3 - LIBCUCKOO 4 - LIBCUCKOO
5 - LIBCUCKOO 6 - LIBCUCKOO
7 - LIBCUCKOO 8 - LIBCUCKOO

600,00

650,00

700,00

750,00

800,00

850,00

900,00

950,00

1000,00

1050,00

1100,00

1150,00

1200,00

10th 20th 30th 40th 50th 60th 70th 80th 90th

N
an

o
se

co
nd

s

Percentile

Update latency percentile
1 - CPPUNORDERED_MAP 1 - DENSE
1 - HOPSCOTH 1 - LIBCUCKOO
1 - SPARSE 2 - LIBCUCKOO
3 - LIBCUCKOO 4 - LIBCUCKOO
5 - LIBCUCKOO 6 - LIBCUCKOO
7 - LIBCUCKOO 8 - LIBCUCKOO

P a g e 60 | 69

P a g e 61 | 69

10 Discussion

10.1 The evaluation framework

In this section, the pros and cons of the implementation and the different aspects of the
value for evaluation framework, is discussed. Starting with the design and
implementation of the throughput control, the issues with using YCSB the trace
workloads, and how these issues affect the implemented method of latency measuring.

10.1.1 Throughput control through intervals.

As the results show, the implemented method of controlling the throughput worked
well. Deviation from the target throughput is relatively constant at approximately 1%,
and when deviating from this main, within 0% to 2%, up to the point where the target
throughput and the maximum throughput of the interface meet and the interface was
unable to meet the target throughput, and as expected deviating below 0%.
10.1.1.1 Problems with the target throughput termination criteria

There was however, one problem with the implementation, and that was the maximum
throughput criteria. The idea was that up until the maximum throughput, each thread
would have lesser and lesser time at the end of the interval to sleep after the interval
target is reached, at which point the threads would not sleep for any duration. Indicating
the maximum throughput was reached, however, this only holds true for single threaded
executions. When the number of threads increases, this assumption fails when the
number of threads were equal lower to a number of cores in the CPU. The framework
attempted a few throughput target iterations past maximum throughput. However, if the
number of threads exceeded the number of cores on the CPU, the framework attempted
several more throughput target iterations beyond the maximum throughput.
This effect is believed to be due to the context switching between threads, and that some
threads managed to complete their intervals and therefore sleep whilst other threads
were unable to reach their target throughput. The reason the sleep time was used, was
that it may be an interesting metric to keep track of, and that by using it as a termination
criteria, the maximum throughput measured would not be affected. In retrospect,
keeping track of sleep time give no interesting insights, and the termination criteria
should probably have been based on the average throughput of all samples in a
configuration.
This does not affect the results in any other way than that there are some measurements
that need to be discarded. In addition, the execution time of the framework is
unnecessarily increased, something that should be avoided as the execution time is
already extensive.

10.1.2 Issues with using YCSB for trace generation

One assumption of the design was that the data set would be large enough to run for the
entire test duration. This assumption underestimated that the speed of modern key-
value stores, using YCSB to generate a trace of 100 million operations, was not enough
to run for 60 seconds. It is only enough operations to run for 60 seconds at the

P a g e 62 | 69

throughput of 1 million operations per second. Generating a larger file is possible but
impractical. Each workload takes an hour to generate, and the largest one is over 11 GB
in size. There were also concurrency issues which will be discussed in the next section,
considering that to execute for 60 seconds at close to the highest maximum throughput,
measured at 20 million operations per second would require a data set of 1.2 billion
operations, which is completely unfeasible in a pre-generated file.
The usual solution to this problem is simply to loop through the trace file several times.
The distribution and the access pattern will be the same. This is true, but with one very
important exception. The pattern will be the same as long as there are no insert
operations in the pattern. The following example illustrates this: The YCSB core
workload D is 95% reads and 5% inserts. The first time this trace is iterated through 5%
of the keys, will be insert operations. However, the second time the trace is iterated
through, the 5% of keys that are set to be inserts have already been inserted. In other
words they are now effectively updates, and this would be true for every consecutive
iteration through the trace. So, insert and update operations are effectively simplified to
generic put operations. Insert implies that the access pattern will increase the size of the
key-value store over time.
Using the example given earlier with 20 million operations a second as the throughput
running for 60 seconds, a 100 million operations trace will have to be looped through 12
times. If that trace has 5% inserts they will only actually perform insert operations for
first iteration of the loop. That is 8.3% of the total number of operations that reflect the
access pattern, the remaining 91,7% will perform 5% update operations. For this
evaluation framework, which primary purpose is to correctly simulate applications
interaction characteristics with the key-value store, this is an unacceptably large
deviation, and I would generally argue that it is incorrect to perform experiments with
insert operations in this way.
10.1.2.1 Concurrency issues

The by far the biggest benefit of using YCSB is that it can produce access patterns with
different distributions. A necessity when trying to simulate an application’s interaction
characteristics with the key-value store and was the primary reason it was chosen to
generate traces from the access patterns. The initial implementation divided the
operations of trace between the number of threads so that each thread executes its own
segment of the trace. This did however create some concurrency issues for access
patterns with insert operations. As the trace is designed as a sequential execution of
operations, threads starting in later sections of the trace would attempt to read keys that
have not been inserted yet. As this insert operation is in an earlier section which another
thread has not yet reached in its execution, this will cause a read failure. In itself this
might not be such a large issue, read failures can after all occur, but these are
unspecified read failures, and they would occur more frequently the more threads that
are used. It would incorrectly represent in applications interaction characteristics with
the key-value store. It could be argued that the access pattern should also contain failure
operations see section (3.2), but operation failures are probably rare and I’m not aware
of any work on the subject.

P a g e 63 | 69

10.1.2.2 Possible solution with YCSB.

If YCSB must be used, the best solution for this issue will be to generate one trace files
generated for each of the threads in any configuration. So, if you have one thread you
only require one trace file, when you have three threads you would require three trace
files. With this solution the concurrency issue’s would have been solved, as each thread
has its own segregated trace to perform. However, this is still not a perfect solution. It is
reasonable to believe that a key inserted by one thread might be updated or read by
other threads. Therefore, this solution could theoretically create less contention than is
realistic in a real word scenario. The reason this method was not implemented, it’s that
it is cumbersome and would require a reimplementation of the trace generation input of
the evaluation framework. It would also require the generation of more YCSB trace files,

testing with 1 to n number of threads would require 𝑇௡ =
௡(௡ାଵ)

ଶ
 . For example, testing

with up to 8 threads with the 4 workloads used here, would require 36 separate files, of
a total size 944 gb. which is unfeasible. So it would likely have to be implemented by
creating a pool of multiple trace files, so small that they could be divided evenly among
the current amount of threads in the configuration by some form of trace management
solution. There was not enough time to do this. If there had been time, it would probably
be better to create an internal trace generator.
10.1.2.3 Implemented solution

The solution actually implemented was to have each thread the use the same trace, so
each thread reads sequentially from the same thread, which is stored sequentially in
memory. The inherent consequence of this is that the number of operations to be
executed, increases for each extra thread that is used. That they all use the same trace,
has some important ramifications. Each thread will use the same keys in the same order,
which, if it hadn’t been for the fact that each threads execution is offset from each other,
would have caused contention issues as all threads access the same keys simultaneously.
These contention issues would have unfairly negatively influenced on the performance
of a concurrent implementations. However, since they are upset it would have the
opposite effects, as the first thread which is not offset would have caused each entry to
be loaded in the CPU cache. So, all subsequent key upset threads can read the entries
from CPU cache instead of main memory which in all likelihood benefits its
performance, possibly to a large degree. Minimizing memory operations is an important
factor in the development of key-value stores, for hash tables in particular the amount of
cache misses is a significant part of the retrieval time of entry.
Solution also suffers from the problems discussed in section 10.1.2, only to slightly
lesser degree. The first thread which is not offset is the only one that performance
inserts, all the other upset threads will effectively perform updates. It is therefore clear
that YCSB is unsuited for this evaluation framework.

10.1.3 Latency

The benefit of measuring each type of operation individually, is that the latency
differences between CRUD operations can be observed. However, latency measurements

P a g e 64 | 69

was implemented under the previously discussed assumption that the execution time
would be fixed. Latency measurements samples can be take no more then each interval
depending on configuration. Since the execution time is much shorter than assumed it
would be, the amount of latency samples collected is reduced as the target throughput
increases. If execution time can be extended by using a different trace generation
solution than YCSB, this Would not be a problem. However, it is obvious that latency
samples should be collected every interval regardless. It also has the added benefit of
reducing the complexity of the execution loop. But in my opinion latency should be
sampled at a fixed rate per interval, and not at a fixed rate per operation. Per interval
because the amount of work each interval, and thereby each thread, uses to measure
latency is constant over the execution time, and not a variable of throughput. This
minimizes the impact the implementation of the operation framework has on the
results.
10.1.3.1 Results handling

Latency results are collected and calculated at the completion of each sample in a
configuration, which means that the latency results are an average of 5 samples. For
example, the method read latency displayed in the results is the average of 5 mean
calculations from 5 sets of latency samples. In other words, instead of summing up all
the latency samples, it uses a subset of five smaller latency samples which could
negatively affect the accuracy of the results. However, if the number of samples is great
enough this is not a big issue. Even so, this is an implementation oversight that can and
should be fixed.
For the results of this experiment, this problem might be an issue for the YCSB core
workloads where one operation type consists of 5% of the total. Because in this case,
only 5% of the latency samples will on average be from this operations and that can
make the sample size too small to be statistically relevant, especially when the execution
time is shorter see figure (placeholder)

10.1.4 The evaluation framework conclusion

To summarize and conclude the evaluation framework discussion: Using a pre-
generated file to describe the access pattern does not scale for higher throughput
targets. YCSB provided the very important aspect of being able to generate different
distribution; it is also its only benefits. It makes the workflow of the framework more
complicated, and it cannot truly support insert operations in an adequate matter. If a
custom solution for generating traces can be designed and implemented, it could
feasibly natively support different types of keys and length and provide scalability at
higher throughput. This should not be up to a complex problem, however making it
support different distributions might be. This will also resolve the issues with latency
measurements.

10.2 Results observations

Reviewing the results there were a few observations in the data that warrant further
discussion. Particularly the latency results see section (todo), but also in the energy

P a g e 65 | 69

results the section (todo). In both of these performance metrics, libcuckoo’s
performance changes at the throughput targets of around 5 to 6 million operations. The
energy per operation increasing up to this point, and decreasing afterwards, a trend not
observed in the serial key-value stores which had a more constant energy per operation.
This observation is not very significant, however if this peak is correlated with the
latency observations, a pattern can be seen. All the key-value stores has a drop-in
latency from the initial throughput target of 1 million operations per second, to 5 million
operations per second after which it remains almost constant see (todo). Not the graph
you might expect when measuring throughput and latency. At higher throughput should
expect the latency to increase, as contention and the available hardware capacity
decreases, not what is observed here.
10.2.1.1 Possible cause

My hypothesis are that this is caused by the CPU cache. The reason the latency drops the
higher the throughput rate is, is likely caused by that at lower throughput rates it takes
more time for the CPU cache to be loaded with entries from the key-value store. When
the CPU cache mostly contains entries from the key-value store, the likelihood of finding
an entry in cache reaches a maximum percentage. Which supports that the latency will
flatten out at a certain throughput target, as seen in (todo). The counterargument to this
is that all entries were preloaded in phase 2 and should therefore already reside in
cache. However, that would only be the last entries inserted in the preload phase, and
the distribution is Zipfian (see section 0), which means that some entries are more
popular than others, and over time these entries will gradually dominate the entries in
cache. As they are the most frequently accessed, which at a certain point will depend on
the cache size, they will constitute some maximum percentage of the entries that reside
in cache, at which point the increase in performance will end, and remain constant for
the rest of the execution.
10.2.1.2 Possible solution

If this is correct it means that the latency measurements at lower throughput are
incorrectly skewed from what you would expect in real world conditions and these are
the conditions the evaluation framework is meant to simulate. To improve upon this, a
warm up phase could be introduced. After preloading and prior to execution, the
experiment could run a set number of operations to ensure that the cache is adequately
populated with representative entries from the key-value store.

10.3 The theoretical use cases

The theoretical use cases presented in section (TODO!) serves as a proof of concept for
the evaluation framework. Selecting an applications specific interaction characteristic
with the key-value store, and then running experiments at these settings, resulted in a
set of graphs that shows the performance trade-offs of the different key-value stores.
This evaluation framework could be developed further to be a useful benchmarking and
decision-support for developers.

P a g e 66 | 69

10.4 Is concurrency better

The initial hypothesis was as follows:

 My hypothesis is that depending on applications' throughput demand, there can exist a

point at which nonconcurrent key-value store outperforms a concurrent key-value store on

some or all performance metrics.

The results of the experiments confirm this hypothesis, naturally limited to the key-
value stores tested in this implementation. The hopscotch and Google dense hash key-
value stores did generally outperform Libcuckoo on all performance metrics measured,
up to their respective maximum throughputs. Libcuckoo did, at its best energy per
operation metric, not outperform hopscotch. Libcuckoo did of course outperform all
serial key-value stores when it came to maximum throughput, but at the throughput
demands lower than 10 million operations per second, hopscotch outperform all other
key-value store implementations on all performance metrics.

10.5 Limitations of simulation

Any benchmark or evaluation framework have some limitations in how realistic they
simulate real world use. This evaluation framework has taken great effort, to as closely
as possible simulate a real world applications use of a key-value store. However, since
the evaluation is separate from the application, in that the applications memory and CPU
use is subtracted from the evaluation, the evaluation framework cannot truly represent
how a key-value store will perform in use. This can only be achieved by testing a key-
value stores implementation within the application. The reason for this is best
illustrated by an example: Take the observations that link the number of entries loading
cache and the latency discussed in section 10.2. Where the size of the cache was relevant
to the minimum latency, if an application was running this key-value store, it would
reduce the amount of available cache as it would naturally use some portion of it, for the
work it does that is not related to the key-value store. However, taking this into account,
the evaluation framework still gives the best possible representation of a key-value
stores performance, given these limitations.

P a g e 67 | 69

11 Future work

11.1 Additional interfaces

This framework presents many future research opportunities. It would be very
interesting to test even more key-value store implementations, to test the performance
of lock free[6][9][10] versus lock based[7][5] concurrency implementations, and a tree
based key-value stores[3] to see if it performs well on some performance metrics.

11.2 Space efficiency

Space efficiency measuring of the different key-value stores is a performance metric that
can be valuable especially when evaluating Google SparseHash[13] which showed
relatively mediocre results in the experiments. However, since Google SparseHash is
designed to be primarily space efficient, its true benefits cannot be evaluated until the
space efficiency metric is added.

11.3 Custom trace generator

To improve the evaluation framework, a custom trace generator is needed, which
randomly can generate any key type at the scale needed to test for longer durations to
get better accuracy and generating different distributions which might be a difficult
algorithmic problem.

12 Conclusion

This implementation of the MELT key-value store evaluation framework has some
limitations and issues that require improvement. However, the concept of a
multidimensional evaluation of key-value stores have provided interesting results and
has potential to be a relevant framework for evaluating different key-value stores for
specific applications. In addition to this, the results of the experiments support the
claims of my hypothesis. There seems to be a range of throughputs where serial key-
value stores outperform concurrent ones.

P a g e 68 | 69

13 References

[1] C. Imes, L. Bergstrom, and H. Hoffmann, “A Portable Interface for Runtime Energy
Monitoring,” in International Symposium on Foundations of Software Engineering
(FSE), 2016, pp. 968–974.

[2] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with YCSB,” Proc. 1st ACM Symp. Cloud Comput. - SoCC ’10, pp.
143–154, 2010.

[3] Y. Mao, E. Kohler, and R. Morris, “Cache Craftiness for Fast Multicore Key-Value
Storage,” in european conference on Computer Systems (EurpSys), 2012, pp. 183–196.

[4] “Java ConcurrentMap.” [Online]. Available:
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentMap.html
. [Accessed: 01-Jun-2017].

[5] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-KV: A Case for GPUs
to Maximize the Throughput of In-Memory Key-Value Stores,” in Vldb, 2015, pp.
1226–1237.

[6] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic improvements
for fast concurrent Cuckoo hashing,” Proc. Ninth Eur. Conf. Comput. Syst. - EuroSys
’14, pp. 1–14, 2014.

[7] M. Herlihy, Maurice; Shavit, Nir; Tzafrir, “Hopscotch Hashing,” in Proceedings of the
22nd International Symposium on Distributed Computing, 2008, pp. 0–15.

[8] O. Shalev and N. Shavit, “Split-ordered lists: Lock-free extensible hash tables,” J. ACM
JACM, vol. 53, no. 3, pp. 379–405, 2006.

[9] D. Zhang and P.-Å. Larsen, “LHlf: lock-free linear hashing (poster paper),” in PPoPP,
2012, pp. 307–308.

[10] Y. Liu, K. Zhang, and M. Spear, “Dynamic-sized nonblocking hash tables,” Proc. 2014
ACM Symp. Princ. Distrib. Comput. - Pod. ’14, pp. 242–251, 2014.

[11] C. Hashing, “Cache-Oblivious Hashing,” in PODS’10, 2010, pp. 297–304.
[12] S. Richter, V. Alvarez, and J. Dittrich, “(P1) A seven-dimensional analysis of hashing

methods and its implications on query processing,” in Proceedings of the VLDB
Endowment, 2015, vol. 9, no. 3, pp. 96–107.

[13] “sparseHash GitHub,” 2017. [Online]. Available:
https://github.com/sparsehash/sparsehash. [Accessed: 19-May-2017].

[14] “Intel performance counter monitor.” [Online]. Available:
https://software.intel.com/en-us/articles/intel-performance-counter-monitor.
[Accessed: 29-May-2017].

[15] “Heartbeats-simple Github.” [Online]. Available:
https://github.com/libheartbeats/heartbeats-simple. [Accessed: 23-May-2017].

[16] V. M. Weaver et al., “Measuring Energy and Power with PAPI,” in Parallel Processing
Workshops (ICPPW), 2012.

[17] “Heartbeats Github.” [Online]. Available:

P a g e 69 | 69

https://github.com/libheartbeats/heartbeats. [Accessed: 29-May-2017].
[18] C. Imes, D. H. K. Kim, and M. Maggio, “POET : A Portable Approach to Minimizing

Energy Under Soft Real-time Constraints,” 2015, pp. 75–86.
[19] “YCSB Github.” [Online]. Available: https://github.com/brianfrankcooper/YCSB/wiki.

[Accessed: 22-May-2017].
[20] J. Ousterhout et al., “The RAMCloud Storage System,” ACM Trans. Comput. Syst., vol.

33, no. 3, pp. 1–55, 2015.
[21] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51[1] R. P, no. 2, pp.

122–144, 2004.
[22] “Libcuckoo Github,” 2013. [Online]. Available: https://github.com/efficient/libcuckoo.

[Accessed: 21-May-2017].
[23] “GSL - GNU Scientific Library.” [Online]. Available:

https://www.gnu.org/software/gsl/. [Accessed: 25-May-2017].
[24] A. Measday, “csoft general purpose library,” 2016. [Online]. Available:

http://www.geonius.com/software/#liberal. [Accessed: 25-May-2017].
[25] “The System Interfaces volume of POSIX.1-2008,” 2016. [Online]. Available:

http://pubs.opengroup.org/onlinepubs/9699919799/functions/contents.html.
[Accessed: 24-May-2017].

[26] “Energymon Github.” [Online]. Available: https://github.com/energymon/energymon.
[Accessed: 24-May-2017].

[27] “CityHash Github.” [Online]. Available: https://github.com/google/cityhash.
[Accessed: 25-May-2017].

[28] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3 : Compact and Concurrent
MemCache with Dumber Caching and Smarter Hashing,” in 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’13), 2013, no. April, pp. 1–
14.

[29] “Hopscotch-map Github.” [Online]. Available: https://github.com/Tessil/hopscotch-
map. [Accessed: 01-Jun-2017].

