Inflammatory response of macrophages and trophoblasts investigated using structured illumination microscopy and quantitative phase microscopy

Rajwinder Singh, Deanna L. Wolfson, Vishesh Dubey, Azeem Ahmad, Ganesh Acharya, D. S. Mehta, Purusotam Basnet, Balpreet S. Ahluwalia

1. Department of Physics and Technology, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
2. Department of Physics, Indian Institute of Technology, 110016 New Delhi, India
3. Department of Clinical Medicine, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
4. Department of Clinical Science Intervention and Technology, Karolinska Institute, 14186 Stockholm, Sweden

Introduction: The super-resolution capability of structured illumination microscopy (SIM) (100 nm) enables 3D imaging of mitochondria, and label-free quantitative phase microscopy (QPM) provides nanoscale quantitative phase values relating to cellular thickness and the refractive index of cellular content.

Methods: We examined morphological changes in response to LPS and TNF-α (agents which are known to cause inflammation) challenge on live RAW264.7 (macrophage) and HTR-8/SVneo (trophoblast) cell lines using SIM and QPM, and quantitatively measured nitric oxide (NO) production.

Results: SIM imaging showed changes in the morphology of mitochondria (Fig.1) and plasma membrane (Fig.2) in approximately 50-60% of macrophages following LPS challenge (1µg/ml for 24 h), but no detectable changes in mitochondria or plasma membrane were observed after TNF-α challenge (1ng/ml for 24 h). Mitochondrial and plasma membrane morphology appeared unaffected in trophoblasts following either LPS or TNF-α challenge under similar conditions. LPS-challenged macrophages produced approximately 22fold more NO as compared to controls, whereas no significant increase was seen after TNF-α challenge. QPM revealed that the phase value decreased by approximately 18% in LPS-challenged macrophages as compared to controls. In contrast, no notable changes in the phase value or NO production were observed in trophoblasts with either LPS or TNF-α challenge.

Conclusion: Our results suggest that the different cells which are responsible for the mother-fetus cross-talk, especially macrophages and trophoblasts, respond differently to various inflammatory agents. High-resolution optical microscopy is shown to be a live-cell friendly, useful tool to evaluate sub-cellular mechanisms associated with inflammation complications during pregnancy.

Fig. 1. In controls (a), mitochondria appeared longer and more uniform while in LPS-challenged macrophages (b) they were smaller and rounded in shape.

Fig. 2. Compared to controls (a), LPS-challenged macrophages (b) have larger footprints and fewer protruding extensions.