
Faculty of Science and Technology
Department of Computer Science

Swiftmend
Data Synchronization in Open mHealth Applications with Restricted Connectivity
—
Christoffer H. Hansen
INF-3981 Master thesis in Computer Science, June 2018

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2018 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

“There’s nothing wrong with having a tree as a friend.”
–Bob Ross

Abstract
Open mHealth applications often include mobile devices and cloud services
with replicated data between components. These replicas need periodical
synchronization to remain consistent. However, there are no guarantee of
connectivity to networks which do not bill users on the quantity of data usage.
This might influence users to evade data synchronization. This thesis propose
Swiftmend, a system with synchronization that minimize the quantity of I/O
used on the network.

Swiftmend includes two reconciliation algorithms; Rejuvenation and Regrowth.
The latter utilizes the efficiency of the Merkle tree data structure to reduce the
I/O. Merkle trees can sum up the consistency of replicas into compact finger-
prints. While the first reconciliation algorithm, Rejuvenation simply inspects
the entire replica to identify consistency. Regrowth is shown to produce less
quantity of I/O than Rejuvenation when synchronizing replicas. This is due to
the compact fingerprints.

Acknowledgements
First and foremost I would like to thank my advisor Håvard D. Johansen, as
well as secondary advisors Håvard Espeland, and Lars Brenna. Thank you for
your valuable guidance, motivation, and imparting your deep knowledge of
computer science.

Further I would like to thank a god in computer science, Dag Johansen, for
his encouragement and introducing me to the Corpore Sano research group.
Thanks to all researchers at Corpore Sano for providing an excellent working
environment.

Addtionally, I would like to thank Pål Halvorsen and my former colleagues at
ForzaSys for a great working experience during my internship. I am grateful
for being involved in PMSys during the past years and for being able to develop
on this system during my capstone and thesis.

Thanks to all my fellow students for all the joy1, laughs, input and advice. All
of you are wonderful and bright computer scientists. All your future colleagues
are lucky to be working with you.

Your inclusion and positive environment during my stay at both working
premises are deeply appreciated. This has motivated my daily attendance
as I look forward to each day working alongside with you.

Thanks to my friends and family for all the support and giving me the oppor-
tunity to cultivate my likings for computers from a early age. Even though you
threatened to block the Internet sometimes.

Special thanks to Marianne for encouraging and motivating me throughout the
study. Thank you for all the laughs and making me food everyday. No one in
my class thinks I can cook.

To all, your involvement is deeply appreciated. Again, thank you.

1. https://www.reddit.com/r/PicturesOfJonEating/

Contents
Abstract iii

Acknowledgements v

List of Figures ix

List of Tables xi

List of Definitions xiii

List of Glossaries xv

1 Introduction 1
1.1 Data Consistency . 2
1.2 Problem Definition . 3
1.3 Scope and Limitations . 4
1.4 Method . 4
1.5 Context . 5
1.6 Outline . 6

2 Background 7
2.1 The Open mHealth Architecture 7

2.1.1 OAuth 2.0 . 8
2.2 PMSys 3.0 . 10

2.2.1 Legacy Synchronization Protocol 12
2.3 Merkle Tree . 14

3 Swiftmend: Design and Implementation 17
3.1 System Components . 17
3.2 Data Structure . 20

3.2.1 Versioning . 20
3.2.2 Delete Certificate . 21

3.3 Rejuvenation: Simple Reconciliation 21
3.4 Alternative Reconciliation Algorithms 22

vii

viii CONTENTS

3.5 Regrowth: Merkle Tree Reconciliation 23
3.5.1 Leaf Data Structure 24
3.5.2 Tree Construction 25
3.5.3 Tree Verification . 26

4 Client-side Integration 31
4.1 Data-service . 31

4.1.1 Storage . 32
4.1.2 Resource (REST) Client 32
4.1.3 Synchronization Orchestrator 33
4.1.4 Garbage Collector: Freezer 35

4.2 MerkleTS: A TypeScript Based Library 36
4.2.1 Cryptographic Hash Function 37

5 Server-side Integration 39
5.1 Application Programming Interface 39
5.2 Tree Storage . 40
5.3 Garbage Collector . 41

6 Experiments 43
6.1 Setup . 43
6.2 I/O Traffic . 45
6.3 Reconciliation Time . 46

7 Concluding Remarks 49
7.1 Summary . 49
7.2 Future Work . 50

7.2.1 Big Data . 50
7.2.2 Merkle Tree . 51
7.2.3 PM Reporter . 52
7.2.4 TSU . 52

Bibliography 55

List of Figures
2.1 OAuth 2.0 architecture in PMSys 10
2.2 PMSys technology components. 11
2.3 PM Reporter: Main page . 12
2.4 PM Reporter: SRPE survey 12
2.5 PM Reporter: Wellness survey 13
2.6 PM Reporter: Participation 13
2.7 Hash tree . 15

3.1 Swiftmend: System components 18
3.2 Repair missing datapoints 27
3.3 Repair outdated datapoints 28

4.1 Local tree construction before consistency check 34

6.1 Reconciliation observation 1 44
6.2 Reconciliation observation 2 45
6.3 Reconciliation time of Rejuvenation and Regrowth. 47

ix

List of Tables
3.1 CRUD support in PMSys 3.0 and Swiftmend architecture . . 20
3.2 Reconciliation algorithms 23

xi

List of Definitions
2.1 OAuth Roles . 9
2.2 OAuth Grant Types . 9

xiii

List of Glossaries
API application programming interface

CBA Credential-Based Authentication

DSU Data Server Unit

GDPR General Data Protection Regulation

HTTP Hypertext Transfer Protocol

IOT Internet of Things

mHealth Mobile Health

OMH Open mHealth

RO Resource Owner

RS Resource Server

SPA Single Page Application

SRL Simula Research Laboratory

TSU Team Server Unit

UiT The Arctic University of Norway

xv

1
Introduction
Architectures with mobile applications and cloud services often include repli-
cated data between loosely coupled client and server entities. Such architec-
tures includes clients having network connectivity restrictions in the form
of being billed by the quantity of data used. Cellular networks in Norway
and cloud services such as Amazon S3 both charge upon this. However, it
is desirable to synchronize data even in such conditions, as replicas need to
be regularly synchronized to preserve consistency. Data synchronization that
generates high amounts of I/O on the network will drain such expenses. This
factor might influence users to evade data synchronization. We have examined
the systems [1, 2, 3, 4, 5], and conclude that these do not address quantity of
I/O used on the network. Swiftmend is proposed to minimize the quantity of
I/O used on the network and reassure users to perform data synchronization
under restricted network conditions.

The prototype of Swiftmend is implemented for the athlete quantification
system, PMSys [5]. Automated systems for collecting athlete performance
statistics are becoming a necessary factor for sport clubs to remain competitive.
These athlete quantification systems use phenotypic indicators to enable rapid
convergence towards improvement of performance and injury treatments. The
phenotypic indicators generated are owned by the athletes. Other actors, such
as coaches or medical staff, are data interested parties that purposely analyze
the indicators. Themobile devices show potential to improve disease prevention
and management by extending health interventions in traditional care [6].
Open mHealth (omh) is a standardization effort for data exchange. The omh

1

2 CHAPTER 1 INTRODUCT ION

initiative proposes interfaces and a shared component architecture to increase
interoperability in Mobile Health (mhealth) applications and services. A key
component in theomh architecture is the Data Server Unit (dsu). It is an open
api specification for unified information sharing across data streams.

Athletes need a secure method to access their health data and delegate data
to trusted principals [2]. PMSys [5] is a performance monitoring system for
athletes, and enables controlled sharing of data through compartmentalized
Linux containers to preserve the integrity of processing intent, administrative
domains and roles. The system component referred to as the Team Server Unit
(tsu), manage controlled sharing of user data using unforgeable tokens [7]
and Credential-Based Authentication (cba) [8]. PMSys was based on the
Ohmage SDK [4] from Cornell Tech, and the Open mHealth specification [6].
The system provides monitoring of athlete’s internal training load (rating of
perceived exertion), wellness (physical and mental health) and injuries, by
using smartphones. Data is collected with a subjective questionnaire submitted
by the athletes in a mobile app. Coaches can visually inspect the data and
trends through a trainer web portal.

The system consists of three main parts; a mobile application, a web-based
trainer module, and several backend services. The components in PMSys has
a three-tiered structure with storage as the third tier [9]. PMSys consists of
loosely coupled Data Storage Units (DSUs) as one of the backend services.
Data is transactionally replicated between the mobile application and the dsu,
leaving full copies of the database in each component. The database replicas
need periodic updates, as data change and leaves the states inconsistent. Hence,
a consistency model is needed to guarantee consistency. The dsu therefore
implements a weak consistency model, as writes can go to one of several
replicas.

1.1 Data Consistency
Distributed database-management systems struggle with guaranteeing ACID
properties in database transaction due to network unreliability [10]. Brewer’s
CAP theorem describes the impossibility of having consistency, availability
and partitions simultaneously [11]. A system can guarantee two at most, and
therefore requires a selection between the three guarantees. However, the
guarantee of partition tolerance is mandatory in distributed system, and can
never be sacrificed [12]. Because networks within distributed systems cannot
guarantee no message drop, no crashes, networks are unreliable. The choice
stands between a variation of consistency or availabilitywith partition tolerance.
This leads to the weak consistency model BASE [13], which forfeit consistency

1.2 PROBLEM DEFIN IT ION 3

and isolation from the traditional ACID properties to increase the availability
and performance.

Components in PMSys as the mobile application is affected by geographical
separation. Perkins et al. [14] comments on the recent efforts that examine the
viability of trading consistency for reduced latency in geo-distributed services.
The limited and intermittent connectivity in mobile applications force a weaker
consistency model, unlike the mentioned efforts trading consistency for la-
tency. Due to intermittent connectivity, data should be available during absent
network connectivity, commonly known as offline mode [15]. Both the web
application and mobile application in PMSys contain persistent storage, and
therefore complements disconnected operations. A weak consistency model,
eventual consistency, enables such facilities opting for availability over con-
sistency, and gives the user an always-on experience [16]. Weak consistency
means not guaranteeing that any replica will always have the most recent
updates. Updates are often communicated through propagation in a epidemic
behavior with gossiping [17, 18]. The machinery serving the replica avoids
blocking processes waiting on failed nodes or network to communicate up-
dates of the replica. However, choosing availability over consistency implies
client recovery of longer partitions as replicas diverge. Nodes are therefore
required to exchange information with each other using data reconciliation to
ensure state convergence. Anti-entropy protocols are often used to achieve con-
vergence [19]. Anti-entropy is a type of gossiping, and part of an anti-entropy
protocol is to compute the differences of datasets. A node use either merge or
reconciliation mechanism to concur a new state by operating the consumed
and currently possessed state. Merkle trees1 is a frequently used data structure
to implement anti-entropy protocols.

1.2 Problem Definition
This thesis propose a client-server synchronization architecture for distributed
systems consisting of loosely coupledmobile devices and backend cloud services.
Synchronization mechanisms that squander the network with high data usage
might influence users to avoid synchronization, as cellular networks in Norway
and cloud services bill users per quantity of data used.

Our thesis is:

Data synchronization in a mobile application can be efficiently sup-
ported by a Merkle tree data structure to reduce the I/O on networks

1. also referred to as hash tree

4 CHAPTER 1 INTRODUCT ION

paid per quantity of data used.

We deduce the following requirements that should be met in our proof-of-work
prototype:

Requirement 1 synchronization cycles are required to perform periodically
with ten minutes intervals to enable synchronization of athletes data
between scheduled activities.

Requirement 2 data synchronization is required to reconcile replicas within
a second to maintain transparency towards user experience.

Requirement 3 the system should completely support CRUD operations for
data updates.

The proof-of-work prototype is implemented for PMSys. The system maintain
multiple user replicas using Merkle trees. The synchronization mechanisms
compute the difference on a dataset that is consisting of data objects with
phenotypic data provided by the users.

1.3 Scope and Limitations
The thesis describes the design and implementation of data synchronization
for PMSys this includes the system components PM Reporter and the tsu,
excluding the web-portal for coaches.

The thesis builds on a solution presented in PMSys 3.0, which provides secure
channels using unforgeable tokens [7] and cba [8] for authentication and
authorization to prevent data tampering. These aspects are therefore out of
scope for this thesis.

While the thesis do investigate a reduction of I/O with experiments, we do not
investigate memory or computational efficiency in regards to the synchroniza-
tion mechanisms proposed.

1.4 Method
The ACM Task Force [20] describes the three major paradigms in the discipline
of computing theory. The three paradigms are divided into:

1.5 CONTEXT 5

Theory stem frommathematics, and involves the study ofmathematical objects
and their hypothesized relationships. The hypothesis are interpreted to
determine proof, either proven or falsified.

Abstraction stem from the experimental scientific method, and involves in-
vestigation of phenomenons from a hypothesis. It includes constructing
models for prediction and design experiments for analyzes.

Design stem from engineering, describing constructions of a system to solve
a problem. This includes requirements, and specifications of the system.
Design and implementation of the system. Lastly, testing of the system’s
behavior

This thesis use the design methodology to construct a system to enable data
synchronization. This includes the design of constructing the system, imple-
mentation of the design and an evaluation of the system behavior.

1.5 Context
The Corpore Sano Centre2 is a research group focusing on high-impact life
science research and innovation intersected between the fields of computer
science, sport science, and medicine. Specially, focused on novelty in the con-
vergence space of mobility, social network, cloud computing, big medical data,
and the Internet of Things (iot). The conducted studies includes international
collaboration with other academic and commercial partners.

These studies arise from the early work of mobile agents [21, 22] and network
architectures [23, 24]. Mobile agents are used as a middleware architecture
for distributed applications, which moves the computational environment of
a mobile user. These experiences have inspired further work as the cloud
database service, Jovaku, which demonstrates the viability of global caching
by using existing DNS system [25].

Our markedly work in security and fault-tolerance has lead to overlay network
protocols like Fireflies, which provide novel trade-off between Byzantine fault
tolerance and scalability [26]. Codecaps propose cryptographically protected
capabilities containing executable code that improves upon discretionary access
control as they are often predefined, and capabilities are unable to be confined.
Codecaps supports flexible discretionary access control in cloud-like computing
infrastructures. [27]. This work is related to meta-code, which proposes a

2. http://www.corporesano.no/

6 CHAPTER 1 INTRODUCT ION

mechanism that express and enforce security policies when having shared
data [28].

With the sports analytics being a growing field of interest, our collaboration
with Simula Research Laboratory (srl) resulted in Bagadus, a real-time sports
analysis system [29]. Bagadus has a integrated sensor systems and video
processing enabling live monitoring of soccer matches. Muithu expands upon
this and provide coaches annotation of live matches, and a social network for
players and coaches to track training and nutrition [30].

1.6 Outline
Chapter 2 presents the architectures PMSys is based on, and the Merkle tree

data structure used in Swiftmend.

Chapter 3 describes the general design and implementation of Swiftmend and
introduce the two reconciliation algorithms; Rejuvenation and Regrowth.

Chapter 4 describes the client-side integration of Swiftmend in PMSys based
on the design and implementation presented in Chapter 3.

Chapter 5 describes the server-side integration of Swiftmend in PMSys based
on the design and implementation presented in Chapter 3.

Chapter 6 investigate the thesis statement and requirements from Section 1.2,
by evaluating the two proposed reconciliation algorithms.

Chapter 7 concludes the thesis and outlines future work.

2
Background
This chapter describes standards and frameworks related to PMSys. We will
describe the open architecture of Open mHealth, and the OAuth 2.0 framework
that PMSys is based on. We evaluate the legacy PMSys synchronization protocol.
Lastly, we introduce the Merkle tree data structure used in Swiftmend to
improve the legacy synchronization protocol.

2.1 The Open mHealth Architecture
Themobile devices show potential to excel disease prevention andmanagement
by extending health interventions in traditional care [6]. omh is a standard-
ization effort for data exchange between siloed architectures. The motivation
for the omh initiative is the need for development and treatment of chronic
diseases outside the traditional clinical settings, and to enable the patient to
collect and share data constantly to obtain an agile conclusion to optimize the
treatment of a patient.

Theomh initiative proposes interfaces and a shared component architecture to
increase interoperability in mhealth applications and services. This counters
incompatibility issues related to applications with distinct data format,manage-
ment and analysis. This approach is referred to as a siloed or stove-pipe. Siloed
architectures obstruct data-sharing with other applications, and is therefore
inefficient of innovation and limits the potential of mhealth.

7

8 CHAPTER 2 BACKGROUND

An architecture needs to support shared data standards to fully realize the
mhealth potential. These architectures are referred to as an open architecture.
The benefits of an architecture of this type is the well-definedapi,which enables
interconnection of systems. They are also called innovation infrastructure due
to the interconnected vision. Though, they suffer limitations due to built-in
security.

A key component in the omh architecture is the dsu. It is an open api
specification for unified information sharing across data streams. Directed to
the architectures having siloed data stores, enabling them to share informa-
tion.

The Open mHealth specification utilizes the OAuth 2.0 protocol to dictate
sharing of resources. PMSys includes OAuth 2.0 terminologies andwill therefore
be described in the following section.

2.1.1 OAuth 2.0
The OAuth 2.0 authorization framework defines a protocol allowing third-
party applications limited access to a Hypertext Transfer Protocol (http)
service. This is enabled by an user approval interaction between the user
and http service, or to obtain access in a third-party application on its own
behalf [31].

OAuth addresses several limitations in the traditional client-server authentica-
tion model regarding third-party applications accessing restricted resources.
This requires that the user shares its credentials with the third party, which
cause issues.

OAuth introduces an authorization layer and separates the role of the client
from the user. A client needs to request access to a restricted resource on behalf
of the user. And this is issued with a different set of credentials than the user’s
credentials.

Rather than using an user’s credentials, the client use an access token. This
is a string with designating attributes associated with access, which are scope
and lifetime. The scope attribute represents permissions, usually defined in an
access control demeanor as read,write, and delete. A client can request different
scopes from an authorization server. The scopes requires authorization from
the user in the form of a consent, if the user approves, the access token will
represent the authorized scopes. The client can then use the access token to
access protected resources.

2.1 THE OPEN MHEALTH ARCHITECTURE 9

Roles

OAuth defines four roles, which is the terminology we will use with a few
exceptions.

The Definition 1. OAuth Roles

Resource Owner: A entity capable of granting access to a protected resource.
Usually an end-user, referred to as a person.

Resource Server: A server hosting protected resources, defined with an api
for interaction. Able to accept and respond to endpoint requests by using
an access token.

Client: An application requesting access to a protected resource on behalf of
a Resource Owner (ro) with its authorization.

Authorization Server: A server authenticating and obtaining authorization
from the ro and issues access tokens upon successful authentication.

Authorization Grant

An Authorization Grant is the credential representing the ros authorization.
The client uses this credential to obtain an access token. OAuth 2.0 defines four
flows, also called grant types, to obtain an access token. Each flow is suited for
cases depending on the client type.

The Definition 2. OAuth Grant Types

Authorization Code: Grant flow for web applications executing on a server-
and mobile applications using the Proof Key for Code Exchange (PCKE).

Implicit: Grant flow for JavaScript applications, also called Single Page Appli-
cation (spa), executing in an user-agent (ros browser).

Resource Owner Password Credentials: Grant flow for trusted applications
only.

Client Credentials: Grant flow for machine-to-machine communication.

omh define three fundamental components for data sharing. (1) Data stores
needs the possibility to define the data they wish to share. This enables
third-party clients to obtain an uniformed definition of data. (2) Third-party

10 CHAPTER 2 BACKGROUND

PM App

(Client)

Athlete

(Resource Owner)

Auth0

(Authorization Server)

DSU

(Resource server)

1. Authorization Request

3. Authorization Grant

2. Authorization Grant

4. Access Token

5. Access Token

6. Protected Resource

Figure 2.1: OAuth 2.0 architecture in PMSys

applications needs authenticated users to authorize access. (3) Servers requires
a simple and well-defined api.

2.2 PMSys 3.0
PMSys is a performance monitoring system for athletes that is developed in
collaboration with students and researchers at srl, The Arctic University of
Norway (uit), and ForzaSys AS. The system provides monitoring of an athlete’s
internal training load (rating of perceived exertion), wellness (physical and
mental health) and injuries, by using smartphones. Data is collected with a
subjective questionnaire submitted by the athletes in a mobile app. The user
interface and both surveys are illustrated in Figure 2.3, 2.4, 2.5, 2.6. Coaches
can visually inspect the data and trends through a trainer web portal. Both
mobile- and web applications shares the terminology PM App, while the mobile
application only is referred to as PM Reporter. The system consists of three
main parts illustrated in Figure 2.2: a mobile application,a web-based trainer
module, and several backend services.

The initial version of PMSys was based on the Ohmage SDK from Cornell Tech
and the Open mHealth specification. The system was later improved as part of
several student projects, leading to the deployment of its version 1.0, which has
been in production for four years. Version 2.0 made significant improvement to

2.2 PMSYS 3.0 11

Figure 2.2: PMSys technology components.

the system by incorporating the updated Ionic1 and Angular2 frameworks. Also,
version 2.0 was constructed with modernized security mechanisms (illustrated
in Figure 2.1). Version 2.0 was never put in production, but development
was moved towards version 3.0 for better General Data Protection Regulation
(gdpr) compliance.

The Open mHealth specification used for PMSys 2.0 dictates use of the OAuth
2.0 protocol for authorizing requests addressed to the Resource Server (rs) or
the dsu. Although this clearly defines several authentication flows, it does not
say how credentials should be stored. PMSys 2.0 is opted to store credentials
in a shared Postgres database on behalf of a ro. Each time the authentication
server creates an access token it is stored in the Postgres database, before the
token is sent to the requesting client after authentication has been completed.
The client can access protected resources by attaching tokens in the http
header of subsequent requests to the dsu using the bearer scheme. When the
data server receives the token, it queries the shared Postgres database to verify
the token. However, due to recommendations in the upcoming gdpr from the
European Commission,wewant data to separate the shared database to prevent

1. https://ionicframework.com/
2. https://angular.io/

12 CHAPTER 2 BACKGROUND

Figure 2.3: PM Reporter:
Main page

Figure 2.4: PM Reporter:
SRPE survey

cross-contamination. Also, shared database is a bottle-neck, having slow query
time and being a single point of failure, due to it being centralized.

Version 3.0 improved upon this using unforgeable tokens and cba to enable
decentralized authentication. Also, version 3.0 introduced the new system
component, a Go-based tsu, to initially manage controlled sharing of user
data using attenuated tokens. The tsu was originally built to communicate
with the dsu. However, later development consolidated the two components
by reimplementing the dsu into the tsu.

2.2.1 Legacy Synchronization Protocol
PMSys is built on the foundation that users own their data. Phenotypic indi-
cators collected in the mobile application, PM Reporter, are stored locally on
the device to substantiate user control. PMSys enables sharing of data through
Linux containers in order to preserve the integrity of processing intent, admin-
istrative domains and roles. These containers run loosely coupled Data Storage
Units (DSUs). The dsu contains replicated phenotypic data originated from
PM Reporter.

2.2 PMSYS 3.0 13

Figure 2.5: PM Reporter:
Wellness survey

Figure 2.6: PM Reporter:
Participation

Each report from an athlete generates a single datapoint, and is persisted in
the local storage upon submission. The datapoint is pushed to an out queue
with outgoing datapoints addressed to the tsu with access to the dsu before
storing it locally. These datapoints are to be stored in the dsu. After a push on
the out queue, PM Reporter executes a client and tries to transmit the submitted
datapoint. A successful transmission removes the pertaining datapoint from
the out queue, and persists the state of the out queue by flushing it to the
disk.

Data stored in the dsu is shared to other users that are authorized by the data
owner. This allows mobile- and web applications to perform data processing
without the need of fetching data directly from each other. The data is then
pulled and pushed from the dsu, being an available server application com-
pared to the mobile- and web applications that might be offline. The dataset is
therefore replicated and distributed, increasing the reliability and redundancy.
However, distribution introduce issues regarding consistency.

Synchronization is required to preserve consistency between replicas, as the
datasets can change. The previous synchronization mechanism uses a pull
based method. PM Reporter pulls the entire dataset from the dsu and iden-

14 CHAPTER 2 BACKGROUND

tify undiscovered datapoints present in the dsu to spawn them locally. PM
Reporter processes each datapoint by attempting an insert to the local dataset,
ignoring datapoints that are already present. There is an overhead related to
pulling the entire dataset when datasets are consistent. All the data pulled are
wastefully ignored as the data already exists, and results in unnecessary usage
of bandwidth and computation. This is problematic to PM Reporter, as it is a
mobile device with limited resources that should be used efficiently [32]. The
dsu rely on pushed data from PM Reporter in order to preserve consistency
between them. The queue handling is an important dependency for dataset cor-
rectness. The queue is vulnerable to corruption as it is persisted as a stack [33],
and emits items over an unreliable network [10]. The synchronization mech-
anism lacks a forgiving repair that can detect unexpected inconsistencies. A
synchronization mechanism providing idempotent difference of replicas will
mend such occurrences.

The current PMSys architecture support two CRUD operations of replica up-
dates: read and write. Athletes being the data owner qualify for all supported
CRUD operations, while coaches are permitted read rights when authorized by
data owner. Current architecture has no support of CRUD operations, update
and delete. Datapoints are only pushed to the dsu after inserted into the out
queue. Modifying a datapoint locally would never reach other applications
or the dsu, as the modified datapoint would only exist in their respective
applications. Because there are no mechanism that push the updated datapoint
to the dsu. Other applications pulling the shared data from the dsu would
rather receive the version of the datapoint in original state. A local deletion
would also be ignored, and the next pull from the dsu would contain the
deleted datapoint. The lack of complete CRUD support degrades users data
control.

2.3 Merkle Tree
Merkle tree was originally proposed as an alternative signature scheme [34].
The Merkle Signature Scheme is an alternative to todays Digital Signature
Scheme (DSA) and RSA signature [35]. Alternative digital signature schemes
are motivated to counter the predicted insecurities in todays signature schemes.
Digital Signature Scheme (DSA) and RSA signature rely on the difficulties of
solving the discrete logarithm problem and the factorization problem. There are
currently no existing algorithm that solves these problems efficiently. However,
there are theoretically proven algorithms that solves these problems on a
quantum computer. It is believed that these computers can be built in the
future. Hence, an alternative digital signature scheme is needed.

2.3 MERKLE TREE 15

Figure 2.7: Hash tree

The Merkle tree is also known as a hash tree, and the data structure is repre-
sented as a binary tree [36]. The data structure is commonly used as either
a signature scheme or anti-entropy protocol. The clear advantage of Merkle
tree as an anti-entropy protocol is the efficiency [37]. The data structure has
the ability to summarize a large data set into a compact fingerprint. Each tree
node contain a checksum generated by a cryptographic hash function. The
security is therefore dependent on the guarantees served by the cryptographic
hash function used [35]. In the terms of usage in an anti-entropy protocol, it
is problematic with collisions. The reconciliation process is dependent on the
uniqueness in the hash values. Two different content hashed that results in
the same checksum can potentially give invalid comparison between two unre-
lated leaf nodes. As the tree is traversed, a collision caused by duplicated hash
that is nearest to the traversal path will always be detected first. The farthest
checksum is therefore never discovered unless the traversal order is changed.
The checksum serves an efficient purpose for inconsistency checking.

The hash tree is constructed with intermediate nodes containing the concate-
nated hash of its child nodes hash (shown in Figure 2.7). The leafs contain
some content that is used as a hash key to create the leafs hash. The leaf hash
is the origin to the intermediate node’s hash, due to concatenation. As other
hashes depend on the leaf hashes, a leaf insert in the tree requires a rebuild of
the tree to recalculate affected branches.

3
Swiftmend: Design and
Implementation
This chapter introduces Swiftmend an extension of PMSys 3.0, and propose two
reconciliation algorithm for data synchronization; (1) Rejuvenation and (2)
Regrowth. We describe the system components in Section 3.1, and explain the
communication between components when performing data synchronization.
Section 3.2 advocates the extension of the current data structure with versioning
and delete certificates to enable complete CRUD support in Swiftmend. We
further introduce the reconciliation algorithms; Rejuvenation in Section 3.3
and Regrowth in Section 3.5. Section 3.4 discusses alternative algorithms and
advocates the use of Merkle trees in Regrowth.

3.1 System Components
Swiftmend has a client-server model, and consists of two system components:
(1) PM Reporter and (2) the tsu. Figure 3.1 illustrates the components as two
applications: PM Reporter being the mobile application, and the tsu being the
server application. The data exchange between the components are formalized
with REST api [38]. The server expose accessible endpoints enabling clients
to fetch resources from the dsu. PM Reporter includes a REST client for inter-
process communication with the server application. The system components

17

18 CHAPTER 3 SWIFTMEND : DES IGN AND IMPLEMENTAT ION

Figure 3.1: Swiftmend: System components

exchangemessages on secure channels using unforgeable token of authority [7]
implemented in PMSys 3.0. The api provides granular access control through
scopes carrying permissions. However, this thesis do not include this previous
implementation, as it is out of the scope.

PM Reporter, being a personal device used by the athlete, functions as a data
manager and synchronization orchestrator. The control of data resides in the
device due to the athlete being a data owner [39].

Swiftmend is built with a multi-master replication to enable data flows between
PM Reporter and the tsu with a two-way synchronization mechanism. This
approach requires orchestrating to maintain data flow and consistency, which
resonates with the data manager/synchronization orchestrator role assigned
to PM Reporter. Data-service is the service that functions as the active data
manager and synchronization orchestrator. The service therefore maintains
the consistency of replicas by invoking reconciliation on data change.

Database replication with the master/slave model suits the roles, appointing
PM Reporter as master and the tsu as slave. A master/slave replication scheme
requires a single point master federating data to slaves. However, the master is
a single point of failure, and slaves is dependent on its uptime. This do not suit
PMSys and interferes with the unreliable network bound to the mobile device
being master. Inserting new datapoints would have to go through the master,
and therefore cause problems when the master is unavailable.

The Rejuvenation reconciliation algorithm compute the difference on the entire
dataset consisting of data objects with phenotypic data provided by the users.
Regrowth instead use the Merkle tree data structure to detect inconsistencies.

3.1 SYSTEM COMPONENTS 19

Each athlete has an associated Merkle tree stored on each application, which
possesses a replica of the athlete’s dataset. In this thesis, it includes the mobile-
and server application; PM Reporter and the tsu. Other users such as the
athlete’s coach, can posses an athlete’s dataset upon consented sharing in the
web application. However, this is out of the scope for this thesis, as Swiftmend
only implements support for the algorithms in the mobile- and server appli-
cation, leaving out the web application. However, in the case of sharing data
with a coach, Swiftmend intends on sharing trees from the dsu as data is also
shared from this server application to enable the web application to construct
the same trees as the other applications. The trees functions as a reference
point to verify tree integrity between PM Reporter and the dsu. Taking the
data usage on the network into account, clients do not download or transmit
entire trees from each other to avoid network packages of growing size. The
clients issue tree branches in order to bundle compact network packages of
small size. Since the trees are stored in each client and server means that they
have to build the trees individually. Tree maintenance is issued from the clients,
contrary to the server an therefore contributes to a stateless server preserving
horizontal scaling.

A fundamental problem related to Merkle tree is the construction time ad-
dressed in The Merkle tree traversal problem [35]. The cryptographic function
used in the tree implies that it is infeasible to invert for malicious users, while
being cheap enough to compute for legitimate users. Despite being cheap and
providing secure properties as collision resistance, it still issues expensive com-
putation. Athletes in PMSys continually generate datapoints for quantifiaction
that ultimately leads to a large tree. Generating bigger trees increase the ex-
pense and is therefore impractical to compose regularly. As mentioned above,
the applications in PMSys are three-tiered, which includes a storage layer. Tree
data structures are persisted in the storage layer separately in each system
component. Storing trees avoid time spent generating hash values when there
are no updates in the tree that require a rebuild. The solution counters the
computational expenses, but still face capacity issues when data grows.

A study that examines the reliability of fifteen popular mobile applications
and synchronization services has been conducted [40]. They systematically
introduced failures like network disruption, local app crash and device power
loss. The study encountered data loss, corruption and inconsistent behavior
and generally poor data management. The network disruption test shows loss
of data when synchronization fails and is not immediately handled after recon-
nection. The crash test shows corruptions and inconsistencies for application
with objects, while table-only recovers correctly. Swiftmend partially complies
with this as PM Reporter has a relational database SQLite as storage medium
and the dsu store documents in mongoDB collections. The collections are

20 CHAPTER 3 SWIFTMEND : DES IGN AND IMPLEMENTAT ION

PMSys 3.0 Swiftmend
C X X
R X X
U × X
D × X

Table 3.1: CRUD support in PMSys 3.0 and Swiftmend architecture

analogous to a relational database table.1 However, to which degree this holds
is uncertain.

3.2 Data Structure
Inconsistency checks of datasets identifies missing datapoints in either dataset
to consolidate their sets and maintaining the most recent version of datapoints.
To enable such features requires escalating the CRUD support of PMSys (il-
lustrated in Table 3.1). Swiftmend proposes an extended data structure that
enable this.

Additional information describing versioning and delete orders is needed to
implement reconciliation between distributed replicas. This information is
placed in an extensional set to the omh standard, called additional properties.
Theomh header is modified to contain this set as replica updates will propagate
this information to other components. The complete data structure with the
extensional set additional properties is illustrated in Listing 3.1.

3.2.1 Versioning
Created data objects initially starts with a sequence identifier stating the
version of the object. The sequence identifier is a logical clock [41] that is
used to manage versions by capturing causality between object versions. The
system avoids virtual synchrony of logical clock updates since modification of
data objects are restricted to the data owner. Updates, which include CRUD
operations update and delete, are only propagated from the mobile device,
leaving the device’s own logical clock as the singingly dependent clock. The
initial value is 0 and implies no modification.

1. https://docs.mongodb.com/manual/core/databases-and-collections/

3.3 RE JUVENAT ION : S IMPLE RECONCIL IAT ION 21

3.2.2 Delete Certificate
Revocation is a vital user functionality to empower user control [39]. The data
object take in a delete certificate upon deletion [42]. The clause is appended
to the additional properties in the header set. The initial value is 0 and implies
no deletion, while 1 indicates a delete order.

Both PM Reporter and the tsu have an implemented garbage collector de-
scribed in Chapter 4 and 5. The garbage collector services manage delete orders
from the data owner to enable data deletion in the system.

Listing 3.1: JSON-object

{
" header " : {

" id " : "985ec37c−573f−ad88−be4f−ba69ec51a2f4 " ,
" c rea t ion_date_ t ime " : "2018−03−28T12 :30 :55 .524" ,
" schema_id " : { . . . } ,
" acqu i s i t ion_provenance " : { . . . } ,
" use r_ id " : " t e s t _ i d " ,
" a dd i t i ona l _p r ope r t i e s " : {

" sequence_id " : 5
" de l e t e " : 0

}
} ,
" body " { . . . }

}

3.3 Rejuvenation: Simple Reconciliation
The simple reconciliation is based on the PMSys legacy synchronization protocol
described in Subsection 2.2.1. The approaches similarly pull entire database
copies upon synchronization. The process of reconciliation differs in the two
approaches after obtaining the dataset. Rejuvenation aims at executing an
idempotent difference of the dataset that compares all pulled database copies
against each other, including the local database copy. Rejuvenation uses the
idempotent difference to detect unexpected inconsistencies and repairs both
datasets. The legacy version includes no idempotent mechanism and is reliant
on the out queue correctness.

The reconciliation process starts by pulling the entire database copy from
the dsu into memory of PM Reporter. The datasets are represented with a

22 CHAPTER 3 SWIFTMEND : DES IGN AND IMPLEMENTAT ION

key-value map, where the key is assigned with the header identifier and value
containing the data object. The sets are sorted on size prior to reconciliation
in order to preserve array boundaries when repairing. Missing datapoints are
discovered by comparing the second dataset with the first. Each key in the
second dataset is checked for existence in the first set. A miss in the first set
causes an insertion of the missing datapoint from the second. When insertions
are directed towards the remotely pulled set, the client will invoke a POST
request to the dsu that contains the freshly inserted datapoint. Upon hits,
the datapoints from both sets are compared on the sequence identifier to
agree on the most recent datapoint version. Likewise with insertions, when
the remote set is found holding the oldest datapoint, the client invokes a PUT
request to update the current datapoint. The reconciliation process is iterative
and continues repeating the same process until all datasets are compared
bidirectionally.

Rejuvenation improves upon the legacy synchronization protocol by having
an idempotent difference. However, pulling the entire database results in
large network packages as the dataset grows. Secondly, inconsistency checks
are computational costly as the entirety of all datasets require inspection.
Alternative reconciliation algorithms are therefore examined to improve on
these limitations by reducing the I/O.

3.4 Alternative Reconciliation Algorithms
A study evaluates four reconciliation algorithms concentrating on accuracy
and bandwidth [37]. It is assumed that available network bandwidth is the
bottleneck in distributed replica repair. Hence, finding differences in replicas
should be minimized at low transfer costs. The experiments has two scenarios
inspecting the reconciliation cost of either a failure item removal (failure
type regen) or outdated items (failure type update). The worst performance
was encountered in the naïve approach that sends a list of all dataset keys
and their version to other nodes. The naïve approach has similar features to
Rejuvenation, as both issue all dataset keys and versions. However, Rejuvenation
also includes the value of the map, containing the datapoint that naïve avoids
by only sending the key. Adapting this feature of naïve into Rejuvenation by
only sending the header with the sequence identifier would reduce the amount
of data sent.

The alternative algorithms described in the paper achieves significantly lower
reconciliation costs. For updates, both SHash and Bloomfilter [43] are constant
to data load, being an advantage on high load. Merkle tree has an unbeatable
low reconciliation cost on small data load. For regen, Bloomfilter is the most

3.5 REGROWTH : MERKLE TREE RECONCIL IAT ION 23

Trivial SHash Bloom Merkle
Efficiency/load Intermediate Intermediate Intermediate High
Avg. recon. cost Worst Mediocre Mediocre Best
Variance Consistent Consistent Variable Variable

Table 3.2: Reconciliation algorithms

efficient at approximately intermediate load. However, it experiences a low hit
on missing items by only finding half of them. The Merkle tree shows similar
trend to the update scenario performing well on small data load. The findings
related to Merkle tree correlates with the fundamental tradeoff in the data
structure. The developer has to balance between tree size (branching factor
and tree depth) and accuracy of obsolete datapoints detection. A datapoint/leaf
ratio of 1 is most optimal, as leafs would contain a single datapoint, and its hash
value giving an immediate hit in the leaf avoiding search in the leaf. This ratio
is impractical to obtain when having a large dataset, as it implies a large tree.
At last, the algorithm complexity related to the reconciliation cost is observed
as O(n · logn) for Bloomfilter, SHash and Merkle tree assuming a balanced
tree O(nb · logv (

n
b)). Their optimized Merkle tree reconciliation cost decrease

sub-linearly at higher loads, as smaller trees are less efficient than larger trees
due to interval splits.

Additionally, Scuttlebutt Reconciliation is an efficient mechanism to handle
high update loads on limited network bandwidth and CPU cycles [44]. These
characteristics suit Swiftmend. Scuttlebutt Reconciliation limits the transmitted
data of an anti-entropy gossip by the requirement that the data requires a higher
version number than any used before. Unfortunately, Scuttlebutt Reconciliation
is not evaluated in the research conducted by Kruber et al [37]. The efficiency
of the tree data structure served by the compact fingerprint and the algorithm
complexity served by trees show satisfying results in the evaluation of Kruber
et al. and is therefore preferred over Scuttlebutt.

3.5 Regrowth: Merkle Tree Reconciliation
Regrowth and the Merkle tree implementation proposed by Kruber et al [37]
are both using the Merkle tree data structure. However, Regrowth differs by
not having Nye’s trie [45] in the leaf nodes, and Regrowth issues each branch
singularly in a network request, while Kruber et al. issues an entire level into
a request.

24 CHAPTER 3 SWIFTMEND : DES IGN AND IMPLEMENTAT ION

3.5.1 Leaf Data Structure
Regrowth is implemented with a datapoint/leaf ratio of 1 which is the most
optimal [37]. However, the ratio is described as being impractical as the tree
size grows. Achieving the most optimal efficiency and accuracy is highly depen-
dent on the trade-off between tree size and false positives in objects needing
repair. Neglecting techniques to balance the trade-off results in eventual high
communication costs, which is undesired in Swiftmend. Storing a key-range
of multiple key-value objects instead of a single object would reduce the tree
size. However, the large amount of key-value objects in the key-range needs to
be exchanged upon repair. Having a large tree results in exchanging a large
amount of metadata to identify inconsistent objects that needs repair.

The data object in the leaf is used as the hash message to generate the leaf
node hash. The data object in the leaf is a compact JSON-object representing
a subset of an athlete’s datapoint. The JSON-object is compact and can be
mapped to the athlete’s datapoint by using the header identifier as reference.
It is possible to cache the entire athlete datapoint in the leaf. However, large
objects require more hash computation, while compact objects minimize the
expense and size of the leaf bucket. Compact objects take up extra space when
persisted on disk, but avoids time spent extracting necessary information from
the athlete object. It is expected that the trade-off between hash computation
and storage is not worthwhile as the dataset grows. The need for techniques
to reduce the tree size will emerge as the dataset grows.

Listing 3.2: Leaf JSON-object

{
" header " : {

" id " : "985ec37c−573f−ad88−be4f−ba69ec51a2f4 " ,
" a dd i t i ona l _p r ope r t i e s " : {

" sequence_id " : 5
}

}
}

The leaf JSON-object is illustrated in Listing 3.2, contains a static datapoint
identifier extracted from the datapoint header for reference. The sequence
identifier within additional properties is the defining attribute that transitions
the hash value to indicate inconsistency.

3.5 REGROWTH : MERKLE TREE RECONCIL IAT ION 25

3.5.2 Tree Construction
PMReporter and thedsu tree are built independentlywith persisted datapoints
as leaf content. The trees shares an invariant regarding the leaf content order.
Creating a tree on either client or server requires a fixed sorting approach
of the dataset. A unsorted dataset can create inconsistent hashes for trees
with identical data. The concatenation of leaf node hashes is sensitive to the
sequence of string parameters. Distinct sequences equals dissimilar outcomes.
E.g, a concatenated with b, or b concatenated with a.

Since Merkle trees are constructed with tree nodes in the power of two [35], it
is required to handle cases of odd tree nodes. Such scenarios with three data
objects results in three leaf nodes, and thus identified as an odd number of leaf
nodes. Likewise for interior nodes, with the scenario of having six leaf nodes.
This will result in three interior nodes being the parent to the leaf nodes and
thus is required to increase its extent.

One technique to increase the extent is duplicating the last tree node in a
level when having an odd number of nodes. A problematic behavior related
to this technique is identifying missing datapoints present in the remote tree.
Regrowth verify tree node existence by checking the local tree nodes with
the remote tree nodes. In the scenario of remote tree having a new datapoint
present at the leaf node slot where the local tree has a duplicated leaf. The tree
traversal is preordered and traverse from left to right. The local duplicated tree
node being the right node is checked for existence in the remote tree and will
return a hit as the left tree node is checked first. The traversal will not further
pursue the right tree node. This leaves the new datapoint undiscovered, and
the local and remote tree continue being inconsistent unable to identify the tree
node needing repair. This case is also true for duplicated interior nodes that can
result in an entire branch of new datapoints being undiscovered. A solution to
this problem is comparing tree nodes with an attached index number enabling
the tree traversal to not confuse the left node with a right positioned duplicate.
Another solution is cross-checking the trees mirroring the local to remote check
with a remote to local check creating a bidirectional verification. This solution
would require the mobile application and server application to act as client and
server to exchange information both ways with a defined message structure.
This would require the server to handle states and breaks the statelessness of
the server and would eventually implicate horizontal scaling with more users.
Creating a new server application to handle such states and Merkle trees would
offload the dsu and resolve the conflict preserving the statelessness in the
dsu.

Rather than implementing such solutions, Regrowth use null pointers to ex-
tend odd levels. Using null pointers require careful implementation to manage

26 CHAPTER 3 SWIFTMEND : DES IGN AND IMPLEMENTAT ION

the null pointers in a correct manner without causing fatal errors. The addi-
tional deliberations introduced are considered worthwhile, as the null pointers
consume less space compared to duplicated nodes and avoids false positives
experienced in the duplication technique.

3.5.3 Tree Verification
The tree is preorder traversed, recursively, in PM Reporter and the dsu. The
traversal algorithm is illustrated in Listing 3.3. The initial hash verification
of a reconciliation phase targets the tree root. The algorithm continues from
the root and traverse down the left and right branches recursively in that
sequence.

PM Reporter sends the root hash to the dsu for comparison. The root level is
the only level that is executed sequentially, as the other levels check left and
right tree node asynchronous. In the case of the tree node being an interior,
two recursive call is executed concurrently with the left and right tree node
as argument. A tree node hit in the remote tree verifies consistency of all
underlying tree nodes, if there are any, in the local tree. PM Reporter registers
hits when receiving the standard response for successful http request 200
OK, from the dsu. Oppositely, hash value miss results with status code, 404
Not Found. A hit results in no further investigation for the branch. However, a
recorded miss will traverse the branch further until the leafs are reached.

Listing 3.3: Traversal algorithm

node = root

t r a v e r s e (node)
i f h i t :

break
i f miss :

i f node == l e a f :
break

t r a v e r s e (node . l e f t)
t r a v e r s e (node . r i g h t)

The reconciliation repairs two types of inconsistencies: missing datapoints and
outdates datapoints. The reconciliation process identify the two types in a
singular phase. However, the repairs are split into two sections and illustra-
tions describing each repair identification and handling separately. Figure 3.2
presents the process of finding missing datapoints, and Figure 3.3 illustrates
outdated datapoints.

3.5 REGROWTH : MERKLE TREE RECONCIL IAT ION 27

false

reconcile

lookupmissis leaf?

true

exists remote?

false

check missq

hit

remove from
missq

falseright is empty?

true

add missq

add to outq is last?
post all dp in

outq to remote
db

remove from
outq

check miss q hit
get missing
leafs from
remote db

add to local
dataset

hit

Figure 3.2: Repair missing datapoints

Repair: Missing

The reconciliation process use the two sets MISSQ and OUTQ for identifying
missing tree nodes. A missing tree node can eventually entail missing leaf
nodes, thus imply missing datapoints. A missing node is either filtered to the
MISSQ or OUTQ depending on being identified as absent in the local or remote
dataset. The collections differ in content: MISSQ contains node hashes and
OUTQ contains datapoints.

OUTQ represents the missing datapoints identified as not present in the dsu.
The reconciliation process identify these when the leaf is reached. Leaf nodes
contain data objects representing datapoints through an identifier reference.
The datapoint is fetched from memory using the identifier, and then used in
a GET request addressed the dsu. A status code of 404 with message Not
Found indicates absent and inserts the missing datapoint to the OUTQ. The
process continue inserting missing datapoints until the last leaf is checked. All
collected datapoints are sent with a POST to the dsu, and removes successfully
delivered datapoints from the OUTQ set.

MISSQ represents missing datapoints not present in PM Reporter. Identification

28 CHAPTER 3 SWIFTMEND : DES IGN AND IMPLEMENTAT ION

reconcile

lookupmissis leaf?

false

true

check seq id

update server update local

exists remote?

true

local dp greatestserver dp greatest

Figure 3.3: Repair outdated datapoints

of these datapoints are obtained by validating emptiness of a local null pointer
node. When interior nodes are found inconsistent between trees, it indicates
that left and/or right subnodes will predictably lead towards more inconsis-
tencies in deeper branches. Missing datapoints are identified by utilizing this
property. The reconciliation process peeks on the next scheduled subnodes
and identifies if the right subnode is empty, and thus is a null pointer. Nodes
being null pointers are not further pursued, as they contain nothing. However,
left subnode will be scheduled for consistency check, and is therefore inserted
with the hash value to the MISSQ. A miss in the left subnode upon the next
cycle indicates inconsistencies further down the left branch. The left subnode
hash value is therefore removed from the MISSQ as further investigation is
needed. However, when a left subnode is defined consistent after a check, it
indicates that the unchecked local null pointer contains undiscovered branches
in the remote tree. PM Reporter will fetch the most recent local datapoint and
requests all later datapoints from the dsu.

Repair: Outdated

The reconciliation process eventually reaches the leaf nodes. These nodes
contains data objects referring to phenotypic datapoints. The local and remote
datapoints are compared with the sequence identifier present in each datapoint.
There are two scenarios dependent on the comparison, either the local dataset

3.5 REGROWTH : MERKLE TREE RECONCIL IAT ION 29

contains the most recent datapoint or the remote storage. A lower sequence
identifier found in the local dataset compared to a greater identifier in the
remote dataset means the local datapoint has to request the most recent
version of the datapoint from the remote dataset and replace it with the
outdated version. Contrary, PM Reporter has to update the remote datapoint
with the fresh datapoint present in the local dataset.

4
Client-side Integration
This chapter describes the client-side integration in PM Reporter to support
Swiftmend. PM Reporter is a hybrid application written in TypeScript using
Ionic and Angular framework. PM Reporter consists of several services and
libraries. We will explain the modified PM Reporter services, libraries and
their implemented designs for supporting Swiftmend. Section 4.1 describes the
service responsible for data manging, including synchronization orchestrating
and data persistence. Lastly, Section 4.2 explains MerkleTS a TypeScript library
providing Merkle tree data structure used by the data-service to support Merkle
tree.

4.1 Data-service
Angular components managing presentation of data are dissociated with ser-
vices managing, fetching, or saving data. Services are included as providers1
in the application’s dependency injection system and creates a shared instance
injected it into all requesting components. The data-service is implemented as
a provider and is responsible for persisting local state, orchestrating synchro-
nization of client and server state and provide data for components.

JavaScript features immutability in primitive types. Angular use immutable ob-

1. https://angular.io/guide/providers

31

32 CHAPTER 4 CL IENT-S IDE INTEGRAT ION

jects in their application state to avoid performance overhead used on tracking
changes in mutable objects. Pure usage of immutable objects are inefficient
when changing a single property of a data object, as a single change would re-
quire an entire application state update. To benefit from both immutability and
mutability, components has local state with restricted mutability. Updating the
state is restricted to the cases of input change or event emits. Components has
lifecycle hooks2 that notify changes upon subscription if needed. Having local
state avoids the need of incorporating the desired mutability into application
state that breaks component’s encapsulation.

4.1.1 Storage
The data-service persists four types of data; the Merkle tree data structure,
athletes phenotypic data, synchronization state, and time capsuled objects to
be deleted. The persistence of the Merkle tree data structure, synchronization
state and time capsuled objects are elaborated on in the following sections
(Section 4.2, Subsection 4.1.3, and Subsection 4.1.4). The data-service is respon-
sible for loading the persisted data from storage upon service instantiation and
persist changes in each data category upon change.

Data-service uses the Storage module3 to store key/value pairs and JSON
objects. It has the flexibility of utilizing a variety of storage engines. An estab-
lished prioritization picks the best suited storage engine available depending on
the platform. The module favors SQLite for native applications due to its wide
use, extensive testing and stability. Less favored databases are localstorage
and IndexedDB. These encounter data expunge from the OS in low disk-space
situations.

4.1.2 Resource (REST) Client
Data-service use the ngx-resource⁴ library as a rest client interface. The library
support customizable resource CRUD for accessing desired api. The resource is
accessible for the data-service through the application’s dependency injection
system. The resource provides resource actions that the data-service uses to
communicate with the server api presented in the dsu.

The resource actions are executed with asynchronous callbacks. The asyn-
chronous operation’s eventual completion or failure is represented in a Promise

2. https://angular.io/guide/lifecycle-hooks
3. https://ionicframework.com/docs/storage/
4. https://github.com/troyanskiy/ngx-resource-core

4.1 DATA-SERV ICE 33

object,⁵ handling a single event. The Promise object is wrapped as an Observ-
able⁶ using the fromPromise method exposed in the RxJS Observable object.
Observable is preferred since it provides extended features of a Promise. An
Observable allows multiple events and represents a push based collection,
supporting an array of asynchronous events. An observer subscribes to the Ob-
servable and operates upon the emission and notification from the Observable.
The event handling pattern provided by the Observable relates to the model of
asynchronous programming and design, reactor pattern [46]. The Observable
handles the concurrent input by demultiplexing the requests and then dispatch
them synchronously to appropriate request handlers. The error or complete
notification is captured by the Subscribe operator through channels.

4.1.3 Synchronization Orchestrator
The mobile application manage the reconciliation process as an orchestrator
and therefore persists data modification state to avoid unnecessary reconcilia-
tion and tree constructions. The state is initially set to unchanged. Any data
operation transitions the state to changed and immediately writes the state to
disk for persistence. Figure 4.1 shows that the orchestrator starts reading the
data modification state to figure out if the dataset has changed from previous
reconciliation phase. In the case of data change, the tree is rebuilt with current
datapoints fetched from local storage. After successfully constructing the local
tree, the change state is set back to unchanged and persisted to disk. The phase
is invoked periodically in the mobile device rather than continuously, in order
to conserve battery drainage caused by computational activity [32].

Ionic Native provides a TypeScript wrapper for cordova plugins allowing usage
of native device capabilities. The data-service uses two plugins: Battery Status⁷
and Network⁸ to restrict reconciliation processes to convenient moments. This
resonates with the proposal of appropriate techniques to reduce power con-
sumption [47]. Additionally, a research question was raised concerning the risk
to program and/or data integrity during loss of battery power in the events of a
transaction or system update [48]. The limited amount of energy might be lost
rapidly during halted transactions or processes. The data-service watch both
network and battery parameters for repercussion. The data-service contain two
states, they indicate low battery status, and network connectivity. The events
of both states are captured in observable subscriptions. The observables push
the state upon the event, enabling the state to transition. The synchronization

5. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
6. http://reactivex.io/documentation/observable.html
7. https://ionicframework.com/docs/native/battery-status/
8. https://ionicframework.com/docs/native/network/

34 CHAPTER 4 CL IENT-S IDE INTEGRAT ION

changed

state

build
local tree true

reconcile

false

Figure 4.1: Synchronization Orchestrator: local tree construction before consistency
check

process is always initiated when the event of network connection is triggered.
Additionally, periodic intervals invoke the synchronization process with a ten
minutes interval as required in Section 1.2. The intervals are configurable to
user behavior and activity. Data objects are all products of submitted reports
that describe a training session or morning routine. The chores are part of a
schedule, and is therefore a predictable user behavior depending on the chore
follow-through. The process will immediately cancel if the conditions of low
battery or network disconnection are present. The process comply to a time
span in order to avoid frequent execution. The difference between last synchro-
nization and current time indicate that the device has exceeded or remained
within the time span. Last synchronization time stamp is persisted in local
storage after each synchronization cycle. Surpassing the time span implies the
need of resynchronization to maintain consistency.

Inappropriate management of reconciliation from the orchestrator will result in
fatal server-side errors. Invoking tree rebuilding during reconciliation on behalf
of a user while simultaneously request the server to load the tree from disk
results in problematic behavior. The error was experienced in the reconciliation
phase when the traversal arrives in the inconsistent leaf nodes issued for
repair. Repairing any leaf node originally resulted in frequent requests for
tree rebuild. Other tree nodes still searching for inconsistencies would then
issue an interfering tree load. The synchronization method barrier [49] solves
this by introducing a wait group of processes that stop further proceedings
until all processes has reached the barrier. Each repair process are members
of the wait group. A counter is incremented when starting a leaf repair to
signalize that a member of the wait group has started. Completion of leaf

4.1 DATA-SERV ICE 35

repairs is signalized by decrementing the counter. Each repair process inspects
the counter upon completion to see if all repair processes has reached the
barrier, and if the inspecting process is the last repair process. Fulfilling those
requirements enable proceeding of reconciliation by rebuilding the repaired
tree.

Barriers are usually implemented with locks since using the synchronization
method with multi-threaded processes accessing the same global variable
require locks to avoid race conditions and incorrect updates of the global vari-
able. JavaScript has a concurrency model⁹ based on event loops using message
queues at runtime for processing. Messages are processed entirely before start-
ing another message process. This differs from programming languages as C
that can run code in multiple threads and experience thread context switch,
meaning that the thread can be halted at any moment to run another thread.
The feature of processing messages completely avoids multiple-threads fighting
over the same resource. The barrier implementation is therefore lockless, as
there are no need for them due to JavaScript primitives.

4.1.4 Garbage Collector: Freezer
Delete operations are required to completely attain user control. Data objects
take in a revocation certificate upon deletion. The clause is appended to the
additional properties in the header set. The sequence identifier is incremented
to indicate datamodification in the data-service. The next reconciliation process
propagates the order to the dsu and is later identified by the server-side
garbage collector. The combination of periodic reconciliation propagating data
and garbage collector conducting the deletes, enables distributed deletes with
relaxed consistency.

The Freezer is the alias for garbage collector in PM Reporter. The Freezer
has a map of key-value pairs containing information related to deletion of a
data object. The key is assigned to the header identifier, and functions as a
reference to the data objects contained in the dataset. The value includes the
day of the week the pertaining data object receives the delete certificate. The
day is a number between 0-6, where 0 represents Sunday, and 6 Saturday.
The Freezer functions as a time capsule to delay the delete process until the
garbage collector is executed on server-side. The approach is naive and further
discussion on that subject is in subsubsection 7.2.4.

The Freezer periodically traverse the map and selects data objects with dis-
similar day to current day. Dissimilar days indicate the time capsuled object

9. https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

36 CHAPTER 4 CL IENT-S IDE INTEGRAT ION

has exceeded the time span bound to the capsule, which is 24 hours. Client
and server synchronization during the time span of marking the data objects
with delete and initiating the cleaning process signify the data object with
certificate is synchronized to server and deleted by the garbage collector. It is
therefore safe to remove the data objects from the freezer and the dataset. The
object is first removed from the memory stored dataset, then the entire new
dataset are persisted to disk in an immutable manner.

4.2 MerkleTS: A TypeScript Based Library
The Merkle tree library was created to feature the data-service with data
structure representing a Merkle tree. The library is written in TypeScript,
which is a superset of JavaScript giving the option of static typing. TypeScript
supports features such as classes from the object-oriented paradigm. Class-
based programming includes the ability to extend classes using the object-
oriented pattern of inheritance.

The library consists of two primary classes; MerkleTree and MerkleNode. Tree
nodes are accessed by traversing from the root property of the MerkleTree
class. This property is a type of MerkleNode and has further references to
deeper tree nodes.

Avoiding recalculation of hash values requires storage of currently existing
hash values. The MerkleTree class has a property that ensembles these hash
values into a flat list. This flat list represents a serialized format that is ac-
ceptable for storage. The serialization process in the library is intervened in
between hash generation. Contrary, to the dsu that processes the serialization
in an independent process. The combination used avoids unnecessary tree
traversal.

The data-service access the flat list for storage purposes through accessors in
MerkleTree. The flat list property requires accessors due to it being a private
member of the object. Private modifiers entail that the member cannot be
accessed outside of the class. However, the data-service needs member access
to use the library. Getters and setters are supported accessors enabling fine-
grained control of members in the object. The accessors intercepts the access
through customizable code, which enables the possibility of adding restrictions
or other semantics during a member access. The control is an exclusive feature
giving an advantage compared to public modifiers that are accessible outside
the class without accessors. The MerkleTree class has no set accessors, and is
therefore automatically inferred to be readonly.

4.2 MERKLETS : A TYPESCR IPT BASED L IBRARY 37

4.2.1 Cryptographic Hash Function
The cryptographic function used in MerkleTS is SHA-256 from CryptoJS, as it is
the most supported. The hash function has the smallest footprint of the SHA-2
family while still being collision resistance. The small footprint resonates with
the limited resources presented in a mobile device. The SHA-2 function from
CryptoJS requires a string type for the message being the hash function input.
The JSON-object is therefore converted to a string by using the Javascript JSON
method stringify before computing the hash value.

The MerkleNode contains property representing the hash value generated from
concatenating child nodes or computing the data object if leaf. The hash values
are represented and operated in the library as hexadecimal strings. However,
operating with word arrays are optimal, avoiding time and computation spent
on conversion. Additionally, word arrays would take up less space when per-
sisted on device. Word array is an exclusive datatype defined and used in
CryptoJS. It represents an array of datatype numbers.

Concatenating two hash values by simply adding the two hex representations
of the hash values results in incorrect hash value when hashing the sum. The
datatype for the hex representation is a string, which has no fixed size. To
achieve correct hash concatenation, the arithmetic operation of addition has to
use word arrays as addends to preserve the fixed size. Alternatively, convert the
concatenated hex string to a word array transposing into the fixed size.

Selecting efficient hash function is relative to each computing entity. SHA256
is faster on 32-bit hardware, since internal state of chunks are 32-bit, while
SHA512 is faster on 64-bit due to chunks being 64-bit. PMSys consists of
web-, mobile-, and server applications. Each application can hold a replica
and is required to use identical hash function to construct alike trees. The
mobile device has generally greater limitations than the other computing
entities due to size. The computing power of the least greatest device needs
consideration when creatingmirrored trees. The ARM architecture included the
64-bit processors for smartphones and tablets in 20121⁰ and personal computers
were introduced to 64-bit CPUs in 2003 with x86-64 processors. The trend of
64-bit CPUs increase the viability of changing hash function from SHA256
to SHA512. However, in practice SHA256 and SHA512 has the same secure
features since there are currently no computers recorded to produce a collision.
Additionally, SHA256 provides a smaller hash, leading to less space occupied
for storage and transmission, resulting in less to compute. The hash value can
be trimmed after generation to avoid these extraneous costs and comply with

10. https://www.arm.com/about/newsroom/arm-launches-cortex-a50-series-the-worlds-
most-energy-efficient-64-bit-processors.php

38 CHAPTER 4 CL IENT-S IDE INTEGRAT ION

a desired size. The theoretically proof of collision in SHA shows that SHA512 is
more collision resistance than SHA256 [50].

Additionally, research has shown new hash functions as presented in BLAKE2
that experience improved performance to SHA-2 hash functions [51]. BLAKE2
hash functions, BLAKE-256 and BLAKE-512, are evaluated as being faster than
SHA-256 and SHA-512. Such functions could potential improve efficiency of
reconciliation if the function is supported.

5
Server-side Integration
This chapter describes the server-side integration in the tsu to support Swift-
mend. The tsu is a server application written in Go built with the http web
framework Gin1. Go has feasible network support through the language and
libraries. E.g, the encoding/json library easing the serializing and deserializing
of JSON objects. The dsu is extended with new endpoints to support Merkle
tree, as described in Section 5.1. The Merkle tree structure is supported with
a Go library2 presenting essential tree functionalities to construct the hash
tree. The library is modified to support nil pointers instead of duplicated tree
nodes. Section 5.2 describe the process of persisting trees in the server applica-
tion. Lastly, Section 5.3 explains the garbage collector implemented for relaxed
deletes.

5.1 Application Programming Interface
The api extensions provide routes for the synchronization orchestrator to main-
tain the server persisted tree. The server application received two extending
endpoints to support new functionality:

/merkle build or rebuild tree.

1. https://gin-gonic.github.io/gin/
2. https://github.com/cbergoon/merkletree

39

40 CHAPTER 5 SERVER-S IDE INTEGRAT ION

/merkle:id tree node lookup.

The tsu is consolidated with the dsu, enabling the tsu to directly access the
dsu collection containing user data.

The route handler that process tree builds starts loading the content, and later
supplies the content to the leaf nodes. All documents belonging to the data
owner are fetched from the dsu collection, similarly to previously described.
The tree is constructed by using the provided content. The data structure
is later serialized to an acceptable storing format and flushed to disk in an
independent mongoDB collection.

The last route handler traverse the trees to verify a tree node existence. The
handler starts loading the tree content from the dsu and the serialized tree
from the tree collection. New tree is created in the case of no persisted tree
found, and will further serialize and flush the new tree. Deserialization is
executedwhen a persisted tree exists and reconstructs the persisted tree. This is
done by combining the fetched content and serialized tree. A hash tree structure
is returned when successfully completed, and is ready for traversal. The route
receives corresponding hash value to the tree node through a parameter. The
hash value is received from the client as a hexadecimal representation. The
first step is to decode the hexadecimal string to byte arrays to interoperate
with the data structure used. The tree structure is traversed recursively and
compares the two byte arrays representing the hash value from both client and
server tree.

5.2 Tree Storage
Trees are expensive to construct and impractical to store in memory since each
athlete has their own tree structure that grows with the amount of data stored.
Persisting the data structures on disk offloads the memory and computation
power generating the hash values for each tree node. The server restores trees
instead of rebuilding them in each session. A tree is flushed to disk after each
completion of a tree build or rebuild. A build only occurs at the initial state of
a tree, while the rebuild process occurs upon leaf add or removal to update the
tree to current state.

The data structures are serialized to the storable BSON/JSON-format3 expected
by the mongoDB. The serialization is executed in an independent process. The
tree is traversed extracting the hash value and parent hash value contained in

3. https://www.mongodb.com/json-and-bson

5.3 GARBAGE COLLECTOR 41

each tree node. JSON documents are represented in binary-encoded format
BSON when stored in mongoDB. BSON is efficient for encoding and decoding
JSON documents. The computed hash values are outputted andmanaged as raw
bytes in the server application to complement this. Hexadecimal represented
hash values are presentable and human readable. However, storing raw bytes
requires less space and averts the overhead of hexadecimal encoding. The SHA-
256 value contains 32 significant bytes, impotent of compression. It requires
two hexadecimal digits to store a byte. A hexadecimal representation of the
256 bit long hash (sha256) is 64 digits long, since each digit codes for 4 bits.
The string representation would need 256/4 = 64 characters, each character
being 4 bit.

The deserialization process extracts the data structure from the savedBSON/JSON-
object and uses that to reconstruct the tree. Tree nodes are reallocated and
restored to current state. Restoring node state includes assigning correct hash
value, and link to appropriate neighbors. Saving hash values enable bypass of
hash computation during tree reconstruction.

5.3 Garbage Collector
The server-side garbage collector is implemented as a time scheduled task, cron
job. The task scheduler, cron, is supported with a go implemented package⁴
with cron spec parser and job runner. The server creates a cron job upon launch
scheduled to midnight to avoid user activity. The job is invoked in independent
goroutines asynchronously, which avoids code stalling and preserves server
activity.

The job is provided a database connection upon execution. The job removes all
documents found in the user data collection matching the selector document,
by using the object key representing the delete certificate as selector.

4. github.com/robfig/cron

6
Experiments
This chapter investigates the thesis in Section 1.2: if a Merkle tree data structure
can efficiently reduce the I/O over the network. Section 6.2 evaluates the two
reconciliation algorithms; Rejuvenation and Regrowth. Observations show
an increase of bytes sent and received when reconciling consistent replicas
using Rejuvenation between different loads. Contrary, Regrowth maintains the
same amount of bytes sent and received on different loads, due to compact
fingerprints indicating replicas consistency.

6.1 Setup
The experiment is conductedwith the hybrid application,PMReporter,deployed
on tablet device Lenovo TB3-710F running Lollipop 5.0.1. The device is equipped
with four cores running at 1.3 GHz, memory storage of 8 GB and RAM of 1 GB.
The tablet is connected to a wireless network with connection speed 65 Mbps
and 2.4 GHz band. Measurements are recorded using Android Monitor in
Android Studio 2.3.3, and the standalone tool Android Device monitor.

The tsu is running in an Intel server blade S1200SP with Ubuntu 16.04. The
machinery is equipped with a Intel Xeon E3-1270 v6 processors running at
3.8 GHz and 64 GB of DDR4 RAM running at 2133 MHz.

Conducting accurate experiments require sequential code execution to preserve

43

44 CHAPTER 6 EXPER IMENTS

(a)

(b)

Figure 6.1: (a) Rejuvenation: Received packets (RX) and transmitted packets (TX)
on workload=100. (b) Regrowth: Received packets (RX) and transmitted
packets (TX) on workload=100.

intentional orders. E.g, measuring process efficiency on a fixed workload de-
mands the proper setup before executing the reconciliation process. JavaScript
features asynchronous code execution that has no guarantee that the setup
of datasets completes before starting off the process. The problem is expe-
rienced in the non-blocking operations using Observables. The experiments
are therefore forced to simulate sequential code execution by modifying an
asynchronous function to behave synchronous. This is achieved by having an
await expression included in the asynchronous function. The code execution
is halted and waits for the Promise’s resolution.

The number of replicas examined in this chapter are two,with one present in PM
Reporter and one in the dsu. The datasets are created in each experimental
iteration before initiating the experiment, and flushed after obtaining the
observation.

6.2 I/O TRAFFIC 45

(a)

(b)

Figure 6.2: (a) Rejuvenation: Received packets (RX) and transmitted packets (TX)
on workload=200. (b) Regrowth: Received packets (RX) and transmitted
packets (TX) on workload=200.

6.2 I/O Traffic
This experiment records the network traffic ofRejuvenation andRegrowthwhen
performing data reconciliation on consistent replicas. The experiment measure
transmitted (TX) and received network packets (RX) over time. The experiment
is executed upon different workloads, in regards to dataset size. Figure 6.1a
and 6.1b reconciliation is done on a consistent dataset of 100 elements, while
Figure 6.2a and 6.2b runs with a dataset of 200 elements.

Rejuvenation spikes at approximately 190 KB/s in Figure 6.1a regarding packets
received (RX). Rejuvenation receives the entire dataset replicated upon each
reconciliation phase. However, the footprint of transmitted packages (TX) are
merely visible due to it being single requests asking for the entire dataset. The
requests mostly consist of metadata.

Regrowth has a small footprint in received packets consisting of approximately
800 B/s. Instead of receiving the entire dataset replicated at the server, Re-
growth receives packets with metadata and the attached hash root for veri-
fication purposes. The hash root is represented as string with 64 characters,
being 64 B long. However, the transmitted packages in Regrowth are larger

46 CHAPTER 6 EXPER IMENTS

than the packages in Rejuvenation due to it consisting of the hash root being
transmitted to the server for verification.

The small footprint of Regrowth remains the same when increasing the work-
load of the dataset to 100 elements, shown in Figure 6.2b. The singular variety
captured when increasing the workload was the receiving packets in Rejuvena-
tion, showing an increase to approximately 380 KB/s received in Figure 6.2a. As
the dataset grows, requesting the entire dataset increases the data usage.

6.3 Reconciliation Time
The experiment measures the reconciliation time when increasing the dataset
size. The datasets are reconciled with a single datapoint being outdated in
PM Reporter’s dataset. PM Reporter invokes a single datapoint update on each
workload measured. Each measurement of a dataset size is calculated from
thirty reconciliation executions due to statistical significance.

Figure 6.3 shows that Regrowth do notmeet Requirement 2 in Section 1.2,which
describes the requirement of synchronizing data within a second. Regrowth
exceeds the requirement on 116 data elements, and continue to increase as
the dataset grows. Regrowth issue each local traversed branch to the dsu for
verification. Each branch is issuedwith a request, and thus results in an increase
of requests issued to the dsu as the tree and dataset grows. Each request’s
roundtrip time adds to the total latency, and thus increase the reconciliation
time. Additionally, as the tree grows in height the more requests are required to
search the tree, and thus results in roundtrip delays increasing the difference
in the higher limit and lower limit of the confidence interval.

Rejuvenation complies with the one second synchronization requirement as
shown in Figure 6.3. Rejuvenation computes the repair locallywith both replicas
in memory. The replica in the dsu is issued with one requests, and thus do not
have roundtrip latency. However, keeping replicas for reconciliation in memory
will cause high memory usage as data grows.

6.3 RECONCIL IAT ION T IME 47

50 100 150 200 250 300 350 400
Number of data elements

0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

m
ill

is
e
co

n
d
s)

Reconciliation time of 1 outdated datapoint

Rejuv.
Regrowth

Figure 6.3: Reconciliation time of Rejuvenation and Regrowth.

7
Concluding Remarks
This chapter summarizes and concludes Swiftmend and the evaluation of
the proposed reconciliation algorithms. Lastly, we describe potential areas
for exploration in the future, as optimizations in both client and server for
increased efficiency.

7.1 Summary
This thesis presents Swiftmend, a data synchronization system foromh applica-
tions with restricted connectivity. Swiftmend is based on PMSys 3.0 architecture,
and extends the legacy synchronization protocol with two-way synchronization
and enable complete support of CRUD operations. We evaluated Swiftmend
on the statement made in Section 1.2 and conclude that Swiftmend partially
accomplish the statement and requirements. As Regrowth breach Requirement
2 given in Section 1.2.

Swiftmend includes two data reconciliation algorithms; Rejuvenation and
Regrowth. Both features repair of missing and outdated data with idempotent
difference of replicas, enabling two-way synchronization. Rejuvenation is based
on the legacy synchronization protocol. Regrowth differs as it use Merkle trees
to reconcile replicas. The evaluation of Rejuvenation show a large data usage
when reconciling consistent replicas as the network package grows in size.
Rejuvenation execute the idempotent difference of datasets in PM Reporter,

49

50 CHAPTER 7 CONCLUDING REMARKS

and therefore needs to receive all desired replicas. Receiving entire datasets
leads to the high data usage. Contrary, Regrowth distinctly show low data
usage using compact fingerprints of small size to verify consistency, and thus
accomplish the thesis statement.

To achieve Requirement 1 deduced from the thesis statement, Swiftmend
implemented intervals of ten minutes in the Synchronization Orchestrator to
invoke periodical reconciliation.

The evaluation of Rejuvenation and Regrowth show data synchronization per-
formed in Rejuvenation was within a second, and therefore achieves Require-
ment 2. Regrowth experience request roundtrip that cause latency after dataset
size of 116, and thus exceeds the one second requirement of synchroniza-
tion.

Swiftmend extends the legacy data structure in PMSys to support complete
CRUD operations. Replica updates are propogated with reconciliation, and thus
enable the CRUD support. Lastly, Swiftmend implements a garbage collector
in PM Reporter and the tsu to enable deletions. These features summed up
achieve the final, Requirement 3.

7.2 Future Work
The data sizes experimented on in this thesis are small, Subsection 7.2.1 dis-
cusses the applicability of Swiftmend towards big data.

While Swiftmend reduced data usage with Regrowth, there relies potential in
the Merkle tree for improving the efficiency of the current design and imple-
mentation of Regrowth. Such improvements are presented in Subsection 7.2.2
and Subsection 7.2.3.

Subsection 7.2.4 discusses alternative solutions to garbage collection in the
tsu.

7.2.1 Big Data
A phenotypic datapoint of type SRPE has a size of 446 B,while the type wellness
has 494 B. The current size of data do not stress the system performance or
drain expensive amount of paid data. Magnus et al. [1] presents the breakdown
of storage transactions per month, and data of type SRPE and wellness produce
less than 1 KB per month. However, when adding additional data of interest

7.2 FUTURE WORK 51

the total transaction cost per month is 2.6 GB. This includes video notations,
nutritions and physical parameters. Additional data of interest is sensor data
measured by attacheddevices on an athletes body [3]. The ensemble of this data
has the characteristics of big data [52] as the volume includes all these sources,
the variety differs as data has different formats, and the velocity is related to
both the video notations and sensor data as they are in real-time.

Swiftmend want to optimize for these characteristics by providing efficient rec-
onciliation with Regrowth using Merkle trees. However, the choice of database
has to be reconsidered in such scenario as crash test show corruptions and incon-
sistencies for application with objects as video data [40]. As more unstructured
data is required for synchronization more considerations are necessary regard-
ing the database medium responsible for consistency during crashes.

7.2.2 Merkle Tree
The Merkle Tree Traversal Problem

A fundamental problem related to Merkle tree is the construction time [35].
There is vast research conducted in regards to this [53].

Szydlo [54] improved the traversal by improving the algorithm to reduce
memory requirements by reducing active tree hash instances during tree con-
struction.

Fractal Merkle tree traversal splits the tree into smaller subtrees and saves
computation by construction these subtrees instead of single nodes [55].

Balance Trade-off

Regrowth has a datapoint/leaf ratio of 1. The ratio is described as being
impractical as the tree size grows [37]. Achieving the most optimal efficiency
and accuracy is highly dependent on the trade-off between tree size and
false positives in objects needing repair. A poor balance between the trade-off
results in high communication costs. Storing a key-range of multiple key-value
objects instead of a single object would reduce the tree size. However, the large
amount of key-value objects in the key-range needs to be exchanged upon
repair. Having a large tree results in exchanging lots of metadata to identify
inconsistent objects needing repair. Kruber et al. implements Nye’s trie [45] in
their leaf nodes instead of key-range of objects. Nye’s trie is a modified burst
trie.

52 CHAPTER 7 CONCLUDING REMARKS

7.2.3 PM Reporter
Synchronization Orchestrator

PM Reporter transfer compact network packets upon reconciliation. Each
branch verification sends a single request, which results in decreased per-
formance due to roundtrips. It is desired to reduce the latency introduced
by roundstrips, while still maintaining compact packets to preserve the small
packet size.

One solution is Jon’s reconciliation algorithm that reduce the amount of requests
by transferring entire trees in a single request. PM Reporter is forced to solve
the tree difference locally. Though, this approach is non-considerate towards
packet size as the trees grow and therefore the network packet containing the
tree will grow. Kruber et al., solves improved upon this by bundling all hash
values within an inconsistent tree level to each request. The network packets
achieve compactness compared to Jon’s reconciliation, and avoids unnecessary
small packets used in Swiftmend.

MerkleTS

Similarly to Section 5.2, by managing hash values in raw bytes instead of hex-
adecimal strings will require less space and avert the overhead of hexadecimal
encoding.

The support grows for other hash algorithms as BLAKE, it would be worth exper-
imenting on replacing it with SHA to discover potential optimizations.

Additionally, implementing dynamic hash function support steered by detection
of device information related to hardware being either 64-bit or 32-bit. This
would enable the hardware to run the most optimal algorithm. Though, this
would require consensus between other users when sharing replicas, as they
need to determine which algorithm to use.

7.2.4 TSU
Each request regarding tree functionality in the dsu spends unnecessary time
deserializing, serializing, and constructing. Each request has to load the tree
from disk upon handling. This is costly compared to retrieving a tree from
memory. Sessions will increase the efficiency by keeping the tree in memory
for each user session.

7.2 FUTURE WORK 53

Another caching technique for optimization is introducing hot trees. Hot trees
are cached trees being the most frequently accessed. When sharing trees
between coach and athlete, both users will access the same tree. Such scenarios
will create an increase in frequency on the pertaining tree.

Garbage Collector

The garbage collector implementation is naive as it fails to address loss of causal
information [41]. An example is the assumption that client replicas has syn-
chronized before initiating the delete process. Delayed messages and synchro-
nization with outdated clients will cause deleted objects to reemerge.

A simple solution is implementing a logging service in the server that records
synchronization of client replicas. The logger can identify synchronized clients
and invoke garbage collection upon consensus to safely delete replicas. The
objects are forced to carry the tombstone to preserve causality. The additional
metadata results in a linear growth in space consumption per tombstone [56].
This will lead to a vast amount of waste over time, which is rather space
inefficient.

Another solution is having hybrid consistency. All updates except deletes in
Swiftmend are propogated with weak consistency, while the deletes are period-
ically enforced with strict consistency. A two phase or three phase commit upon
consensus would enforce deletion with strict consistency [57]. Locks featured
in these approaches imply code stalling. To behave transparently for users, the
garbage collector requires a schedule that averts user activity. Such as running
at midnight or other inactive periods.

Bibliography
[1] M. Stenhaug, H. Johansen, and D. Johansen, “Transforming healthcare

through life-long personal digital footprints,” in the IEEE Conference on
Connected Health: Applications, Systems and Engineering Technologies: The
1st International Workshop on Cloud Connected Health, no. CHASE ’16,
IEEE, June 2016.

[2] H. Johansen, C. Gurrin, and D. Johansen, “Towards consent-based lifel-
ogging in sport analytic,” in MMM 2015, Part II, no. 8936, pp. 335–344,
Springer International Publishing, Jan. 2015.

[3] H. D. Johansen, W. Zhang, J. Hurley, and D. Johansen, “Management of
body-sensor data in sports analytic with operative consent,” in the 2014
IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), IEEE, Apr. 2014.

[4] H. Tangmunarunkit, C.-K. Hsieh, B. Longstaff, S. Nolen, J. Jenkins,
C. Ketcham, J. Selsky, F. Alquaddoomi, D. George, J. Kang, et al., “Ohmage:
A general and extensible end-to-end participatory sensing platform,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 6, no. 3,
p. 38, 2015.

[5] T. T. Hoang, “pmsys: Implementation of a digital player monitoring sys-
tem,” Master’s thesis, 2015.

[6] D. Estrin and I. Sim, “Open mhealth architecture: an engine for health
care innovation,” Science, vol. 330, no. 6005, pp. 759–760, 2010.

[7] J. B. Dennis and E. C. Van Horn, “Programming semantics for multi-
programmed computations,” Communications of the ACM, vol. 9, no. 3,
pp. 143–155, 1966.

[8] F. Schneider, “Untitled textbook on cybersecurity. chapter 9: Credentials-
based authorization,” 2013.

55

[9] J. Petersen, “Benefits of using the n-tiered approach for web applications,”
URL: http://www. adobe. com/devnet/coldfusion/articles/ntier. html, 2001.

[10] P. Bailis and K. Kingsbury, “The network is reliable,” Queue, vol. 12, no. 7,
p. 20, 2014.

[11] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7, 2000.

[12] C. Hale, “You can’t sacrifice partition tolerance,” codahale. com, 2010.

[13] D. Pritchett, “Base: An acid alternative,” Queue, vol. 6, no. 3, pp. 48–55,
2008.

[14] D. Perkins, N. Agrawal, A. Aranya, C. Yu, Y. Go, H. V. Madhyastha, and
C. Ungureanu, “Simba: Tunable end-to-end data consistency for mobile
apps,” in Proceedings of the Tenth European Conference on Computer Sys-
tems, p. 7, ACM, 2015.

[15] J. J. Kistler and M. Satyanarayanan, “Disconnected operation in the coda
file system,” ACM Transactions on Computer Systems (TOCS), vol. 10, no. 1,
pp. 3–25, 1992.

[16] P. Bailis and A. Ghodsi, “Eventual consistency today: Limitations, exten-
sions, and beyond,” Queue, vol. 11, no. 3, p. 20, 2013.

[17] N. T. Bailey et al., The mathematical theory of infectious diseases and its
applications. Charles Griffin & Company Ltd, 5a Crendon Street, High
Wycombe, Bucks HP13 6LE., 1975.

[18] P. T. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié, “Epidemic
information dissemination in distributed systems,” Computer, vol. 37,
no. 5, pp. 60–67, 2004.

[19] A. Demers, D. Greene, C. Hauser,W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry, “Epidemic algorithms for replicated database
maintenance,” in Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing, PODC ’87, (New York, NY, USA), pp. 1–
12, ACM, 1987.

[20] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner,
and P. R. Young, “Computing as a discipline,” Computer, vol. 22, no. 2,
pp. 63–70, 1989.

[21] D. Johansen, R. Van Renesse, and F. B. Schneider, “Operating system sup-

port formobile agents,” inHot Topics in Operating Systems, 1995.(HotOS-V),
Proceedings., Fifth Workshop on, pp. 42–45, IEEE, 1995.

[22] D. Johansen, H. Johansen, and R. van Renesse, “Environment mobility:
moving the desktop around,” in Proceedings of the 2nd workshop on Mid-
dleware for pervasive and ad-hoc computing, pp. 150–154, ACM, 2004.

[23] D. Johansen, R. Van Renesse, and F. B. Schneider, “Waif: Web of asyn-
chronous information filters,” in Future directions in distributed computing,
pp. 81–86, Springer, 2003.

[24] H. D. Johansen and D. Johansen, “Improving object search using hints,
gossip, and supernodes,” in Reliable Distributed Systems, 2002. Proceedings.
21st IEEE Symposium on, pp. 336–340, IEEE, 2002.

[25] R. Pettersen, S. V. Valvag, A. Kvalnes, and D. Johansen, “Jovaku: Globally
distributed caching for cloud database services using dns,” in Mobile
Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE
International Conference on, pp. 127–135, IEEE, 2014.

[26] H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies:
A secure and scalable membership and gossip service,” ACM Transactions
on Computer Systems (TOCS), vol. 33, no. 2, p. 5, 2015.

[27] R. van Renesse, H. Johansen, N. Naigaonkar, and D. Johansen, “Secure
abstraction with code capabilities,” in Parallel, Distributed and Network-
Based Processing (PDP), 2013 21st Euromicro International Conference on,
pp. 542–546, IEEE, 2013.

[28] H. D. Johansen, E. Birrell, R. Van Renesse, F. B. Schneider, M. Stenhaug,
and D. Johansen, “Enforcing privacy policies with meta-code,” in Proceed-
ings of the 6th Asia-Pacific Workshop on Systems, p. 16, ACM, 2015.

[29] H. K. Stensland,V. R. Gaddam,M. Tennøe,E. Helgedagsrud,M. Næss,H. K.
Alstad,A. Mortensen,R. Langseth, S. Ljødal,Ø. Landsverk, et al., “Bagadus:
An integrated real-time system for soccer analytics,” ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM),
vol. 10, no. 1s, p. 14, 2014.

[30] D. Johansen,M. Stenhaug,R. B. Hansen,A. Christensen,andP.-M. Høgmo,
“Muithu: Smaller footprint, potentially larger imprint,” in Digital Infor-
mation Management (ICDIM), 2012 Seventh International Conference on,
pp. 205–214, IEEE, 2012.

[31] D. Hardt, “The oauth 2.0 authorization framework,” 2012.

[32] G. H. Forman and J. Zahorjan, “The challenges of mobile computing,”
Computer, vol. 27, no. 4, pp. 38–47, 1994.

[33] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, G. R.
Goodson, and B. Schroeder, “An analysis of data corruption in the storage
stack,” ACM Transactions on Storage (TOS), vol. 4, no. 3, p. 8, 2008.

[34] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Conference on the Theory and Application of Cryptographic
Techniques, pp. 369–378, Springer, 1987.

[35] G. Becker, “Merkle signature schemes, merkle trees and their cryptanaly-
sis,” Ruhr-University Bochum, Tech. Rep, 2008.

[36] J. Carpenter and E. Hewitt, Cassandra: The Definitive Guide: Distributed
Data at Web Scale. " O’Reilly Media, Inc.", 2016.

[37] N. Kruber, M. Lange, and F. Schintke, “Approximate hash-based set rec-
onciliation for distributed replica repair,” in Reliable Distributed Systems
(SRDS), 2015 IEEE 34th Symposium on, pp. 166–175, IEEE, 2015.

[38] S. Dustdar and W. Schreiner, “A survey on web services composition,”
International journal of web and grid services, vol. 1, no. 1, pp. 1–30, 2005.

[39] G. D. P. Regulation, “Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing directive 95/46,” Official Journal of the European
Union (OJ), vol. 59, pp. 1–88, 2016.

[40] Y. Go, N. Agrawal, A. Aranya, and C. Ungureanu, “Reliable, consistent,
and efficient data sync for mobile apps.,” in FAST, vol. 15, pp. 359–372,
2015.

[41] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[42] M. Naor and K. Nissim, “Certificate revocation and certificate update,”
IEEE Journal on selected areas in communications, vol. 18, no. 4, pp. 561–
570, 2000.

[43] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[44] R. van Renesse, D. Dumitriu, V. Gough, and C. Thomas, “Efficient recon-
ciliation and flow control for anti-entropy protocols,” in Proceedings of the
2Nd Workshop on Large-Scale Distributed Systems and Middleware, LADIS
’08, (New York, NY, USA), pp. 6:1–6:7, ACM, 2008.

[45] J. Trutna, D. A. Patterson, and A. Fox, Nye’s Trie and Floret Estimators:
Techniques for Detecting and Repairing Divergence in the SCADS Distributed
Storage Toolkit. 2010.

[46] D. C. Schmidt, “Reactor: An object behavioral pattern for concurrent
event demultiplexing and dispatching,” 1995.

[47] P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman, “A survey
of data replication techniques for mobile ad hoc network databases,” The
VLDB Journal—The International Journal on Very Large Data Bases, vol. 17,
no. 5, pp. 1143–1164, 2008.

[48] A. I. Wasserman, “Software engineering issues for mobile application de-
velopment,” in Proceedings of the FSE/SDP workshop on Future of software
engineering research, pp. 397–400, ACM, 2010.

[49] T. S. Axelrod, “Effects of synchronization barriers on multiprocessor per-
formance,” Parallel Computing, vol. 3, no. 2, pp. 129–140, 1986.

[50] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, and L. Wang, “Preimages
for step-reduced sha-2,” in International Conference on the Theory and
Application of Cryptology and Information Security, pp. 578–597, Springer,
2009.

[51] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein, “Blake2:
simpler, smaller, fast as md5,” in International Conference on Applied Cryp-
tography and Network Security, pp. 119–135, Springer, 2013.

[52] M. Hilbert, “Big data for development: A review of promises and chal-
lenges,” Development Policy Review, vol. 34, no. 1, pp. 135–174, 2016.

[53] J. Buchmann, E. Dahmen, and M. Schneider, “Merkle tree traversal revis-
ited,” in InternationalWorkshop on Post-Quantum Cryptography, pp. 63–78,
Springer, 2008.

[54] M. Szydlo, “Merkle tree traversal in log space and time,” in International
Conference on the Theory and Applications of Cryptographic Techniques,

pp. 541–554, Springer, 2004.

[55] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo, “Fractal merkle
tree representation and traversal,” in Cryptographers’ Track at the RSA
Conference, pp. 314–326, Springer, 2003.

[56] R. J. T. Gonçalves, P. S. Almeida,C. Baquero, and V. Fonte, “Dotteddb: Anti-
entropy without merkle trees, deletes without tombstones,” in Reliable
Distributed Systems (SRDS), 2017 IEEE 36th Symposium on, pp. 194–203,
IEEE, 2017.

[57] P. A. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency control
and recovery in database systems,” 1987.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Definitions
	List of Glossaries
	1 Introduction
	1.1 Data Consistency
	1.2 Problem Definition
	1.3 Scope and Limitations
	1.4 Method
	1.5 Context
	1.6 Outline

	2 Background
	2.1 The Open mHealth Architecture
	2.1.1 OAuth 2.0

	2.2 PMSys 3.0
	2.2.1 Legacy Synchronization Protocol

	2.3 Merkle Tree

	3 Swiftmend: Design and Implementation
	3.1 System Components
	3.2 Data Structure
	3.2.1 Versioning
	3.2.2 Delete Certificate

	3.3 Rejuvenation: Simple Reconciliation
	3.4 Alternative Reconciliation Algorithms
	3.5 Regrowth: Merkle Tree Reconciliation
	3.5.1 Leaf Data Structure
	3.5.2 Tree Construction
	3.5.3 Tree Verification

	4 Client-side Integration
	4.1 Data-service
	4.1.1 Storage
	4.1.2 Resource (REST) Client
	4.1.3 Synchronization Orchestrator
	4.1.4 Garbage Collector: Freezer

	4.2 MerkleTS: A TypeScript Based Library
	4.2.1 Cryptographic Hash Function

	5 Server-side Integration
	5.1 Application Programming Interface
	5.2 Tree Storage
	5.3 Garbage Collector

	6 Experiments
	6.1 Setup
	6.2 I/O Traffic
	6.3 Reconciliation Time

	7 Concluding Remarks
	7.1 Summary
	7.2 Future Work
	7.2.1 Big Data
	7.2.2 Merkle Tree
	7.2.3 PM Reporter
	7.2.4 TSU

	Bibliography

