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Chapter 1

Introduction

1.1 Problem description

In this master thesis, we present the research of the use of multi-agent systems in the context of

Smart City and Internet of Things. Smart City concept represents an innovative way of thinking

about urban space by presenting a model that integrates renewable energy resources, energy

efficiency and smart systems for a living. In this new paradigm bottom-up approach plays an

important role. This implies system structure, where offers are provided by different facilities

with sensors and controllers using a variety of protocols and base technologies. The type of

non-centralized development, common for the Smart City, corresponds to essential aspects of

multi-agent systems.

This research project is focused on theoretical aspects of multi-agent systems application within

the context of Smart City. In the thesis we investigate general aspects of Smart City environ-

ment, the ideas behind this concept and create a set of models for particular problems in order to

find an answer how the distributed agent-based system which consists of low or zero-intelligent

self-interested agents can manage different tasks and demonstrate a certain level of intelligence

in terms of problem-solving capabilities, adaptability or learning proficiency.

The fundamental issue of this project relates how different self-interested agents which can

manage different sensors and actuators and have to fulfill certain goals, can coexist and interact

with each other with a goal to find ways to share a common good and distribute limited resource

such as renewable energy. Agents can have parallel as well as opposing needs.

In our work we emphasize the following goals:

1. Exploring theoretical aspects of Smart City concept and application of multi-agent systems

within Smart City environment

1



Introduction 2

2. Design of system architecture and different structures of agent interactions

3. Creation of models and implementation of several approaches for them, studying the

possibilities of applying similar methods for different cases and analyzing the results

Works by Roscia et al.[1], Longo et al.[2], as well as by Lom and Pribyl[3], are considered as a

starting point of the study. In order to create models for considered problems, different ways

of implementation were investigated. This includes studying different frameworks which are

used for design and creation of multi-agent systems and simulation models. Information about

investigated frameworks can be found in chapter 2.

1.2 Contribution and delimitation

As the amount of aspects which can be considered in terms of Smart City environment is

considerably large, for our study we decided to scale the area of Smart City and consider the

following set of problems:

• Smart house

• Smart parking and cars

• Smart traffic with toll station and barriers

These problems represent an examples of how multi-agent system can be applied in different

areas. For the considered problems, we create models which consist of a number of agents and

study their interactions in terms of learning and problem-solving capabilities.

For each model, we implement three approaches with the goal to investigate the possibilities

of different structures for multi-agent systems. Implemented approaches include decentralized

market-based approaches with zero-intelligent agents and learning agents as well as centralized

approach with a controlling agent which manages the system.

1.3 Smart City concept

One of the key concepts of this thesis is Smart City and its domains. Although the concept of

Smart City is quite common and mentioned in a large number of studies connected to different

areas of innovations and urban development, it is hard to find a precise definition. Considering

concepts of European Smart Cities, increasing quality of life, use of renewable energy sources
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and developing the economy based on knowledge and innovations are some of the main goals

which can lead to the development of Smart City[4].

One of the common themes in the studies of Smart City concept is technology. Use of Informa-

tion Technology and Communication (ICT) is often considered as one of the most important

aspects allowing the design of the innovative environments, which are often connected to the

concepts of Smart City. For example, according to [1], we can define Smart City as place or

territory where the use of the human and natural resources is planned and properly managed

through the various integrated ICT structures. This provides an opportunities to create an

ecosystem with intelligent and efficient ways of distribution of resources.

Considering structure of Smart City, we can also refer to [2] and define Smart City as a complex

system which consists of many different subsystems integrated in the environment and connected

together through the use of ICT and various concepts such as Internet of Things[5] in order to

preserve safety and stability of work. Each subsystem or a domain of the Smart City represents

a key element of the environment and can be also divided into smaller systems. With references

to both [2] and the book by V. Angelakis et al.[4], we can identify the following general domains,

which also represent key areas and main characteristics of the Smart City:

Figure 1.1: 6 characteristics of Smart City.

Source: Designing, Developing, and Facilitating Smart Cities by V. Angelakis et al[4].

Each of these characteristics is connected to one of the essential aspects of the Smart City.

Within described general domains number of different aspects of Smart City such as transport

and logistics, energy and smart buildings, urban public safety, smart health etc., can also be

considered and divided further as every such aspect represents an important part of the system

and also includes a variety of elements. This characterizes Smart City as a complex system

which consists of a large number of subsystems.
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With this, it can be said that even the small element of this system can be connected to several

different domains and be also represented as a subsystem in a smaller scale. For example, one

smart house can be considered as a system of particular elements and be a part of a larger

system which can consist of several smart houses connected to the grid. Such system will also

be connected to different domains such as Smart Environment and Smart Living.

According to [3], we can say that Smart City includes great number of interconnecting systems

where each task can involve interactions and sharing data between different systems. In this

environment, every process, for instance, constructing of the shopping center, can involve a large

number of dependencies from different areas. Illustration of this principle can be seen on the

figure 1.2.

Figure 1.2: Construction of shopping center in a Smart City.

Source: Modeling of Smart City Building blocks using Multi-Agent Systems by Lom and
Pribyl[3].

We can say that in Smart City every problem, be it building a house or management of traffic

flow, can be connected to different areas. This also implies that even particular aspect of Smart

City can be reflected in a distributed manner.

Another important aspect of Smart City is the Internet of Things (IoT). In [5] we can find the

following definition of IoT as an extensive network created by different sensors and actuators,

which exists across all areas of the modern-day life. Integration of sensors in the environment

give possibilities for the information to be shared across different platforms in order to develop

a common operating space. If we try to define this concept more user-centric, we can refer

to another definition from the mentioned paper, which describes IoT as an interconnection of

sensors and actuators with the ability of share information across different platforms through

the unified framework, creating a common environment for distributed applications.
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1.4 Multi-agent systems in Smart City

As mentioned in the paper by Julien Nigon et al.[6], we can consider Smart City as a dynamic

system with a complex variety of data flows, which include the information generated by different

elements, such as generating and consuming devices. In such environment full understanding

and use of produced data flows could be very hard to achieve using ordinary computational

approaches.

This type of highly distributed system, which can include a great number of different elements,

provides many challenges such as non-linearity, openness, heterogeneity and large-scale data.

Many areas of Smart City system such as parking, traffic management, and smart house heating

represents non-linear systems which could need sophisticated machine learning algorithms in

order to manage full contextual data and non-linear patterns[7].

In this type of system, it is possible for the elements to dynamically enter and exit the system.

With the use of IoT, Smart Cities becomes inherently open[8]. New devices and new sources

of contextual data could be included continuously and old ones could be removed. For the

intelligent algorithm designed to handle data in Smart City environment, it is important to

freely operate with new sources and remove old ones. For instance, if we consider smart house

environment, the system responsible for balancing energy consumption and comfort should

be flexible and capable of reacting to environmental changes. In case of appearing new data

sources, it should be possible for the system to include them in decision-making process. Such

open structure could be difficult to achieve even with applying machine learning algorithms,

such as neural networks or evolutionary algorithms.

Another important aspects are heterogeneity of data and large-scale data flows. Smart City

system can generate a wide range of heterogeneous data. For instance, a traffic light control

system for the Smart City would have to process output from various sensors of all the roads and

crossroads to take multiple decisions about which light should be turned on or off. In order to

optimize the performance of decision-making process for this kind of problem, distributed control

should be favored over a central decision-making process[9], as every such decision should be at

least partially independent. According to mentioned earlier, we can assume that the solution

should be based on local decisions, made by the autonomous entities.

Considering different aspects of Smart City as a highly dynamic system with heterogeneous

data flows, use of distributed multi-agent systems could be considered as a preferable solution

for problem-solving in such type of environment. In [6] multi-agent systems (MAS) defined as

systems which consist of multiple interacting and autonomous entities, able to make decisions

within a common environment. MAS provide a methodological way to model and study complex

systems with a bottom-up approach.
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The MAS paradigm emphasizes the design of agents and their collective behaviors which lead

to the solution of a particular task. It allows expressing a large variety of problems with a

focus on the autonomous entities as elements of the problem environment and their interactions.

Therefore, MAS paradigm can be used in different areas such as sociology, biology or engineering,

in order to model, explore or simulate different complex problems for each of those areas.

Natural aspects of MAS such as task distribution between different agents, adaptive behavior

which emerges through the agent interactions within the MAS and availability of decentralized

control and decision-making makes MAS suitable to overcome heterogeneity and complexity of

Smart City context and adapt to challenges provided by this environment.



Chapter 2

State-of-the-art

2.1 Analysis of problem area

Smart City concept and its aspects include many areas such as innovative ways of energy

management, smart transport, information security and many more. In consideration of Smart

City features and possible problems which can occur in Smart City environment, many different

studies were conducted.

The concepts which were studied include such aspects as smart buildings, smart street and

smart light, smart house, smart parking, smart traffic, smart grid etc. Example of solutions

connected to smart buildings and offices presented in a paper by Paul Davidsson and Magnus

Boman [10]. In paper by W. Li et al.[11] presented one of various solutions for optimization

of smart house environment. Example of traffic flow optimization problem is described in a

paper by Erwin Walraven et al.[12]. Study of solutions for the smart grid problem presented

in a paper by Ghezlane Halhoul Merabet et al.[13]. Within these concepts usage of multi-agent

systems can be considered as one of frequently applied methods.

For instance, if we consider the concept of the smart street and smart lamp, described in [3], it

can be said that distributed decision-making capabilities, provided by MAS can take an essential

part in the design of system structure. In many cases concerning Smart City environment or one

of its aspects, usage of MAS was proven to have the capabilities for optimization and intelligent

problem-solving.

Application of MAS not limited to scientific simulations and modeling. It is also applied in

different projects in order to improve theoretical and practical aspects of designing and imple-

mentation of complex systems.

7
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Examples of such projects are alternative airline flight bidding prototype system, called SAR-

DINE (System for Airline Reservations Demonstrating the Integration of Negotiation and Eval-

uation), which serves to improve the process of flight reservations. The SARDINE system uses

software agents to coordinate the preferences and interests of each involved side. Using bid-

ding system, it allows flexible reservation of available flights based on buyer’s preferences and

individual bids[14]. Another sphere of MAS applications is smart commerce. Various systems

and prototypes, such as eMediator system, mentioned in the paper by Mihaela Oprea, or Robin

system[15] were developed using multi-agent systems.

With the reference to the mentioned material, it can be concluded that multi-agent systems

represent a universal tool which can be used in many different areas and is especially useful for

simulations design and modeling of complex systems and innovative smart solutions.

2.2 Previous work

In relation to smart house, smart parking and smart traffic problems, which are considered as

an example in this project, a number of different approaches with intellectual problem-solving

capabilities, including applying of MAS, was investigated.

Smart house in many cases is considered as a complex system of smart agents with different goals.

In such system, almost every element from heaters to TV and kitchenware can be considered as

a smart agent.

In [11], smart house environment is considered as a smart network which includes a number of

software agents. In this paper, agents are designed with a bottom-up approach and represent

different devices which can be connected with each other and create a network system with

capabilities to react on the environmental changes and solve different problems. The problem

which is considered in this paper represents one of the common problems for smart house

environment which is energy distribution. Agents are presented as demand and supply side of

the smart house. However, this paper is focused more on communications between software

agents as a part of the smart network with the hierarchical structure. In this paper, agents

are presented as elements of the system without self-interest aspects and main decision-making

function is done by a set of management agents.

Another aspect which is commonly considered in smart house environment is the management

of different systems such as heating and light. Different concepts related to using distributed

agent-based systems in the field of management of heating systems, light and electricity are

described in studies such as [10], as well as many other studies.
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These studies demonstrate possibilities of MAS in the management of comfort systems but they

are focusing more on particular aspects of the smart house. In case of [10], the focus is more on

modeling of embedded systems for maintaining the comfort level and less on agent interactions.

In this paper, only two MAS behavior models are considered without such aspects as learning

and market-based interactions.

Aspects of the smart distributed environment such as the usage of wireless networks with sets

of different sensors and actuators in relation to smart parking also considered in the number

of papers such as paper by Trista Lin et al.[16]. In this paper review of different solutions for

smart parking development is presented. This article serves more as a review of possible smart

parking solutions and does not reflect more aspects of multi-agent interactions.

Example of applying MAS and reinforcement learning in terms of smart traffic problem presented

in [12]. This paper demonstrates the concept of traffic flow optimization using Markov Decision

Process with learning agents and sectioned road. In this case, authors emphasize specific aspects

of applying reinforcement learning for the traffic congestion problem with traffic prediction

using a neural network. For this kind of problem market-based approach could also be applied

as demonstrated in a paper by J. Kozlak and M. Zabinska[17]. However, in this paper, the

problem is defined as the problem of route search for the agents with two type of agents acting

with predefined policies. For the agents in this paper, only one behavior model is considered.

Most of the mentioned papers consider only specific aspects of considered problems while in our

study we try to consider set of different problems in the more general way and apply a number

of approaches to demonstrate possibilities and different features of MAS as well as flexibility

which can be provided by agent-based systems. We also consider the distribution of common

good as one of the key aspects of all our problems.

Regarding different approaches which were implemented in our work, we should mention that

in the studies which were investigated, different architectures of multi-agent interactions were

described. Most of them have a hierarchical structure with several layers, represented by the

agents, for instance, the architecture described in [11], or market-based architecture with de-

mand aggregation agents, described the paper by Baptiste Feron and Antonello Monti [18]. It

can be said that with bottom-up approach decentralized solutions can be designed in a num-

ber of ways and even include complex networks composed of different agents. Although the

architectures can vary, the main aspect in each of them is the same and related to interactions

between different agents, which results in finding the solutions and maintaining work of the

system.

For our decentralized approaches, we emphasize this aspect and use a market model based on

the decentralized market design described in a paper by Esther Mengelkamp et al.[19].
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In distributed market models with a number of agents, different behavior models for the agents

can be considered. In our work we consider interactions between zero-intelligent agents in our

market model as one of the approaches applied for the studied set of problems. The theory

behind zero-intelligent (ZI) market is described by Dhananjay K. Gode and Shyam Sunder in

[20]. The market model includes ZI agents which had some budget constraints to follow and

specific restrictions for the trading process in order not to trade in a way that would lose them

money.

As a result of the experiments conducted for this market model, it was concluded that the

market efficiency for ZI agents was very high and the prices often converge to the standard

equilibrium price. This result demonstrated that even agents with simple behavior models can

be very efficient[21].

The centralized approach is focused more on decisions done by the one controlling agent, respon-

sible for finding the solution to the problem. In order to model such agent, different ways can be

applied. One of the possible ways is to use set of defined reactive policies for the agent, but in

this case, it could cause lack flexibility. Another approach which can provide more capabilities

for the agent to adapt to different situations is to use genetic algorithms.

Methods based on genetic and evolutionary algorithms for multi-objective optimization could be

applied in many different fields such as reconfiguration of power distribution system, described

in a paper by Bogdan Tomoiag et al.[22] and optimization of hybrid energy systems, described

in a paper by Myeong Jin Ko et al.[23]. Similar methods could also be used to optimize energy

consumptions in a smart house environment, as described in a paper by Nadeem Javaid et

al.[24].

2.3 Instruments and methods

The variety of instruments for design and development of multi-agent systems is large and still

continue to expand. From the vast amount of different methods, we can distinguish general

purpose frameworks and special purpose frameworks. In this section we present information

about some of the multi-agent frameworks which were investigated and tested during work on

this thesis. Presented information about the frameworks is based on official documentation and

review of agent platforms done by Florin Leon et al.[25].

General purpose frameworks include frameworks for modeling and simulations of multi-agent

environments such as Repast, Mesa, Gama, NetLogo, MASON, GOAL and many other. These

frameworks designed for rapid prototyping of multi-agent systems and can serve to model social

complexity, physical modeling, abstract modeling or machine learning.
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Special purpose multi-agent frameworks include various tools for designing distributed systems

and environments. Example of such tools could be Orleans[26], framework for design and

development of highly-distributed large-scale applications for cloud computing.

Referring to a paper by Florin Leon et al., we can say that amount of tools related to the

design of distributed environments is very big. One of the examples described in this paper

is JADE - Java Agent Development Framework. This framework is used to design distributed

applications composed of autonomous entities. It is implemented in Java and has a purpose to

simplify the implementation of multi-agent systems using a middle-ware which complies with the

FIPA specifications and use a set of graphical tools to support the debugging and deployment

phases[27].

This is the open-source tool allows communication between agents with FIPA standards[28].

The framework has many extensions which provide an opportunities to define the behavior of

the agents through established BDI (Believe-Desire-Intention) model. This model represents

the architecture of intelligent agent modeling based on concepts of practical reasoning. More

information about this type of architecture can be found in [3].

Many frameworks use the same model as JADE, for example, Madkit - library for designing

and simulating of multi-agent systems. This library provides opportunities to design multi-

agent solutions using AGR (Agent/Group/Role) organizational model, which implies agents to

play specific roles in groups and through this create artificial societies. Main features of these

frameworks are connected to faster and more simpler ways of deploying solutions for distributed

environments and development applications. Most of them have predefined sets of rules for

the agents. Interaction process between agents is mostly based on real-time request-response

models.

Frameworks which more focused on modeling of agent-based environments include such tools

as NetLogo, Repast, and Mesa.

Repast represents one of the platforms for modeling and simulation specifically designed for

social science applications. It can be used to develop agent-based models using computing

clusters and has two versions for general modeling and large complex computing.

One of the most famous frameworks for multi-agent modeling is NetLogo. It is particularly well

suited for educational purposes and has a large number of predefined models for different sce-

narios. Users can give instructions to the agents which operate independently. This framework

can be used in many areas including biology and social science but is less suitable for modeling

of intelligent agent behavior as the main purpose of this framework is simulations of natural

and social phenomena.
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Another framework for agent-based modeling is Mesa - an Apache2 licensed general purpose

framework in Python[29]. It allows users to quickly create agent-based models using built-in

core components (such as spatial grids and agent schedulers) or customized implementations

and analyze their results using Python’s data analysis tools. Its goal is to be the Python 3-based

alternative to NetLogo, Repast, or MASON.

2.4 Ways of implementation

In this thesis, we investigate the advantages and problem-solving capabilities which can be

provided by MAS in relation to Smart City environment. In order to do it, we created several

models for the set of problems connected to some of the areas of Smart City environment.

Through these models, we can demonstrate how agent-based systems can manage different

tasks and provide flexible universal solutions.

For the implementation of the models we considered two major ways:

1. Usage of frameworks with the real-time software agents such as JADE and osBrain[30]

2. Usage of frameworks for the agent-based modeling such as Mesa

Frameworks for modeling real-time environments provides opportunities to simulate interactions

and communication between software agents with usage of specific communication protocols.

It allows us to simulate data flows in the multi-agent environment and is very useful in case of

design solutions for distributed applications. JADE framework can be used for implementation

of fully distributed systems with agents possibly running on different machines with the support

of FIPA ACL for communication between agents. In case of osBrain, ZeroMQ as the transport

layer for the asynchronous communication between agents is used. Using Pyro4 library, osBrain

provides an opportunity to treat every remote agent as a local object which can be reconfigured.

Agents are considered as independent system processes and can be run on different machines.

Although these tools provide enough functionality to design distributed applications and smart

networks, they have a set of restrictions. For instance, in order to implement agent networks in

JADE or osBrain, communication structures between agents should be established and models

for agent behavior should be designed separately. In many cases, implementation of additional

agents to support communication between different layers of the network could be needed.

Particular aspects of behavior templates, which are used for implementation of software agents,

can make it harder to implement custom behavior models for different cases. Usage of real-

time communications also makes the design of solution and simulation process more complex

to develop.
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With regards to mentioned earlier and experience of testing the solutions we can assume that

usage of frameworks focused on creating real-time distributed multi-agent systems can be an

efficient way to design and deploy distributed applications or implement a particular solution

for a complex multi-threaded, multi-machine systems, but it is less suitable for modeling or

simulation of the more general set of problems, similar to our case.

On the other hand, one of the biggest advantages of frameworks designed for agent-based mod-

eling is an opportunity to create simple prototypes of desired multi-agent systems as models

and test these solutions using designed discrete environment. It helps to save time as some as-

pects of distributed system development such as handling different protocols, request-response

time-outs and losing data can be omitted. Although, logical templates and behavior models

often need to be implemented from scratch.

In our work, we decided to use Mesa framework for agent-based modeling. This framework

allows us to simulate interactions between autonomous agents to see and evaluate their effects

on the system. It provides a fast and efficient way to create prototypes and, as the templates

for the agents are basic but have very flexible structure, this makes implementation of custom

behavior models for the agents easier. Mesa also allows us to make simulations which involve

large numbers of agents and provides opportunities to freely experiment with parameters of the

environment for different simulations.

The basic structure of models in Mesa represented by several core components such as Agent

class, which serves as a template for implementation of individual agents, Model class, which

is used to define our model and Schedule class, which defines the scheduler component of the

model. This component controls the order in which agents are activated.

In Mesa, it is possible to use different built-in scheduler classes with the common interface. This

allows us to change the activation regime of a given model and implement custom activation

schedules. For our models, we customized the default BaseScheduler class in order to make

different groups of agents be activated in specific order based on schedule from one of the

examples for the Mesa project[31].

Every agent in Mesa has a method called step, which defines actions of the agent at the moment

of activation. After adding all the agents to the schedule, the scheduler’s method step can be

called to activate agents according to the established order. Schedule mechanism allows us to

simulate the interaction between different groups of agents. In our models, we use discrete time

steps with agents activation according to schedule at each time step.

Each agent in the system has a unique identifier. Using these identifiers we can differentiate

agents and update conditions for the particular agents.
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2.5 Roth-Erev learning algorithm

Reinforcement Learning (RL) represents a concept which is closely tied to the concept of the

agent as entity characterized by such aspects as the perception of the environment, reasoning,

and action. In order to implement learning aspect for the agents in our work, we decided to use a

variant of Roth-Erev algorithm. Roth-Erev is a stateless algorithm which uses propensity values

and probabilities which derived from these propensities. This type of algorithm is commonly

used in market-based multi-agent systems and flexible enough to be used for different cases.

The learning process for this algorithm based on probability values of choosing a particular strat-

egy from the set strategies. For example, we can consider n learning agents with j strategies[32].

In time step t propensity value qnk(t) of learning agent n corresponds to his strategy k and rep-

resents its willingness to play this particular strategy. At the start of the simulation, we have

set of initial propensities qnk(0), where all propensities are equal. After particular strategy k is

played, the payoff is received and corresponded propensity value is updated.

We derive probabilities of choosing a particular strategy from the propensity values. During

learning process we can observe the law of effect in action as more successful strategies, which

lead to a higher payoff, would be played more often due to higher corresponded propensity

values and, as a result, the higher probability to be chosen.

The general Roth-Erev algorithm, described in a paper by Mridul Pentapalli[33], is shown in

the equation 2.1.

qj(t+ 1) = [1− r]qj(t) + Ej(e,N, k, t) (2.1)

Ej(e,N, k, t) =

πk(t)[1− e], if j = k

πk(t) e
N−1 , ifj 6= k

where qj(0) is the initial propensity of action j at time t = 0, qj(t) is the propensity of action

j at time t, πk(t) is the reward obtained for taking action k at time t, r ∈ [0, 1] is recency

parameter, e ∈ [0, 1] is the experimentation parameter and N is the number of available actions.

Probabilities are derived from the propensity values using the formula, described by the equation

2.2.

pj(t) =
qj(t)

N−1∑
i=0

qj(t)

(2.2)

where pj(t) is the choice probability of action aj at time t
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Method

As we mentioned in our work, in order to get a deeper understanding of possibilities, provided by

MAS regarding Smart City context, it is important to find an example which can demonstrate

how different components can interact with each other to fulfill certain goals in the Smart City

environment. For this purpose, we consider several problems which can be found in Smart City

environment, such as smart house, smart parking and smart traffic with toll stations and barriers.

Due to complex nature of the Smart City and variety of aspects connected to intersections of

the Smart City domains we scale our problems to make them more suitable for modeling.

Although these problems are connected to different domains, they can be represented in a similar

way. For example, the problem of energy distribution between different electrical devices in the

smart house can be considered similar to the distribution of free parking places between cars

which want to park, as in both cases we are dealing with the distribution of some restricted

amount of common good which should be divided between a number of consumers.

We implemented several approaches for every model in order to demonstrate collective problem-

solving capabilities of multi-agent systems. These approaches include market-based models with

zero-intelligent and learning agents and centralized approach.

In the Smart City environment, it is possible to consider different models of agent interactions.

One of such models is the interaction between several self-interested agents. In contradiction

to cooperative models with groups of agents having a common goal to achieve, in models with

self-interested agents every agent has its own goal and acts in accordance to certain rules in

order to achieve it. This leads to one of the important aspects of self-interested agent behavior

model as the agent can have an individual description of desirable states of the environment

and act in an attempt to bring these states to reality[34]. This can also be beneficial for other

agents and overall system.

15
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For example, the heater in the smart house can have a goal to maintain certain temperature

range, or smart lamp agent can regulate brightness to maintain a certain level of light on the

street depending on particular conditions. These agents have their local goals and restricted

amount of information about the environment in order to fulfill them.

3.1 Approaches

In this work, we consider two main types of approaches used to model interactions between

agents. For the decentralized approach, we model interactions within the system with zero-

intelligent agents as well as interactions within the system which includes learning agents.

Problem-solving capabilities in the decentralized approach emerge from the interactions be-

tween different agents. For the centralized approach, we consider model structure where the

process of finding the solution to the problem is mainly controlled by the single agent.

3.1.1 Decentralized approach

For the decentralized approach, we implement a market model based on peer-to-peer (P2P)

distributed approach, described in [19]. This approach allows buyers and sellers trade with each

other individually on the pay-as-bid basis. Trading process is divided into time slots, in every

time slot, each buyer, represented by the agent with a demand iteratively paired with randomly

chosen seller until it satisfies its demand or it has been paired with all available sellers.

When the two agents are connected, certain condition for the performance of a transaction must

be fulfilled. For example, if the bid price of the buyer is greater than or equal to the ask price

of the seller, buyer pays its bid price and allocates the desirable amount of good.

The amount of traded good can be restricted ,for instance, determined as the minimum amount

of seller’s bid and buyer’s ask amounts. Amount of demand, which cannot be acquired on the

local market, has to be satisfied from the external market if possible. In case of a smart house,

if some of the loads are impossible to satisfy with available renewable energy, they need to be

satisfied from the outer sources such as smart grid. In this case, the price of acquiring the

energy could be depended on current peak hours for energy demands on the grid.

In this market design, the order of paired buyers and sellers is important as the amount of good

which can be traded is limited. In order to avoid competitive advantages every buyer and seller

which would be paired, are chosen randomly. Each P2P transaction results in an individual

price for the deal. The basic scheme of the decentralized approach can be seen in the figure 3.1.
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Figure 3.1: Decentralized market model.

Every consumer agent is randomly paired with the seller agent. At the start of each transaction,

the conditions for the deal are checked. If the conditions are satisfied, the consumer can acquire

the amount of good it needs from the seller. If the conditions are not met, seller and buyer are

disconnected and their ask and bid prices are updated to increase the possibility of the next

deal to be successful.

If consumer manages to acquire necessary amount of good it is excluded from the current trading

process. The trading process continues until all the consumers are able to satisfy their demands

or all available common good is distributed.

We use described market model for both zero-intelligent and learning decentralized approaches.

Decentralized zero-intelligent approach

At the start of each trading in the ZI decentralized approach agents choose a price which is

randomly assigned within the boundaries of upper and lower price limits. In our approach, we

use the average price for the deal to update ask price of the seller during trading. In case of

rejected deals, it helps to make it more possible for the next deal to be successful. It also helps

to increase the speed of convergence for the simulations. We do not consider it as a learning

due to the fact that at the start of each trading new prices are chosen and the overall behavior

pattern of seller agents is not affected. Although it makes sellers not pure ZI agents, they still

correspond to essential aspects of ZI trading such as randomness of initial choices made, the

absence of experience gathered through the multiple trading episodes and lack of any strategies.

For the ZI approach bid price is chosen randomly but we can assume that buyers could have a

desire to pay more as the higher bid price implies higher probability for a successful deal which

is essential as the amount of traded good is limited.

Decentralized approach with learning agents

As the ZI agents are not able to memorize the results of their past actions and do not have
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any strategies to use, they always act in accordance with defined constraints. In contrast to ZI

agents, intelligent agents can learn from their previous decisions and trading results during the

time. This allows them to be more flexible and choose a strategy which could lead to better

results, for example, reduce energy consumption in case of lack of energy or use strategies which

could increase the probability of a successful deal.

In order to make agent learn from its past decisions, RL algorithms are used. For our model

we decided to use modified Roth-Erev algorithm, described in [19]. Scheme of implemented

learning intelligent agent can be seen in the figure 3.2.

Figure 3.2: Learning agent with states.

Learning agent can have set of possible states and sets of strategies for every state. Using in-

formation from the environment, the agent can define the state it is in and choose a particular

strategy with the probability derived from the propensity value, which corresponds to the par-

ticular strategy. Using reward we can update propensity value and increase the probability of

choosing the particular strategy. As the Roth-Erev algorithm is initially stateless, it can give

us the opportunity to modify structures of our learning agents and apply different approaches,

which include learning agents with sets of states and strategies, as well as stateless agents with

only sets of strategies.

The algorithm which we use in our work described by the equation 3.1.

qi,j(t+ 1) = (1− r) · qi,j(t) + Ei,j(e,N, k, t) (3.1)

Ei,j(e,N, k, t) =

Rk(t) · (1− e), if j = k

qi,j(t) · e
Si−1 , ifj 6= k

where qi,j(0) is the initial propensity of action j for agent i at time t = 0 (aspirational level),

qi,j(t) is the propensity of action j for agent i at time t, Rk(t) is the reward obtained for taking

action k at time t, r ∈ [0, 1] is recency parameter, e ∈ [0, 1] is the experimentation parameter,
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Si is number of possible strategies for the agent i. Recency parameter r represents memory

aspect of agent and determines how fast agent can forget about its past decisions. It maps the

weight of propensity value at time step t into the updated propensity value for time step t+ 1.

Larger r implies faster speed of forgetting. It helps to prevent an agent of falling into specific

behavior pattern too fast. Experimentation parameter e determines influence of last action on

the future decisions. Therefore, it can be considered as speed of learning for an agent.

Each learning agent i updates its propensity value qi,j to choose particular strategy j in time

step t+ 1. Probabilities of choosing the strategies are derived from the propensity values using

the equation 3.2.

pi,j,t =
qi,j(t+ 1)

S−1∑
i=0

qi,j(t+ 1)

(3.2)

where pi,j(t+1) is the choice probability with which agent i will chooses strategy j. It is derived

from the propensity values at each time step t.

With this algorithm, we can update probabilities for all available strategies based on the amount

of reward and propensity values. As the law of effect implies, a strategy which results in a higher

reward will have a higher probability to be chosen for the next time step.

The amount of reward is one of the important aspects of the learning. In case of low initial

propensities, high amount of reward can negatively affect the learning process for the agent by

increasing the probability of choosing particular strategy too much comparing to other possible

strategies. Using reward of zero as a penalty for the agent, we can reduce the probability for

the particular strategy to be chosen and increase the chance for an agent to choose a better

strategy.

By tuning parameters of learning algorithm such as the size of initial propensities, amount of

reward and sizes of experimentation and recency parameters, we can regulate speed and results

of learning for our agents and save the possibility for them to learn different behavior patterns

in case of changes within the environment.

3.1.2 Centralized approach

Contrary to the decentralized approach, in which distribution of common good is based on

interactions between different agents in the environment and their decisions, in the centralized

approach, we have one main controlling agent responsible for distribution of common good

between consumers. This agent has the necessary information about the environment, such

as amounts of demand and available supply, and can act in accordance with certain rules to

maintain system stability.
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The basic scheme of the centralized approach can be seen in the figure 3.3.

Figure 3.3: Centralized model.

For this work, we use an approach based on genetic algorithm to encode consumer loads, which

can be energy demands of particular electrical devices, demands of smart cars for parking or for

going through the road fast. The idea of this approach is based on load scheduling, described

in [24] and encoding of access to the energy lines, described in [22].

Algorithm for the distribution of common good is described by the following steps:



Method 21

Algorithm 1 Distribution algorithm for the centralized approach

1: Data: (f(x), NI, pop, n, d,NIT, p, rand, dmutated)

2: get information about demand and supply

3: for i = 0 : NI do . NI - number of iterations

4: generate population pop of random binary vectors of size n

5: calculate fitness of every vector x based on constraint function f(x)

6: end for

7: find the fittest vector d ∈ pop
8: for j = 0 : NIT do . NIT - number of iterations for partner set

9: choose number of vectors which can be used for crossover

10: end for

11: select the fittest vector p as a partner for crossover

12: for i = 0 : NI do

13: choose condition coefficient rand, (0 ≤ rand ≤ 1)

14: if rand > 0.8 then

15: make a mutation of vector d

16: calculate fitness

17: if mutated version dmutated of d has better fitness then

18: d = dmutated

19: end if

20: else

21: make a crossover of vector d and vector p

22: calculate fitness

23: if the any result of crossover has better fitness then

24: d = result of crossover

25: end if

26: end if

27: end for

28: decode vector d and distribute common good accordingly

In addition to described parameters in the algorithm, we have f(x) as fitness function, which is

used to determine the fitness of solution x and n as a number of consumers which determines the

size of DNA vectors. The purpose of this algorithm is to find a binary DNA vector representing

the number of loads which can be satisfied in regards to available supply, and distribute supply

accordingly. Distribution is done by decoding chosen DNA vector, in which we satisfy particular

demand if the corresponding gene in the vector is equal to 1. With the diversity of solutions

genetic algorithm can provide and fitness constraints it is possible to find the solution which
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allows us to maximize the number of satisfied demands and usage of available common good,

such as renewable energy.

For the mutation, we go through the DNA vector, every gene of which can be switched out

with the opposite element. The probability of mutation is determined by the mutation chance

variable, which is in our case is equal to 100 to give every gene 1/100 chance to be changed.

This helps to increase the diversity of solutions.

The crossover function takes two DNA vectors, slices them into two parts at random index

within their length and merges them. For both vectors, it keeps their initial sublist up to the

crossover index and swaps their ends. Code used for implementation of crossover and mutation

functions is based on [35].

3.2 Models

3.2.1 Smart house model

For this model, we consider interactions between several entities in the smart house environment,

modeled using a bottom-up approach.

In our model we have two agents which responsible for controlling electrical heaters, agent

controlling light system, agent, controlling heated floor, agent controlling energy battery storage,

as well as agents responsible for PV panel and wind energy. Together these agents represent

energy loads and energy generation of the smart house.

The goal, in this case, is to minimize energy costs in the house and maximize usage of renewable

energy, produced by several facilities such as solar PV panel and wind turbines.

Example of diagram of implemented agent classes presented in the figure 3.4

Figure 3.4: Smart house model.
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The demand side of the model includes two heater agents, represented by HeaterAgent class,

agent, responsible for the heated floor, represented by HeatedF loorAgent class, and the agent

responsible for the light system, represented by LightAgent class.

The supply side of the model includes agent responsible for PV panel, represented by SolarPanelAgent

class, the agent responsible for energy acquired from the wind turbine, represented by the

WindEnergyAgent class and agent, responsible for energy battery, represented by the StorageAgent

class.

Energy battery agent is a prosumer, as it could serve as supply-side agent and be the main

energy source in case of lack of renewable energy, as well as have a demand depending on

current battery energy level.

In order to initialize the state of the environment at the start of every time step, we use

InitAgent class.

SmartGridAgent class represents agent responsible for the interaction with the smart grid and

possible buying energy from the grid or selling the energy surplus back to the grid for the price,

which depends on peak hours. This concept provides opportunities for creating more complex

interactions for the smart house model to make it reduce overall peak energy loads by selling

renewable energy to the grid, but due to time constraints and the fact that it was not the main

aim of this work, it was not completed.

In order to provide trading between agents according to modeled P2P market approach for the

decentralized models, we use TradeInterface class. This class provides connections of supply

and demand side agents in random order with the goal to distribute available renewable energy

until the requirements for the end of trading are fulfilled. For the centralized approach, the

ControlAgent class is used, which represents controlling agent, responsible for energy distribu-

tion.

We consider agents responsible for the heaters to be placed in different rooms and have a goal to

maintain temperature for the room in the interval, defined by minimum temperature and desired

temperature value which is considered as a simulated input from the person in the smart house.

In reality, it can be input from the mobile device sent through the ZigBee or WiFi networks[36].

They calculate their demands based on the difference between the current indoor temperature

in the room and desired temperature.

We use the formula, described by the equation 3.3 to calculate the amount of energy needed to

heat the room.

U = cpm∆T (3.3)

where cp is dry air specific heat value, p is dry air density, A is room area, h is room height, m

is mass of air and ∆T is temperature difference.
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This equation is based on specific heat formula: heat energy = (mass of substance)(specific heat

value)(change in temperature)[37].

We use Monte-Carlo methods and normal distribution to simulate output from the environment,

such as to define the level of solar energy or current indoor temperature. We also simulate

output from the set of sensors inside the house to check movement, temperature or light levels

for the particular time step. This is used to present additional dynamics to the simulated

environment and make it closer to the real world as in smart house we can operate with a

variety of information about current condition inside the house and user preferences in order to

reduce energy consumption and maintain comfort level.

The probability density function of the distribution described by the equation 3.4.

f(x) =
exp(−x2/2)√

2π
(3.4)

Example of probability density function plotted on the set of random samples can be seen in

the figure 3.5.

Figure 3.5: Normal probability density function.

In each time step, heater agents check if somebody is in the room, get information about current

indoor temperature and desired temperature and calculate their demands. If nobody is in the

room at the current time step, the desired temperature is set to default minimum value. If

current temperature in the room is equal or more than desired temperature, heater turns off in

order to save energy. Probability of person being in the room or be away is based on current

hour and day to follow average routine of people.
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In order to generate indoor temperature input for the heaters, different possible ways were

considered including thermodynamical model, described in [10]. After studying and testing the

approaches it was decided to use normal distribution and data on the average indoor tempera-

ture, described in [38]. This allows us to reduce number of parameters for the model and omit

complex thermodynamical calculations and provides us with sufficient diversity of temperature

data. For this model we do not consider such aspects as temperature loss in time as we are

mostly interested in studying of agents behavior based on state of the environment. In reality

ad-hoc situations such as open window or door, can happen and influence temperature levels. In

order to properly calculate influence of outdoor temperature, many parameters such as thickness

of the walls, amount of furniture in the room or even position of the house should be consid-

ered, which is not the main focus of this study. Considering these aspects it was decided to use

generated values for the indoor temperature in order to simulate changes in the environment.

The light agent represents an example of a light system in the room. It calculates energy demand

based on current outdoor light level and desired light level both measured in lux. We calculate

the energy load for light using the equation 3.5, which is based on the formula for converting

lux to watts from [39].

U =
ldesired ∗A

lmw
(3.5)

where ldesired is amount of illumination needed to reach desired light level, measured in lux, A

is room area, lmw is parameter of luminous efficiency per watt.

For the purpose of reducing the complexity of calculations, we do not consider such aspects as

light loss and coefficient of utilization. To simulate input from the user for the light agent we

set several profiles for the desired light intensity, based on recommended light levels described

in [40]. By calculating the difference in lux between desired light level set according to chosen

profile and current outdoor light, the light agent can define its load for the current time step.

At the start of every time step, the light agent checks the movement in the room similarly to

heater agents, get information about current outdoor light and desired light level and define its

load accordingly. If the current outdoor light level is higher than the desired light level or if

nobody is in the room for the time of defining the demand, lights turn off.

The demand of the heated floor agent calculated based on running costs for the heated floor

in typical bathroom area[41]. It acts as a simple reactive agent and defines its demand solely

based on the simulated output from the movement sensors which is made similarly to the agents

mentioned earlier.

Agent, responsible for energy battery, monitors the state of the battery and based on battery

discharge depth it calculates necessary amount of energy. Guided by the restrictions for the

battery discharge described in the following resource[42] we have the set of conditions based on

a percentage of discharge, described in table 3.1.
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states percentage

maximum 100% ≥ x ≥ 70%

stable 70% > x ≥ 50%

unstable x < 50%

Table 3.1: Battery conditions

where x is the amount of energy stored in the battery. If battery condition is unstable, it needs

to be charged in order to prevent degradation of the battery. In this case, storage agent plays

the role of the consumer and participate in trading to obtain the amount of energy needed

to fully charge the battery or to return to the stable condition. Otherwise, storage agent is

considered as a supply-side agent. We also consider that the energy surplus after every trading

can be stored in the energy storage if maximum capacity of storage allows it.

Agent, responsible for PV panel represents a source of solar energy for the smart house. Amount

of solar energy for every time step is defined using normal distribution function, data on solar

energy output from the dataset, provided by my advisors and the weather coefficients. Using

normal distribution we create new values based on average hourly data from the dataset for

24 hours. As we do not know precise information about weather conditions, size, number or

angle of inclination of the solar panels in the place from which information is obtained, we use

weather coefficients and time to make values of solar energy output be dependent on the state

of our environment.

Wind energy agent represents a source of wind energy for the smart house. For a generation of

wind energy output, we use hourly data from the wind farm for the period from 1/2/2018 to

23/03/2018, obtained from the following source[43]. As initial data consists of energy output

from the wind farm with at least several big wind turbines, it has to be scaled to fit our modeled

environment.

For this model we have the following order of agents: before the energy distribution, we initialize

our environment to set the level of solar energy and outdoor light based on weather state and

the current time. Then we calculate the amount of supply which can be distributed. After

every supply-side agent defines the available amount of energy it can provide at the current

time step, demand-side agents define their demands based on the state of the environment they

are in. When all loads and supply are established, distribution of available renewable energy is

conducted.

Decentralized zero-intelligent approach

For the decentralized smart house model we use P2P market-based approach described earlier, in

case of ZI agents we represent smart house environment as a local market with renewable energy

and make agents interact accordingly to the market model and distribute available energy during

every trading between agents responsible for sources of renewable energy and agents which need
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energy for the trading period. Prices for trading are based on energy prices for kWh from the

Nordpool[44]. We assume that prices for the local market are less than prices for buying energy

from the outer sources such as smart grid as using internal renewable energy is more beneficial

for the house system comparing to buying it from the grid.

Decentralized approach with learning agents

In order to maintain stability of the system and reduce costs, connected to buying additional

energy for satisfying energy demands, it is important to consider flexibility of the demands.

As most of the demand-side agents represent types of services which have to be maintained

every time step, the flexibility of the demand can be expressed in reducing consumption. For

this approach, we consider heater agents as learning agents with the sets of strategies based

on temperature range they need to maintain. We implement set of states for the heater agents

based difference between current indoor temperature and desired temperature set by the user.

For every state, the agent has set of strategies it can use. For this model, we adapt our learning

method to use it with states. In the table 3.2 sets of states and actions implemented for the

heater agents, can be seen.

states actions

Critical
minimum

intermediate
ideal

Low
intermediate

ideal

Intermediate
stay
ideal

Ideal pass

Table 3.2: Table of states and actions for heater agents

The Critical state corresponds to the situation when the current indoor temperature is less than

default minimum temperature value and desired temperature is higher than minimum temper-

ature. For this state, the agent has three actions it can take. Action minimum corresponds to

heating the room up to the minimum temperature value. Intermediate action implies heating

up to the temperature close to ideal desired temperature, in our case, it is defined as tempera-

ture one degree lower than the ideal desired temperature. The last action for this state implies

heating up to the maximum desired temperature set as an ideal temperature to maintain.

Low state corresponds to the situation when the difference between current indoor temperature

and desired temperature is bigger than one degree. In our model, this state implies lesser

temperature difference between indoor and desired temperature values than for the Critical

state. As we assume that heater agent does not have the desire to increase the difference

between current and desired temperature we reduce the number of strategies for the Low state

and make agent choose between two options: heat up to intermediate or to ideal state. As
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the Intermediate state is closest to the ideal temperature, we make it possible for the agent to

stay in this state or heat up the room to ideal temperature. If the indoor temperature in the

room is equal to the desired temperature, which corresponds to Ideal state, we assume that no

actions from the heater agent required and heater turns off.

This state-action structure allows heater agents to change their energy demands based on action

choices and act according to minimum policies in case of lack of renewable energy as well as

use maximum amount of energy if possible. In order to make agent learn that action to choose

for every state the reward system is set. Amount of reward depends on the choices of agents

and distributed based on results of trading. We assume the following possible situations for the

trading results:

• “energy left”: if all the demands are satisfied and some energy surplus exists

• “not enough energy”: if amount of renewable energy is not enough to satisfy all the

demands

• “no buyers and sellers left”: situation when amount of renewable energy is equal to the

amount of the demands

Similar sets of situations are considered in all our models as it reflects possible results of common

good distribution which were modeled. The reward for the agent is evaluated based on agent

action and situation after trading. We assume that existing of energy surplus after trading yields

possible increasing of demands to maximize usage of renewable energy and choices which leads

to increasing the demand such as heating up room to ideal temperature instead of minimum,

results in a bigger reward. On the other hand, acting within the minimum policies such as

heating up to a minimum in case of energy surplus, is penalized using reward, equal to zero.

For the case of lack of renewable energy reward evaluation is opposite and reducing the demand

in order to save energy is rewarded.

In case if all renewable energy was distributed successfully between the agents and no surplus

or lack of energy exists, both learning agents get a maximum reward as we assume this scenario

as most desirable for us. Based on the amount of occurrence of every situation, agents can learn

which strategy to choose.

Amount of reward for agents is scaled based on maximum temperature values from the temper-

ature range as for learning it is important to keep the size of reward within the certain limits

depending in order to stabilize learning rate and reduce the possibilities for an agent to fall into

specific behavior patterns too fast.

Centralized approach

For the centralized approach in smart house model, we consider energy demands of agents
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as loads which can be encoded in a binary vector. In every time step, the controlling agent

receives information about current energy loads and available renewable energy. Based on the

number of customers and their demands, the set of loads for this time step is created. Using

the distribution algorithm 1, described earlier, controlling agent distributes available energy

according to a founded solution with the best fitness. In order to calculate fitness for this

model, we implement fitness function which, with slight abuse of notation, can be described by

the equation 3.6.

f(x) =

N − (p− dx), if dx ≤ p

0, otherwise
(3.6)

where N is positive numerical constant defined as N ≥ (p + d) in order to ensure that f(x)

will be always positive, p is total amount of available renewable energy, dx is sum of demand

for particular binary vector x, d is total amount of energy demand. The lesser is the difference

between available energy and amount of demand represented by vector x, the closer is this

solution to Pareto optimality as it implies that the energy cannot be distributed differently

without worsening the result for at least one agent[45]. The ideal situation implies zero differ-

ence between supply and satisfied demand which means that all the energy can be successfully

distributed. In terms of Pareto optimality, this solution will be dominant and will have the best

fitness. Demands which cannot be satisfied with the renewable energy assumed to be satisfied

from the outer source such as smart grid.

3.2.2 Smart parking and cars model

For the smart parking problem, we implement a model which consists of car agents as smart

cars with a desire to park for the particular amount of time and parking slot agents as available

parking slots with the goal to sell their acceptability to cars. A limited number of available

parking slots in every time step represents common good which is distributed between cars

during every time step.

In order to generalize our model and highlight the aspect of multi-agent interactions, we decide

to model every parking slot as an agent. In theory, every parking slot can have set of sensors

and act as a part of a smart network created by the interactions with drivers or smart cars using

different communication methods as was described in [16]. In the figure 3.6 example of diagram

of implemented classes can be seen.
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Figure 3.6: Smart parking model.

Car agent, represented by the CarAgent class has a desire to park for the period of time, chosen

within the defined boundaries. The probability for the car agents to have a demand for parking

increasing during peak hours for traffic congestion[46],[47] as the bigger amount of cars on the

roads is considered during these hours. In order to park, agent forms a bid using price defined

within the boundaries.

Parking slot agent, represented by the ParkingSlotAgent class sells its availability to the car

agents. The availability depends on the amount of time parking slot is occupied by the car.

Each parking slot has two possible states:

state =

busy, if occupied time > 0

free, otherwise

In each time step, available parking slots are distributed between cars which want to park. Then

the car is paired with the parking slots they both excluded from distribution for the amount of

time car desired to park.

The TradeInterface class in this model has the same role as for the smart house model and

also replaced by the ControlAgent class in the centralized approach.

The InitAgent class is used for the ZI decentralized approach to set initial price limits for the

parking slots.

Decentralized zero-intelligent approach

In the decentralized ZI approach for parking we slightly modify the initial market model and

simulate interactions between car agents as buyers with individual bids and parking slots as

sellers with an initial price limit, defined before the start of every trading period. When the car

agent is paired with the parking slot, it suggests its bid and if the deal is successful, they both

excluded from the trading for the amount of time bought by the car agent.
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After each deal price of available parking slots, waited to be paired, is updated based on average

price of the deal. As price limit is updated after every deal regardless of the outcome, we still can

have each transaction be resulted in individual price. On the other hand, using this principle we

can dynamically update price for the parking based on demands of the consumers and results

of the deals.

Decentralized approach with learning agents

For the decentralized approach with learning agents in this model, we apply principles of the

distributed market with the intelligent agents, demonstrated in [19]. In contradiction to ZI

approach, we consider both car agents and parking slots as learning agents with sets of strategies.

Strategies for agents represented by price choices which are discretized to integer values between

determined price boundaries. This implies that all strategies of agents are contained in the set

s ∈ S = {pmin, .., pmax}, where pmin and pmax are minimum and maximum price boundaries.

For every trading period car agents and parking slot agents make a price derisions by choosing

a particular strategy from the set. When trading is conducted, agents which participate in

trading receive rewards according to results of the deals.

If the deal between two agents is successful, both of them are rewarded. A reward of car agent

is based on the difference between chosen bid price and outer price, which represents price for

other parking places. This implies bigger reward for the lower bid price. For the parking slot

agent amount of reward is based on ask price as we assume that higher ask price in the case

of the successful deal is more profitable for the seller. In order to reduce differences between

rewards for buyers and sellers and avoid falling into specific bidding pattern too fast, all rewards

are normalized using the maximum value from the set of prices. If the deal is rejected, both

agents are penalized and have to choose another price strategy. This allows agents to learn that

strategy is more likely to lead to the successful deals. As a result of their interactions, both

selling and buying side agents can learn to use particular price strategy.

Centralized approach

In the centralized approach, we encode every car agent with the desire to park as a load and

create a vector of loads based on a number of cars. The available amount of parking slots serves

as the boundary for fitness function similarly to the available amount of renewable energy for the

smart house model. Calculation of fitness for every binary vector of loads is based on following

conditions:

f(x) =

bx, if sx ≤ p

0, otherwise
(3.7)

where bx is the sum of bids of car agents in vector x, whose demands could be satisfied, sx is

the number of agents in vector x which could park in regards to the available amount of parking

slots and p is the total amount of available parking slots. Every car agent, encoded in binary

vector x as 1, which implies that its demands are going to be satisfied, is added to the number
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of agents suggested to distribution by this vector. If this amount is not bigger than a number

of available parking slots, vector x can be considered as a possible solution. As every car agent

has individual bid, the higher is the sum of bids from the combination of agents, suggested for

the distribution, the higher is fitness value of the vector, representing this solution. Using these

constraints we try to find the combination of car agents with the highest bids, whose demands

can be satisfied in accordance with available parking slots at the current time step.

For the distribution in accordance with the chosen solution, car agents are randomly assigned

to the available parking slots and excluded from trading similarly to decentralized approaches.

3.2.3 Smart traffic and toll stations model

For this problem, we consider a limited system which consists of car agents, toll agent for the

main road and two barrier agents for sideways. Car agents considered as consumers with the

desire to pass on the road. Road agents represent sellers side, they can sell the opportunity

for the car to pass for a price. Barrier agents can close access to the sideways during rush

hours, defined based on traffic congestion data[46],[47], but it can be opened if the level of car

density on the main road is too high. This model represents an idea of interactions between

road elements such as toll station and barriers, and cars with gathering and sharing information

about congestion levels on the roads and prices, using different communication methods and

sensors.

Common good in this case represented by the capacity of the roads as the only limited amount

of cars can pass on the available roads in every time step. Cars which want to pass represent

the loads and must be distributed between the available roads based on capacity and prices.

The figure 3.7 shows the example of diagram of classes in this model.

Figure 3.7: Smart traffic model.
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CarAgent class corresponds to car agent as a demand-side agent similarly to smart parking

model. For this model, we differentiate cars by three categories and set individual price limits

for every category based on group rates and price data from the FJELLINJEN[48]. Every car

agent can have one of the following types:

• car: corresponds to vehicles with an allowed total weight of 3500 kg and below, for example

a passenger car.

• lorry: corresponds to vehicles with an allowed total weight more than 3500 kg, for example

a truck or similar transport

• emergency: corresponds to emergency services such as an ambulance or fire trucks

Emergency services have the priority to pass. In case of the decentralized approaches, cars

with this type can pass without paying the price in order to guarantee that the car will have

a successful deal with the chosen road agent and pass immediately. BarAgent class represents

barrier agents responsible for two sideways. GateAgent class represents gate agent responsible

for the main road. In contradiction to the sideways, it is always open and serves as the main

seller for the cars. The main road assumed to have more available traffic throughput per time

step. Every road can have different parameters such as length and maximum speed limit. Speed

parameter of the road determines the speed of driving through the road. When the road is free

it is equal to the maximum speed limit. With increasing number of cars on the road speed

parameter decreases. The formula, described by the equation 3.8, is used to calculate speed

parameter of the roads[49].

Ui =

((
1− ki

kmax

)m)n

(3.8)

where Ui is speed parameter for the road i, ki is the current car density level of the road i and

kmax is the road maximum capacity value per time step, m and n are positive constants. The

RoadInterface class represents an interface for trading between agents for the decentralized

approaches. It serves to provide interactions between sellers and buyers in a P2P manner

similarly to TradeInterface class, described earlier.

Decentralized zero-intelligent approach

For the decentralized ZI approach, we create a model based on similar aspects as ZI parking.

Car agents, which have a desire to pass, choose their bid prices defined within the boundaries

of maximum and minimum price limits. Price limits are set individually for every type of car

agent. As the emergency services do not need to pay in order to pass, they do not need to

choose bid price. Sellers, represented by the gate agent for the main road and barrier agents

for the sideways, choose their ask prices, defined within the same boundaries. The process of

trading is similar to previously described ZI approaches with a structure, described earlier in

section 3.1.1.
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When the car agent is paired with one of the available sellers, it can get the right to pass in

case of successful deal or be rejected and wait to be paired again. Trading is conducted until all

the cars are distributed between the available roads or the maximum capacity for the current

time step is reduced to zero, which implies that no more cars can pass. The cars which have

not manage to pass at the current time step form a queue of waiting cars and become first to

be distributed at the next time step.

Decentralized approach with learning agents

In this approach we consider behavior model of car agents to be similar to reactive agents, which

react to the input from the environment based on defined policies[50]. In contradiction to ZI

approach, car agents can decide which road to choose based on current state of the road and

price for a pass.

In order for car agent to make a choice, we introduce parameter of time for pass, calculated

using equation 3.9.

Ti =
li
Ui

(3.9)

where li is the length of the road i and Ui is the speed parameter of the road from the formula

3.8. With increasing number of cars on the road, the parameter of time for a pass for this road

increases. In every time step car agents with the desire to pass choose sellers based on the sum

of the time for pass and price for a pass.

Trading process is similar to that of the ZI approach, but instead of being randomly paired with

the sellers, car agent searches for the available road with the lowest time and price for a pass.

This reflects the desire of car agent to find faster and possibly cheapest way.

In this approach, we combine together several elements from the previous models such as a

discretized set of states from the smart house learning agents and price strategies from the

smart parking learning approach. Seller agents, represented by Gate agent and Barrier agents

are considered as learning agents with sets of discretized states based on density levels. For every

state, agents have set of price decisions discretized to integer values within the maximum and

minimum price boundaries. Price choices for car agents determined within the same boundaries.

During the trading process, car agents are paired with available sellers and in case of a successful

deal, car agent acquires the right to pass from the seller, updating its density level. In case of

rejected deal car agent is assumed to wait for other offers and seller is penalized in order for it

to change its price decision.

States for selling agents are assigned based on current density levels. Amount of reward received

by the agent depends on price decision made by this agent and the state it is in. We assume

that passing on the roads with low levels of car density implies higher ask prices to be rewarded

more. On the other hand, in case of high density levels, the reward for lower ask prices is higher
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in order to make car agents pay less for possibly higher travel time. The purpose of these aspects

is to differentiate prices for the selling agents depending on the demands and density situation

on the roads.

As a result of this approach, sellers try to learn specific price strategies based on results of the

trading process and density levels. Car agents are distributed between the available roads based

on changing density levels on the roads and price decisions of the sellers. Emergency services

have the priority to pass similarly to ZI approach. Cars which do not manage to pass in the

current time step, form a queue and have a priority for the distribution at the next time step.

Centralized approach

In the centralized approach, we encode car agents with the desire to pass as loads similarly

to centralized smart parking and consider an available capacity for the current time step as a

resource which can be distributed. Fitness function for this approach described by the equation

3.10.

f(x) =

bx, if sx ≤ c

0, otherwise
(3.10)

where bx is the sum of car agents bids for a pass in vector x, sx is the number of agents in vector

x which could be distributed between the roads in accordance to total capacity value c for the

current time step. The process of distribution is similar to centralized parking as in both cases

we have car agents with the desire to get a supply be it the right to park or the right to pass

on a road.

For these model we have emergency services and cars, waiting in a queue as prioritized groups

which have to be distributed first in order to reduce congestion. After all emergency services

and waiting cars are distributed, distribution of other cars is conducted in regards to available

capacity and sums of the bids. We assume controlling agent to know information about current

density levels on the available roads and distribute cars accordingly using speed parameter,

described in formula 3.8.

Together with Mesa framework, described in section 2.4, we use several additional libraries:

Numpy and Scipy.stats for the simulation of the output from the environment using normal

distribution, Pandas and Xlrd for working with data from the wind farm and Matplotlib for

creating the graphs.
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Results

As a result, the study of the theory made it possible for us to understand considered problems

from different angles and to focus on the goals of the experimental part. In this chapter the

results of conducted simulations for the set of considered problems are shown.

4.1 Smart house simulation

For the smart house, we model interactions between demand-side and supply-side agents.

Demand-side agents represent parts of the smart house system, such as two heaters in dif-

ferent rooms, light system, and heated floor. Energy battery agent also considered as a possible

consumer as it needs to maintain certain energy level for the battery. Supply-side agents rep-

resent renewable energy sources for the smart house such as solar and wind energy. For our

model, we calculate amounts of energy in kWh and consider hourly time steps.

In order to calculate the demand for heating the rooms, we use specific heat formula, represented

by the equation 3.3. Parameters for the formula, which were used in the simulation, described

in table 4.1.

parameter value

cp 1.00J/gK

p ≈ 1275g/m3

A 15m2

h 2.5m

m pAh

∆T tdesired − tindoor

Table 4.1: Heater formula parameters

36
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Indoor temperature is simulated using normal distribution and data from [38]. Example of

simulated levels of indoor temperature for two heaters can be seen in the figure A.1 in Appendix

A.

Amount of occurrences on this figure shows how many times during simulation period particular

temperature level was simulated. Each room corresponds to different heater agent. Heaters have

a parameter of minimum temperature level which should be maintained, equal to 20◦C.

Energy demand from the light system depends on the difference between levels of outdoor light

and desired light level. The parameter of the desired level for the indoor light represented by

the set of profiles, each of which corresponds to the particular level of light intensity. In the

table 4.2 implemented set of profiles described.

User profiles
illumination
level (lux)

4 1500

3 500

2 100

1 0

Table 4.2: Desired indoor light level profiles

User profile 4 corresponds to the maximum available illumination level based on recommended

light level value for very detailed work. User profile 3 corresponds to the recommended illumi-

nation level for office and study work. User profile 2 corresponds to the light level for the basic

orientation. User profile 1 implies that no illumination is needed so the light turns off.

As the outdoor illumination level depends on many various conditions we decide to use dis-

cretized values based on illumination levels for the overcast day, sunset and sunrise[40]. In

order to reduce the difference between possible outdoor and indoor illumination levels, for the

outdoor illumination, we decide to use values close to indoor illumination as in reality influence

of outdoor illumination on the indoor light level can be reduced by different factors. Using

dependence on time and weather types we can still maintain logically correct relations between

outdoor and indoor light while reducing the complexity of our model.

If the current time is less than 7 a.m. we consider light level to be minimal, which for our model

is equal to 20 lux.

At 7 a.m. we consider a sunrise with a maximum light value of 400 lux for the sunny weather,

100 lux for the partly cloudy weather and 40 lux for the cloudy weather. In case of rainy weather

illumination level is set to minimum. For the time of a day between 7 a.m. and 18 p.m., we

have maximum illumination level of 2000 lux in case of sunny weather, 200 lux for the partly

cloudy weather and 100 lux for cloudy weather.
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At 18 p.m. we consider a sunset, which implies illumination level of 400 lux for the sunny

weather and 80 lux for the partly cloudy weather. For the time after a sunset and before the

next sunrise illumination level is set to minimum.

Example of simulated outdoor light levels during 24 hours can be seen in the figure A.2 in

Appendix A.

For the formula 3.5, which is used to calculate amount of energy needed for the light agent, we

use the same room area parameter A = 15m2 as for the heaters, parameter of lumens per watt

lmw is equal to 90 lumens/W , which is assumed to be close to this parameter for the LED

lamps based on data, described in [39].

The demand of agent, responsible for the heated floor is set based on data about heating floor

running costs for the typical bathroom[41] and is equal to 0.8 kWh.

For some of the agents such as agents, responsible for heaters, light and heated floor, we assume

the fact of somebody being in particular room where device corresponded to the agent is placed,

to influence the demand. Probability of a person being in the room or outside depends on day

and time. Example of the simulated probability of a person being in any room during 24 hours

is shown in the figure A.3 in Appendix A.

In order to simulate solar energy, we use values from the dataset, provided by my advisor. After

calculating average hourly amounts of solar energy, we use these values and normal distribution

formula 3.4 to create new values for our simulation. For the purpose of making amounts of

acquired solar energy vary based on time of the day and possible weather condition, we use set

of weather coefficients, presented in the table 4.3.

weather types coefficient

sunny 1.3

cloudy 0.8

partly cloudy 0.3

rainy 0

Table 4.3: Weather type coefficients

By multiplying our energy output values on these coefficients, we can simulate the influence of

weather condition on the amount of solar energy.

Example of simulated solar energy levels during 7 days can be seen in the figure A.4 in Appendix

A.

In contradiction to solar energy, wind energy is less predictable. In our model, we use scaled

data from the wind farm to simulate wind energy. In the figure A.5 in Appendix A example of

simulated levels of wind energy during 7 days is shown.
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4.1.1 ZI decentralized approach

One of the main goals of this simulation is to test how agents can share common good which is,

in this case, represented by a renewable energy. Figures 4.1 and 4.2 show results of energy dis-

tribution between demand-side and supply-side agents in the smart house. Period of simulation

is 7 days or 168 hours.

Figure 4.1: Energy distribution during 7 days.

For this simulation we use pure renewable energy sources such as solar energy and wind without

additional energy stored in battery. This help us to show how amount of satisfied demands

vary depending on available energy. Example of energy distribution in case of storage and all

renewable energy sources included can be seen on the figure A.6 in Appendix A.

In the figure 4.2 example of energy distribution in case of only solar energy source available is

shown. The simulated period is the same as for the previous case.
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Figure 4.2: Energy distribution during 7 days with only solar energy.

In this case amount of demands would be often higher than available amount of energy supply.

But still, in each trading episode maximum of available renewable energy would be distributed

in regards to supply and demand amounts.

4.1.2 Decentralized approach with learning

For the smart house, we consider two learning heater agents with the goal to maintain particular

temperature range. For these agents, we use discretized set of states and actions they can

perform, described in table 3.2. Based on the energy balance of the smart house, heater agents

can change their decisions and reduce or maximize the amount of desired energy.

For the learning algorithm, described in 3.1, we use recency parameter r = 0.8 and experimen-

tation parameter e = 0.5. Initial propensity values are equal to 1. As we do not have many

different strategies for each state of the agents, even with high recency parameter both agents

are able to learn that strategy to use fast. On the other hand, with experimentation and recency

parameters we can give agents an opportunity to change their behavior model.

In the figures 4.3 and 4.4 we can see how decisions of agents change in regards to the state of

the environment during simulation period of 7 days.
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Figure 4.3: Heater agents choices during 7 days in case of high level of energy supply.

Figure 4.4: Heater agents choices during 7 days in case of low level of energy supply.

Parameter of number of choices made shows how many times particular type of action was

chosen during the simulation period.

Figures 4.5 and 4.6 show changes in amounts of energy demands from the heaters based on

available renewable energy.
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Figure 4.5: Heater agents demand values during 7 days in case of high level of energy supply.

Figure 4.6: Heater agents demand values during 7 days in case of low level of energy supply.

4.1.3 Centralized approach

For the centralized approach, problem of energy distribution is handled by the controlling agent

using the algorithm 1. For this case fitness of each solution is calculated by the fitness function,

described in 3.6. For the algorithm we use number of iterations NI = 300 and number of

iterations for partner set NIT = 5. Figures 4.7 and 4.8 demonstrate energy distribution during

simulation period of 7 days.
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Figure 4.7: Energy distribution with centralized approach during 7 days.

Figure 4.8: Energy distribution with centralized approach during 7 days with only solar
energy.

These figures demonstrate energy distribution in case of wind and solar energy as available

energy sources in the figure 4.7 and only solar energy in the figure 4.8.

4.2 Smart parking simulation

For this simulation, we model the distribution of parking slots between car agents. Amount

of free parking slots represents common good which is distributed between car agents with the

desire to park. For the simulation, we use hourly time steps. Each car has a parameter of
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desired time for parking t ∈ [1, .., 5], with the minimum value equal to one hour or one time

step.

Amount of cars with the desire to park depends on the time of the day and increases during

peak hours based on traffic congestion data from [46] and [47] with probability of the car to

have a desire to park increasing from 7 a.m. to 9 a.m. and from 15 p.m. to 17 p.m. In the

figure B.1 in Appendix B an example of simulated levels of demands for the parking during 24

hours is shown.

4.2.1 ZI decentralized approach

Figure 4.9 shows distribution of parking slots during simulated period of 7 days. The total

amount of car agents is equal to 100, the total amount of parking slot agents is 80. As we use

probability values for car agents to simulate their desire to park, amount of car agents can vary

for each trading period.

Figure 4.9: Distribution of parking slots during 7 days.

In order to distribute parking slots, we use the similar market-based model as for the smart

house. Distribution of parking slots conducted through the trading process between car agents

as a buyers and parking slot agents as a sellers. But in this case, we focus more on price choices

for bid and ask prices. For ZI approach each agent has set of price choices p ∈ {50, 200}.

In the figure B.2 in Appendix B levels of average price for the deals during the simulated period

of 7 days are shown.

At the start of each trading car agent chooses its bid price from the price set and parking slot

agent gets its ask price. If bid price of the buyer is more or equal to ask price of the seller, they



Results 45

can have a deal. Otherwise, buyer’s bid is rejected and buyer needs to wait to be paired with

one of the sellers again. Levels of rejected and satisfied deals during the simulation period of 7

days can be seen in the figure 4.10.

Figure 4.10: Satisfied and rejected deals during 7 days.

4.2.2 Decentralized approach with learning

In this approach, we consider car agents and parking slot agents as learning agents with sets

of bid decisions. Bidding decisions are discretized to integer values between lower and upper

bound of market prices, therefore it makes every price strategy for the agents be in the set

s ∈ S = {50, 60.., 240}. In order not to make the number of possible price strategies too big we

increased the gap between them. The outer price which represents price for other parking slots

and used to calculate the amount of reward for the buyer is set to 175 NOK, which is slightly

higher than the average price for the local market and is increased during peak hours, based on

traffic congestion. Maximum outer price is equal to 262.5 NOK which is 1.5 times higher than

usual outer price.

Example of levels of rejected and satisfied deals during the simulated time period of 7 days can

be seen in the figure 4.11.
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Figure 4.11: Satisfied and rejected deals during 7 days with learning agents.

For the learning algorithm, we tried to use different values for the parameters. For this simu-

lation we decided to use the same propensity values equal to 1, recency parameter r = 0.8 and

experimentation parameter e = 0.5, as for the smart house model.

4.2.3 Centralized approach

For the centralized approach we use the same algorithm as for the previous model, but instead of

energy loads, cars with a desire to park are encoded. The fitness of every solution is calculated

using fitness function, described in 3.7. Figure 4.12 shows the distribution of parking slots during

the simulated period of 7 days. As in this case solutions include more elements and more possible

combinations, size of initial population and amount of iterations for finding a suitable solution

for the algorithm are increased. For this simulation we use number of iterations NI = 600 and

number of iterations for partner set NIT = 5.
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Figure 4.12: Distribution of parking slots with centralized approach during 7 days.

4.3 Smart traffic simulation

For the traffic problem, we consider the hourly capacity of the roads as common good which is

distributed between car agents with a desire to pass through the gate on the main road or two

barriers on the sideways. Gate and barriers are represented by the agents which can provide

the right for the cars to pass. For this simulation, we implement 3 types of cars with different

sets of prices for each type. Prices for each type described in the table 4.4.

Car types Price limits

car price ∈ {46, 56}
lorry price ∈ {132, 162}

emergency price = 0

Table 4.4: Price limits for car types

Type emergency is considered as the type with priority to pass without paying. We consider

each car agent to choose the type during initialization with particular probability for each choice.

With this, we can have different amounts of cars for each type.

Example of type distribution during the simulated period of 7 days is shown in the figure 4.13.
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Figure 4.13: Levels of cars of each type during 7 days.

Total number of cars participating in trading shows the number of cars of each type which took

part in the trading process during the whole simulated period.

4.3.1 ZI decentralized approach

For this case, we simulate interactions between 100 car agents, one gate agent responsible for

main road and two barrier agents responsible for the sideways. Similarly to other cases, we use

hourly time steps for the simulation. Car agents represent buyers with the desire to pass, road

agents represent sellers which provide the right for the cars to pass.

Road agents have the different hourly capacity - gate agent has an hourly capacity equal to 40

as we assume the main road to be able to have the higher amount of cars per hour. Barrier

agents have an hourly capacity equal to 20. As a result, we have the total hourly capacity for

the roads equal to 80 cars per hour. For the distribution process, we use the same market model

with P2P trading between buyers and sellers. Example of the roads capacity distribution during

the simulated period of 7 days can be seen in the figure 4.14.
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Figure 4.14: Distribution of roads capacity during 7 days.

For this case, we do not consider different parameters such as length or maximum speed limit

for the roads as ZI agents assumed to ignore information about the environment and act only

according to constraints defined by the market model. This makes distributed amounts of cars

between the roads be dependent only on results of the trading. An example which shows how

cars are distributed between the roads during the simulated period of 7 days, can be seen in the

figure 4.15.

Figure 4.15: Distribution of cars between the roads during 7 days.

4.3.2 Decentralized approach with learning

For the decentralized approach, we consider car agents be similar to reactive agents with the

goal to find fastest and possibly cheapest way from the available roads. For every road, we
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consider parameter of length and maximum speed limit. For the main road, represented by the

gate agent we consider length be equal to 7 km and speed limit be 70 km/h. For both sideways,

we have length be equal to 10 km and speed limit be equal to 60 km/h. In our calculations, we

assume some amount of freedom for the interpretations as the main purpose of these parameters

is to distinguish the main road and sideways and make the main road more likely to be selected

in case of equal car density levels on all available paths.

Example of cars distributed between the roads during the simulated period of 7 days using

described approach can be seen in the figure 4.16.

Figure 4.16: Distribution of cars between the roads during 7 days with car agents choosing
the roads.

Capacity parameter shows the highest capacity value between all the roads, which is for this

simulation is equal to 40 cars per hour for the main road.

An important aspect of this learning approach lies in implemented behavior model for the road

agents which are considered as learning agents with the discretized states based on car density

levels. For each state road agents have set of price strategies, based on price sets, shown in the

table 4.4, discretized to integer values. In the table 4.5 states and corresponding density levels

for them are shown.

states density levels

empty 0% ≤ x ≤ 20%

low 20% < x ≤ 40%

intermediate 40% < x ≤ 60%

packed 60% < x ≤ 80%

full x ≥ 80%

Table 4.5: States of the roads based on density levels
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where x is the current density level. Percentage is based on maximum capacity value for the

road.

To show how price strategies are chosen according to density levels we consider the distribution

of price strategies for the lorry type of the car for the gate agent during the simulated time

period of 7 days.

Figure 4.17: Distribution of prices for the lorry on the main road with low density during 7
days.

Figure 4.18: Distribution of prices for the lorry on the main road with high density during 7
days.

In the figure 4.17 distribution of prices in case of relatively low level of density on the main road

is shown, with average density value during a simulated time period equal to 12.56 considering

the maximum capacity of the main road being equal to 40.
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In the figure 4.18 situation with the relatively high density level on the main road is shown

with average density during the simulated period being equal to 27.44 with the same maximum

capacity for the road as for the previous case. Set of prices is also the same.

For this case, we change recency and experimentation parameters to 0.1 in order to increase the

speed of learning due to the high amount of choices and desire to make our agents learn specific

behavior models for every state. Initial propensity values which were used are the same as for

other cases.

4.3.3 Centralized approach

For this case, we encode car agents with a desire to pass through the gate at the main road or

barriers at two sideways similarly to energy loads or parking cars. In order to calculate fitness

for each possible solution, we use fitness formula, described in 3.10. As we need to handle

emergency cars with the priority to pass and cars waiting in a queue, we distribute them first

and use an algorithm 1 to distribute other cars according to available capacity. Number of

iterations NI and number of iterations for the partner set NIT are the same as for the smart

parking simulation.

Example of distributed capacity between car agents during the simulated period of 7 days can

be seen in the figure 4.19.

Figure 4.19: Distribution of roads capacity with centralized approach during 7 days.
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Discussion

5.1 Results interpretation

The primary objectives of this work were to create a set of models for different problems related

to Smart City with several approaches applied for each model, study how for each problem

agents can find a way to share a common good and demonstrate intelligence in adaptability

and problem-solving capabilities, as well as investigate the possibilities of applying similar ap-

proaches for different cases in order to demonstrate flexibility and universality of multi-agent

solutions.

With the chosen way of implementation and considered set of problems we managed to design

multi-agent system architecture for different cases and create several models for each problem.

Such concepts as P2P market design, a market model with self-interested zero-intelligent agents,

reinforcement learning in regards to agent behavior, decentralized and centralized agent-based

models, were studied and applied to the design of different approaches for the modeled problems.

For the decentralized models, we used market design, described in [19], which allows interactions

between sellers and buyers in the P2P local market. Distribution of common good, in this case,

was provided via interactions between the active seller and buyer agents on the local market.

For the centralized approach, we used a controlling agent with an algorithm for the distribution

based on genetic algorithm to encode energy loads or other demands and find a solution which

can be satisfied in regards to the available amount of supply.

As we consider each problem in terms of distribution of common good, for every simulation

we have agents as consumers, which have a goal to acquire the particular amount of limited

resource, provided by supply agents. In case of smart house, as described in section 3.2.1,

agents, responsible for different house systems such as two heaters, light and heated floor, are

designed and implemented as pure consumers with energy demands, which can be satisfied by

53
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renewable energy, provided by sellers such as agents responsible for solar energy and wind energy

with agent, responsible for energy battery as prosumer which can also buy energy to maintain

battery balance. Due to the overall energy balance of the house, for the simulation results, we

used pure renewable energy sources to show changes in satisfied demands in case of high and

low energy levels. For initializing amounts of supply and demands we used data, acquired from

the different sources including data, derived from the datasets, provided my advisors.

In the model, presented in section 3.2.2 we considered car agents as consumers with a desire to

park and parking slot agents as sellers which can sell the right for the car to park at the certain

parking slot. Amount of available parking slots was considered as common good in this case.

Using data about peak traffic hours we were able to differentiate amounts of demands according

to the time of the day.

For the model of the smart traffic with gate and barriers, presented in section 3.2.3, we considered

the available hourly capacity of the roads as a common good, distributed between different types

of car agents with the desire to pass through the main gate or two barriers.

In chapter 4 we presented results of the simulations of implemented approaches for each con-

sidered problem with various parameters.

For the smart house we simulate the distribution of renewable energy between smart house

agents for the particular time-period equal to 7 days or 168 hours as we have hourly time steps

for the models. Changes in amounts of energy demands and supply per hour are supported with

different weather states and time of the day. Results of the smart house simulation described

in section 4.1.

Results of smart house simulation with zero-intelligent agents, described in section 4.1.1 aimed

to show how renewable energy is distributed between agents according to implemented market-

based model. We considered cases with different levels of available energy. As expected, the

process of distribution follows the same rules regardless of the amount of available energy, traded

on the local market, and amount of distributed energy during each hour corresponds to amounts

of supply and demand so that maximum amount of demands would be satisfied if possible. As

can be seen from the figure 4.2, even in case of low energy levels every consumer will acquire as

much energy as it can in regards to the available amount of energy.

With results of the simulation with learning agents, described in section 4.1.2 we wanted to show

how agents can learn to use particular strategy in accordance with the states of the environment

on the example of two heater agents with sets of states and strategies for each state.

Figures 4.3 and 4.4 show that, in case of sufficient amount of energy both heater agents learn to

maximize their demands and heat the rooms to ideal desired temperature (which corresponds to

ideal choice) or close to ideal desired temperature (which corresponds to intermediate choice)
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instead of heating to minimum (which corresponds to min choice). On the other hand, in case

of lack of energy, heater agents more frequently choose actions which allow reducing energy

demand such as heating to the minimum temperature if possible or heating to intermediate

temperature level, rather then heating to the maximum value.

From the figures 4.5 and 4.6 it can be seen that, in case of sufficient amount of energy, heater

agents have higher demands as a result of deciding to heat the room to the higher temperature

more frequently. However, in case of low level of energy supply, heater agents reduce their

demands which allow saving more renewable energy. As a result, less amount of energy is

needed to be bought from the grid. This shows how learning agents can adapt their behavior

according to changes in the environment.

Results of the simulation of the centralized approach, presented in section 4.1.3 had the goal

to show the distribution of renewable energy, handled by the controlling agent using the im-

plemented algorithm. As a result, we observed that, using genetic algorithm-based approach

with sets of simple constraints, a controlling agent trying to find optimal or close to optimal

solutions in terms of energy distribution according to demands and available supply for each

hour during the simulation. For only one agent to do it, sufficient amount of information about

supply and demands is needed. For the implemented algorithm high initial population and

increasing amount of iterations for finding the solutions can influence the quality of results. As

in this case we do not consider the flexibility of the energy demands, each demand is satisfied in

regards to the available amount of renewable energy, if demand is higher than available amount

of energy, it needs to be satisfied from the other sources such as a grid. This implies that

particular energy demands which cannot be fully satisfied, are omitted from the solution. For

this case, we implemented additional check after main distribution in order to at least partly

satisfy energy demands which were omitted.

Results of smart parking simulation, presented in section 4.2 had the goal to show how a limited

number of parking slots can be distributed between cars. We considered 7 days as the simulated

time period. Amount of demands for the parking corresponds to traffic peak hours. For the

simulation we used a total number of car agents equal to 100 and the total amount of parking

slots equal to 80.

Observing the results of parking slots distribution, shown in figure 4.9 for the zero-intelligent ap-

proach, described in section 4.2.1, we can say that distribution is following amounts of demands

and available amounts of parking slots. As for each hour amount of cars with a desire to park

can be different, situations where available parking slots were enough to satisfy all demands,

and the situations where not every demand was satisfied, occurred during the simulated period.

At the start of simulation amount of demands is higher as from the total amount of cars no cars

are currently parked. After the first trading period, some amount of cars was able to acquire
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available parking slots and was excluded from further trading episodes for some periods of time.

This cause total amount of demands to be reduced.

In the results of simulation of smart parking with learning agents, shown in section 4.2.2 we

demonstrated how agents can learn to use particular strategies through their interactions on the

local market. Comparing levels of successful and rejected bids during the same simulated time

period for zero-intelligent agents, shown in the figure 4.10, and learning agents, shown in the

figure 4.11, we could see that amount of rejected bids in case of learning agents is decreasing

during simulated time period, as a result of both sellers and buyers are learning to use specific

price strategies. As both seller and buyer get a reward, equal to zero as a penalty in case of

a rejected deal, they will try to find a way to reduce the amount of rejected bids regarding

amounts of individual rewards, which can be beneficial for the market efficiency.

During simulation tests, we considered different values for the recency and experimentation

parameters for the learning agents. As a result, we managed to observe that with a decrease of

recency and experimentation parameters influence of individual rewards for the agents increases.

As we reward buyer and seller agents differently, with higher reward for the higher ask price

of the seller and higher reward for the lower bid price of the buyer in case of successful deal,

the amount of rejected deals in case of recency and experimentation parameters, equal to 0.1

decreases slower comparing to higher recency and experimentation parameters, used to acquire

the results, shown in section 4.2.2. This is also caused by the fact that agents are less prone

to try other strategies in case of low experimentation and recency parameters and it can take

more time for them to change their decision patterns.

For the centralized approach for the smart parking model, we considered each car with a desire

to park similarly to the energy load in case of a smart house. According to results for this

approach, shown in the figure 4.12, we can conclude that even with increasing number of agents

in the system, with clearly defined sets of constraints, the controlling agent manages to find a

solution and distribute common good in order to satisfy as many demands as possible. Although,

with increasing number of possible combinations it can take more iterations for the algorithm

to find a better solution.

In the smart traffic simulation, hourly capacity of the roads is considered as common good,

distributed between car agents with a desire to pass through the gate on the main road or

barriers on the two sideways. Agents, which corresponds to the gate and barriers are considered

as sellers, which provide the right to pass for the cars.

For the car agents we implemented three different types with specific prices for the pass for

each type, as shown in table 4.4. Among implemented types emergency type has the priority

to pass, but also the lowest chance of occurrence during all trading episodes, as demonstrated

on the figure 4.13. For the simulation, we considered the total amount of car agents equal to
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100 and the total amount of hourly capacity equal to 80 with a capacity of 40 for the main road

and 20 for both sideways.

As shown in the figure 4.14, distribution of the cars corresponds to capacity values of the roads.

During traffic peak hours amount of cars with a desire to pass through the gate or barriers

increases. During these peak hours, barriers can block sideways which cause the amount of

total available capacity to be reduced but both sideways can be open based on density situation

on the main road. This allows the amount of available capacity to vary for every hour. Amount

of cars waiting in the queue also influence the amount of available capacity for the buyers as

these cars have the priority to be distributed at the start of each trading.

As some of the cars are not able to pass during particular trading episodes they are distributed

at the following trading. This, together with varying total capacity value and peak traffic

hours, can create higher peaks of demand, but due to constraints of the market model only

demand which corresponds to the amount of available supply, would be satisfied. This allows

us to distribute the maximum available amount of cars in accordance with provided capacity

for every hour.

In the simulation results of the decentralized approach with learning for the smart traffic,

described in section 4.3.2 we gave car agents an opportunity to decide which road to choose

based on density situation on the roads and price for the pass. In each trading, car agents

find the most suitable seller based on ask price for the pass and parameters, calculated using

formulas, described in 3.8 and 3.9. If we compare the distribution of cars between the roads

in case of zero-intelligent approach, shown on the figure 4.15 and distribution of cars for this

approach, shown on the figure 4.16, we can see that cars, which chose sellers based on road

parameters and price, are distributed more evenly.

In this approach, we also showed how road agents can learn to use specific price strategies based

on density levels on the roads and trading results. For instance, we wanted road agents to have

higher ask prices in case of low level of car density and have lower prices in case if density is

more than 60% of maximum road capacity in order to make car agents pay less in this case. To

implement learning aspect for this model we combined such aspects as states with sets of choices

from the smart house and price strategies from smart parking. As a result, for our road agents,

we have set of states based on density levels and two sets of price strategies based on types of

cars. For this approach, we used low recency and experimentation parameters equal to 0.1 as

they occurred to be more suitable for increasing the speed of learning for the agents in case of

a high number of possible strategies. On the other hand, higher recency and experimentation

parameters provide more opportunities for the agents to change their behavior as in this case

each choice made has a lesser influence on probabilities for other strategies to be used.
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The figure 4.17 shows the distribution of prices for lorry type of car in case of relatively low

level of density on the main road. In this case, we increased reward value for the road agent to

use higher ask prices. As we consider seller agent to have a reward, equal to zero as a penalty

in case of a rejected deal, results of the trading process have a high influence on the learning

results. Despite this, it can be seen that number of times when the higher ask price for the deal

was chosen during all simulated period is higher than that for the lower prices, which is close

to the behavior pattern we wanted our agent to learn.

On the figure 4.18 we show the situation with the relatively high density level on the main road.

We used the same time period for simulation and the same set of price strategies. In case of

high density level, we increased the reward for the lower ask prices. This corresponds to the

higher amount of satisfied deals, and, as a result, a lesser amount of penalty. Consequently,

this behavior pattern is easier for the agent to learn. As expected, a number of times lower ask

price was chosen during trading episodes within the simulated period is indeed higher, which

corresponds to desirable behavior model for this state.

The centralized approach for the smart traffic, described in section 3.2.3 is modeled similarly

to smart parking with car agents encoded as loads. Results of the simulation of the centralized

approach for the smart traffic described in the section 4.3.3. The main difference in this approach

is related to the emergency type of cars with priority to pass and cars, waiting in queue to pass.

We distribute them first and then other cars are distributed according to available capacity. On

the figure 4.19 we can see an example of how the available capacity of the roads is distributed

between the car agents.

On the assumption of information, described above, we can conclude that regardless of the

number of agents in the system with clearly defined sets of rules and constraints multi-agent

system can maintain stability and demonstrate the same levels of problem-solving capabilities.

According to demonstrated results, it can be said that even self-interested zero or low-intelligent

agents can maintain the stability of the system and demonstrate problem-solving capabilities

and adaptability. With market-based model agents which have different needs, are able to find

ways to share limited resource through the interaction with each other. Using reinforcement

learning, we can increase flexibility if agents behavior and make them better adapt to changes

in the environment. On the market, memory and experience can help agents to find a particular

strategy which can lead to more efficient interactions, such as, reduce the number of rejected

deals.

For the centralized approach with one controlling agent, usage of the method, based on genetic

algorithm with a set of constraints and high population of possible solutions allowed the agent

to find a suitable solution. On the other hand, with increasing amount of encoded parameters

time for finding a better solution can increase. We can assume that for the centralized approach

more complex behavior model for the controlling agent could be needed in order to find better
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solutions, whereas the decentralized multi-agent approach allows complex system behavior to

emerge from the simple behavior models of agents.

Although each problem which was considered in our work was connected to different areas of

Smart City, we could see that in terms of distribution of limited resource different problems

could be considered similarly, as in each case we had some amount of common good which had

to be distributed, be it parking slots, energy, or right to pass. In each problem we managed

to represent distribution of common good through the distributed market-oriented approach or

centralized genetic-algorithm-based approach and acquire the results.

5.2 Encountered problems

In this section, we discuss problems which were encountered during work on this thesis. Many

problems were connected to design of architecture for the agent interactions on our models.

For considered problems, we had to adapt our approaches in order to create a solution which

corresponds to specific aspects of each problem. During the study of state-of-the-art, a number

of papers, related to considered problems were analyzed in order to better formulate conditions

for the models. As each considered problem can involve a significant number of parameters,

which is a common aspect of the Smart City environment, some simplifications and scaling for

the modeled problems had to be done.

Choosing the better way of implementation was also one of the encountered problems. For the

implementation of the models, we considered different frameworks, several of which, including

JADE, Madkit, osBrain, and Mesa, were tested in order to find the most suitable tool. Problems

with JADE and Madkit were connected to specific aspects of these frameworks and architectures

for agent behavior, which were these frameworks used. Some of these aspects were discussed

in chapter 2. As for the thesis we had to model set of problems and apply several approaches

for them, we considered general purpose MAS framework as more suitable tools. Framework

osBrain was tested as it allows relatively fast implementation of multi-agent structures, but

the implementation of the environment with different parameters which can be changed for

different simulations was harder to do using such type of framework. We considered aspects

of modeling and simulating of different solutions more important than the practical usage of

communication protocols and therefore we used Mesa as framework made for general purpose

agent-based modeling.

One of the most noticeable problems encountered during implementation of the models was the

implementation of learning aspects. Among considered algorithms we chose Roth-Erev as it was

relatively simple to modify and adapt for different solutions, but this algorithm also has several

problems. First and furthermost was a need to tune parameters of the algorithm and amount
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of reward. Depending on learning parameters and size of initial propensity values, the influence

of reward can vary. In some cases, too high or too low amount of reward negatively affected

learning results. In order to prevent this, we had to evaluate and scale reward differently for

each implemented approach.

Another problem, connected to implemented learning algorithm was that reward, equal to zero

as a penalty caused propensity values to decrease very fast, especially in case if agents had to be

penalized a number of times until they manage to find a more suitable choice of actions. In the

implemented algorithm each propensity value is updated according to received reward, which

caused propensity values not only for penalized choice but for other choices also be slightly

decreased. After getting a large number of penalties, propensity values could become almost

indistinguishable from zero. To prevent this we had to update all propensity values using small

positive constant. As we update every propensity value equally, higher propensity values still

remain distinguishable.

With the increasing number of possible strategies, time of convergence for Roth-Erev algorithm

also increases, so recency and experimentation parameters for the algorithm had to be tuned

accordingly to increase the accuracy of results. On the other hand, with a small number of

possible strategies even with high recency parameter agents were able to learn specific strategy

relatively fast.

It should be also mentioned that in case of smart house models we modeled only parts of the

possible energy loads but used the data about full renewable energy productions for the house.

This caused the balance between demands and supply to be changed in a way that overall

supply was often bigger than demands. For the simulations, we managed to consider different

scenarios, but in case of modeling such type of the problem higher amount of demands and

consumers could be considered in order to reduce the gap between supply and demand values

and get more correct results.

The implemented way of encoding the loads for the centralized approach can be not very effective

in some cases, especially with high amount of encoded elements as the algorithm will need more

iterations and additional constraints in order to find the best solution.
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Further development

6.1 Possible improvements

In this section, we discuss possible further development for this work. By reference to the

problems, encountered during work on the thesis, described in the section 5.2 we can propose

a number of improvements for the further work. One of the ways to improve current results is

to upgrade structure of simulated models with additional elements, other market designs and

bidding strategies for the agents. Further development of this work can be related to models

structure, implemented approaches and ways of implementation of the models.

Smart house model can be improved with increasing number of elements in the environment.

Adding electrical devices such as TV, washing machine, air condition and elements such as an

electric vehicle, as agents, modeled with bottom-up approach can provide an opportunity to

create more diverse and dynamic local market for the smart house and consider the problem

of energy distribution in more detail. The individual behavior for each agent also could be

improved, for example, in our models we consider battery agent as a zero-intelligent agent with

no learning capabilities, but with the learning aspect, we can implement more complex and

flexible behavior for this agent in terms of energy savings and energy management.

Another way for the smart house model to be improved is to implement interactions with the

smart grid and possibly other smart houses. This implies a different scale of the model, one or

several households can be considered as participants of the local market and trade renewable

energy between each other and the smart grid in order to reduce energy peak demands for the

grid. Regardless of the scale, a P2P market model which described in this work can be applied

and modified.

One of the possible modifications could be the implementation of blockchain transactions for the

market model. As we mentioned earlier in section 3.1.1, the decentralized P2P market model
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provides trading between buyers and seller in randomized order to avoid possible competitive

advantages and results in individual price for each transaction. This corresponds to essential

aspects of blockchain technology as blockchain serves as distributed digital registry, that can

record individual encrypted transactions across P2P network[51]. The decentralized structure

of blockchain allows market participants to conduct P2P transactions without centralized au-

thority. For the local market with a high number of different elements as individual agents,

such structure can contribute to efficiency and integrity of designed market approach.

Smart parking model can be improved with the implementation of different market designs for

the parking slots distribution. Different services for the parking such as car washing can be

introduced as additional elements for the model. In addition to original market design, the

auction-based market approach can be considered for the cars in order to increase the number

of different interactions between agents. The scale of the model also can be changed, as it could

be represented as the problem of finding the optimal parking place for the car in terms of price

and position. As the peak traffic hours can influence the number of cars which desire to find a

parking place, the correlations between traffic levels and distribution of parking slots also can

be considered in more detail.

For the smart traffic problem, a possible extension of the model can include representation of

the roads as graphs with different segments, each of which can be monitored and controlled by

the agent.

In our work, we considered discretized states for the learning, but in case of more complex and

dynamic environment, discretization is not always possible. Implementation of reinforcement

learning algorithm for the continuous and multidimensional space of states and actions to model

agents behavior can make implemented solutions more suitable for real-world appliance and can

be beneficial for handling problems with a large number of elements. Another important aspect

is the reward evaluation, as it greatly impacts learning results. For this purpose actor-critic

mechanism can be introduced and adapted for the specific solutions.

For the centralized approach with genetic-algorithm-based solution additional constraints and

parameters, used for encoding and finding solutions can increase efficiency and accuracy of

results. Evolutionary algorithms such as NSGA and SPEA can be used in order to acquire

better results in case of more complex problems.

For the implementation of the solutions usage of frameworks such as JADE and osBrain which

support communication between agents and multi-threading can provide more opportunities to

create simulations, close to real word and demonstrate full capabilities of distributed multi-agent

solutions. In case of osBrain, we can use different communication patterns and multi-threading

to create simulations which involves complex calculations with a large number of variables and

data.



Chapter 7

Conclusion

The objective of this thesis was to explore how multi-agent system which consists of different

self-interested agents, can demonstrate a certain level of intelligence in terms of problem-solving

capabilities, adaptability or learning proficiency and provide flexible solutions for the set of

problems, related to Smart City context. Different aspects of Smart City and multi-agent

systems were studied and described.

The emphasis was on studying how different agents can coexist and interact with each other in

order to share common good. We managed to design and create a set of models for the considered

problems and applied several approaches for each modeled problem. With these models we were

able to analyze how through the interactions between agents, agent-based systems were able to

manage different tasks. With introducing learning aspects we saw how different learning agents

are able to adapt to changes in the environment and change their behavior. As a result, we

were able to justify that even with simple behavior models of agents, multi-agent system can

demonstrate more complex overall behavior and problem-solving capabilities. With defined set

of constraints even zero or low-intelligent agents are able to find desired solutions and maintain

stability of the system.

Through the thesis we ensured that decentralized control and decision-making mechanisms,

provided by the multi-agent systems could be effective for solving the problems which include

number of different parameters. With help of distributed market-base approach, agents in the

system were able to coexist and demonstrate good results in terms of sharing limited resource. In

case of centralized approach, agent, responsible for handling the problem had to have sufficient

amount of information about the environment and clearly defined set of constraints in order to

adapt to different situations.
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On the assumption of study of Smart City concepts done and acquired results we can conclude

that multi-agent systems indeed are able to demonstrate impressive results in finding the solu-

tions for the problems, common for the Smart City. Using multi-agent systems we can design

different behavior models for the agents and structures of multi-agent interactions, which allow

us to adapt our solutions for the different context.
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Appendix A

Smart house model additional figures

Figure A.1: Indoor temperature levels during 7 days.
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Figure A.2: Outdoor light levels during 24 hours.

Figure A.3: Person being in the room/being away probability graph.
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Figure A.4: Levels of solar energy during 7 days.

Figure A.5: Levels of wind energy during 7 days.
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Figure A.6: Energy distribution with battery and all renewable energy sources during 7 days
with ZI approach.



Appendix B

Smart parking model additional

figures

Figure B.1: Demands for the parking during 24 hours.
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Figure B.2: Levels of average price for the deals during 7 days.



Appendix C

Source code

The complete source code and requirements.txt file for the installation may be found at the

following links:

Smart house

• ZI smart house model: https://github.com/BlindBird993/ZiSmartHouseModel

• smart house model with learning: https://github.com/BlindBird993/LSmartHouseModel

• smart house centralized model: https://github.com/BlindBird993/CSmartHouseModel

Smart parking

• ZI smart parking model: https://github.com/BlindBird993/ZiParkingModel

• smart parking model with learning: https://github.com/BlindBird993/LParkingModel

• smart parking centralized model: https://github.com/BlindBird993/CParkingModel

Smart traffic

• ZI smart traffic model: https://github.com/BlindBird993/ZiTrafficModel

• smart traffic model with learning: https://github.com/BlindBird993/LTrafficModel

• smart traffic centralized model: https://github.com/BlindBird993/CTrafficModel

76



Appendix D

Project description

77



Faculty of Engineering Science and Technology

Department of Computer Science and Computational Engineering

UiT The Arctic University of Norway

Distributed Management of Resources in a Smart City using

Multi-Agent Systems (MAS)
Igor Anatolyevich Molchanov
Thesis for Master of Science in Computer Science



Problem description

Smart City represents a new way of thinking about urban space by 
shaping a model that integrates green energy resources and systems, 
energy efficiency, sustainable mobility, smart and sustainable living for all
as well as maintainable economy for the future. It is a new paradigm that 
resides on modern Information and Communication Technology (ICT), not
least the accelerating emergence of what is called Internet of Things 
(IoT) that enables and depends on distributed and ubiquitous data 
processing and information in a connected form.  Much of the 
development will take place bottom-up. This means that vendors of 
sensors, controllers and processors may not provide offer according to 
specifications and standards provided by a centralized body.  Instead, 
initiatives will be driven by needs defined for different niches using 
different protocols and different base technologies.   Multi-Agent Systems
(MAS) cater for a non-centralized development of intelligent Smart City 
applications that can be developed in independently and in parallel, and 
still be able to cooperate.  An inherent capability of MAS is that even with
low or zero-intelligence agents the collective performance can 
demonstrate intelligence and learning capabilities that make MAS 
adaptable to change, extensions and reductions, and still be able to 
create optimal or close to optimal solutions. 
The candidate is going to explore the use of MAS in the context of IoT 
and Smart City.  The basic question to be answered is how a distributed 
set of disparate set of sensors and controllers that operate a variety of 
facilities such as heaters, charging spots, electric vehicles etc.  can be 
connected in a “bottom up” fashion and together and demonstrate 
consolidated intelligence.  Intelligence can be defined in terms of 
collective problem-solving capabilities, optimization capabilities or 
adaptability/learning proficiency.  In distributed systems, a market 
oriented approach is often applied.  A fundamental issue is related to how
agents that manage sensors and are tuned to fulfill certain goals and 
desires can coexist and interact with agents of parallel as well as 
opposing needs. This is an issue of self-interest versus cooperation.
The thesis work will be organized around two sub-goals/tasks:

1. Based on work by Roscia et al1., Lono et al.2 as well as Lom and Pribyl3 
and related literature the candidate is going to explore the concept of 
MAS for the benefit of Smart City and design a system architecture that 
can manage communication/interaction between different agents 
managing different sensors and controllers based on different hardware 
and that apply different protocols. Exchange of requests and responses, 

1 Rosica, Longo, Lazaroiu: Smart City By Multi-Agent Systems, Int. conference on 
Renewable Energy Research and Applications, Madrid Oct 2013
2 Longo, Roscia ansd Lazaroiu: Innovating Multi-Agent Systems Applied to Smart City, 
Research Journal of Applied Sciences, Engineering and Technology 7(20), 4296-4302, 
2014
3 M.Lom, O.Pribyl: Modeling of Smart City Building Blocks using multi-agent systems, 
CTU FTS 2017



management of conflicts of interest as well as remuneration concepts 
should be addressed.

2. Using the principles defined under sub-goal 1 the candidate should create
a computer model/limited system whereby a set of agents of both 
confluence and opposing interests can find ways to share a common good 
i.e. a road or parking space (in the case of electric vehicles) and distribute
a limited resource such as renewable energy produced by one or more 
facilities. For the benefit of his effort he may use standard multi-agent 
platforms written in Java or Python i.e. ZEUS, Java. The model should be 
demonstrated and documented according to UiT standards for MSc 
theses.  

Dates
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Date for submission (deadline): <01.06.2018>

Contact information

Candidate 

Advisor at UiT-IVT

Advisor at UiT-IVT

Igor Anatolyevich Molchanov
imo031@post.uit.no

Bernt A. Bremdal
bernt.a.bremdal@uit.no

Kristoffer Tangrand
kristoffer.tangrand@uit.no

General information 

This master thesis should include: 
T Preliminary work/literature study related to actual topic 

- A state-of-the-art investigation
- An  analysis  of  requirement  specifications,  definitions,  design

requirements,  given  standards  or  norms,  guidelines  and  practical
experience etc.

- Description concerning limitations and size of the task/project 
- Estimated time schedule for the project/ thesis

T Selection & investigation of actual materials
T Development (creating a model or model concept)
T Experimental work (planned in the preliminary work/literature study part)
T Suggestion for future work/development
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Preliminary work/literature study

After  the  task  description  has  been  distributed  to  the  candidate  a
preliminary study should be completed within 3 weeks. It should include
bullet  points  1  and  2  in  “The  work  shall  include”,  and  a  plan  of  the
progress. The preliminary study may be submitted as a separate report or
“natural” incorporated in the main thesis report. A plan of progress and a
deviation report (gap report) can be added as an appendix to the thesis.

In any case the preliminary study report/part must be accepted by
the supervisor before the student can continue with the rest of the
master thesis.  In the evaluation of this thesis, emphasis will be placed
on the thorough documentation of the work performed.

Reporting requirements

The thesis should be submitted as a research report and could include the
following parts; Abstract,  Introduction,  Material & Methods,  Results &
Discussion,  Conclusions,  Acknowledgements,  Bibliography,  References
and  Appendices.  Choices  should  be  well  documented  with  evidence,
references, or logical arguments. 

The candidate should in this thesis strive to make the report survey-able,
testable, accessible, well written, and documented. 

Materials  which  are  developed  during  the  project  (thesis)  such  as
software / source code or physical equipment are considered to be a part
of this paper (thesis). Documentation for correct use of such information
should be added, as far as possible, to this paper (thesis).

The  text  for  this  task  should  be  added  as  an  appendix  to  the  report
(thesis).

General project requirements

If the tasks or the problems are performed in close cooperation with an
external  company,  the candidate  should follow the  guidelines  or  other
directives given by the management of the company.

The candidate does not have the authority to enter or access external
companies’ information system, production equipment or likewise. If such
should be necessary for solving the task in a satisfactory way a detailed
permission should be given by the management in the company before
any action are made.

Any  travel  cost,  printing  and  phone  cost  must  be  covered  by  the
candidate themselves, if and only if, this is not covered by an agreement
between the candidate and the management in the enterprises.

If the candidate enters some unexpected problems or challenges during
the work with the tasks and these will cause changes to the work plan, it
should be addressed to the supervisor at the UiT or the person which is
responsible, without any delay in time.

Submission requirements

This thesis should result in a final report with an electronic copy of the
report  including  appendices  and  necessary  software,  source  code,



simulations and calculations. The final report with its appendices will be
the basis for the evaluation and grading of the thesis. The report with all
materials should be delivered according to the current faculty regulation.
If  there  is  an  external  company  that  needs  a  copy  of  the  thesis,  the
candidate must arrange this. A standard front page, which can be found
on the UiT internet site, should be used. Otherwise, refer to the “General
guidelines for thesis” and the subject description for master thesis.

The advisor(s) should receive a copy of the the thesis prior to submission
of  the  final  report.  The  final  report  with  its  appendices  should  be
submitted no later than the decided final date.
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