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“All models are wrong, but some are usefull”
–George Box



Abstract
Anthropogenic greenhouse gas emissions alter the planet’s energy balance
and cause heating of the surface and oceans. Estimates of the implications of
continued emissions are necessary to assess the severity of the situation. The
transient climate response (TCR) is a measure of the climate’s response to a
continued increase in CO2 concentration, and indicates how much the tem-
perature will increase in the coming decades if emission continues. However,
uncertainty in estimates are still large and projections of TCR vary signifi-
cantly between climate models in the Coupled Model Intercomparison Project
(CMIP�) ensemble.

A new method to constrain the likely range of TCR is developed on the basis
of a simple energy balance model (EBM). From recent estimates of historical
radiative forcing and the global instrumental temperature record, a probability
density function (pdf) for TCR is calculated. A 5 � 95% confidence interval is
found, that suggests that models with the highest TCR values are inconsistent
with the observed temperature record.
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1
Introduction
�.� Motivation

Since ���� the global mean surface temperature has risen by about 0.85 de-
grees Celsius [Pachauri et al., ����]. A rising greenhouse gas concentration is
heating the planet, and the overwhelming consensus among climate scientist
is that this increase results from human activity[Cook and Skuce, ����].
Hurricanes like the ones in the Caribbean in ���� are reinforced by the increas-
ing ocean temperatures and cause massive destruction to cities and economies,
as well as loss of human life. Despite the overwhelming evidence that anthro-
pogenic greenhouse gas emissions has the potential to bring great harm to the
economy as well as human civilization, experts and politicians still argue about
how to best deal with the situation.

Climate science lays the foundation for political discussion on climate change.
Given different socio-economic emission scenarios, the fundamental problem is
to predict the future climate as accurately as possible. The costs of mitigation,
along with the continuing high uncertainty of climate predictions, make politi-
cians hesitant to pass unpopular laws enforcing emission reductions.

Climate models used as part of the Coupled Model Intercomparison Project
Phase 5 (CMIP�) estimate a so-called transient climate response (TCR), which
is a measure of the sensitivity of the climate to an external forcing on a
timescale of about a century. This number is highly interesting, scientifically
and especially politically, as it indicates how extensive the climate change of

�
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the coming century will be if we continue perturbing the climate as we are
doing today. The TCR value of the CMIP� models vary from 1.1�C increase
for a doubling of CO2, to 2.6�C, and narrowing this range would strengthen
the foundation on which mitigation and adaptation policies are to be made
[Collins et al., ����].

Temperature data has been recorded systematically since ����. How useful is
this record? Is it possible to narrow the likely range for TCR? This thesis aims
at trying to answer this question.

�.� Research Question

Given the recorded instrumental temperature record and a set of historical
simulations from an ensemble of CMIP� models, is it possible to constrain the
likely values of TCR and thus discard some models as being inconsistent with
observation?

�.� Contribution

A new method for constraining the transient climate response is developed.
Historical model simulations, together with the historical temperature record
are used to constrain the likely range of TCR. The method is based on the
fitted responses of a simple energy balance model (EBM) to adjusted forcings
based on the historical simulations of the ensemble of CMIP� models. The
statistical framework is similar to the one used by Cox et al. (����), however
they attempted to constrain equilibrium climate sensitivity using a different
approach [Cox et al., ����].



�.� S T R U C T U R E O F T H E S I S �

�.� Structure of Thesis

The rest of the thesis has the following structure:

Chapter � starts by introducing some important underlying concepts that are
essential to the understanding of the thesis. The chapter also looks at a simple
EBM used to fit the temperature response of the CMIP� models.

Chapter � introduces the methods used to approach the research question. It
looks at how to process the data to be able to compare models to the historical
record and the statistical framework is explained.

Chapter � presents and discusses the results from applying the methods
explained in chapter �.

Chapter � summarizes the work, answers the research question and concludes
the work of the thesis. It also presents some possible future studies.





2
Theory and Background
This chapter introduces concepts that are essential to the understand the thesis.
The concepts of forcing and climate sensitivity are presented in more technical
terms. We look at the concept of feedbacks and how it is distinguished from
forcing. Further, it looks at how the concept of effective forcing is needed to
generalize forcing to account for different forcing agents. Two methods used
to estimate effective forcing from models are explained. Moreover, the two-box
model (TBM) and its response function are introduced, along with an earlier
study on the TBM’s ability to reproduce temperature responses of complex
models.

�.� Climate models

Through the years, large amounts of data has been collected about the cli-
mates of the past. From geological evidence we can approximately recreate
temperatures back millions of years, and from ice cores we can recreate CO2
concentrations from the past ��� ��� years [Masson-Delmotte et al., ����].
These data, along with known Milankovitch cycles�, serve as guidelines for es-
timating climate sensitivity. However, the rate of change in the climate system
seen today is unprecedented. This means there is limited use for such low-

�. Milankovitch cycles are cycles in eccentricity, axial tilt and precession of earth’s orbit
around the sun affecting the solar constant and distribution of energy of the planet.

�
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resolution time series of forcing, CO2 concentrations and temperature when
predicting climate change for the coming century. This is why we need climate
models.

Atmospheric-ocean (coupled) general circulation model (AOGCM) is the popu-
lar name of a fully coupled climate model that describes the dynamics of all
the important climate variables. It is the most comprehensive tool available to
study climate change and make climate predictions, built on the best knowl-
edge acquired through the years, in a wide range of scientific fields. A model
works by integrating a (large) set of discretized differential equations, based
on widely accepted principles of physics, chemistry and fluid motion, along
with properly chosen initial conditions. It uses a �D-grid of the planet and only
looks for solutions on these grid points. Important climate variables that are
smaller than the resolution of the grid, like clouds, are parameterized by other
variables, for instance temperature and humidity [McFarlane, ����].

�.�.� Global Mean Surface Temperature And Energy
Balance Models

Although climate models solve for a large number of climate variables, it is the
global mean surface temperature (GMST) that is of highest interest, because
most of the important climate variables directly relate to it. Energy balance
models (EBMs) are simple climate models that can be useful to summarize the
thermal properties of the AOGCMs. They have the potential to investigate the
temperature responses of AOGCMs for a wide range of scenarios, with limited
computational costs.

�.� Forcing and Climate Sensitivity

Radiative forcing (RF) and climate sensitivity are two frequently used con-
cepts in climate change analysis. They are useful when comparing the size of
responses between models and the effects of different forcing agents.

A radiative forcing is a change in the planetary radiation balance due to some
perturbation, either internal or external. It is most often expressed in Watts
per square meter (W/m2) and defined to be positive if the net flux is directed
downwards [Myhre et al., ����]. A nonzero net flux changes the total energy in
the climate system and must lead to a modification of the climate system.

Climate sensitivity relates the surface temperature response to the imposed
forcing. Equilibrium climate sensitivity (ECS) is the equilibrium temperature
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change following a doubling of CO2 concentration�. Our focus of study is not
the ECS, but the transient climate response (TCR), defined to be the mean
surface temperature change in a ��-year period centered at a CO2 doubling
from a 1% per year increase over �� years with subsequent CO2 stabilization,
see figure �.�. TCR is always lower than ECS, because heat uptake in the ocean
delay temperature increase [Otto et al., ����].

0 20 40 60 80 100

300

350

400

450

500

550

Year

C
O
2
C
on
ce
nt
ra
tio
n
(p
pm

)

CO2 Scenario - TCR

Figure �.�: CO2 concentration scenario used for calculating TCR. TCR is defined as
the average temperature change between year �� and ��.

Just like ECS, TCR serves as a tool for comparing responses of different models
to the same standardized forcing. However, the two values serve different
purposes, and they are both instructive in different ways. TCR measures the
response when the system is in a transient state, still in disequilibrium from a
partly ongoing increase in forcing.

Climate models respond differently on different time scales, and models giving
a high ECS, do not always produce a high TCR. Nevertheless, the correlation
is high and models producing a large TCR often produce high ECS as well, as
illustrated in figure �.�. All values of TCR and ECS used in this thesis refers to
the values provided in Assessment Report � (AR�) from the Intergovernmental
Panel on Climate Change (IPCC), published in ����.

�.� Feedbacks

Climate feedbacks result from the interconnection of climate variables. Chang-
ing one variable leads to a change in some other, which again changes the first.
One familiar example is the ice-albedo feedback on temperature: An increase in
temperature causes ice to melt, reducing the albedo, accelerating temperature
increase further and causing even more ice to melt.

�. The definition of equilibrium does not account for the longest (e.g geological) time scales.
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Figure �.�: Scatterplot of ECS versus TCR given in IPCC AR� for the �� models used
in this thesis.

If there were no feedbacks, then finding the change in GMST would be straight
forward, given that we know the radiative imbalance. A forcing such as a dou-
bling of CO2 (around �.� W/m2 [Myhre et al., ����]) would cause a warming
easily calculated using Stefan-Boltzmann’s law, where the change in outward
energy flux is given by

�H ⇡ dH

dT
�T = �(4�T 3

0 )�T , (�.�)

where H = ��T
4 is Stefan-Boltzmann’s law and � is emissivity of the planet

(around �.�). Using T0 = 288 K, we find that the temperature increase needed
to balance the radiative forcing is

�T ⇡ 3.7 W/m2

(0.7 ⇥ 4 ⇥ 5.67 · 10�8 ⇥ 2883) W/m2 K
⇡ 1.0K. (�.�)

However, there are a high number of internally interconnected agents,�, in the
climate system also influencing the planetary energy budget. The infinitesimal
heat loss dH is therefore not given by equation (�.�), but more adequately
described by

dH = dT

 
@H

@T
+

’
i

@H

@�i

d�i
dT

!
, (�.�)

where the first term is the black body radiation from (�.�) and the remaining
terms correspond to changes in heat loss due to changes in other climate
variables (that change due to temperature change). The magnitude and sign
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of the terms in the sum are uncertain quantities, and determining this can be
a subtle problem.
The partial derivatives in (�.�) are generally found to be state dependent,
meaning that the change in the energy budget per change in the agent �i
(i.e. @H/@�i) depends on the climate’s state at that particular time. More-
over, the partial derivative might also depend on how the change dT occurs
[Sherwood et al., ����].

Despite the inaccuracies, the partial derivatives are often assumed to be con-
stant, and in particular that

dT

dH
=

 
@H

@T
+

’
i

@H

@�i

d�i
dT

!�1
= �, (�.�)

where � is the constant (state independent) climate sensitivity per unit forcing.
A feedback is said to be amplifying if

@H

@�i

d�i
dT
< 0,

and stabilizing if not. According to AR�, it is extremely likely� that the total
feedback is positive. That is, the sum in (�.�) is negative and the temperature
increase from a doubling of CO2 is higher than the one degree we calculated
above [Sherwood et al., ����, Pachauri et al., ����].

Traditionally, finding the climate sensitivity has been equivalent to the problem
of finding the constant � in equation (�.�), as the forcing from a doubling of
CO2 has been assumed to be known. However, since the forcing from a doubling
of CO2 is uncertain as well, the term climate sensitivity has been redefined to
mean sensitivity to emissions. This depends on the magnitude of the forcing
generated from a doubling of CO2 as well [Stevens and Schwartz, ����]. This
is important, since it means that estimating TCR is not only about finding the
feedbacks, but also estimating the forcing from a CO2 doubling.

�.� Adjustments and E�ective Radiative Forcing

Radiative forcing is, as mentioned, frequently used to compare the size of
responses to different forcing agents. Understanding how to define forcing in
such a way that it can be used for comparison is thus essential, however, not
straightforward.

�. This means that the probability is greater than 95%.



�� C H A P T E R � T H E O R Y A N D BAC KG R O U N D

To define the forcing to be the instantanious radaiative imbalance at the
top of the atmosphere (TOA) is often an inaccurate measure of the forcing
agent [Hansen et al., ����]. The temperature response in the stratosphere is
not analogous to that of the surface temperature. There are processes within
the stratosphere, often referred to as adjustments, that are different depend-
ing on the forcing agent. An increase in the greenhouse gas concentration
actually cools the stratosphere while a solar forcing warms it, affecting the
TOA energy budget in opposite directions. This implies that a given instanta-
neous TOA energy imbalance can correspond to a difference in the heating
of the surface and troposphere if the agent were CO2, compared to a solar
forcing. The net radiative forcing at the TOA after stratospheric adjustment
is called the adjusted forcing (AF) �, and is a popular way of defining forcing
[Hansen et al., ����].

Within the troposphere, there are also adjustments in response to the imposed
forcing, that alter TOA energy flux balance before any change in surface tem-
perature has taken place. One example of such an adjustment is the so-called
“semi-direct effect” of aerosols, which is brought about by an uneven distribu-
tion of tropospheric heating due to aerosols. This has a destabilizing effect
on the troposphere, driving circulation, affecting cloud cover and precipita-
tion. These changes are not triggered by a change in the surface tempera-
ture, and should more accurately be considered an adjustment to the aerosol
forcing, again changing the forcing, not as a feedback. This is because the
change is triggered by the forcing directly and not by a change in temperature.
The subsequent TOA flux imbalance, after adjustments in both the strato-
sphere and troposphere have taken place, is called the effective radiative forcing
(ERF) [Sherwood et al., ����, Gregory and Webb, ����, Hansen et al., ����].
For some forcing agents, the difference between the instantaneous TOA im-
balance, AF and ERF is substantial, and it is important to distinguish between
the different definitions. Forcing data used in subsequent analysis in this the-
sis will be ERF�, found using methods that will be explained in the next section.

�. Some authors, as well as IPCC AR�, refer to this as radiative forcing.
�. At least more similar to ERF than the other definitions.
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�.� Estimating Climate Sensitivity and E�ective
Radiative Forcing

�.�.� Gregory Method

This method, proposed by Gregory et al. (����), is used to estimate the ERF
from a doubling of CO2 (denoted Q) of the CMIP� models used in AR�. The
method uses a simple linear regression in a N �T plane, where N is the net
radiative imbalance at TOA and T is the GMST anomaly from a preindustrial
baseline.

Let F be the forcing (positive downwards) and H be the outgoing radiative
response (positive upwards), both measured at TOA, both initially zero. Intu-
itively, the net downward heat flux ,N = F �H , is the rate of increase of energy
in the climate system. One major assumption is linearity between temperature
rise and outward heat flux ,H = �T , such that

N (t) = F (t) � �T (t), (�.�)

where � is the climate sensitivity parameter. From our previous discussion,
linearity implies that equation (�.�) holds (and � = 1�).

Figure �.�: Illustration of the method proposed by Gregory et al (����). The red
dotted line is a linear fit of the points to the left of the grey dotted line,
whereby the grey dotted line represents the cut-off time. The intersection
of the x - and �-axis estimates the equilibrium temperature and the ERF,
respectively. The slope estimates the magnitude of the climate sensitivity
parameter � .

By plotting N (t) = F � �T (t) against T (t), one should, in the case of linearity,
get a straight line with slope �� that intersects the x -axis at T = F/� and
�-axis at F . If � is constant, there is no need to run an AOGCM until its
steady state to estimate the climate sensitivity, only far enough to perform
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regression on the slope of N (t) against T (t). Figure �.� illustrates the method
whereby the black dotted line represents the cut-off time after which the
points (N ,T ) are no longer part of the regression. Forcing obtained using this
method should, in particular, include adjustments and other responses like
the semi-direct effect of aerosols that do not change radiative balance at the
TOA instantaneously. This is because the regression points are calculated as
averages over years, longer than the time scales of the adjustments�. This
method therefore provides a tool for estimation of the ERF, climate sensitivity
and equilibrium temperature change. Also using figure �.�, we can think of a
climate feedback as a mechanism that changes the slope of the curve, while a
forcing changes the intercept�. Gregory et al. (����) found that, when running
�⇥CO2, � behaved non-linear when the temperature change got high (> 4�C).
A newer study from Andrews et al. (����) also found similar non-linearity,
while estimates done on 2⇥CO2 showed less non-linearity as the temperature
increase was lower [Andrews et al., ����, Gregory et al., ����].

�.�.� Forster Method For Estimating Time Varying Forcing
From Models

The Gregory method provides a procedure for computing the climate sensitivity
parameter and the ERF from a constant forcing in a climate model. In order
to calculate time varying ERF however, some other method is needed.

Forster et al. (����) proposed a simple two-step method for obtaining a time
series for the ERF. Step one uses 4⇥CO2 simulations to estimate � using the
Gregory method. Step two uses the estimate of � and

F (t) = N (t) + �T (t), (�.�)

togetherwith the diagnostics ofN (t) andT (t), obtained from the climatemodel,
to obtain the time series of the forcing F (t) in the model [Forster et al., ����].
Hereafter, we refer to forcing calculated this way as Forster forcing.

Diagnosing forcing this way produces large year-to-year fluctuation in the
forcing due to natural fluctuation in temperature. This is because the linearity
does not hold in the case of large interannual variability [Trenberth et al., ����].
However, over time, the linearity is a satisfactory assumption, which means
that the trend in forcing should be approximately captured by equation (�.�)
[Gregory et al., ����].

�. Even though the value of F is calculated at the intersect where T = 0, this does not mean
that this is the instantaneous forcing. It is the net radiative imbalance before the surface
temperature has had time to respond to the forcing.

�. Assuming state independence for the climate sensitivity, as the slope might depend on the
magnitude of the forcing otherwise.
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�.�.� Hansen Forcing

The period since ���� is called the "historical period" in climate science
[Miller et al., ����]. This is the period where we have instrumental data of
climate variables, which also starts before significant anthropogenic forcing
had begun�. Our ability to reproduce the forcing of this period is highly im-
portant in order to infer something about the sensitivity of the climate from
instrumentally recorded changes climate.

An especially comprehensive study of the historical forcing that has been exten-
sively used in studies of historical climate is presented in Hansen et al. (����),
and has been updated since. As with the Forster forcing, it uses models (six dif-
ferent versions of the GISS-E� model) to analyze the effect of different forcing
agents and simulate trends in surface temperature, atmospheric temperature,
sea ice and ocean heat uptake [Miller et al., ����, Hansen et al., ����].

This forcing (hereafter referred to as the Hansen forcing) does not have large
fluctuations like Forster forcing, since it is calculated as a mean of an ensemble
of different simulations from different models. The Hansen forcing is displayed
in figure �.� (left), along with the Forster forcing from one of the CMIP�models
used in this thesis, the MIROC� model (right). The large fluctuations in the
Forster forcing are clearly seen.
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Figure �.�: Hansen forcing (left) and Forster forcing from MIROC� show the large
fluctuations of the Forster forcing.

When plotting the mean of all the different Forster forcings used in this thesis,
the fluctuations evidently cancel, and what we get is indeed very close to the
forcing data of Hansen et al. (����)�, see figure �.�.

�. We can therefore assume some sort of equilibrium prior to the period.
�. The data set has been extended since ���� to include the last few years.
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Figure �.�: Plot of the mean of all �� forcings from Forster et al. (����) used in this
thesis and that has data back to ���� (blue), along with the Hansen forcing
also used (red).

�.� The Importance of TCR

In the transient regime, as long as the linearity holds, TCR maps roughly to
other forcing scenarios by a factor equal to the forcing of that scenario to a
doubling of CO2:

T = TCR · F

F2⇥CO2

. (�.�)

This means that the uncertainty in the most likely forcing scenarios�� maps
directly to the uncertainty in the estimates of TCR and vise versa. TCR is
therefore not only a non-observable value for comparison of models, but also a
guideline for the severity of climate change in the most likely future climate
scenarios [Gregory and Forster, ����, Collins et al., ����].

High uncertainty in historical forcing, uncertainty in aerosols’ effect on forcing,
cloud feedbacks and ocean heat uptake�� makes estimates of TCR highly
uncertain [Myhre et al., ����, Otto et al., ����].

�.� Two-Box Model

One simple and popular EBM used to model temperature response to forcing
is the two-box model (TBM). It models the earth as a uniform planet of two
distinct thermal layers, one for the atmosphere, biosphere and upper ocean,

��. Forcing is likely to continue to increase throughout this century due to enduring greenhouse
gas emissions.

��. The list is longer, but these are the most important.
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and one for the deep ocean. Temperatures, one for each layer, are the only
climate variables it models.

The TBM is characterized by equations (�.�) and (�.�) and illustrated in figure
�.�.

C
dT

dt
= F � �T � � (T �T0) (�.�)

C0
dT0

dt
= � (T �T0), (�.�)

where:

• T ⇠ Characteristic temperature perturbations for the atmosphere/upper-
ocean layer

• T0 ⇠ Characteristic temperature perturbations for the deep-ocean layer

• � ⇠ Climate sensitivity parameter (free)

• � ⇠ Heat exchange coefficient (free)

• F ⇠ Radiative forcing

• C ⇠ Effective heat capacity per unit area of the upper-ocean layer, (free)

• C0 ⇠ Effective heat capacity per unit area of the deep-ocean layer (free)

The two layers (boxes) are interconnected through heat transfer, with heat
going from the upper ocean to the deep ocean at a rate given byCH = � (T �T0).
The upper layer also gains energy through the radiative forcing F and gives off
energy according to the linear assumption H = �T . The net heat influx to the
climate system (both layers) equals the net flux at TOA, N = F � �T .

�.�.� Two-Box Model Explained

Although the TBM is extremely simple compared to AOGCMs, the equations
that describe its dynamics are grounded in the physical and dynamic properties
of the planet.

First of all, the ocean’s importance to the dynamics of the climate can not be
overstated. According to IPCC AR�, there is high confidence that the oceans
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Figure �.�: Simple illustration of the TBM. Red arrows indicate boundaries where heat
is exchanged. The upper layer exchanges heat with the external universe
and with the bottom layer at the boundary between the upper and deep
ocean.

were responsible for around 90% of the heat uptake in the climate system
between ���� and ���� [Pachauri et al., ����]. The ocean has its own dynamics
and a thermal profile,which leads to the distinction between the upper and deep
ocean in the TBM. The upper part of the ocean is often called the mixed layer,
which is a layer with a small temperature gradient due to active turbulence and
overturning of fluid masses due to wind and waves. The mixed layer interacts
directly with the atmosphere and exchanges heat on short time scales (daily
to seasonally). Below the mixed layer is the thermocline��, that separates the
mixed layer from the much colder deep ocean below.

It is the structure of the ocean, with the mixed layer and deep ocean separated
by a steep thermocline that is behind the reasoning. The atmosphere and upper
ocean could in terms of its thermal properties be regarded as one single thermal
layer while the deep ocean must be thought of as a separate part of the climate
system. The deep ocean exchanges heat with the upper ocean in more indirect
ways that are more indirect, and on longer time scales.

It is important to understand that even though there is only one temperature
for each layer, this does not mean that it pictures the planet as only having two
distinct temperature. There are obviously large temperature gradients within
both layers, but this does not inhibit the use of only one temperature, since
this temperature should be seen as an average.

��. The thermocline is defined to be a thin layer in a large body of fluid in which the
temperature changes more rapidly than layers above and below.
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An even simpler climate model is the one-box model (OBM), described by only
one equation:

C
dT

dt
= F � �T � �T .

In this model, the deep ocean acts as an infinite external heat sink that absorbs
heat from the climate system at a rate �T . The TBM becomes equivalent to the
OBM in the limit C0 ! 1.

It is important to note that the temperatures in (�.�) and (�.�) are temperature
deviations from equilibrium, and that heat exchange between the upper and
deep ocean is always going on, even when the system is in equilibrium. More-
over, this means that although the mechanisms of heat exchange between the
upper and deep ocean is highly complicated, it should be possible to describe
the additional disequilibrium heat exchange between the two layers as a linear
function of the disequilibrium difference in temperature (T �T0), in the limit
where the perturbations are small. This is however only if the climate system is
not in an equilibrium state within close proximity of a bifurcation point, often
referred to as a tipping point. where a smooth change in temperature leads to
abrupt changes to the mechanisms of ocean circulation.

�.�.� Response Function

Equations (�.�) and (�.�) form a set of coupled linear ordinary differential
equations that can be solved analytically (see Appendix A). The solution is
given by

T (t) = T ⇤(t) +
af

��f

π t

0
F (s)e�(t�s)/�f + as

��s

π t

0
F (s)e�(t�s)/�s (�.��)

T0(t) = T ⇤
0 (t) +

�f af

��f

π t

0
F (s)e�(t�s)/�f + �sas

��s

π t

0
F (s)e�(t�s)/�s , (�.��)

where T ⇤(t) and T ⇤
0 are the homogeneous parts of the solutions that depend

on the initial state of the system and, in particular, they equal zero if (and only
if) the initial temperature anomaly is set to zero.

The particular part of the solution in equation (�.��) is a convolution integral
between the forcing function and a response function��, where the response
function (for the upper layer temperature) is given as

G(t) =
af

��f
e
�t/�f +

as

��s
e
�t/�s t � 0. (�.��)

��. The response function is (when multiplied by a unit step function) a Green’s function that
is the solution to the temperature response for a forcing pulse (Dirac delta function).
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The response function explains how a the response to some forcing propagates
through time and the TBM is characterized by a response function which is
the sum of two distinct exponentials, one with a short(er) characteristic time
scale (�f ) and the other with a long(er) (�s).
In the case of the step forcing, the convolution integral becomes trivial and the
solution (given T (0) = T0(0) = 0) of (�.��) becomes

T (t) = F0

�

⇣
1 � af e

�t/�f � ase
�t/�s

⌘
, (�.��)

where F0 is the magnitude of the step forcing. This temperature response is
plotted in figure �.�.
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Figure �.�: Temperature response to an abrupt change in forcing showing the two
distinct exponential responses over (a) �� years and (b) ���� years. The
parameters used are multi-model means given in Geoffroy et al. (����)
[Geoffroy et al., ����] .

�.�.� Two-Box Model Fitted Using AOGCMs

We now take a look at the TBM’s ability to fit the temperature response of the
excessively more complicated AOGCMs in the idealized case of a 2⇥CO2 step
forcing.

Geoffrey et al. (����) suggested a procedure for tuning the free parameters
of TBM to fit different CMIP� AOGCMs. The fitting is based on two steps, the
first for estimating the forcing F0 and climate sensitivity parameter � , and the
second for estimating af ,as ,�f and �s from equation (�.��).

The first step uses the net flux at the top of the climate model (assumed to
be equivalent to the TOA) and the temperature response in order to estimate
F0 and � using the Gregory method of section �.�.�. In this way, the forcing
includes both stratospheric and tropospheric adjustments.
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The second step uses only the upper layer temperature response and equation
(�.��). By assuming �f ⌧ 30 years, equation (�.��) can be approximated by

T ⇡ F0

�

⇣
1 � ase

�t/�s
⌘
) ln

✓
1 � �T

F0

◆
⇡ lnas �

1
�s
t , (�.��)

from which as and �s is found from linear regression against t over the period
��-��� years. Then af = 1 � as , and � is found by solving for �f in equation
(�.��) and averaging over the first �� years.

Figure �.� shows two plots from the Geoffroy paper showing the fitted TBM
output against the temperature response of two different AOGCMs. The red
curve corresponds to the 2⇥CO2 step forcing scenario, to which the parameters
are fitted, and gives a quite satisfactory fit. The blue curve corresponds to a
simulation of the TCR-scenario, and also shows a quite accurate fit.

Figure �.�: Figure from Geoffroy et al. (����) showing the fit of the TBM tuned to an
instant doubling of CO2 simulation (red). Using the tuned parameters, the
TBM is able to reproduce the temperature of a TCR-scenario accurately
(blue curve). The green series is a control simulation without external
forcing.

Importantly, the TBM plot (black) for the TCR scenario uses the parameters
estimated from the 2⇥CO2 only. The only thing that differs between the two
TBM curves is the forcing, where the forcing used in the TCR scenario is linearly
increasing instead of instantaneous. This forcing is based on the approximate
logarithmic relation ship between CO2 concentration and forcing gives a linear
forcing

F (t) = at ,

where the constant a is found by setting t = 70 years and using the estimate
of F0 from the 2⇥CO2 simulation.

The important finding from this study is that the TBM is able to reproduce
temperature response from AOGCMs accurately, and parameters fitted to one
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scenario seems to reproduce temperature response of different scenarios ac-
curately as well, given a forcing that is representative for that scenario. This
should mean that parameters found when fitting the TBM to any scenario could
be considered parameters characteristic to that particular AOGCM (i.e there is
only one set of parameters for eachmodel, not one set for each AOGCM/scenario
pair).

Parameters can however vary significantly between different AOGCMs, and
the inter-model differences are generally much larger than the residual error
of the TBM fit (see figure �.�). This means that although the fit is imperfect,
it generally suffices as a a quantitative tool to investigate the responses of
different models.



3
Methods and
Implementation

This chapter looks at how historical forcings from models are adjusted, how
the TBM is fitted to the AOGCMs, and how a metric for comparing models
to instrumental data is developed. Finally, the statistical methods used to
obtain a probability density for the TCR, based on the model ensemble and
the instrumental temperature record, is explained.

�.� Overview of Method

Imagine there exist some metric, call it � , and a function �, such that the
function � evaluated at � gives the TCR corresponding to the metric � :

�(� ) = TCR. (�.�)

This method uses an informed metric � , which can be computed both from
AOGCM simulation data and from historical data for comparison. Further, it
uses the climate models to estimate the function �. As the function must
be estimated from data, the function is transformed to a probability density
function P(TCR|�). Furthermore, there is uncertainty associated with � as
well, so � is also transformed to a pdf P(� ). The estimates culminate in a

��
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probability density function (pdf) for TCR, constrained by observation:

P(TCR) =
π

P(TCR|�) P(� ) d� (�.�)

�.� Independence of Models

Available for this study, is data from �� different IPCM� AOGCMs. These models
are built by independent research teams and we will throughout this thesis
assume independence between time series produced by the different models.
However, these models are not fully independent, often using the same real
world data for calibration as well as similar or identical software to describe
parts of the model. For instance, here is a quote from the European Network
for Earth System Modelling (ENES) about the NorESM model (one of the ��
models used in this thesis):

The NorESM-family of models are based on the Community Climate System
Model version � (CCSM�) of the University Corporation for Atmospheric Re-
search, but differs from the latter by, in particular, an isopycnic coordinate
ocean model and advanced chemistry-aerosol-cloud-radiation interaction schemes
[ENES, ����].

The CCSM� model mentioned is also one of the models used in this thesis, so
there are obviously some interconnection and the assumption of independence
is therefore at best a good approximation.

�.� Method For Comparing AOGCMs To
Observation

�.�.� Adjusting Forcing

With the goal of fitting response functions to the temperature response of each
particular AOGCM model, we must make sure that the forcing applied when
fitting the response function mimics the forcing experienced by that particular
model.

Different models respond differently and produce different historical forcings,
and the Forster method provides a tool for investigation of the forcing experi-
enced by individual models. However, as mentioned, the forcing series obtained
using this method inherits the same fluctuations as the temperature of the
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internally fluctuating climate system. It is important to separate the forced re-
sponse from the internal variability of the climate, as the realized temperature
response will not in general follow the forced response.

Furthermore, since we are estimating the response of the model, there will
be a problem with circular reasoning when the forcing depends directly on
the temperature response. The forcing might end up explaining the natural
fluctuation as well.

Despite the shortcomings of the Forster method as a tool for investigating the
response, the Forster forcing should, over time (in the regime where linearity
holds) depict the forcings experienced by eachmodel adequately. By smoothing
the time series, we can obtain a forcing series that characterizes the actual
forcing better. At the same time, we avoid the problem of an overfitted forcing
leading to an explanation for the internal variability. However, the actual
historical forcing (though unknown) is not particularly smooth.Especially large
volcanic eruptions are important events that greatly effect the forcing, and it is
important to keep these natural short time scale forcing events as part of our
adjusted forcing.

In order to (try to) bypass all these problems, we will use the Hansen forcing as
our starting point, and adjust this forcing by a time series that is the difference
between a smoothed Forster forcing and a smoothed Hansen forcing. In this
way, we will account for the differences between models and at the same time
make sure that the forcing accounts for important natural changes to forcings.
A simple non-technical overview of the method is illustrated in figure �.�.

Figure �.�: Illustration of the process for obtaining the forcing used to fit the response
function to the temperature data. FF , FH , and F denotes the Forster forc-
ing, Hansen forcing and final forcing, respectively. The red cross illustrates
the problem of circular reasoning when using the Forster forcing.

By introducing this correction of the Hansen forcing,we have in a way indirectly
connected each AOGCM model with the TBM. The forcing surface temperature
to change now depends on each AOGCM. The response function obtained when
fitting the forcing to the temperature response therefore not only depends on
the temperature response, but also on each model’s different imposed forcing.
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This is essential to the method.

One problem with this method might be that if models respond very differently
to the important natural forcings, then using the Hansen forcing and just
adding a smoothed trend difference would not allow for such differences.
This is problematic, however even if there are some differences in the forcing
from large natural forcing agents, these differences will only be problematic
over short periods of time, and one can therefore argue that this method is
reasonable.

The appropriate window size for smoothing is not clear. We want a suffi-
ciently large window as to effectively smooth the internal fluctuation, however
short enough to capture possible trend differences between the two forcing
series.

Figure �.� shows the procedure for obtaining the adjusted forcing for the
MIROC� model using a smoothing window of �� years. The plot in the upper
left corner is the smoothed forcings of the MIROC� and Hansen forcing from
figure �.�. The difference between the two (shown in the upper right corner)
is added to the Hansen forcing to give the adjusted MIROC� forcing. The
final adjusted forcing is shown in the bottom plot, together with the Hansen
forcing.
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Figure �.�: Procedure for obtaining the adjusted forcing for the MIROC�model. Upper
left shows the smoothed version of the two time series in figure �.�, using a
��-yearwindow. The upper right shows the difference (correction) between
the two smoothed forcings. The lower plot shows the adjusted forcing
together with the original Hansen forcing

�.�.� Fitting the Response Function

Having established which forcing to use for each model, we can turn our
attention to the fitting of the response functions. Again, the TBM provides a
response function

G(t) = c1e�t/�f + c2e�t/�s , t � 0. (�.�)

We want to minimize the sum of squared errors
’
n
(T̂n �Tn)2, (�.�)
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where Tn is the nth element of the time series T from the AOGCM or from the
instrumental record, and

T̂n = c0 +

n’
s=0

F (s)
⇣
c1e

�(n�s)/�f + c2e
�(n�s)/�s

⌘
(�.�)

is the fitted TBM temperature in year n of the time series�, where F is the
forcing. Note that the fitting of the TBM using the regression fit of Geoffroy et
al. (����) is not possible, as it requires both a constant forcing and data of the
TOA energy flux. Our method of fitting is more direct, and can be applied to
any forcing scenario.

One problematic deficiency of the data is the short length of the time series. This
means overfitting is a concern. Geoffroy et al. (����) gave a multi-model mean
of 219 ± 69 years for the long time scale, which is longer than the time series
itself, and indicates that overfitting and hence bad generalization properties
is likely [Geoffroy et al., ����]. Fitting all four (five counting c0) parameters
might therefore lead to non-physical solutions due to overfitting.
To overcome this, we could fix the time scales to the multi-model mean relax-
ation times (MMMRT) given in Geoffroy et al. (����), based on the instanta-
neous doubling of CO2. For models that were part of the study, we can use
model-specific relaxation times (MSRT), assuming forcing-independent model
parameters following section �.�.�.

Based on the discussion above, we fix �f and �s such that equation (�.�) reduces
to

T̂n = c0 + c1

n’
s=0

F (s)e�(n�s)/�f + c2
n’
s=0

F (s)e�(n�s)/�sds (�.�)

= c0 + c1T1n + c2T2n ,

where T1n and T2n are the nth elements of the new time series T1 and T2, that
depend only on the forcing. Finding the constants c1 and c2 for each model is
therefore reduced to solving the normal equations to the inconsistent linear
system

Ac = T, (�.�)

where A = [�, T1, T2] and c = [c0, c1, c2]T .

Figure �.� shows the fitted temperature response of another CMIP� model,
the NorESM�-M model, using two different response functions. These are the
TBM response function and the OBM response function, which only has one

�. The series starts in ����, ���� or ���� depending on the model.
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single exponential. However, the two fits are not very different, and the need
for a long time scale is not easily visible, compared to figure �.�, where it is.
In fact, the fit using only the short relaxation time is almost just as good, with
the standard deviation being only 11% higher. The two bottom plots show the
time series T1 and T2. The OBM fit is simply a shifted multiple of T1.
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Figure �.�: Temperature fit of the NorESM�-M model (top) using both the OBM and
TBM. The standard deviation of the fits are 0.118 and 0.106�C for the
OBM and TBM, respectively. The bottom left plot shows the folded forcing
and exponential with short relaxation (T1), while the bottom right plot
shows the folded forcing and exponential with long relaxation time (T2)

There is a straightforward theoretical explanation for this good fit using only
one short relaxation time. Although the time series dates back ��� years (and
therefore an exponential with relaxation time of around ��� years could be
important), the forcing averages at around zero until the last few decades,
where the increase is significant. This means that the slow response does not
gain much net momentum in this period. That is, there is not much net heat
flux to the deep ocean, and as long as the temperature of the deep ocean is
unchanged (i.e (T �T0) ⇡ T ), the TBM is dynamically no different from the
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OBM where the deep ocean is an external heat sink. In that case, the short
time scale is approximately given by

�f ⇡ C

� + �
, (�.�)

which is the characteristic time scale of the OBM.

As the deep ocean starts to heat up during the latter part of the ��th century,
the TBM begins to deviate from the OBM. There is a tendency that the OBM fit
slightly overshoots the temperature response in the first part of the response in
order to be able to fit the sharp rise in temperature of the last few decades.

From the TBM equations, we have an important equality given by,

c1�f + c2�s =
1
�
. (�.�)

This quantity, 1/� , is the climate sensitivity per unit forcing�. Using the fit
from figure �.� we find the response functions

GOBM(t) = 0.104e�t/4.1 (�.��)
GTBM(t) = 0.051e�t/4.1 + 9.62 ⇥ 10�3e�t/219, (�.��)

which gives climate sensitivities per unit forcing of 2.32 Km2/W for the TBM�
The climate sensitivity of the CMIP� models used in Geoffroy et al. (����)
have all a climate sensitivity per unit forcing (ECS/Q) between 0.55 and
1.59 Km2/W, and we should expect the TBM climate sensitivity parameter �
to be within an a priori range guided by these values. The very high value
obtained using the TBM fit demonstrates the problem of having such a short
temperature record (or rather, such a short period with significant forcing).
The value of c2 can be shifted substantially by different internal fluctuations,
but physically the value of c2 should not depend on these fluctuations. It is
however not merely due to the the late heating of the oceans that we can
expect large variations in the fitting constants, but it is also in combination
with the complexity of the climate system. The TBM should on the aggregate
depict the temperature of the land/sea surface quite well, but the complexity
of the climate system makes possible large deviations from the TBM behavior

�. It is more precisely known as the feedback parameter, since the climate sensitivity often is
used in the context of forcing from CO2.

�. One cannot say the OBM has an equilibrium climate sensitivity, only what Held et al.
(����) calls the transient sensitivity, which is equal to 1/(� + � ).
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over substantial periods�.

From the discussion above it is clear that further constraints should be placed
on the problem. We allow a climate sensitivity between 0.2 and 2.0 m2/W,
corresponding to an ECS of about 0.8 to 7�C�. This is a highly vague constraint
that should not narrow the possible outcomes of the study, since we assume
that indeed the climate sensitivity is within this range. It is only a needed
guideline to narrow the solution space in order to obtain reasonable results.
The non-linearity of the problem means that local or even global minima
likely exist within the domain (i.e. not at the boundary), and reducing the
domain might give completely different solutions. As an additional constraint,
we also constrain the values c1 and c2 individually, again using the values in
Geoffroy et al. (����) as guidelines, and allow for some extra deviation in both
directions.

�.�.� The Fourier Transform Amplitude As a Metric

In order to accentuate nuances in the response function, it is favorable to
change domain to the frequency domain, by taking the Fourier transform. The
Fourier transform takes the function G(t) and decomposes it into its modes
of frequency f . The Fourier transform of G(t), bG(f ), is a complex function of
the frequency f whose amplitude represent the amount of frequency f that is
present in G(t).

By taking the amplitude of the Fourier transform of the response function and
multiplying it with the factor Q (the forcing from a doubling of CO2) we get
a function we call R(f ). When correlating values of R(f ) to the TCR of the
models for different frequencies, we can find a frequency f

⇤ which gives the
best (or one of the best) correlation(s), and use R(f ⇤) as the informed metric.
It contains information both about the AOGCMs response to forcing and the
estimate forcing magnitude from a doubling of CO2 in that AOGCM, the two
components that in theory should determine TCR.

Using the linearity of the Fourier transform we have

Ft [G(t)] = Ft
h
c1e

�t/�f + c2e
�t/�s

i
= c1Ft

h
e
�t/�f

i
+ c2Ft

h
e
�t/�s

i
, (�.��)

�. Although Geoffroy et al. (����) only uses a time series of ��� years to estimate parameters,
roughly the length of our historical time series, it is much better suited for estimating the
longest response time because there is a much more significant heat flux in to the deep
ocean at an early stage of the time series, and therefore the longest time scale is much
more detectable.

�. Using a value for Q of 3.5 W/m2.
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and since the response function requires t � 0, the function is square integrable
and the existence of a Fourier transform is guaranteed. The transform for this
negative exponential is given as

Ft
h
e
�t/�f

i
(f ) =

�f

1 + i2��f f
, (�.��)

where i =
p
�1 is the imaginary unit. From this we have

bG(f ) = c1�f

1 + i2��f f
+

c2�s

1 + i2��s f
. (�.��)

Taking the amplitude and multiplying with Q gives:

R(f ) = Q |bG(f )|
= Q

" ✓
c1�f

(2��f f )2 + 1
+

c2�s

(2��s f )2 + 1

◆2
+

 
2�c1� 2f f

(2��f f )2 + 1
+

2�c2� 2s f
(2��s f )2 + 1

!2 # 1
2

.

So far, what has been done is to establish a method such that, given a time series
of temperature and a corresponding time series of forcing, we can produce
a function R(f ). If this function (when calculated for each of the available
AOGCMs), for some range of frequencies, correlates well with the TCR of the
AOGCMs, then the value of the function at those frequencies can predict the
value of TCR, with some statistical uncertainty. We have found our metric �
(the value of R at some frequency), and in the next section we establish the
framework for this statistical analysis.

�.� Method For Constraining TCR From
Obsevation

�.�.� Conditional Distribution of TCR

Correlation is a measure of linear dependence (see Appendix A.�), so the
natural choice for � is a linear function, such that

�̂ = ax + b, (�.��)

where �̂ is the estimated value of TCR when x corresponds to a value of
R�.

�. By the value of R we mean the value of the function R(f ) at some frequency.
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Here, we seek to minimize

s
2 =

1
N � 2

N’
n=1

(�n � �̂n)2 =
1

N � 2

N’
n=1

(�n � axn � b)2, (�.��)

where �n is the TCR for model n 2 {1, 2, ...,N }, and xn is the corresponding
value of R. The best estimates for a and b are found by differentiating (�.��)
with respect to a and b and equating it to zero.

For our purpose, the goal is to predict the value of the next observation �N+1
(corresponding to the correct TCR of the climate system), given a value x = x0
(R = R0). The distribution of �N+1 given x = x0 can be proven to be a
normal distribution centered at the regression line [Walpole et al., ����]. The
prediction error (or standard deviation) is given by

�f (x) = s
s
1 +

1
N
+
(x � x̄)2
�
2
xN

. (�.��)

The prediction error increases slightly away from the sample mean, as it
depends on (x � x̄)2/� 2

x , where � 2
x is given by

�
2
x =

1
N

N’
n=1

(xn � x̄)2. (�.��)

This is because the uncertainty in the slope. It always goes true the samplemean,
causing higheruncertainty away from the samplemean [Walpole et al., ����].

�.�.� Distribution of the Observed Metric

There exist only one observable realization of the historical climate, correspond-
ing to only the one forcing scenario - the historical forcing - which is highly
uncertain. This inevitable fact is one of the factors that constrain our ability to
predict future climates, and one of the reasons why we are so dependent upon
models. The uncertainty regarding historical forcing, together with large un-
known internal variability of the climate system, make predictions statistically
problematic. The value of R is therefore also highly uncertain, and this must
be accounted for in some way.

In the case where we use MMMRT, the uncertainty in forcing is accounted
for by varying the forcing across the �� different forcings produced by our
adjustment method of section �.�.�. This gives us �� different best fits and ��
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different values for R. These give us a guidance to the "true"� value of R, as
well as a measure of how sensitive the value is to varying forcing. In the MSRT
case, we combine the forcing from each model with the MSRTs of each model
to produce a set of forcing and relaxation times.

To estimate uncertainty due to internal variability, we again rely on the models.
Available to this study are also ten different historical simulations of the CNRM-
CM� model, which uses equal initial conditions and forcing scenarios. These
simulations can be used to estimate the variance in the value of R due to
internal variability. We use the adjusted forcing of the CNRM-CM� model, fit
the response function to all the ten temperatures, and subsequently get ten
values of R from which we can estimate the variance. Figure �.� shows two of
these simulations, depicting the large variations.

The temperature record used is the HadCRUT� data, developed by the Climatic
Research Unit (University of East Anglia) in conjunction with the Hadley Centre
(UKMetOffice). They providemonthly land and sea surface temperatures (SST)
dating back to ���� [Climatic Research Unit, ����]. As with anything, there
are uncertainties regarding these data as well, especially before ����. However
we will not account for these uncertainties directly, as the uncertainty in a way
is incorporated into the uncertainty due to internal variability.
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Figure �.�: Two different simulations from the same model using identical perturba-
tion scenarios and initial conditions, depicting the large variations.

Mathematically, the variance of R due to forcing is estimated as

s
2
F =

1
NF � 1

NF’
n=1

⇣
Rn � RF

⌘2
, (�.��)

where NF corresponds to the number of different forcings available, and RF is
the mean of all Rn 2 (R1,R2, ...,RNF ). Similarly, the variance of R due to the

�. By true we mean the value of R we would get if we knew the historical forcing and fitted
it to the temperature record. However, there is no correct value of R, due to internal
variability of the climate.
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internal variability of the climate system is estimated as

s
2
I =

1
NI � 1

NI’
k=1

⇣
Rk � RI

⌘2
, (�.��)

where NI is the number of CNRM-CM� simulation available (equal to ��),
and RI is the mean of all Rk 2 (R1,R2, ...,RNI ). The total variance in R from
the two sources of uncertainty is found using the Pythagorean Theorem of
Statistics�,

s
2
tot = s

2
F + s

2
I . (�.��)

By combining the variability due to forcing uncertainty and internal variability,
we have accounted for the two main sources of uncertainty regarding the
historical value of R. We have therefore estimated the variance of R. However,
we have no prior knowledge of the shape of the distribution of R, and it is
unlikely to expect R having any theoretical distribution, given the complexity
of the climate system. A normal distribution is of course a natural choice and
might be suitable, however the negative support makes it inconsistent with the
positivity of R(f ) and this might be problematic. The positive support of the
gamma distribution makes it a natural alternative to the normal distribution.
A third possibility is to use an empirical kernel distribution based on the finite
set of data points, however only the two first will be examined.

�.� An Idealized Case

As an introduction to the method, as well as a reference for later comparison,
we now examine the first part of the method using the response functions
estimated by Geoffroy et al. (����). The upper left plot in figure �.� shows the
the correlation between R(f ), calculated using these TBM values. It shows a
correlation above 0.9 for frequencies the order of 10�2 yr�1, and just under
0.8 for frequencies lower than 10�3 yr�1.

In the upper right figure, we repeat the plot for ECS. While the correlation
is around 0.8 for frequencies which gave the best correlation to TCR, the
correlation is now above 0.95 as the frequency goes to zero. This highlights
the differences in the time scale at which these two values are important. TCR
is most informative on a ���-year scale or so, while ECS is important on time
scales of millennia. The high correlation of TCR on very low frequencies is a

�. We have assumed that the internal variability and the forcing are independent.
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direct consequence of the high correlation between TCR and ECS. A scatterplot
of the value of R when f = 0.01 yr�1 is shown in the bottom figure, together
with the least squares regression fit. As the correlation is so high we can
predict the TCR of a model based on the value of R(f = 0.01), with low
uncertainty.
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Figure �.�: Correlation between R(f ) and TCR (upper left), R(f ) and ECS (upper
right), using TBM parameters from Geoffroy et al. (����). The scatterplot
of the value of R(f = 0.01) against TCR is shown in the bottom, together
with a least squared regression fit.
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Figure �.� shows the function R(f ) for three different models. The numbers
in the upper right corner indicate the TCR (left) and ECS of the models. BCC-
CSM�-� and NorESM�-M (names not shown) both have an ECS of 2.8�C, but
their TCR differ, 1.7 and 1.4�C, respectively. The CNRM-CM� model has both
a high TCR and ECS, at 2.1 and 3.3�, respectively. Since the correlation is
so high, these similarities and differences are clearly seen in the plot as the
TCR correlates best with frequencies between 0.001 yr�1 and 0.01 yr�1, while
frequencies lower than 0.001 yr�1 correlates almost perfectly with ECS.
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Figure �.�: R(f ) for three different models. The models’ respective TCR (left) and
ECS is shown for comparison.





4
Results and Discussion
This chapter presents and discusses the results obtained when applying the
methods presented the previous chapter to the data. The resulting forcings from
the adjustments and the the correlation between R(f ) and TCR is presented.
Subsequently, an informative figure that visualizes the most important results
is discussed. Then the final pdf for TCR is presented. Finally, we discuss the
significance of the result, examine its robustness and discuss possible issues
with our method.

We experiment both with the case where we use �� models with MSRT and the
case where we use our full ensemble of �� models with MMMRT.

�.� Adjusted Forcings

Figure �.� (upper) shows the corrected series for the �� models having data
back to ����, using a constant smoothing window of �� years, while the bottom
figure shows the subsequent adjusted forcings. There are considerable differ-
ences between the models, with an ERF of �.� ± �.� W/m2 in ���� (year ���).
This spread is mainly driven by differences in forcing from greenhouse gases
and aerosols, and little by natural forcing [Forster et al., ����].

��
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Figure �.�: Results from adjustment of the �� models having data back to ����. A
smoothing window of �� years is used. The upper plot shows the adjusted
series, similar to figure �.� (upper right), while the adjusted forcings are
plotted below, along with the Hansen forcing (thick red), for comparison.

�.� Correlation Plots

Figure �.� shows the obtained plots of correlation between R(f ) and TCR
in six different cases. The left column shows the correlation when we use
MMMRT (�.� and ��� years) for all �� models, while the right column shows
the correlation when the �� models used in Geoffroy et al. (����).

The upper row shows the resulting correlation when the method of the previous
chapter is used. It is the correlation between R(f ) and TCR obtained by fitting
the response function to each model’s historic temperature simulation, using
that particular model’s adjusted forcing. The correlation is high, however, not as
high as when we used fitted parameters from the 2⇥CO2 simulation in Geoffroy
et al. (����). We again find the best correlation for frequencies around 0.01
yr�1, as expected. MSRT perform slightly better (around 0.9), compared to
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using MMMRT (around 0.86). The shape of the MSRT-graph also inherits some
of the characteristics as figure �.� because it uses the exact same relaxation
times.

The plots in the middle row illustrate the importance of using model-specific
forcings. It shows that when we fit the response function to model data using
the same forcing (the Hansen forcing), the correlation drops drastically to a
value that is much less informative and practically useless. This is because in
that case, the forcing that is used is not the forcing that causes the temperature
response. Because of this, the resulting response function does not depict the
true transient response of the model and therefore the correlation is somewhat
lost. There is still some positive correlation, probably due to a combination of
the factorQ (that correlates with TCR), together with the fact that models with
high TCR often produce higher than average historical temperatures. Since the
forcing is constant in this case, the models with higher temperatures obtain
a correspondingly larger response function, which also correlate with TCR.
Furthermore, this plot also demonstrates that using model-specific relaxation
times does not necessarily produce a higher correlation.

The bottom row presents the correlation using only the Forster forcing without
any smoothing or adjustments. Interestingly, the correlation peaks at roughly
the same value as the adjusted forcing. However, the main reason for this is
rather straightforward. The high fluctuations in the Forster forcing are mainly
interannual fluctuations, shorter than the relaxation time of the fast response.
Therefore, the data is indirectly smoothed when fitted to the response function.
The difference between the two is therefore not well shown in the correlation
plot.

In general, we can expect comparable results using only the Forster forcing,
due to the characteristics of the fluctuations and the use of a TBM. However, to
be precise, we need to make sure that the fitting of the historical temperature
has the same starting point as the fitting of the models. By this, we mean that,
in principle, the definition of forcing could have been F = N + �T . However,
when using historical data this definition is a dead end, since we do not know
the historical N �. If we possessed satellite data of N dating back to ���� we
could have compared models with historical climate directly using the this
definition, and there would not be a need for any adjustment to make sure
fitting of model data and fitting of historical data had the same "type" of forcing.
Until we have more satellite data available, using the Forster forcing directly
is inaccurate.

�. There would still be large uncertainty in the forcing due to the unknown value of � .
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Figure �.�: Correlation plots using MMMRT (left column) and MSRT (right column)
for the adjusted forcing (upper row), Hansen forcing (middle row) and
Forster forcing (bottom row).
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�.� Resulting Response Functions

As stated in section �.�.�, we account for uncertainty in historical forcing by
varying the forcing applied to the TBM across the adjusted forcings to get ��
(��) different response functions and �� (��) different values of R.

If we look in more detail at the specific numbers, we find that there is a
statistically significant difference between the average values of c1 and c2 in
the response functions fitted to models and the response functions fitted to
historical temperature. For the MMMRT case with ��models, the average value
of c1 when fitted to models is about 0.092 Km2/W , while it is 25% lower
when fitted to historical data (0.069). Furthermore, the value of c2 averages
at 4.77 · 10�3 Km2/W when fitted to models, and is 18% higher when fitted
to historical temperature (5.61 · 10�3), see table �.�.

Table �.�: Average values of the the constants c1, c2 and 1/� from the fitting of model
simulations and instrumental temperature record

Average c1 Average c2 Average 1/�
Model 0.092 Km2/Wyr 4.77 · 10�3 Km2/Wyr 1.42 Km2/Wyr

Historical 0.069 Km2/Wyr 5.61 · 10�3Km2/Wyr 1.51 Km2/Wyr
Difference �0.023 Km2/Wyr 0.84 · 10�3 Km2/Wyr 0.09 Km2/Wyr

In terms of the climate sensitivity of the TBM (1/�), these differences average
out to give approximately the same value, which means that there seems to
be no significant evidence of a higher/lower ECS from these results. From
equation (�.��) we have

c1 =
af

��f
c2 =

as

��s
.

This suggests that, since the climate sensitivity parameter is approximately
equal and the characteristic time scales are equal, the differences between the
fitting of the model simulation and the historical data lies in the amplitudes of
the fast and slow response,af and as . On average, the slow component is larger
when the TBM is fitted to historical data, which means that the temperature
response to forcing is more delayed, leading to a lower average TCR�.

It is however too early to conclude that the TCR is likely significantly lower than
some models predict. There is still uncertainty regarding internal variability
and how well the models’ TCR is captured by the response function. Statistics
are needed for this purpose.

�. TCR is not only determined by the response of a model, but rather the product of forcing
from a doubling of CO2 and response. However, we know that the forcings used were the
same in both sets.
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�.� An Illustrative Plot

Figure �.� packs much of the statistical data used to obtain our resulting pdf
of TCR into one plot: One for the MSRT case (top) and one for the MMMRT
case (bottom). For each of the plots, the result was found using a smoothing
of �� years.

The black points are the values ofR (x -axis),with f = 0.01 yr�1 , corresponding
to fits of the temperature data from model simulations, with each model’s TCR
on the �-axis (as in figure �.�). The numbers indicate which model each
point represents, and is found in table B.� in appendix B. The best linear
fit to the data is also shown, which at every value of R corresponds to the
center of the conditional distribution of TCR. The dashed lines represent one
standard deviation of the conditional distribution, using the method of section
�.�.�.

The red points represent the values of R corresponding to the historical tem-
perature fits, and here the numbers indicate which model’s adjusted forcing is
used. A normal distribution and a gamma distribution for P(R) is also shown,
where the mean of the distributions equals the mean of the red points. The
variance is the sum of the sample variance of the red points and the sample
variance from the ten runs using the CNRM-CM� simulations�.

In the MSRT plot, we see that the correlation between R and TCR is high (0.9).
It is noticeably better than in the MMMRT plot, which has a correlation around
0.85. This narrows the conditional pdf in the MSRT case compared to using
MMMRT case. Furthermore, looking at the MMMRT plot in particular, we find
that the average value of R is significantly lower for the historical data fits (red
points), compared to the model simulation fits (black points). The mean is
1.06�C for the red points and 1.38�C for the black points, which is consistent
with what we found by investigating the response function in the previous
section.

The standard deviation due to internal variability in the same plot (bottom)
is 0.264�C. The standard deviation due to variable forcing is 0.288�C. This
gives a total standard deviation of 0.391�C. This also means that the estimates
of uncertainty in forcing and internal variability are approximately equally
important to the total variance.

Looking at the normal distribution, it seems that indeed there is a tendency that
it gives nonphysically high probability for the extreme low (and even negative)

�. The additional variance due to internal variability means the pdfs are wider than if they
were fitted to the points only.
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values of R. A gamma distribution looks like the most reasonable choice. We
do however examine the both in table �.� of the next section.
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Figure �.�: Scatterplot of the values of R(f = 0.01) against TCR (black points), with
numbers corresponding to each model in table B.� in Appendix B, together
with a least square fit of the points and one standard deviation. Red points
represent historical fits, using the forcing corresponding to the numbers.
A normal and gamma distribution for P(R) is also shown by the blue and
red curve, respectively. A ��-year smoothing window is used. The upper
plot is for the MSRT case, while the bottom is for the MMMRT case.

�.�.� Remarks

One important point to keep in mind is that the values of R found when fitting
the response function to the historical data uses the exact same forcing and
relaxation times as the corresponding black point. This is important to the
statistics of the problem. Each number in the MSRT plot corresponds to a set
of both forcing and relaxation times, not only forcing. This is essential to make
sure the fitting of the two data sets is without bias. For the same reason wemust
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also adjust the Forster forcing to validate our study, as discussed earlier.

As mentioned, the spread of the red points is due to forcings, since the temper-
ature is always the same. In the MSRT case, the spread also depends on the
relaxation times, since they are different. However, even in the MMMRT case,
where forcing is the only difference between the points, it is not straightforward
to quantify the difference directly in terms of the forcing applied. When a large
forcing is applied, the fitted response function in general gets smaller, again
since the temperature response is always the same. However, it is not only the
Fourier transform of the response function that determines the value of R, it is
also the factor Q . On average, models with higher historical forcing also have
a higher value of Q , and this works in the opposite direction. This means the
value of R could be larger for a model with larger forcing, even though the
response function is smaller.

TCR is measure of temperature change to forcing from CO2, and the factorQ is
a measure of forcing from CO2�. However, the historical forcing is not only from
CO2, and therefore the value of Q does not have a direct link to the historical
forcing of the models. Forcing from other agents is also causing large inter-
model spread in historical forcing [Forster et al., ����]. Even if the historical
forcing was only due to CO2, a simple factor Q could not compensate for
differences in forcing as there are several non-linear mathematical operations
between forcing and a value of R.

However, we know that the response function measures (with somewhat high
accuracy) the response to of the models to (any) forcing, and the factor Q
is a quantity about the magnitude of the forcing from a doubling of CO2.
In combination, they should give some indication to the value of TCR in
models.

Figure �.� shows the forcing and response functions of the model 6 (GISS-E�-R)
and model 12 (HasGEM�-ES), the two models that that give the lowest and
highest value of R in the MSRT plot. The much larger historical forcing of the
GISS-E�-R gives a much smaller response function. From the resulting R(f ), it
is clear that the higher value of Q for the GISS-E�-R (3.8 W/m2 to 2.9 W/m2)
does not cancel this difference in this case.

Another important point to add is that we do of course not assume that there
only is internal variability in the real climate system. After all, we used a model
to estimated the internal variability. However, this uncertainty is part of the
uncertainty in the linear regression prediction interval. The points spread out
not only because the TBM is imperfect, but also due to the internal variability,

�. This is why we multiply with Q for the value of R, to make it comparable to TCR.
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Figure �.�: Adjusted forcing (upper plot) and the function R(f ) to historical fits using
two different models in the MSRT case. A smoothing window of �� years
is used

resulting in a larger prediction error.

�.� Probability Distribution of TCR

From the conditional pdf, estimated from the scatterplot (black points) in
figure �.�, and distribution of R, shown in the same figure, we can calculate
the pdf of TCR. Figure �.� shows the resulting pdfs using a ��-year smoothing
window and a gamma distribution. In the same plots, histograms showing the
distribution of values of TCR from the models used to calculate the pdfs are
plotted. The top plot shows the MMMRT case (�� models in the histogram),
while the MSRT case is shown below. The pdfs using a normal distribution are
presented in Appendix C, so is the pdf using only Forster forcing.

There is a significant shift towards lower values for TCR in both cases. Table �.�
gives the results using both �� and �� models, for different smoothing window
sizes and distributions of R (gamma or normal). We get the most constraining
result using �� models and a gamma distribution. Varying the smoothing
window size only changes the results slightly. If we use the gamma distribution,
we get an interval that encompasses all the different 5 � 95% intervals from
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both cases of 1.0�2.3�C, and the most narrow interval is 1.05�2.19�C, using
MMMRT. We expand the best interval to the nearest decimal, and obtain our
final result, which is 1.0 � 2.2�C�.
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Figure �.�: Final pdfs for the MSRT case (top) and MMMRT case (bottom) using a
��-year smoothing and a gamma distribution for P(R). Histograms are also
plotted, and they show the distribution of values for TCR for the models
used to calculate the pdfs.

Table �.�: Results for the two methods using different smoothing window and distri-
bution for R, in both the MMMRT and MSRT case. For the columns, the
number indicates the smoothing window size and letter indicates distribu-
tion - G for gamma and N for normal. The number indicates the mean, and
the numbers in the parentheses gives the 5 � 95% confidence interval.

�� - G �� - N �� - G �� - N

MMMRT �.��
(�.��-�.��)

�.��
(�.��-�.��)

�.��
(�.��-�.��)

�.��
(�.��-�.��)

MSRT �.��
(�.��-�.��)

�.��
(�.��-�.��)

�.��
(�.��-�.��)

�.��
(�.��-�.��)

Figure �.� shows the mean and 5 � 95% confidence level for the TCR, as
function of the period 1/f . The intervals are obtained using the MSRT case

�. We could use the most narrow, but it common to use only one decimal.
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and a gamma function for P(R). Our interval for f = 0.01 yr�1 is almost
encompassed by all the other 5�95% intervals. However, the lowest frequency
(where the correlation is bad) has a slightly higher lower bound. This means
that the lowest values in the case of f = 0.01 yr�1 are not consistent with all
the intervals. This is slightly problematic, but only concerns the values lower
than 1.1�C.

The constraint is not visible at all using a period of ���� years. Furthermore,
this shows that the result is not very sensible to choice in f , as long as we
choose a frequency that correlates well with TCR, adding to our confidence in
the result (apart from the slight inconsistency of the lowest vales).
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Figure �.�: Mean and 5 � 95% confidence level as function of the period (1/f ) using
the MSRT case and a gamma distribution. Black solid line is mean of
model TCR and dashed lines indicate maximum and minimum value for
TCR for the �� models (1.1 and 2.5 �C).

�.�.� Implications

If we compare our interval to the TCR of the models used to estimate the
conditional pdf, we find that two of the models are outside this interval, namely
CanESM� (2.4�C) and HadGEM�-ES (2.5�C)�. These models therefore seem
to be inconsistent with the observed temperature record.

It is rather interesting how a result like this is at all possible, using such
simple tools and the historical temperature record. Sanderson and Knutti
et al. (����) argue that most of the large scale observations is already used
to devolop the models, and is therefore of little use for further constraining
models. [Sanderson and Knutti, ����]. In AR�, IPCC concluded that the result
from different studies based on surface temperature, ocean heat uptake and
RF agreed well with their likely� range of 1.0�C to 2.5�C.

�. This is independent of what interval is used.
�. The term likely means a greater than ��% chance in the IPCC reports.
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However, the result is consistent with some recent studies which use historical
data to constrain TCR [Lewis and Curry, ����]. Recent revisions of greenhouse
gas forcing and and post-���� aerosol and ozone forcing is one possible expla-
nation [Lewis and Curry, ����]. Regarding this, it should also be mentioned
that IPCC use many other studies that do not use the temperature record to
constrain the outcome, and IPCC tend to weigh such studies significantly as
well [Collins et al., ����].

One comparable study to our study is the study of Otto et al. (����). They
estimate TCR as the slope of temperature change to forcing from equation
(�.�), and use the mean Forster forcing. They conclude with a 5 � 95% confi-
dence interval of 0.9�C to 2.0�C [Otto et al., ����]. In their study, they added
additional 0.08�C standard deviation (Gaussian white noise) to the HadCRUT�
data series to account for internal variability. In addition, they used recent es-
timates of aerosol forcing to scale the forcing series in order to add 0.3 W/m2

in ����. This scaling lowers the estimated TCR, which might explain the even
lower estimate for TCR, compared to our result.

As the "historical period" expands into the future, our ability to predict TCR
should increase drastically, as the total forcing compared to pre-industrial
levels increase towards higher and higher values and the temperature record
is constantly updated. ECS remains a much harder problem, and using our
method to estimate ECS is likely to be very inaccurate.

It is however important to stress that our result should been seen in context
with the histogram, as it is the models pictured in the histogram that are used
to estimate the final distribution of TCR. The estimate is very much dependent
upon the models used.

We leave it for future studies work to further investigate the reasons for this
result.

�.� Robustness of Method - OBM

As an additional way to test the robustness of the results, we will use the OBM
as well, although only for the MMMRT case. We have seen how the OBM only
had a slightly less satisfactory fit to historic temperature, as the longer time
scale only really becomes significant the last couple of decades. Using the fast
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relaxation time (�.� years),� we find a correlation of 0.815�, as seen in figure
�.�.

Despite the lower correlation, the resulting pdf is nearly identical to the one
obtained using the TBM, as seen in figure �.� (bottom). It gives a slightly
higher mean, at 1.56�C with a 5 � 95% confidence interval between 1.05�C
and 2.26�C.

�.�.� Important Note

Our method has now been shown to give consistent results, with only small
variations, using MMMRT, MSRT and even the simpler OBM. It is however
important to note that themethods give approximately the same results because
they are physically grounded in approximately the same way. We cannot use a
model that is not physically meaningful. For instance, if we use the OBM, but
choose the slow response time (��� years), the correlation drops to �.�� and
we obtain no constraining results whatsoever.

Furthermore, it is possible to develop a method that constrains the values even
more, for instance using machine learning. There are certainly features in the
data that separates themodel simulations from historical data, and sommethod,
say a neural network, could give practically any result if necessary.

Results obtained using our TBM approach are however grounded in a physically
sound model and the results obtain is therefore legitimized by the evidence
that the TBM is able to capture temperature responses to forcing accurately
[Geoffroy et al., ����].

The result using the OBM is gratifying, as it shows that as long as we use a
physically grounded model, the method is robust and consistent.

�.� Some Possible Issues Related to the Method

The robustness of the method used has been shown to be high. However, there
are some questions to be asked regarding some aspects of the method.

�. As we saw in section �.�.� the theoretical value of the OBM relaxation time is slightly
shorter due to the more efficient heat uptake of the infinite deep ocean, but we stick with
the same for simplicity.

�. The only thing that separates the response functions when using a constant relaxation
time is the product Q · c1, and therefore the correlation is independent of f .
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Figure �.�: Results using the OBM model. From the top is the correlation between
R(f ) and TCR, the scatterplot of the fits, and finally the pdf, together with
the histogram.

�.�.� Forcing

One obvious possible inaccuracy is the way we use the forcing data. Using
model-specific forcings is necessary to adequately describe the response of the
models. We have attempted to preserve the forcing as model-specific, while at
the same time could be used to compare models to observation without bias.
However, this method is novel, and its implications are not well tested.
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�.�.� Internal Variability

Estimating internal variability from a single model could be a source of bias.
We have also accounted for internal variability by widening P(R) according to
the Pythagorean theorem of statistics. This assumes independence between
the forcing and the internal variability. Some co-variance is however likely to
exist.

�.�.� Two-Box Model

The TBM has proven effective. However, some questions might be asked about
the TBM’s applicability.

In section �.�.�we saw how Geoffroy et al. (����) found that the TBMmanaged
to reproduce the 1% per year increase in CO2 concentration scenario, using
parameters fitted to the instant CO2 doubling scenario. They therefore con-
cluded that the TBM is able to adequately reproduce the temperature response
of different scenarios. As mentioned, this should mean that the parameters
found instant CO2 doubling should give a good fit to any scenario��.

When we use the parameters they found for the 2⇥CO2 scenario, we find that
the parameters differ from the ones we find, some significantly. Figure �.�
compare the fit for two different models. It is obvious that for the CCSM� their
parameters do not give a satisfactory fit. If we compare the numbers we find
that c1 for our fit is 0.10 Km2/Wyr , while their value is 0.16 Km2/Wyr . The
value of c2 is 0.0054 Km2/Wyr and 0.0027 Km2/Wyr for our and their fit,
respectively.

There might be several explanations to this difference between the parameters.
The most obvious is clearly the simplicity of the TBM. An instant doubling
of CO2 is a very different scenario than the historical forcing scenario, which
means that the climate system can react differently. This does not necessarily
imply that the TBM is not an adequate model for our purposes, but perhaps
indicates that the TBM is only applicable within a range of scenarios somewhat
similar to the tuning scenario. After all, we do get a good fit from using the
response function of the TBM, even when the two time scales are set prior to
the fit (which somewhat inhibits the fitting ability). The linearity assumption
of the TBM should hold especially well in the historical case, since the size of

��. This is of course a necessary assumption to begin with, since there is no point in having a
model if you need to tune the model to another model for every forcing scenario. However,
a model can still be useful even though it does not perform well for every scenario, but
perhaps some range of scenarios.
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Figure �.�: Fitted temperature response using both the fit to this particular forcing
scenario, and a fit using the parameters from Geoffroy et al. (����).

the perturbation is smaller.

Another possible explanation for the deviation from the instant CO2 doubling
parameters is the fact that the forcings used are different. Not just the mag-
nitude, but also in the way they are estimated. The forcing used in Gregory
et al. (����) was calculated using the Gregory method and should be a good
estimate of the true ERF. The forcing they used in the testing scenario (TCR
scenario) was directly linked to the forcing of the tuning scenario through
the logarithmic depends of forcing to CO2 concentration, and therefore no
new estimation method of the forcing was needed. Therefore, the forcing was
guaranteed to be the same kind of forcing in both scenarios.

The Forster forcing is based on the same idea, but on a much shorter time
scale, and with a constantly varying forcing. Our smoothing aims to restore
the linearity relation and therefore correct the forcing to represent the trend
in ERF in each time series. It is however not clear how well our forcing mimics
the Gregory ERF. If the the different, the response of the TBM should also be
different, which might explain some of the deviation. This does not, however,
imply that the TBM is less suited to our problem. It just means that the
calibration of the model is different. On the other hand, the MSRT gave the
best correlation, which indicates that there is some applicability of the 2⇥CO2
fit to our purpose as well

There are most certainly some questions to be asked about how well suited the
TBM is for our particular method, and whether we could have used a better,
perhaps more complicated model. The important point is that the correlation
between R is still high using our fitting method to historical forcing, so the
model seems to a nearly equally good job at extract information import for
TCR. The fitting in Geoffroy et al. (����) also had a much better staring point
than for fitting given the instant high forcing, and therefore there is less noise
in the fitting.
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�.� Underlying Issues

Finally, there are some questions to be asked about the validity of this study as
a whole.

First, the problem is somewhat circular, as we assume that the models tell an
accurate story about the nature of TCRwhen we build our statistical framework,
while the concluding interval suggests that some models are unlikely to have
an accurate estimate of TCR.

Second, doing statistics based almost entirely on models to disprove the models
is perhaps superficial, even though there is this important extra data from
the historical instrumental record upon which we lay our confidence in the
result.





5
Concluding Remarks
�.� Summary

In this thesis, a method has been developed to constrain the likely values of TCR
produced by an ensemble of CMIP� models, based on the historic temperature
record from ����. The method was based on the simple but illustrative and
physically sound TBM, which is able to reproduce the temperature of the
complex AOGCMs accurately. In the fitting of the response function of the TBM
to the data, the data was compressed into a scalar (R), that could be compared
between model simulations and historical data.

In order to best compare historical data to model data, we smoothed and
adjusted forcing data from each model. This was done to ensure that the
forcing used, when fitting both historical and model data, was not directly
linked to the temperature fluctuations of the model. When models were fitted
to the TBM, the subsequent high correlation between the value of R and TCR
promised high predictive ability of TCR just from this scalar.

To account for the uncertainty in historical forcing, we applied the different
adjusted forcings of every model to the TBM, and fitted to historical data.
Additional uncertainty in the value of R was included to account for the
variability in the climate system, and we did so by using data from different
simulations of the same model.

Based on the linear regression between R and TCR from the model simulation,

��
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and the distribution of R from historical fits based on different forcings (as well
as the estimate of internal variability), a pdf for TCR was estimated.

�.� Conclution

Reducing uncertainty in the TCR is important as it maps directly to uncertainty
in climate change of the coming century. This study set out to investigate the
following question:

Given the recorded instrumental temperature record and a set of historical sim-
ulations from an ensemble of CMIP� models, is it possible to constrain the likely
values of TCR and thus discard some models as being inconsistent with observa-
tion?

Based on the results of this study, the answer is found to be yes.

Our resulting 5 � 95% confidence interval predicts a TCR of 1.0 � 2.2�C. Two
of the AOGCMs used in this study have a TCR which is outside this range,
CanESM� (�.��C) and HadGEM�-ES (�.��C). These models therefore seem to
be inconsistent with observations.

This result has been shown to be robust to changes in parameters, and provides
further evidence to recent studies suggesting that the likely range of TCR is
lower than what some climate models predict.

However, questions remain regarding the validity of using the forcing data in
such a way, and whether the uncertainties are properly included.

�.� Future Work

Simply acquiring more data as time passes would improve the ability to con-
strain TCR from observation, because the rapid increase in greenhouse gases of
the past decades means the response of the climate to a rapidly increasing CO2
concentration is unraveling. CMIP� is on the doorsteps as well, and repeating
this study using this updated ensemble of models along with even more recent
temperature records would likely give more accurate results.

Another possibility is to use the most recent Paleoclimate Modeling Intercom-
parison Project (PMIP�) to repeat the study with the goal of constraining ECS.
Furthermore, one can have a different measure of climate change and use a
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similar method (possibly with some other metric). One possibility is to use the
temperature in year ���� in a given RCP scenario as the target variable.





A
Technical Theory
A.� Solving The Two Box Model

The two-box model equations are given by

C
dT

dt
= F � �T � � (T �T0) (A.�)

C0
dT0

dt
= � (T �T0) (A.�)

By rewriting the set of equations in matrix form we get the following matrix
equation

dx
dt
= Ax + b (A.�)

Where

x(t) =

T

T0

�
, A =


�(� + � )/C �/C

�/C0 ��/C0

�
, b(t) =


F/C
0

�
.

The solution, x⇤, to the homogeneous system (b = 0) is given by

x⇤(t) = e
tAx(0),

�



where etA is the matrix exponential [Anton, ����, Edwards et al., ����].

In order to express etA directly, not as an infinite series, one can diagonalizeA so
thatA = �D��1, where D is the diagonal matrix whose diagonal elements are
the eigenvalues of A and � is the matrix with the corresponding eigenvectors
as columns. It can be shown (with some algebra) that

D =


�1/�f 0

0 �1/�s

�
, and � =


1 1
�f �s

�

Where

�f =
CC0

2��
(b�

p
� ), �s =

CC0

2��
(b+

p
� ), �f =

C

2�
(b⇤�

p
� ), �s =

C

2�
(b⇤+

p
� )

and
b =

� + �

C
+

�

C0
, b

⇤ =
� + �

C
� �

C0
, � = b2 � 4

��

CC0

It can be proved that by using the diagonalization of A, that the exponential
can be expressed

e
tA = e

�D��1
= �etD��1 = �


e
�t/�f 0
0 e

�t/�s

�
��1 (A.�)

Which gives us the general solution of the homogeneous system as follows

T
⇤(t) = 1

�s � �f

⇣
T1e

�t/�f +T2e
�t/�s

⌘
and

T
⇤
0 (t) =

1
�s � �f

⇣
�fT1e

�t/�f + �sT2e
�t/�s

⌘

Where T1 = �sT (0) �T0(0) and T2 = ��fT (0) +T0(0)

We can find the particular solution by using variation of parameters. By assuming
that a particular solution has the form x(t) = e

tAU (t), we can insert this into
A.� to getU 0(t) =

�
e
tA��1

b(t). Using equation A.� it is possible integrate this
expression to obtain the vector U . By combining the homogeneous solution
with the particular solution we get the following general solutions

T (t) = T ⇤(t)+ 1
C(�s � �f )


�s

π t

0
ds F (s)e�(t�s)/�f � �f

π t

0
ds F (s)e�(t�s)/�s

�

and

T0(t) = T ⇤
0 (t) +

�f �s

C(�s � �f )

π t

0
ds F (s)e�(t�s)/�f �

π t

0
ds F (s)e�(t�s)/�s

�



In the case of a step forcing the analytic solution is straightforward and can be
written as

T (t) = Teq � afTeqe
�t/�f � asTeqe

�t/�s (A.�)
T0(t) = Teq � �f afTeqe

�t/�f � �f asTeqe
�t/�s (A.�)

where
af =

�s�f

C(�s � �f )
�, as = �

�f �s

C(�s � �f )
�

are the amplitudes of the fast and slow temperature responses and Teq = F/�.
Importantly, af + as = 1 and �f af + �sas = 1. [Geoffroy et al., ����]

A.� Correlation

The correlation measures the linear relationship between two variables. The
most common measure is the "Pearson correlation coefficient", often just re-
ferred to as the correlation coefficient [Walpole et al., ����]. The coefficient
is an estimate of the predictive relationship between the two variables, and a
high (absolute) suggest a strong predictive relationship where knowing one
variable is enough to predict the other with low uncertainty.

Mathematically, the coefficient is given by

r =

Õn
i=1(xi � x̄)(�i � �̄)pÕn

i=1(xi � x̄)2 Õn
i=1(�i � �̄)2

, (A.�)

and this expression is the one used in the Correlation[] function in Mathemat-
ica.
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�



Table B.�: Table of CMIP� models used in this thesis, with their corresponding TCR,
ECS andQ . For models that were part of the study of Geoffroy et al. (����),
the respective relaxation times are also shown.

# Name TCR [�C] ECS [�C] Q [W/m2] �f [yr] �s [yr]
� BCC-CSM�-� �.� �.� �.� �.� ���
� CanESM� �.� �.� �.� �.� ���
� CCSM� �.� �.� �.� �.� ���
� CNRM-CM� �.� �.� �.� �.� ���
� CSIRO-Mk�-�-� �.� �.� �.� �.� ���
� GISS-E�-R �.� �.� �.� �.� ���
� IPSL-CM�A-LR �.� �.� �.� �.� ���
� MIROC� �.� �.� �.� �.� ���
� MPI-ESM-LR �.� �.� �.� �.� ���
�� MRI-CGCM� �.� �.� �.� �.� ���
�� NorESM�-M �.� �.� �.� �.� ���
�� HadGEM�-ES �.� �.� �.� �.� ���
�� GFDL-ESM�M �.� �.� �.� �.� ���
�� ACESS�� �.� �.� �.� - -
�� BCC-CSM�-�-M �.� �.� �.� - -
�� INM-CM� �.� �.� �.� - -
�� MIROC-ESM �.� �.� �.� - -
�� GFDL-CM� �.� � �.� - -
�� GFDL-ESM�G �.� �.� �.� - -
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Figure C.�: Pdfs for the MSRT and MMMRT cases using a normal distribution for P(R).
All parameters are the same as in figure �.�.
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Figure C.�: Pdfs for the MSRT and MMMRT cases using the Forster forcing directly
without adjustment. A gamma distribution is used for comparison with
figure �.�.
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SetDirectory["C:\\Users\\Olaf\\Dropbox\\Master\\Data"];

Gofmat =
{{"BCC-CSM1–1", 7.6, 53, 0.67, 4., 126} , {"BNU-ESM", 7.4, 90, 0.53, 5.0, 267}

, {"CanESM2", 7.3, 71, 0.59, 4.5, 193}
, {"CCSM4 ", 6.1, 69, 0.93, 2.8, 132}
, {"CNRM-CM5", 8.4, 99, 0.50, 5.2, 289}, {"CSIRO-Mk3.6.0",

6.0, 69, 0.88, 3.9, 200}, {"GFDL-ESM2M", 8.1, 105, 0.90, 3.6, 197},
{"GISS-E2-R", 4.7, 126, 1.16, 1.6, 184}, {"HadGEM2-ES", 6.5, 82, 0.55, 5.3, 280},
{"IPSL-CM5A-LR", 7.7, 95, 0.59, 5.5, 286}, {"MIROC5", 8.3, 145, 0.76, 3.5, 285},
{"MPI-ESM-LR", 7.3, 71, 0.72, 3.9, 164}, {"MRI-CGCM3", 8.5, 64, 0.66, 4.3, 150},

{"NorESM1-M", 8.0, 105, 0.88, 4.0, 218}, {"FGOALS-s2", 7.0, 127, 0.76, 4.2, 317},
{"multimodel mean without INM-CM4", 7.3, 91, 0.74, 4.1, 219}};

b = Table Lambda2box[[i]] + Gofmat[[i, 4]] Gofmat[[i, 2]] +

Gofmat[[i, 4]] Gofmat[[i, 3]] , {i, 1, 15} ;
bstar = Table Lambda2box[[i]] + Gofmat[[i, 4]] Gofmat[[i, 2]] -

Gofmat[[i, 4]] Gofmat[[i, 3]] , {i, 1, 15} ;
delta = Table b[[i]]^2 - 4 * Lambda2box[[i]] * Gofmat[[i, 4]]

Gofmat[[i, 2]] * Gofmat[[i, 3]] , {i, 1, 15} ;
phif = Table Gofmat[[i, 2]] 2 * Lambda2box[[i]] *

bstar[[i]] - Sqrt[delta[[i]]] , {i, 1, 15} ;
phis = Table Gofmat[[i, 2]] 2 * Lambda2box[[i]] *

bstar[[i]] + Sqrt[delta[[i]]] , {i, 1, 15} ;
τf = Table Gofmat[[i, 2]] * Gofmat[[i, 3]] 2 * Lambda2box[[i]] * Gofmat[[i, 4]] *

b[[i]] - Sqrt[delta[[i]]] , {i, 1, 15} ;
τs = Table Gofmat[[i, 2]] * Gofmat[[i, 3]] 2 * Lambda2box[[i]] * Gofmat[[i, 4]] *

b[[i]] + Sqrt[delta[[i]]] , {i, 1, 15} ;
af = Table phis[[i]] * τf[[i]] * Lambda2box[[i]]

Gofmat[[i, 2]] * phis[[i]] - phif[[i]] , {i, 1, 15}
c1gof = Table af[[i]] Lambda2box[[i]] * τf[[i]] , {i, 1, 15}
c2gof = Table 1 - af[[i]] Lambda2box[[i]] * τs[[i]] , {i, 1, 15}

c1gof = Drop[c1gof, {2}]
c2gof = Drop[c2gof, {2}]
τfgof = Drop[τf, {2}]
τsgof = Drop[τs, {2}]
τn1 = {τfgof [[1]], τfgof [[2]], τfgof [[3]], τfgof [[4]], τfgof [[5]],

τfgof [[7]], τfgof [[9]], τfgof [[10]], τfgof [[11]], τfgof [[12]],
τfgof [[13]], 4.1, 4.1, 4.1, 4.1, τfgof [[8]], 4.1, τfgof [[6]], 4.1};

τn2 = {τsgof [[1]], τsgof [[2]], τsgof [[3]], τsgof [[4]], τsgof [[5]],
τsgof [[7]], τsgof [[9]], τsgof [[10]], τsgof [[11]], τsgof [[12]],
τsgof [[13]], 219, 219, 219, 219, τsgof [[8]], 219, τsgof [[6]], 219};

tn11 = Table[τn1[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 19}}];
tn22 = Table[τn2[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 19}}];
imppar = Table[{Lambda2box[[i]], af[[i]], 1 - af[[i]], τf[[i]], τs[[i]]}, {i, 1, 14}];
Lambda2box = {1.21, 0.93, 1.03, 1.24, 1.11,

0.61, 1.34, 1.70, 0.65, 0.79, 1.58, 1.14, 1.26, 1.11, 0.88};
Seq = 1 Lambda2box;



AR5mat =
{{"BCC-CSM1–1", 3.2, 2.8, 1.7, 0.9, 1.1} , {"BNU-ESM", 3.9, 4.1, 2.6, 1.1, 1.0}

, {"CanESM2", 3.8, 3.7, 2.4, 1, 1}
, {"CCSM4 ", 3.6, 2.9, 1.8, 0.8, 1.2}
, {"CNRM-CM5", 3.6, 3.3, 2.1, 0.9, 1.1}, {"CSIRO-M k3.6.0",

2.6, 4.1, 1.8, 1.6, 0.6}, {"GFDL-ESM2M", 3.4, 2.4, 1.3, 0.7, 1.4},
{"GISS-E2-R", 3.8, 2.1, 1.5, 0.6, 1.8}, {"HadGEM2-ES", 2.9, 4.6, 2.5, 1.6, 0.6},
{"IPSL-CM5A-LR", 2.7, 2.6, 1.5, 1, 1}, {"MIROC5", 4.1, 2.7, 1.5, 0.7, 1.5},
{"MPI-ESM-LR", 4.1, 3.6, 2, 0.9, 1.1}, {"MRI-CGCM3", 3.2, 2.6, 1.6, 0.8, 1.2},

{"NorESM1-M", 3.1, 2.8, 1.4, 0.9, 1.1}, {"FGOALS-g2-NOT WORKING", 1, 1, 1, 1, 1},
{"multimodel mean without INM-CM4", 7.3, 91, 0.74, 4.1, 219}};

AR5matnew =
{{"BCC-CSM1–1", 3.2, 2.8, 1.7, 0.9, 1.1} , {"BNU-ESM", 3.9, 4.1, 2.6, 1.1, 1.0}

, {"CanESM2", 3.8, 3.7, 2.4, 1, 1}
, {"CCSM4 ", 3.6, 2.9, 1.8, 0.8, 1.2}
, {"CNRM-CM5", 3.6, 3.3, 2.1, 0.9, 1.1}, {"CSIRO-M k3.6.0",

2.6, 4.1, 1.8, 1.6, 0.6}, {"GFDL-ESM2M", 3.4, 2.4, 1.3, 0.7, 1.4},
{"GISS-E2-R", 3.8, 2.1, 1.5, 0.6, 1.8}, {"HadGEM2-ES", 2.9, 4.6, 2.5, 1.6, 0.6},
{"IPSL-CM5A-LR", 3.1, 4.1, 2, 1, 1}, {"MIROC5", 4.1, 2.7, 1.5, 0.7, 1.5},
{"MPI-ESM-LR", 4.1, 3.6, 2, 0.9, 1.1}, {"MRI-CGCM3", 3.2, 2.6, 1.6, 0.8, 1.2},

{"NorESM1-M", 3.1, 2.8, 1.4, 0.9, 1.1},
{"Acess10", 3, 3.8, 2.0, 4.1, 219}, {"bcc-csm1-1m", 3.6, 2.9, 2.1, 4.1, 219},
{"gfdl-cm3", 3, 4, 2.0, 4.1, 219}, {"gfdl-esm2g", 3.1, 2.4, 1.1, 4.1, 219},
{"inm-cm4", 3, 2.1, 1.3, 4.1, 219}, {"miroc-esm", 4.3, 4.7, 2.2, 4.1, 219}};

Clsen =
Table AR5mat[[i, 3]] AR5mat[[i, 2]], AR5mat[[i, 4]] AR5mat[[i, 2]] , {i, 1, 14} ;

Clsennew = Table AR5matnew[[i, 3]] AR5matnew[[i, 2]],
AR5matnew[[i, 4]] AR5matnew[[i, 2]] , {i, 1, 20} ;

AR5 = Join[AR5mat, Clsen, 2];
AR5new = Join[AR5matnew, Clsennew, 2];
TCR14 = Table[AR5[[i, 4]], {i, 1, 14}];
TCR = Drop[TCR14, {2}];
TCRn = Table[AR5new[[i, 4]], {i, 1, 20}];
TCRn = Drop[TCRn, {2}]
ECSn = Table[AR5new[[i, 3]], {i, 1, 20}];
ECSn = Drop[ECSn, {2}]
ECSn =
Table[ECSn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

TCRn = Table[TCRn[[i]],
{i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

TCRname = {"BCC-CSM1–1", "CanESM2", "CCSM4", "CNRM-CM5", "CSIRO-M k3.6.0",
"GISS-E2-R", "IPSL-CM5A-LR", "MIROC5", "MPI-ESM-LR", "MRI-CGCM3",
"NorESM1-M", "Acess10", "bcc-csm1-1m", "inm-cm4", "miroc-esm",
"HadGEM2-ES", "gfdl-cm3", "GFDL-ESM2M", "gfdl-esm2g"}

scatsens = Table[{TCRn[[i]], ECSn[[i]]}, {i, 1, 19}];
plsen = ListPlot scatsens, LabelStyle → 15, RGBColor 184 256, 101 256, 71 256 ,

PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.67, 0.69]} ;
Show[plsen, PlotLabel → Style["ECS vs TCR - IPCC AR5" , 22, Black],
Frame → True, FrameLabel → {"TCR [°C]", "ECS [°C] "},
LabelStyle → {20, Black}, PlotRange → {{1, 3}, {1, 5}}, GridLines → Automatic]
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ECS14 = Table[AR5[[i, 3]], {i, 1, 14}]
ECS = Drop[ECS14, {2}];
Q14 = Table[AR5[[i, 2]], {i, 1, 14}];
Q = Drop[Q14, {2}];
Qn = Table[AR5new[[i, 2]], {i, 1, 20}];
Qn = Drop[Qn, {2}];
Qn =
Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

sjekkecsper = Table ECSn[[i]] Qn[[i]], {i, 1, 19} ;
Min[sjekkecsper]
Max[sjekkecsper]

data = Drop[ReadList["effektivforcing.csv", String], 0];
data[[150]] =

"1999;1,0296;2,437;1,4666;1,7507;2,3697;1,5102;1,1762;2,6721;1,0;1,7391;2,4549;-99,
99;2,2879;0,7953;2,4307;2,0774;-99,99;1,0229;1,4754;1,6457;-99,99;0,7256;1,1693
";

data = Table[ToExpression[Map[StringJoin[{#[[1]], ".", #[[2]]}] &, Map[
StringSplit[#, ","] &, Drop[StringSplit[data[[i]], ";"], 1]]]], {i, 1, 166}];

modeller = {"ACCESS1-0", "bcc-csm1-1-m", "bcc-csm1-1", "CanESM2", "CCSM4",
"CNRM-CM5", "CSIRO-Mk3-6-0", "FGOALS-s2", "GFDL-CM3", "GFDL-ESM2G", "GFDL-ESM2M",
"GISS-E2-H", "GISS-E2-R", "HadGEM2-ES", "inmcm4", "IPSL-CM5A-LR", "IPSL-CM5B-LR",
"MIROC-ESM", "MIROC5", "MPI-ESM-LR", "MPI-ESM-P", "MRI-CGCM3", "NorESM1-M"};

dataall = Table[{data[[All, i]]}, {i, {3, 4, 5, 6, 7, 11, 13, 14, 16, 19, 20, 22, 23}}];
dataallall = Table[{data[[All, i]]},

{i, {3, 4, 5, 6, 7, 11, 13, 14, 16, 19, 20, 22, 23, 1, 2, 9, 10, 15, 18}}];

Tmd1 = {"BCC-CSM1-1",
Import["bcc-csm1-1_glanom_1850-2100_historicalandrcp85.txt", "Table"]};

Tmd2 = {"BNU-ESM", Import["BNU-ESM_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tmd3 = {"CanESM2", Import["canesm2_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tmd4 = {"CCSM4", Import["ccsm4_glanom_1850-2100_historicalandrcp85.txt", "Table"]};
Tmd5 =

{"CNRM-CM5", Import["cnrmcm5_glanom_1850-2055_historicalandrcp85.txt", "Table"]};
Tmd6 = {"CSIRO-Mk3.6.0",

Import["csiro-mk3-6-0_glanom_1850-2100_historicalandrcp85.txt", "Table"]};
Tmd7 = {"GFDL-ESM2M", Import[

"gfdl-esm2m_glhistoricalanom_1861-2020_historicalandrcp85.txt", "Table"]};
Tmd8 = {"GISS-E2-R", Import["GISS-E2-R_glanom_1850-2100_historicalandrcp85.txt",

"Table"]};
Tmd9 = {"HadGEM2-ES", Import["hadgem2_glanom_1860-2054_historicalandrcp85.txt",

"Table"]};
Tmd10 = {"IPSL-CM5A-LR", Import[

"IPSL-CM5A-LR_glanom_1850-2100_historicalandrcp85.txt", "Table"]};
Tmd11 = {"MIROC5", Import["MIROC5_glanom_1850-2100_historicalandrcp85.txt",

"Table"]};
Tmd12 = {"MPI-ESM-LR", Import["MPI-ESM_glanom_1850-2100_historicalandrcp85.txt",

"Table"]};
Tmd13 = {"MRI-CGCM3", Import["MRI-CGCM3_glanom_1850-2100_historicalandrcp85.txt",

"Table"]};
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Tmd14 = {"NorESM1-M", Import["NorESM1-M_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tm18 = {"MIROC-ESM", Import["MIROC-ESM_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tm1 = {"Acess10", Import["access10_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tm2 = {"bcc-csm1-1m", Import["bcc-csm1-1-m_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tm15 = {"inm-cm4", Import["inm-cm4_glanom_1850-2100_historicalandrcp85.txt",
"Table"]};

Tm9 = {"gfdl-cm3", Import[
"gfdl-cm3_glhistoricalanom_1860-2020_historicalandrcp85.txt", "Table"]};

Tm10 = {"gfdl-esm2g", Import[
"gfdl-esm2g_glhistoricalanom_1861-2020_historicalandrcp85.txt", "Table"]};

Tmdmat = {Tmd1, Tmd2, Tmd3, Tmd4, Tmd5, Tmd6, Tmd7, Tmd8,
Tmd9, Tmd10, Tmd11, Tmd12, Tmd13, Tmd14};

Tmdmatnew = {Tmd1, Tmd2, Tmd3, Tmd4, Tmd5, Tmd6, Tmd7, Tmd8, Tmd9, Tmd10,
Tmd11, Tmd12, Tmd13, Tmd14, Tm1, Tm2, Tm9, Tm10, Tm15, Tm18};

Tmdmat2 = Drop[Tmdmat, {2}];
Tmdmat2 = Drop[Tmdmat, {6}];
Tmdmat2 = Drop[Tmdmat, {7}];
Tmdmatnew2 = Drop[Tmdmatnew, {2}];
Tmdmatn1 = {Tmd1, Tmd3, Tmd4, Tmd5, Tmd6,

Tmd8, Tmd10, Tmd11, Tmd12, Tmd13, Tmd14, Tm1, Tm2, Tm15, Tm18};
Tmdmatn2 = {Tmd9, Tm9};
Tmdmatn3 = {Tmd7, Tm10};

In[3372]:=

imppargof =
Table[{Lambda2box[[i]], af[[i]], 1 - af[[i]], τf[[i]], τs[[i]], Q14[[i]]}, {i, 1, 14}]

In[3373]:= Clear[f]
R =
Map #[[6]] * #[[2]] #[[1]] 2 * Pi * #[[4]] * f ^2 + 1 + #[[3]] #[[1]]

2 * Pi * #[[5]] * f ^2 + 1 ^2 + 2 * Pi * #[[2]] * #[[4]] * f #[[1]]
2 * Pi * #[[4]] * f ^2 + 1 + 2 * Pi * #[[3]] * #[[5]] * f #[[1]]
2 * Pi * #[[5]] * f ^2 + 1 ^2 ^ 0.5 &, imppargof

In[3375]:=

korECS = Table 1.4 ^ -i , Correlation ECS14, R /. f → 1.4 ^ -i , {i, 1, 27}
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In[3518]:= PL111 = ListLogLinearPlot[korECS, Frame → True, FrameStyle → Directive[Black, 20],
PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.66, 0.69]}];

PL222 = ListLogLinearPlot[korECS, Frame → True, FrameStyle → Directive[Black, 20],
PlotStyle → RGBColor[0.3, 0.66, 0.69], Joined → True];

G222 = Show[{PL111, PL222}, FrameLabel → { "Frequency [1/Years]", "Correlation"},
AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {-0.2, 1}},
PlotLabel → Style[" Correlation ECS - Geoffroy parameters", 22, Black],
GridLines → Automatic]

In[3438]:= aa = LineLegend[
{RGBColor[0.3, 0.67, 0.69], RGBColor[0.1, 0.2, 0.6], RGBColor[0.8, 0.3, 0.6]},
{Style["(1.7 - 2.8)", 18], Style["(2.1 - 3.3)", 18], Style["(1.4 - 2.8)", 18]},
LegendMarkerSize → 40, LegendMarkers → Graphics[Thickness[3]]]

Clear[f]
R =
Map #[[6]] * #[[2]] #[[1]] 2 * Pi * #[[4]] * f ^2 + 1 + #[[3]] #[[1]]

2 * Pi * #[[5]] * f ^2 + 1 ^2 + 2 * Pi * #[[2]] * #[[4]] * f #[[1]]
2 * Pi * #[[4]] * f ^2 + 1 + 2 * Pi * #[[3]] * #[[5]] * f #[[1]]
2 * Pi * #[[5]] * f ^2 + 1 ^2 ^ 0.5 &, imppargof

In[8892]:=

imp1 =
Table[{Lambda2box[[i]], af[[i]], 1 - af[[i]], 4.1, τs[[i]], Q14[[i]]}, {i, 1, 14}];

Correlation Q14 * Drop[af, {15}] Drop[Lambda2box, {15}] , TCR14
PR1 = LogLinearPlot[{R[[1]]},

{f, 0.0001, 1}, Frame → True, FrameStyle → Directive[Black, 20],
PlotStyle → {{Thickness[0.01], RGBColor[0.3, 0.67, 0.69]}},
FrameLabel → {"Frequency f [1/Years]", "R(f) [°C]"}];

PR2 = LogLinearPlot[{R[[5]]}, {f, 0.0001, 1}, Frame → True, FrameStyle →
Directive[Black, 20], PlotStyle → {{Thickness[0.01], RGBColor[0.3, 0.3, 0.6]}},

FrameLabel → {"Frequency f (1/Years)", "R(f)"}];
PR3 = LogLinearPlot[{R[[14]]}, {f, 0.0001, 1}, Frame → True, FrameStyle →

Directive[Black, 20], PlotStyle → {{Thickness[0.01], RGBColor[0.8, 0.3, 0.6]}},
FrameLabel → {"Frequency [1/Years]", "R(f)[°C]"}];

Show[PR1, PR2, PR3, PlotRange → {0, 3.5},
PlotLabel → Style["Response Functions", 22, Black],
Epilog → { Inset[aa, Scaled[{0.83, 0.68}]]}, GridLines → Automatic]

Table[{TCR14[[i]], ECS14[[i]]}, {i, {1, 5, 14}}]

R1 = Map #[[6]] * #[[2]] #[[1]] 2 * Pi * #[[4]] * f ^2 + 1 &, imppargof

korTCS = Table 1.4 ^ -i , Correlation TCR14, R /. f → 1.4 ^ -i , {i, 1, 27}
PLTCS1 = ListLogLinearPlot[korTCS, Frame → True, FrameStyle → Directive[Black, 20],

PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.66, 0.69]}];
PLTCS2 = ListLogLinearPlot[korTCS, Frame → True, FrameStyle → Directive[Black, 20],

PlotStyle → RGBColor[0.3, 0.66, 0.69], Joined → True ];
GTCS = Show[{PLTCS1, PLTCS2}, FrameLabel → {"Frequency [1/Years]", "Correlation"},

AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {-0.2, 1}},
PlotLabel → Style["Correlation TCR - Goeffroy Parameters", 22, Black],
Axes → None, GridLines → Automatic]
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In[3511]:=

f = 0.01;
corR = MapThread[{#1, #2} &, {R, TCR14}]
Correlation[corR]
lincorR = LinearModelFit[corR, x, x]
P3 = Plot[lincorR[t], {t, 0, 3}, Frame → True, FrameStyle → Directive[Black, 20],

PlotStyle → {Thickness[0.01], RGBColor[0.3, 0.66, 0.69]}];
P4 = ListPlot[corR, Frame → True, FrameStyle → Directive[Black, 20],

PlotStyle → {PointSize[0.02], Black}];
Show[P3, P4, PlotRange → All, FrameLabel → {"R(f=0.01) [°C]", "TCR [°C]"},
AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {-0.2, 1}},
PlotLabel → Style["TCR vs R(f=0.01)", 24, Black], GridLines → Automatic]

FF[x_] = 1 - 0.59 * Exp[-x / 4] + 0.41 * Exp -x 220 ;

plo1 = Plot 1 - 0.59 * Exp[-x / 5] - 0.41 * Exp -x 200 , {x, 0, 2000},
PlotRange → {{0, 50}, {0, 1}}, Frame → True, FrameStyle → Directive[Black, 14],
PlotStyle → {Thickness[0.01], RGBColor[0.3, 0.66, 0.69]}, FrameLabel → {"Year \!\(\*

StyleBox[\"\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\" \",\nFontSlant->\"Italic\"]\)", " \!\(\*
StyleBox[\"T\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\"(\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\"t\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\")\",\nFontSlant->\"Italic\"]\) / (F/α)"},

PlotLabel → Style["Temperature Response To Step Forcing", 16, Black]
plo2 = Plot 1 - 0.59 * Exp[-x / 5] - 0.41 * Exp -x 200 , {x, 0, 2000},

PlotRange → {{0, 1000}, {0, 1}}, Frame → True, FrameStyle → Directive[Black, 14],
PlotStyle → {Thickness[0.01], RGBColor[0.3, 0.66, 0.69]}, FrameLabel → {"Year \!\(\*

StyleBox[\"\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\" \",\nFontSlant->\"Italic\"]\)", " \!\(\*
StyleBox[\"T\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\"(\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\"t\",\nFontSlant->\"Italic\"]\)\!\(\*
StyleBox[\")\",\nFontSlant->\"Italic\"]\) / (F/α)"},

PlotLabel → Style["Temperature Response To Step Forcing", 16, Black]

6     Master.nb



In[91]:=

kj1 = Import["csiro_r1i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj2 = Import["csiro_r2i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj3 = Import["csiro_r3i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj4 = Import["csiro_r4i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj5 = Import["csiro_r5i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj6 = Import["csiro_r6i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj7 = Import["csiro_r7i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj8 = Import["csiro_r8i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj9 = Import["csiro_r9i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
kj10 = Import["csiro_r10i1p1_glanom_1850-2012_historicalNat.txt", "Data"];
ki1 = Import["cnrmcm5_r1i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki2 = Import["cnrmcm5_r2i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki3 = Import["cnrmcm5_r3i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki4 = Import["cnrmcm5_r4i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki5 = Import["cnrmcm5_r5i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki6 = Import["cnrmcm5_r6i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki7 = Import["cnrmcm5_r7i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki8 = Import["cnrmcm5_r8i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki9 = Import["cnrmcm5_r9i1p1_glanom_1850-2012_historicalandext.txt", "Data"];
ki10 = Import["cnrmcm5_r10i1p1_glanom_1850-2012_historicalandext.txt", "Data"];

kj = {kj1, kj2, kj3, kj4, kj5, kj6, kj7, kj8, kj9, kj10};
ki = {ki1, ki2, ki3, ki4, ki5, ki6, ki7, ki8, ki9, ki10};

In[297]:=

forcR = ReadList["F.txt", String];
forcR = Partition[

Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forcR], 5], -5]]], 10];
forcR = ToExpression[forcR[[All, 10]]];
T111[t_] := Sum fac1 [[4, s]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac1 [[4, s]] * Exp - t - s τ2 , {s, 0, t} ;
T11 = Table[T111[t][[1]], {t, 1, 163}];
T22 = Table[T222[t][[1]], {t, 1, 163}];

constski = {};
constski2 = {};
Do[

cc = ki[[n]][[All, 2]];
dd = T11;
ee = T22;
ff = ConstantArray[1, 163];
mm = Transpose[{dd, ee, ff} ];
mm2 = Transpose[{dd, ff} ];
ss = LeastSquares[mm, cc];
ss2 = LeastSquares[mm2, cc];
constski = Append[constski, ss];
constski2 = Append[constski2, ss2];

, {n, 1, 10}]
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intvar = Show[ll1, ll2, Frame → True, FrameStyle → Directive[Black, 24],
FrameLabel → {"Year After 1850", "Temperature anomaly [°C]"},
PlotLabel → Style["Internal Variability", 28, Black],
GridLines → Automatic, ImageResolution → 100000000]

Export["intvar2.jpg", intvar]

In[8132]:=

bb = LineLegend[{Blue, Red},
{Style["Adjusted MIROC5", 18], Style["Hansen", 18]}, LegendMarkerSize → 30]

In[8164]:=

globaltemp = Import["Hadcrut4_monthly_to2017.txt", "Table"][[1 ;; ;; 2]];
st = 30;
smt = 8;
excut = 0;
cut = 0;
smt2 = 8;
cend = 60;
forcalln = {};
forcalln2 = {};
forcallsame = {};
forcallsameF = {};
forcallsameF2 = {};
forcallsameF3 = {};
korsave = {};
fac1 = {};
fac2 = {};
fac3 = {};
Do[
F = dataallall[[n, 1]];
FSF = F;
MM = MeanFilter[F, smt];
MMp = Drop[MM, -cend];
ML = MeanFilter[F, smt2];
ML2 = Drop[ML, 166 - cend];
MMP = Join[MMp, ML2];

forc = ReadList["F.txt", String];
forc = Partition[

Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forc], 5], -5]]], 10];
F = ToExpression[forc[[All, 10]]];
FS = F;
MMM = MeanFilter[F, smt];
MML = MeanFilter[F, smt2];
MML2 = Drop[MML, 166 - cend];
MMMp = Drop[MMM, -cend];
MMMP = Join[MMMp, MML2];
korreksjonM = (MMM - MM);
korreksjonM = Drop[korreksjonM, cut];
MJ = ConstantArray[0, cut];
MA = MML - ML;
MA = Drop[MA, 166 - cend];
korreksjonM = Join[MJ, korreksjonM];
korreksjonM = Drop[korreksjonM, -cend];
korreksjonM = Join[korreksjonM, MA];

forc = ReadList["F.txt", String];
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forc = Partition[
Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forc], 5], -5]]], 10];

F = ToExpression[forc[[All, 10]]];
F2 = F - korreksjonM;
forcalln = Append[forcalln, F2];
forcallsame = Append[forcallsame, FS];
forcallsameF = Append[forcallsameF, FSF];
fac1 = Append[fac1, F2];
korsave = Append[korsave, korreksjonM];
, {n, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19}}]

ListPlot FSF, Joined → True,
PlotStyle → {Thickness[0.004], RGBColor[0.3, 0.67, 0.69]},
PlotLabel → Style["MIROC5 Forster " , 22, Black], Frame → True,
FrameLabel → "Year After 1850", "Forcing [W/m2]" ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

ListPlot {MMMP, MMP}, Joined → True,
PlotLabel → Style["Smoothed Forcing " , 22, Black], Frame → True,
FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
PlotStyle → {{Thickness[0.003], Red}, {Thickness[0.003], Blue}},
Epilog → { Inset[bb, Scaled[{0.25, 0.84}]]}

Do[
F = dataallall[[n, 1]];
F = Drop[F, 10];
FSF = F;
fj = ConstantArray[0, 10];
FSF = Join[fj, FSF];
forcallsameF2 = Append[forcallsameF2, FSF];
MM = MeanFilter[F, smt];
ML = MeanFilter[F, smt2];

forc = ReadList["F.txt", String];
forc = Partition[

Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forc], 5], -5]]], 10];
F = ToExpression[forc[[All, 10]]];
F = Drop[F, 10];
FS = F;
MMM = MeanFilter[F, smt];
MML = MeanFilter[F, smt2];
korreksjonM = (MMM - MM);
korreksjonM = Drop[korreksjonM, cut];
MJ = ConstantArray[0, cut];
MA = MML - ML;
MA = Drop[MA, 156 - cend];
korreksjonM = Join[MJ, korreksjonM];
korreksjonM = Drop[korreksjonM, -cend];
korreksjonM = Join[korreksjonM, MA];
koradd10 = ConstantArray[0, 10];
korreksjonM = Join[koradd10, korreksjonM];

forc = ReadList["F.txt", String];
forc = Partition[

Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forc], 5], -5]]], 10];
F = ToExpression[forc[[All, 10]]];
FF = Thread[{#1, #2} &[Range[Length[F]], F]];
F2 = F - korreksjonM;
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forcalln = Append[forcalln, F2];
fac2 = Append[fac2, F2];

, {n, {8, 16}}]

Do[
F = dataallall[[n, 1]];
F = Drop[F, 11];
FSF = F;
fj = ConstantArray[0, 11];
FSF = Join[fj, FSF];
forcallsameF3 = Append[forcallsameF3, FSF];
MM = MeanFilter[F, smt];
ML = MeanFilter[F, smt2];

forc = ReadList["F.txt", String];
forc = Partition[

Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forc], 5], -5]]], 10];
F = ToExpression[forc[[All, 10]]];
F = Drop[F, 11];
FS = F;
MMM = MeanFilter[F, smt];
MML = MeanFilter[F, smt2];
korreksjonM = (MMM - MM);
korreksjonM = Drop[korreksjonM, cut];
MJ = ConstantArray[0, cut];
MA = MML - ML;
MA = Drop[MA, 155 - cend];
korreksjonM = Join[MJ, korreksjonM];
korreksjonM = Drop[korreksjonM, -cend];
korreksjonM = Join[korreksjonM, MA];
koradd10 = ConstantArray[0, 11];
korreksjonM = Join[koradd10, korreksjonM];

forc = ReadList["F.txt", String];
forc = Partition[

Flatten[Map[StringSplit[#, ","] &, Drop[Drop[StringSplit[forc], 5], -5]]], 10];
F = ToExpression[forc[[All, 10]]];
FF = Thread[{#1, #2} &[Range[Length[F]], F]];
F2 = F - korreksjonM;
forcalln = Append[forcalln, F2];
fac3 = Append[fac3, F2];

, {n, {6, 17}}]

fko = ListPlot[Mean[forcallsameF], Joined → True];
feo = ListPlot[forcallsame[[1]], Joined → True, PlotStyle → Red];
ListPlot {forcallsame[[1]], fac1[[15]]}, Joined → True,
PlotLabel → Style["Adjusted Forcing vs Hansen Forcing " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
PlotStyle → {{Thickness[0.0035], Red}, {Thickness[0.0035], Blue}},
Epilog → { Inset[bb, Scaled[{0.3, 0.8}]]}

ListPlot -korsave, Joined → True, PlotLabel → Style["Correction Series " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
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LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic
ListPlot forcallsame[[1]], PlotStyle → {{Thickness[0.005], RGBColor[0.3, 0.67, 0.69]}},
Joined → True, PlotLabel → Style["Hansen Forcing " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

ListPlot fac1[[15]], Joined → True,
PlotStyle → {{Thickness[0.004], RGBColor[0.3, 0.67, 0.69]}},
PlotLabel → Style["NorESM1-M Forster" , 22, Black], Frame → True,
FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

P0 = ListPlot fac1 , Joined → True,
PlotLabel → Style["Smoothed Forcing data " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic ;

P00 = ListPlot forcallsame[[1]], Joined → True,
PlotStyle → {{Thickness[0.007], Red}},
PlotLabel → Style["Smoothed Forcing data " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic ;

Show P0, P00, PlotLabel → Style["Adjusted Forcings " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

In[8195]:=

τ1 = 4.1;
τ2 = 219;
TST01n1[t_] := Table Sum fac1[[m, s]] * Exp - t - s τ1 , {s, 0, t} , {m, 1, 15} ;
TST02n1[t_] := Table Sum fac1[[m, s]] * Exp - t - s τ2 , {s, 0, t} , {m, 1, 15} ;
TST1n1 = Table[TST01n1[m][[i]][[1]], {m, 1, 166}, {i, 1, 15}];
TST2n1 = Table[TST02n1[m][[i]][[1]], {m, 1, 166}, {i, 1, 15}];
TST01n2[t_] :=

Table Sum fac2[[m, s + 10]] * Exp - t - s τ1 , {s, 0, t} , {m, 1, 2} ;
TST02n2[t_] := Table Sum fac2[[m, s + 10]] * Exp - t - s τ2 , {s, 0, t} , {m, 1, 2} ;
TST1n2 = Table[TST01n2[m][[i]], {m, 1, 156}, {i, 1, 2}];
TST2n2 = Table[TST02n2[m][[i]], {m, 1, 156}, {i, 1, 2}];
TST01n3[t_] :=

Table Sum fac3[[m, s + 11]] * Exp - t - s τ1 , {s, 0, t} , {m, 1, 2} ;
TST02n3[t_] := Table Sum fac3[[m, s + 11]] * Exp - t - s τ2 , {s, 0, t} , {m, 1, 2} ;
TST1n3 = Table[TST01n3[m][[i]], {m, 1, 155}, {i, 1, 2}];
TST2n3 = Table[TST02n3[m][[i]], {m, 1, 155}, {i, 1, 2}];
TSTM1 = Table[{Tmdmatn1[[i, 2, m, 2]]}, {m, 1, 166}, {i, 1, 15}];
TSTM2 = Table[{Tmdmatn2[[i, 2, m, 2]]}, {m, 1, 156}, {i, 1, 2}];
TSTM3 = Table[{Tmdmatn3[[i, 2, m, 2]]}, {m, 1, 155}, {i, 1, 2}];
TSTMFITn1 =

Table[{TSTM1[[m, i]], {TST1n1[[m, i]], TST2n1[[m, i]]}}, {m, 1, 166}, {i, 1, 15}];
TSTMFITn2 = Table[{TSTM2[[m, i]], {TST1n2[[m, i]], TST2n2[[m, i]]}},

{m, 1, 156}, {i, 1, 2}];
TSTMFITn3 = Table[{TSTM3[[m, i]], {TST1n3[[m, i]], TST2n3[[m, i]]}},

{m, 1, 155}, {i, 1, 2}];

TCRn = Table[AR5new[[i, 4]], {i, 1, 20}];
TCRn = Drop[TCRn, {2}]
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TCRn =
Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

TCRname = {"BCC-CSM1–1", "CanESM2", "CCSM4", "CNRM-CM5",
"CSIRO-M k3.6.0", "GISS-E2-R", "IPSL-CM5A-LR", "MIROC5", "MPI-ESM-LR",
"MRI-CGCM3", "NorESM1-M", "Acess10", "bcc-csm1-1m", "inm-cm4",
"miroc-esm", "HadGEM2-ES", "gfdl-cm3", "GFDL-ESM2M", "gfdl-esm2g"}

Qn = Table[AR5new[[i, 2]], {i, 1, 20}];
Qn = Drop[Qn, {2}];
Qn =
Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

lbc = 0.2;
ubc = 2;
constsn1 = {};
constsn2 = {};
constsn3 = {};
constsn = {};
constsnt = {};
constsnc1 = {};
constsnc2 = {};
constsnc3 = {};

Do
Clear[c1, c2, c3];
cc = TSTMFITn1[[All, n1, 1]];
dd = TSTMFITn1[[All, n1, 2, 1]];
ee = TSTMFITn1[[All, n1, 2, 2]];
ff = ConstantArray[1, 166];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn1 = Append[constsn1, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc1 = Append[constsnc1, cval2];

, {n1, 1, 15}

Do

cc = TSTMFITn2[[All, n1, 1]];
dd = TSTMFITn2[[All, n1, 2, 1]];
ee = TSTMFITn2[[All, n1, 2, 2]];
ff = ConstantArray[1, 156];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn2 = Append[constsn2, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
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{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc2 = Append[constsnc2, cval2];

, {n1, 1, 2}

Do

cc = TSTMFITn3[[All, n1, 1]];
dd = TSTMFITn3[[All, n1, 2, 1]];
ee = TSTMFITn3[[All, n1, 2, 2]];
ff = ConstantArray[1, 155];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn3 = Append[constsn3, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc3 = Append[constsnc3, cval2];

, {n1, 1, 2}

constsnt = Append[constsn1, constsn2[[1]]];
constsnt = Append[constsnt, constsn2[[2]]];
constsnt = Append[constsnt, constsn3[[1]]];
constsnt = Append[constsnt, constsn3[[2]]];
constsn = constsnt;
constsns = Append[constsnc1, constsnc2[[1]]];
constsns = Append[constsns, constsnc2[[2]]];
constsns = Append[constsns, constsnc3[[1]]];
constsns = Append[constsns, constsnc3[[2]]];
constsnc = constsns;
Clear[f]
impparn = Table[{constsnc[[i, 1]], constsnc[[i, 2]], τ1, τ2, Qn[[i]]}, {i, 1, 19}];
Rn =

Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]] 2 *
Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f

2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparn ;

(*TCRn = Table[TCRn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];
TCRname = Table[TCRname[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];
Rn = Table[Rn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];*)
TCRn =

Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 12, 13, 14, 15, 17, 19}}];
TCRname = Table[TCRname[[i]],

{i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 12, 13, 14, 15, 17, 19}}];
Rn = Table[Rn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 16, 18, 12, 13, 14, 15, 17, 19}}];
korTCSn = Table 1.4 ^ -i , Correlation TCRn, Rn /. f → 1.4 ^ -i , {i, 1, 27}
PLTCS1n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.66, 0.69]}];
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PLTCS2n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],
PlotStyle → RGBColor[0.3, 0.66, 0.69], Joined → True];

Show[{PLTCS1n, PLTCS2n}, FrameLabel → { "Frequency (1/Years)", "Correlation"},
AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {0.4, 1}},
PlotLabel → Style["Correlation TCR - Multimodel Mean (Forster)", 20, Black],
Axes → None, GridLines → Automatic]

erro = {};

In[8255]:= f = 0.01;
corRn = MapThread[{#1, #2} &, {Rn, TCRn}]
Correlation[corRn]
corRnl = Table[corRn[[i]] → i, {i, 1, 19}];
lincorRn = LinearModelFit[corRn, x, x]
P3n = Plot[lincorRn[t], {t, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.67], Thickness[0.01], Dashed}];
P4n = ListPlot[corRnl, PlotStyle → Black, LabelStyle → {16, Black}];
impparki =

Table[{constski[[i, 1]], constski[[i, 2]], τ1, τ2, Mean[Q]}, {i, 1, 10}];
kistat =

Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]]
2 * Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f
2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparki ;

s2ki = Variance[kistat];
sigmaI = Sqrt[s2ki]

In[8266]:= Nn = 19;
s2n = 1 Nn - 2 * Sum TCRn[[i]] - lincorRn[Rn[[i]]] ^2, {i, 1, 19}
sx2n = 1 Nn * Sum Rn[[i]] - Mean[Rn] ^2, {i, 1, 19}

Fstatn = {};
Fstatnc = {};
Do
T111[t_] := Sum fac1[[n1, s]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac1 [[n1, s]] * Exp - t - s τ2 , {s, 0, t} ;

annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t][[1]], {t, 1, 166}];
T22R = Table[T222[t][[1]], {t, 1, 166}];
ccr = Drop[annualtemp, -2];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 166];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;
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cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];

, {n1, 1, 15}
Do
T111[t_] := Sum fac2[[n1, s + 10]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac2 [[n1, s + 10]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 156}];
T22R = Table[T222[t], {t, 1, 156}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 10];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 156];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

Do
T111[t_] := Sum fac3[[n1, s + 11]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac3 [[n1, s + 11]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 155}];
T22R = Table[T222[t], {t, 1, 155}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 11];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 155];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

impparFn = Table[{Fstatnc[[i, 1]], Fstatnc[[i, 2]], τ1, τ2, Qn[[i]]}, {i, 1, 19}];
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RFn =
Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]] 2 *

Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f
2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparFn

In[8318]:= muFn = Mean[RFn];
varRFn = Variance[RFn]
sigmatotn = Sqrt[sigmaI^2 + varRFn]
sigmaTCR[xxR_] := s2n * 1 + 1 Nn + (xxR - Mean[Rn])^2 sx2n * Nn ;
sigmaTCRval = Table[{i, sigmaTCR[i]}, {i, 0, 2, 0.05}];
βn = muFn sigmatotn^2
αn = muFn^2 sigmatotn^2
RFnstatpl = Table[{RFn[[i]], 0} → i, {i, 1, 19}];
PRGn = PDF GammaDistribution αn, 1 βn , y
eplo = LineLegend[{Blue, Red},

{Style["Normal", 18], Style["Gamma", 18]}, LegendMarkerSize → 30];
P8n = ListPlot[RFnstatpl, PlotStyle → {Red, Thick}, LabelStyle → {Blue, 16}];
P7n = Plot[PDF[SmoothKernelDistribution[RFn], xy],

{xy, 0, 2.4}, PlotStyle → {Red, Thickness[0.005]}];
P6n = Plot PDF GammaDistribution αn, 1 βn , y , {y, 0, 2.4},

PlotStyle → {Red, Thickness[0.005]} ;
P5n = Plot[PDF[NormalDistribution[muFn, sigmatotn], y],

{y, 0, 2.4}, PlotStyle → {Blue, Thickness[0.005]}];
Pshu = Plot[{lincorRn[y] - Sqrt[sigmaTCR[y]]}, {y, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.68], Dashed}];
Pshd = Plot[{lincorRn[y] + Sqrt[sigmaTCR[y]]}, {y, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.68], Dashed}];
Show[P3n, P4n, P5n, P6n, P8n, Pshu, Pshd, PlotLabel → Style["" , 22, Black],
Frame → True, FrameLabel → {"R(f=0.01) [°C]", "TCR [°C]"},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
Epilog → { Inset[eplo, Scaled[{0.2, 0.8}]]}, Axes → None]

PTCRgn = PDF[NormalDistribution[lincorRn[y], sigmaTCR[y]], sl]
PRn = PDF[NormalDistribution[muFn, sigmatotn], y]
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PTCRn[sl_] := NIntegrate 8.31122834323857` ⅇ
- 217.01027700273085` -0.598712477045074`+sl-0.9072037451373964` y 2

20
19

+0.43011908801045257` -1.3299666004651804`+y 2 2

20
19

+ 0.43011908801045257` -1.3299666004651804` + y 2 *

660.2135944213335` ⅇ-6.479179215630901` y y5.645497406023648` , {y, 0, Infinity}

PTCRvaln = Table[{i, PTCRn[i]}, {i, 0, 3, 0.01}];
CDF[PTCRvaln, xyz];
lpl = Table[{TCRn[[i]], 0}, {i, 1, Length[TCRn]}]
P1 = ListPlot[PTCRvaln, Joined → True, PlotStyle → {Red, Thickness[0.01]}];
P2 =

Plot[PDF[NormalDistribution[Mean[TCRn], Sqrt[Variance[TCRn]]], xtcs], {xtcs, 0, 3}];
P3 = ListPlot[lpl , PlotStyle → {PointSize[0.02], Red}];
P4 = Histogram[TCRn, {0.2}, "PDF", ChartStyle → RGBColor[0.3, 0.7, 0.67]];
Show[P4, P1, PlotLabel → Style["PDF vs TCR - Normal Distribution" , 22, Black],
Frame → True, FrameLabel → {"TCR [°C]", "Probability density [1/°C]"},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic, Axes → None]

Folist = FoldList[Plus, 0, PTCRvaln[[All, 2]]] * 0.01;
Fotabl = Table[{0.01 * i, Folist[[i]]}, {i, 0, 300}];
len = Length[Folist];
alp = 0.90;
num1 = 1 - alp 2;
num2 = 1 + alp 2;
num3 = 0.5;
CIL1 = Pick[Folist, UnitStep[Folist - num1], 1];
CIH1 = Pick[Folist, UnitStep[Folist - num2], 1];
CIM1 = Pick[Folist, UnitStep[Folist - num3], 1];

low = Fotabl[[len - Length[CIL1] + 2, 1]];
high = Fotabl[[len - Length[CIH1] + 2, 1]];
min = Fotabl[[len - Length[CIM1] + 2, 1]];
aperro = {f, min, high, low}

erro = Append[erro, aperro]

In[7503]:= Needs["ErrorBarPlots`"]
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In[6879]:= stde = Sqrt[Variance[TCRn]];
pe1 = {{0.5, Mean[TCRn]}, {5.5, Mean[TCRn]}};
pe2 = {{0.5, 2.5}, {5.5, 2.5}};
pe3 = {{0.5, 1.1}, {5.5, 1.1}};
anotcr = Table[{0.5, TCRn[[i]]}, {i, 1, 13}]
PE5 = ListPlot[anotcr, PlotStyle → {Black, Thick}];
erropl = Table erro[[i, 2]], erro[[i, 3]] - erro[[i, 4]] 2 , {i, 1, 5}
erropl2 = Table erro[[1]], erro[[i, 2]], erro[[i, 3]] - erro[[i, 4]] , {i, 1, 5}
PE1 =

ErrorListPlot[erropl, PlotRange → {0, 3}, Joined → True, PlotStyle → {Thick, Red}];
Perro = ErrorListPlot 1 erro[[1, 1]], erro[[1, 2]] ,

ErrorBar erro[[1, 3]] - erro[[1, 4]] ,
1 erro[[2, 1]], erro[[2, 2]] , ErrorBar erro[[2, 3]] - erro[[2, 4]]

PE2 = ListPlot[pe1, Joined → True, PlotStyle → {Black, Thick}];
PE3 = ListPlot[pe2, Joined → True, PlotStyle → {Black, Dashed}];
PE4 = ListPlot[pe3, Joined → True, PlotStyle → {Black, Dashed}];
Show[PE1, PE2, PE3, PE4,
FrameTicks → {{All, {1, "10"}, {2, "25"}, {3, 100}, {4, 250}, {5, 1000}}, Automatic},
Axes -> False, Frame → True, PlotRange → {All, {0.5, 3}},
FrameLabel → {"Period [Years]", "TCR [°C] "}, LabelStyle → {20, Black}]

func[x_] := Piecewise[{{280 * Exp[0.01 * x], x ≤ 70}, {564, x > 70}}]
Pq1 = Plot[{func[x]}, {x, 0, 100},

PlotStyle → {Thickness[0.01], RGBColor[0.3, 0.67, 0.69]},
GridLines → {{60, 80}, {0, 0}}, GridLinesStyle → Directive[{Thick, Dashed}]];

Pq2 = Plot[563, {x, 0, 100}, PlotStyle →
{Thickness[0.005], Dashed, RGBColor[0.3, 0.67, 0.69]},

GridLines → {{80}, {0}}, GridLinesStyle → {Thick, Dashed}];
Show[Pq1, Pq2, PlotLabel → Style[" CO2 Scenario - TCR" , 22, Black],
Frame → True, FrameLabel → {"Year", "CO2 Concentration (ppm)"},
LabelStyle → {20, Black}, PlotRange → All]

scatsens = Table[{TCRn[[i]], ECSn[[i]]}, {i, 1, 18}]
Corre
ListPlot[scatsens, PlotRange → {{0.8, 3}, {1.8, 5}},
PlotStyle → {PointSize[0.03], RGBColor[0.3, 0.67, 0.69]},
PlotLabel → Style["ECS & TCR - IPCC AR5" , 22, Black],
Frame → True, FrameLabel → {"TCR [°C]", "ECS [°C] "},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic]

In[5565]:=

gg = LineLegend[{RGBColor[0.3, 0.67, 0.69], Blue, Red},
{Style["NorESM1-M Temperature Anomaly", 18], Style["OBM", 18], Style["TBM", 18]},
LegendMarkerSize → 30]

ListPlot[{ccp, T1p, T2p}, Joined → True,
PlotLabel → Style["Temperature Fit " , 22, Black], Frame → True,
FrameLabel → {"Year After 1850", "Temperature Anomaly [°C] "},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
PlotStyle → {{Thickness[0.003], RGBColor[0.3, 0.67, 0.69]}, {Thickness[0.003], Red},

{Thickness[0.003], Blue}}, Epilog → { Inset[gg, Scaled[{0.28, 0.8}]]}]
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In[5570]:= ListPlot dd, Joined → True, PlotStyle → {Thickness[0.007], RGBColor[0.3, 0.67, 0.69]},
PlotLabel → Style["Folded Forcing & Fast Exponential " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", " [yr W/m2]" ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

ListPlot ee, Joined → True, PlotStyle → {Thickness[0.007], RGBColor[0.3, 0.67, 0.69]},
PlotLabel → Style["Folded Forcing & Slow Exponential " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", " [yr W/m2]" ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

ListPlot fac1[[11]], Joined → True,
PlotStyle → {Thickness[0.007], RGBColor[0.3, 0.67, 0.69]},
PlotLabel → Style["NorESM1-M Adjusted Forcing " , 22, Black],
Frame → True, FrameLabel → "Year After 1850", " Forcing [yr W/m2]" ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic

TCRn = Table[AR5new[[i, 4]], {i, 1, 20}];
TCRn = Drop[TCRn, {2}]
TCRn =
Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

TCRname = {"BCC-CSM1–1", "CanESM2", "CCSM4", "CNRM-CM5",
"CSIRO-M k3.6.0", "GISS-E2-R", "IPSL-CM5A-LR", "MIROC5", "MPI-ESM-LR",
"MRI-CGCM3", "NorESM1-M", "Acess10", "bcc-csm1-1m", "inm-cm4",
"miroc-esm", "HadGEM2-ES", "gfdl-cm3", "GFDL-ESM2M", "gfdl-esm2g"}

Qn = Table[AR5new[[i, 2]], {i, 1, 20}];
Qn = Drop[Qn, {2}];
Qn =
Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

lbc = 0.2;
ubc = 2;
constsn1 = {};
constsn2 = {};
constsn3 = {};
constsn = {};
constsnt = {};
constsnc1 = {};
constsnc2 = {};
constsnc3 = {};
Do
Clear[c1, c2, c3];
cc = TSTMFITn1[[All, n, 1]];
dd = TSTMFITn1[[All, n, 2, 1]];
ee = TSTMFITn1[[All, n, 2, 2]];
ff = ConstantArray[1, 166];
mm = Transpose[{dd, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn1 = Append[constsn1, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_] := Total mm.{c1, c2} - cc[[All, 1]] ^2 ;
cval = NMinimize Total mm.{c1, c2} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 < ubc}, {c1 > 0}} , {c1, c2} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc1 = Append[constsnc1, cval2];

, {n, 1, 15}
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Do

cc = TSTMFITn2[[All, n, 1]];
dd = TSTMFITn2[[All, n, 2, 1]];
ee = TSTMFITn2[[All, n, 2, 2]];
ff = ConstantArray[1, 156];
mm = Transpose[{dd, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn2 = Append[constsn2, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize Total mm.{c1, c2} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 < ubc}, {c1 > 0}} , {c1, c2} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc2 = Append[constsnc2, cval2];

, {n, 1, 2}

Do

cc = TSTMFITn3[[All, n, 1]];
dd = TSTMFITn3[[All, n, 2, 1]];
ee = TSTMFITn3[[All, n, 2, 2]];
ff = ConstantArray[1, 155];
mm = Transpose[{dd, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn3 = Append[constsn3, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize Total mm.{c1, c2} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 < ubc}, {c1 > 0}} , {c1, c2} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc3 = Append[constsnc3, cval2]

, {n, 1, 2}

In[6721]:=

constsns = Append[constsnc1, constsnc2[[1]]];
constsns = Append[constsns, constsnc2[[2]]];
constsns = Append[constsns, constsnc3[[1]]];
constsns = Append[constsns, constsnc3[[2]]];
constsnc = constsns
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In[6726]:= Clear[f]
impparn = Table[{constsnc[[i, 1]], constsnc[[i, 2]], τ1, τ2, Qn[[i]]}, {i, 1, 19}];
Rn = Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 &, impparn ;
TCRn =

Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 12, 13, 14, 15, 17, 19}}];
TCRname = Table[TCRname[[i]],

{i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 12, 13, 14, 15, 17, 19}}];
Qn = Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 16, 18, 12, 13, 14, 15, 17, 19}}];
Rn = Table[Rn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

16, 18, 12, 13, 14, 15, 17, 19}}];
korTCSn = Table 1.4 ^ -i , Correlation TCRn, Rn /. f → 1.4 ^ -i , {i, 1, 27}
PLTCS1n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.66, 0.69]}];
PLTCS2n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → RGBColor[0.3, 0.66, 0.69], Joined → True];
Show[{PLTCS1n, PLTCS2n}, FrameLabel → { "Frequency [1/Years]", "Correlation"},
AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {0.6, 1}},
PlotLabel → Style[" Correlation TCR - OBM", 20, Black],
GridLines → Automatic, Axes → None]

In[6737]:= f = 0.01;
TCRnl = Table[TCRn[[i]] → i, {i, 1, 19}];
corRn = MapThread[{#1, #2} &, {Rn, TCRn}];
Correlation[corRn]
corRnl = Table[corRn[[i]] → i, {i, 1, 19}];
lincorRn = LinearModelFit[corRn, x, x]
P3n = Plot[lincorRn[t], {t, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.683], Thickness[0.01]}];
P4n = ListPlot[corRnl, PlotStyle → Black, LabelStyle → {16, Black}];
impparki =

Table[{constski[[i, 1]], constski[[i, 2]], τ1, τ2, Mean[Qn]}, {i, 1, 10}];
kistat =

Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]]
2 * Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f
2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparki ;

s2ki = Variance[kistat];
sigmaI = Sqrt[s2ki];
Nn = 19
s2n = 1 Nn - 2 * Sum TCRn[[i]] - lincorRn[Rn[[i]]] ^2, {i, 1, 19}
sx2n = 1 Nn * Sum Rn[[i]] - Mean[Rn] ^2, {i, 1, 19}

Fstatn = {};
Fstatnc = {};
Do
T111[t_] := Sum fac1[[n1, s]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac1 [[n1, s]] * Exp - t - s τ2 , {s, 0, t} ;

annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t][[1]], {t, 1, 166}];
T22R = Table[T222[t][[1]], {t, 1, 166}];
ccr = Drop[annualtemp, -2];
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ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 166];
mmr = Transpose[{ddr, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval = NMinimize Total mm.{c1, c2} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 < ubc}, {c1 > 0}} , {c1, c2} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];

, {n1, 1, 15}
Do
T111[t_] := Sum fac2[[n1, s + 10]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac2 [[n1, s + 10]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 156}];
T22R = Table[T222[t], {t, 1, 156}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 10];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 156];
mmr = Transpose[{ddr, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval = NMinimize Total mm.{c1, c2} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 < ubc}, {c1 > 0}} , {c1, c2} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

Do
T111[t_] := Sum fac3[[n1, s + 11]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac3 [[n1, s + 11]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 155}];
T22R = Table[T222[t], {t, 1, 155}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 11];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 155];
mmr = Transpose[{ddr, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval = NMinimize Total mm.{c1, c2} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 < ubc}, {c1 > 0}} , {c1, c2} ;
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cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

impparFn = Table[{Fstatnc[[i, 1]], Fstatnc[[i, 2]], τ1, τ2, Qn[[i]]}, {i, 1, 19}];
RFn = Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 &, impparFn
muFn = Mean[RFn];
varRFn = Variance[RFn]
sigmatotn = Sqrt[sigmaI^2 + varRFn]
sigmaTCR[xxR_] := s2n * 1 + 1 Nn + (xxR - Mean[Rn])^2 sx2n * Nn ;
sigmaTCRval = Table[{i, sigmaTCR[i]}, {i, 0, 2, 0.05}];
βn = muFn sigmatotn^2
αn = muFn^2 sigmatotn^2
RFnstatpl = Table[{RFn[[i]], 0} → i, {i, 1, 19}];
PRGn = PDF GammaDistribution αn, 1 βn , y
eplo = LineLegend[{Blue, Red},

{Style["Normal", 18], Style["Gamma", 18]}, LegendMarkerSize → 30];
P8n = ListPlot[RFnstatpl, PlotStyle → {Red, PointSize[0.01]},

LabelStyle → {Blue, 12}];
P7n = Plot[PDF[SmoothKernelDistribution[RFn], xy], {xy, 0, 2.4},

PlotStyle → {Red, Thickness[0.005]}];
P6n = Plot PDF GammaDistribution αn, 1 βn , y , {y, 0, 2.4},

PlotStyle → {Red, Thickness[0.005]} ;
P5n = Plot[PDF[NormalDistribution[muFn, sigmatotn], y],

{y, 0, 2.4}, PlotStyle → {Blue, Thickness[0.005]}];
Pshu = Plot[{lincorRn[y] - Sqrt[sigmaTCR[y]]}, {y, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.68], Dashed}];
Pshd = Plot[{lincorRn[y] + Sqrt[sigmaTCR[y]]}, {y, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.68], Dashed}];
Show[P3n, P4n, P5n, P6n, P8n, Pshu, Pshd, PlotLabel → Style["" , 22, Black],
Frame → True, FrameLabel → {"R(f=0.01)", "TCR [°C] "},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
Axes → None, Epilog → { Inset[eplo, Scaled[{0.2, 0.8}]]}]

PTCRgn = PDF[NormalDistribution[lincorRn[y], sigmaTCR[y]], sl]
PRn = PDF[NormalDistribution[muFn, sigmatotn], y]
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In[8383]:= TST01n1[t_] :=
Table Sum fac1[[m, s]] * Exp - t - s τn1[[m]] , {s, 0, t} , {m, 1, 15} ;

TST02n1[t_] := Table Sum fac1[[m, s]] * Exp - t - s τn2[[m]] , {s, 0, t} ,
{m, 1, 15} ;

TST1n1 = Table[TST01n1[m][[i]][[1]], {m, 1, 166}, {i, 1, 15}];
TST2n1 = Table[TST02n1[m][[i]][[1]], {m, 1, 166}, {i, 1, 15}];
TST01n2[t_] :=

Table Sum fac2[[m, s + 10]] * Exp - t - s τn1[[15 + m]] , {s, 0, t} , {m, 1, 2} ;
TST02n2[t_] := Table Sum fac2[[m, s + 10]] * Exp - t - s τn2[[15 + m]] , {s, 0, t} ,

{m, 1, 2} ;
TST1n2 = Table[TST01n2[m][[i]], {m, 1, 156}, {i, 1, 2}];
TST2n2 = Table[TST02n2[m][[i]], {m, 1, 156}, {i, 1, 2}];
TST01n3[t_] :=

Table Sum fac3[[m, s + 11]] * Exp - t - s τn1[[17 + m]] , {s, 0, t} , {m, 1, 2} ;
TST02n3[t_] := Table Sum fac3[[m, s + 11]] * Exp - t - s τn2[[17 + m]] , {s, 0, t} ,

{m, 1, 2} ;
TST1n3 = Table[TST01n3[m][[i]], {m, 1, 155}, {i, 1, 2}];
TST2n3 = Table[TST02n3[m][[i]], {m, 1, 155}, {i, 1, 2}];
TSTM1 = Table[{Tmdmatn1[[i, 2, m, 2]]}, {m, 1, 166}, {i, 1, 15}];
TSTM2 = Table[{Tmdmatn2[[i, 2, m, 2]]}, {m, 1, 156}, {i, 1, 2}];
TSTM3 = Table[{Tmdmatn3[[i, 2, m, 2]]}, {m, 1, 155}, {i, 1, 2}];
TSTMFITn1 =

Table[{TSTM1[[m, i]], {TST1n1[[m, i]], TST2n1[[m, i]]}}, {m, 1, 166}, {i, 1, 15}];
TSTMFITn2 = Table[{TSTM2[[m, i]], {TST1n2[[m, i]], TST2n2[[m, i]]}},

{m, 1, 156}, {i, 1, 2}];
TSTMFITn3 = Table[{TSTM3[[m, i]], {TST1n3[[m, i]], TST2n3[[m, i]]}},

{m, 1, 155}, {i, 1, 2}];

In[8401]:= TCRn = Table[AR5new[[i, 4]], {i, 1, 20}];
TCRn = Drop[TCRn, {2}]
TCRn =
Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

TCRname = {"BCC-CSM1–1", "CanESM2", "CCSM4", "CNRM-CM5",
"CSIRO-M k3.6.0", "GISS-E2-R", "IPSL-CM5A-LR", "MIROC5", "MPI-ESM-LR",
"MRI-CGCM3", "NorESM1-M", "Acess10", "bcc-csm1-1m", "inm-cm4",
"miroc-esm", "HadGEM2-ES", "gfdl-cm3", "GFDL-ESM2M", "gfdl-esm2g"}

Qn = Table[AR5new[[i, 2]], {i, 1, 20}];
Qn = Drop[Qn, {2}];
Qn =
Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

lbc = 0.2;
ubc = 2;
constsn1 = {};
constsn2 = {};
constsn3 = {};
constsn = {};
constsnt = {};
constsnc1 = {};
constsnc2 = {};
constsnc3 = {};
Do
Clear[c1, c2, c3];
cc = TSTMFITn1[[All, n, 1]];
dd = TSTMFITn1[[All, n, 2, 1]];
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ee = TSTMFITn1[[All, n, 2, 2]];
ff = ConstantArray[1, 166];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn1 = Append[constsn1, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.2}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]], cval[[2, 3]][[2]] };
constsnc1 = Append[constsnc1, cval2];

, {n, 1, 15}

Do

cc = TSTMFITn2[[All, n, 1]];
dd = TSTMFITn2[[All, n, 2, 1]];
ee = TSTMFITn2[[All, n, 2, 2]];
ff = ConstantArray[1, 156];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn2 = Append[constsn2, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.2}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]], cval[[2, 3]][[2]] };
constsnc2 = Append[constsnc2, cval2];

, {n, 1, 2}

Do

cc = TSTMFITn3[[All, n, 1]];
dd = TSTMFITn3[[All, n, 2, 1]];
ee = TSTMFITn3[[All, n, 2, 2]];
ff = ConstantArray[1, 155];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn3 = Append[constsn3, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.2}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]], cval[[2, 3]][[2]] };
constsnc3 = Append[constsnc3, cval2];

, {n, 1, 2}

constsnt = Append[constsn1, constsn2[[1]]];
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constsnt = Append[constsnt, constsn2[[2]]];
constsnt = Append[constsnt, constsn3[[1]]];
constsnt = Append[constsnt, constsn3[[2]]];
constsn = constsnt;
constsns = Append[constsnc1, constsnc2[[1]]];
constsns = Append[constsns, constsnc2[[2]]];
constsns = Append[constsns, constsnc3[[1]]];
constsns = Append[constsns, constsnc3[[2]]];
constsnc = constsns;
Clear[f, t]
impparn = Table[

{constsnc[[i, 1]], constsnc[[i, 2]], τn1[[i]], τn2[[i]], Qn[[i]]}, {i, 1, 19}];
Rn = Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 +

#[[4]] * #[[2]] 2 * Pi * #[[4]] * f ^2 + 1 ^2 +

2 * Pi * #[[1]] * #[[3]] * #[[3]] * f 2 * Pi * #[[3]] * f ^2 + 1 +

2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparn ;

Rnsj = Map #[[5]] * #[[1]] * Exp -t #[[3]] + #[[2]] * Exp -t #[[4]] & ,
impparn

TCRn = Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18}}];
TCRname = Table[TCRname[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18}}];
Rn = Table[Rn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18}}];
Rnsj = Table[Rnsj[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18}}];
Qn = Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18}}];
(*TCRn = Table[TCRn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18,12,13,14,15,17,19}}];
TCRname = Table[TCRname[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18,12,13,14,15,17,19}}];
Qn = Table[Qn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18,12,13,14,15,17,19}}];
Rn = Table[Rn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18,12,13,14,15,17,19}}];*)
korTCSn = Table 1.4 ^ -i , Correlation TCRn, Rn /. f → 1.4 ^ -i , {i, 1, 27}
korTCSnsj = Table[{i, Correlation[TCRn, Rnsj /. t → i]}, {i, 0, 3, 0.1}]
PLTCS1n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.66, 0.69]}];
PLTCS2n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → RGBColor[0.3, 0.66, 0.69], Joined → True];
Show[{PLTCS1n, PLTCS2n}, FrameLabel → { "Frequency (1/Years)", "Correlation"},
AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {0.4, 1}},
PlotLabel → Style[" Correlation TCR - Specific Parameters (Forster)", 20, Black],
GridLines → Automatic, Axes → None]

In[8445]:=

f = 0.01;
TCRnl = Table[TCRn[[i]] → i, {i, 1, 13}];
corRn = MapThread[{#1, #2} &, {Rn, TCRn}];
Correlation[corRn]
corRnl = Table[corRn[[i]] → i, {i, 1, 13}];
lincorRn = LinearModelFit[corRn, x, x]
P3n = Plot[lincorRn[t], {t, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.683], Thickness[0.01]}];
P4n = ListPlot[corRnl, PlotStyle → Black, LabelStyle → {16, Black}];
impparki =

Table[{constski[[i, 1]], constski[[i, 2]], τ1, τ2, Mean[Qn]}, {i, 1, 10}];
kistat =

Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]]
2 * Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f
2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
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2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparki ;

s2ki = Variance[kistat];
sigmaI = Sqrt[s2ki];
Nn = 13
s2n = 1 Nn - 2 * Sum TCRn[[i]] - lincorRn[Rn[[i]]] ^2, {i, 1, 13}
sx2n = 1 Nn * Sum Rn[[i]] - Mean[Rn] ^2, {i, 1, 13}

forcallg = Table[fac1[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}}];
Fstatncg = {};
forcallg = Append[forcallg, fac2[[1]]];
forcallg = Append[forcallg, fac3[[1]]];
Length[forcallg]

Do
T111[t_] := Sum forcallg[[n1, s]] * Exp - t - s tn11[[n1]] , {s, 0, t} ;
T222[t_] := Sum forcallg [[n1, s]] * Exp - t - s tn22[[n1]] , {s, 0, t} ;

annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t][[1]], {t, 1, 166}];
T22R = Table[T222[t][[1]], {t, 1, 166}];
ccr = Drop[annualtemp, -2];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 166];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval =
FindMinimum Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {{c1, 0.1}, {c2, 0.01}, {c3, 0}} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatncg = Append[Fstatncg, cval2];

, {n1, 1, 13}

In[5043]:=

Fstatn = {};
Fstatnc = {};
Qn = Table[AR5new[[i, 2]], {i, 1, 20}];
Qn = Drop[Qn, {2}];
Qn =
Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

Do
T111[t_] := Sum fac1[[n1, s]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac1[[n1, s]] * Exp - t - s τ2 , {s, 0, t} ;

annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t][[1]], {t, 1, 166}];
T22R = Table[T222[t][[1]], {t, 1, 166}];
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ccr = Drop[annualtemp, -2];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 166];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval =
NMinimize Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];

, {n1, 1, 15}
Do
T111[t_] := Sum fac2[[n1, s + 10]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac2 [[n1, s + 10]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 156}];
T22R = Table[T222[t], {t, 1, 156}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 10];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 156];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval =
NMinimize Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

Do
T111[t_] := Sum fac3[[n1, s + 11]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum fac3 [[n1, s + 11]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 155}];
T22R = Table[T222[t], {t, 1, 155}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 11];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 155];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];

28     Master.nb



Clear[c1, c2, c3];
cval =
NMinimize Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.05 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

Out[5047]= {3.2, 3.8, 3.6, 3.6, 2.6, 3.8, 3.1, 4.1, 4.1, 3.2, 3.1, 3, 3.6, 3, 4.3, 2.9, 3, 3.4, 3.1}

In[8466]:= (*impparFn = Table[{Fstatnc[[i,1]], Fstatnc[[i,2]], τ1, τ2, Qn[[i]]},{i,1,19}];*)
(*Qn = Table[Qn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];*)
impparFng = Table[

{Fstatncg[[i, 1]], Fstatncg[[i, 2]], tn11[[i]], tn22[[i]], Qn[[i]]}, {i, 1, 13}];
RFn = Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 +

#[[4]] * #[[2]] 2 * Pi * #[[4]] * f ^2 + 1 ^2 +

2 * Pi * #[[1]] * #[[3]] * #[[3]] * f 2 * Pi * #[[3]] * f ^2 + 1 +

2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparFng

(*RFn = Table[RFn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];
RFn = Table[RFn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18,12,13,14,15,17,19}}];*)

In[8468]:= muFn = Mean[RFn];
varRFn = Variance[RFn]
sigmatotn = Sqrt[sigmaI^2 + varRFn]
sigmaTCR[xxR_] := s2n * 1 + 1 Nn + (xxR - Mean[Rn])^2 sx2n * Nn ;
sigmaTCRval = Table[{i, sigmaTCR[i]}, {i, 0, 2, 0.05}];
βn = muFn sigmatotn^2
αn = muFn^2 sigmatotn^2
RFnstatpl = Table[{RFn[[i]], 0} → i, {i, 1, 13}];
PRGn = PDF GammaDistribution αn, 1 βn , y
eplo = LineLegend[{Blue, Red},

{Style["Normal", 18], Style["Gamma", 18]}, LegendMarkerSize → 30];
P8n = ListPlot[RFnstatpl, PlotStyle → {Red, PointSize[0.01]},

LabelStyle → {Blue, 12}];
P7n = Plot[PDF[SmoothKernelDistribution[RFn], xy], {xy, 0, 2.2},

PlotStyle → {Red, Thickness[0.005]}];
P6n = Plot PDF GammaDistribution αn, 1 βn , y , {y, 0, 2.4},

PlotStyle → {Red, Thickness[0.005]} ;
P5n = Plot[PDF[NormalDistribution[muFn, sigmatotn], y],

{y, 0, 2.4}, PlotStyle → {Blue, Thickness[0.005]}];
Pshu = Plot[{lincorRn[y] - Sqrt[sigmaTCR[y]]}, {y, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.68], Dashed}];
Pshd = Plot[{lincorRn[y] + Sqrt[sigmaTCR[y]]}, {y, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.68], Dashed}];
Show[P3n, P4n, P5n, P6n, P8n, Pshu, Pshd, PlotLabel → Style["" , 22, Black],
Frame → True, FrameLabel → {"R(f=0.01) [°C]", "TCR [°C] "},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
Axes → None, Epilog → { Inset[eplo, Scaled[{0.2, 0.8}]]}]

PTCRgn = PDF[NormalDistribution[lincorRn[y], sigmaTCR[y]], sl]
PRn = PDF[NormalDistribution[muFn, sigmatotn], y]
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TST01n1[t_] :=
Table Sum forcallsameF[[m, s]] * Exp - t - s τ1 , {s, 0, t} , {m, 1, 15} ;

TST02n1[t_] := Table Sum forcallsameF[[m, s]] * Exp - t - s τ2 , {s, 0, t} ,
{m, 1, 15} ;

TST1n1 = Table[TST01n1[m][[i]][[1]], {m, 1, 166}, {i, 1, 15}];
TST2n1 = Table[TST02n1[m][[i]][[1]], {m, 1, 166}, {i, 1, 15}];
TST01n2[t_] :=

Table Sum forcallsameF2[[m, s + 10]] * Exp - t - s τ1 , {s, 0, t} , {m, 1, 2} ;
TST02n2[t_] := Table Sum forcallsameF2[[m, s + 10]] * Exp - t - s τ2 , {s, 0, t} ,

{m, 1, 2} ;
TST1n2 = Table[TST01n2[m][[i]], {m, 1, 156}, {i, 1, 2}];
TST2n2 = Table[TST02n2[m][[i]], {m, 1, 156}, {i, 1, 2}];
TST01n3[t_] :=

Table Sum forcallsameF3[[m, s + 11]] * Exp - t - s τ1 , {s, 0, t} , {m, 1, 2} ;
TST02n3[t_] := Table Sum forcallsameF3[[m, s + 11]] * Exp - t - s τ2 , {s, 0, t} ,

{m, 1, 2} ;
TST1n3 = Table[TST01n3[m][[i]], {m, 1, 155}, {i, 1, 2}];
TST2n3 = Table[TST02n3[m][[i]], {m, 1, 155}, {i, 1, 2}];
TSTM1 = Table[{Tmdmatn1[[i, 2, m, 2]]}, {m, 1, 166}, {i, 1, 15}];
TSTM2 = Table[{Tmdmatn2[[i, 2, m, 2]]}, {m, 1, 156}, {i, 1, 2}];
TSTM3 = Table[{Tmdmatn3[[i, 2, m, 2]]}, {m, 1, 155}, {i, 1, 2}];
TSTMFITn1 =

Table[{TSTM1[[m, i]], {TST1n1[[m, i]], TST2n1[[m, i]]}}, {m, 1, 166}, {i, 1, 15}];
TSTMFITn2 = Table[{TSTM2[[m, i]], {TST1n2[[m, i]], TST2n2[[m, i]]}},

{m, 1, 156}, {i, 1, 2}];
TSTMFITn3 = Table[{TSTM3[[m, i]], {TST1n3[[m, i]], TST2n3[[m, i]]}},

{m, 1, 155}, {i, 1, 2}];

In[8525]:=

TCRn = Table[AR5new[[i, 4]], {i, 1, 20}];
TCRn = Drop[TCRn, {2}]
TCRn =
Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

TCRname = {"BCC-CSM1–1", "CanESM2", "CCSM4", "CNRM-CM5",
"CSIRO-M k3.6.0", "GISS-E2-R", "IPSL-CM5A-LR", "MIROC5", "MPI-ESM-LR",
"MRI-CGCM3", "NorESM1-M", "Acess10", "bcc-csm1-1m", "inm-cm4",
"miroc-esm", "HadGEM2-ES", "gfdl-cm3", "GFDL-ESM2M", "gfdl-esm2g"}

Qn = Table[AR5new[[i, 2]], {i, 1, 20}];
Qn = Drop[Qn, {2}];
Qn =
Table[Qn[[i]], {i, {1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 18, 19, 8, 16, 6, 17}}]

lbc = 0.2;
ubc = 2;
constsn1 = {};
constsn2 = {};
constsn3 = {};
constsn = {};
constsnt = {};
constsnc1 = {};
constsnc2 = {};
constsnc3 = {};

Do
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Clear[c1, c2, c3];
cc = TSTMFITn1[[All, n1, 1]];
dd = TSTMFITn1[[All, n1, 2, 1]];
ee = TSTMFITn1[[All, n1, 2, 2]];
ff = ConstantArray[1, 166];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn1 = Append[constsn1, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = NMinimize

Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},
{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {c1, c2, c3} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc1 = Append[constsnc1, cval2];

, {n1, 1, 15}

Do

cc = TSTMFITn2[[All, n1, 1]];
dd = TSTMFITn2[[All, n1, 2, 1]];
ee = TSTMFITn2[[All, n1, 2, 2]];
ff = ConstantArray[1, 156];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn2 = Append[constsn2, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = FindMinimum Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 + c2 * 219 < ubc}, {0.02 < c1 < 0.13}, {0 < c2 < 0.006}} ,
{{c1, 0.1}, {c2, 0.001}, {c3, 0}} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc2 = Append[constsnc2, cval2];

, {n1, 1, 2}

Do

cc = TSTMFITn3[[All, n1, 1]];
dd = TSTMFITn3[[All, n1, 2, 1]];
ee = TSTMFITn3[[All, n1, 2, 2]];
ff = ConstantArray[1, 155];
mm = Transpose[{dd, ee, ff} ];
ss = LeastSquares[mm, cc[[All, 1]]];
constsn3 = Append[constsn3, ss];
Clear[c1, c2, c3];
funcmin[c1_, c2_, c3_] := Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ;
cval = FindMinimum Total mm.{c1, c2, c3} - cc[[All, 1]] ^2 ,

{{lbc < c1 * 4.1 + c2 * 219 < ubc}, {0.02 < c1 < 0.13}, {0 < c2 < 0.006}} ,
{{c1, 0.1}, {c2, 0.001}, {c3, 0}} ;

cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
constsnc3 = Append[constsnc3, cval2];
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, {n1, 1, 2}

constsnt = Append[constsn1, constsn2[[1]]];
constsnt = Append[constsnt, constsn2[[2]]];
constsnt = Append[constsnt, constsn3[[1]]];
constsnt = Append[constsnt, constsn3[[2]]];
constsn = constsnt;
constsns = Append[constsnc1, constsnc2[[1]]];
constsns = Append[constsns, constsnc2[[2]]];
constsns = Append[constsns, constsnc3[[1]]];
constsns = Append[constsns, constsnc3[[2]]];
constsnc = constsns;
Clear[f]
impparn = Table[{constsnc[[i, 1]], constsnc[[i, 2]], τ1, τ2, Qn[[i]]}, {i, 1, 19}];
Rn =

Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]] 2 *
Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f

2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparn ;

(*TCRn = Table[TCRn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];
TCRname = Table[TCRname[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];
Rn = Table[Rn[[i]],{i,{1,2,3,4,5,6,7,8,9,10,11,16,18}}];*)
TCRn =

Table[TCRn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 12, 13, 14, 15, 17, 19}}];
TCRname = Table[TCRname[[i]],

{i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 18, 12, 13, 14, 15, 17, 19}}];
Rn = Table[Rn[[i]], {i, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 16, 18, 12, 13, 14, 15, 17, 19}}];
korTCSn = Table 1.4 ^ -i , Correlation TCRn, Rn /. f → 1.4 ^ -i , {i, 1, 27}
PLTCS1n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → {PointSize[0.02], RGBColor[0.3, 0.66, 0.69]}];
PLTCS2n = ListLogLinearPlot[korTCSn, Frame → True, FrameStyle → Directive[Black, 18],

PlotStyle → RGBColor[0.3, 0.66, 0.69], Joined → True];
Show[{PLTCS1n, PLTCS2n}, FrameLabel → { "Frequency (1/Years)", "Correlation"},
AspectRatio → 1, Background → None, PlotRange → {{Log[0.0001], Log[1]}, {0.4, 1}},
PlotLabel → Style["Correlation TCR - Multimodel Mean (Forster)", 20, Black],
Axes → None, GridLines → Automatic]

f = 0.01;
corRn = MapThread[{#1, #2} &, {Rn, TCRn}]
Correlation[corRn]
corRnl = Table[corRn[[i]] → i, {i, 1, 19}];
lincorRn = LinearModelFit[corRn, x, x]
P3n = Plot[lincorRn[t], {t, 0, 2.4},

PlotStyle → {RGBColor[0.3, 0.7, 0.683], Thickness[0.01]}];
P4n = ListPlot[corRnl, PlotStyle → Black, LabelStyle → {16, Blue}];
impparki =

Table[{constski[[i, 1]], constski[[i, 2]], τ1, τ2, Mean[Q]}, {i, 1, 10}];
kistat =

Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]]
2 * Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f
2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparki ;
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s2ki = Variance[kistat];
sigmaI = Sqrt[s2ki]

Fstatn = {};
Fstatnc = {};
Do
T111[t_] := Sum forcallsameF[[n1, s]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum forcallsameF [[n1, s]] * Exp - t - s τ2 , {s, 0, t} ;

annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t][[1]], {t, 1, 166}];
T22R = Table[T222[t][[1]], {t, 1, 166}];
ccr = Drop[annualtemp, -2];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 166];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval =
FindMinimum Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {{c1, 0.1}, {c2, 0.001}, {c3, 0}} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];

, {n1, 1, 15}
Do
T111[t_] := Sum forcallsameF2[[n1, s + 10]] * Exp - t - s τ1 , {s, 0, t} ;
T222[t_] := Sum forcallsameF2 [[n1, s + 10]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 156}];
T22R = Table[T222[t], {t, 1, 156}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 10];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 156];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval =
FindMinimum Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {{c1, 0.1}, {c2, 0.001}, {c3, 0}} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

Do
T111[t_] := Sum forcallsameF3[[n1, s + 11]] * Exp - t - s τ1 , {s, 0, t} ;
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T222[t_] := Sum forcallsameF3 [[n1, s + 11]] * Exp - t - s τ2 , {s, 0, t} ;
annualtemp = globaltemp[[ ;; , 14]];
years = globaltemp[[ ;; , 1]];
T11R = Table[T111[t], {t, 1, 155}];
T22R = Table[T222[t], {t, 1, 155}];
ccr = Drop[annualtemp, -2];
ccr = Drop[ccr, 11];
ddr = T11R;
eer = T22R;
ffr = ConstantArray[1, 155];
mmr = Transpose[{ddr, eer, ffr} ];
ssr = LeastSquares[mmr, ccr];
Fstatn = Append[Fstatn, ssr];
Clear[c1, c2, c3];
cval =
FindMinimum Total mmr.{c1, c2, c3} - ccr ^2 , {{lbc < c1 * 4.1 + c2 * 219 < ubc},

{0.02 < c1 < 0.13}, {0 < c2 < 0.006}} , {{c1, 0.1}, {c2, 0.001}, {c3, 0}} ;
cval2 = {cval[[2, 1]][[2]], cval[[2, 2]][[2]]};
Fstatnc = Append[Fstatnc, cval2];
, {n1, 1, 2}

impparFn = Table[{Fstatnc[[i, 1]], Fstatnc[[i, 2]], τ1, τ2, Qn[[i]]}, {i, 1, 19}];
RFn =
Map #[[5]] * #[[1]] * #[[3]] 2 * Pi * #[[3]] * f ^2 + 1 + #[[4]] * #[[2]] 2 *

Pi * #[[4]] * f ^2 + 1 ^2 + 2 * Pi * #[[1]] * #[[3]] * #[[3]] * f
2 * Pi * #[[3]] * f ^2 + 1 + 2 * Pi * #[[2]] * #[[4]] * #[[4]] * f
2 * Pi * #[[4]] * f ^2 + 1 ^2 ^ 0.5 &, impparFn

muFn = Mean[RFn];
varRFn = Variance[RFn]
sigmatotn = Sqrt[sigmaI^2 + varRFn]
sigmaTCR[xxR_] := s2n * 1 + 1 Nn + (xxR - Mean[Rn])^2 sx2n * Nn ;
sigmaTCRval = Table[{i, sigmaTCR[i]}, {i, 0, 2, 0.05}];
βn = muFn sigmatotn^2
αn = muFn^2 sigmatotn^2
RFnstatpl = Table[{RFn[[i]], 0} → i, {i, 1, 19}];
PRGn = PDF GammaDistribution αn, 1 βn , y
eplo = LineLegend[{Blue, Green, Red}, {Style["Normal", 18],

Style["Gamma", 18], Style["Smooth Kernel", 18]}, LegendMarkerSize → 30];
P8n = ListPlot[RFnstatpl, PlotStyle → {Red, Thick}, LabelStyle → {Blue, 12}];
P7n = Plot[PDF[SmoothKernelDistribution[RFn], xy],

{xy, 0, 2.4}, PlotStyle → {Red, Thickness[0.005]}];
P6n = Plot PDF GammaDistribution αn, 1 βn , y , {y, 0, 2.4},

PlotStyle → {Green, Thickness[0.005]} ;
P5n = Plot[PDF[NormalDistribution[muFn, sigmatotn], y],

{y, 0, 2.4}, PlotStyle → {Blue, Thickness[0.005]}];
Show[P3n, P4n, P5n, P6n, P7n, P8n, PlotLabel → Style["" , 22, Black], Frame → True,
FrameLabel → {"R(f=0.01)", "TCR [°C]"}, LabelStyle → {20, Black}, PlotRange → All,
GridLines → Automatic, Epilog → { Inset[eplo, Scaled[{0.2, 0.8}]]}, Axes → None]

PTCRgn = PDF[NormalDistribution[lincorRn[y], sigmaTCR[y]], sl]
PRn = PDF[NormalDistribution[muFn, sigmatotn], y]
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In[2473]:= pl1 = LogLinearPlot[{RFn[[6]]}, {f, 0.0001, 1}, Frame → True,
FrameStyle → Directive[Black, 20], PlotStyle → {{Thickness[0.01], Red}},
FrameLabel → {"Frequency f (1/Years)", "R(f)"}];

pl2 = LogLinearPlot[{RFn[[12]]}, {f, 0.0001, 1}, Frame → True,
FrameStyle → Directive[Black, 20], PlotStyle → {{Thickness[0.01], Blue}},
FrameLabel → {"Frequency f (1/Years)", "R(f)"}];

Show[pl1, pl2, PlotLabel → Style["" , 22, Black], Frame → True,
FrameLabel → {"f [1/Years]", "R(f) [°C] "},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
Axes → None, Epilog → { Inset[sonl, Scaled[{0.6, 0.8}]]}]

LogLinearPlot[{constslol[[1]]}, {f, 0.0001, 1},
Frame → True, FrameStyle → Directive[Black, 20],
PlotStyle → {{Thickness[0.01], RGBColor[0.3, 0.67, 0.69]}},
FrameLabel → {"Frequency f (1/Years)", "R(f)"}]

In[2374]:= npl1 = ListPlot[fac1[[3]], Joined → True, PlotStyle → Red];
npl2 = ListPlot[fac2[[1]], Joined → True, PlotStyle → Blue, PlotRange → All];
sonl = LineLegend[{Red, Blue},

{Style["GISS-E2-R (6)", 18], Style["HadGEM2-ES (12)", 18]}, LegendMarkerSize → 30]

Show npl1, npl2, PlotLabel → Style["" , 22, Black],
Frame → True, FrameLabel → "Year after 1850", "Forcing [W/m2] " ,
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
Axes → None, Epilog → { Inset[sonl, Scaled[{0.25, 0.8}]]}

In[2801]:= sist1 = constsnc[[1, 1]] * TST1n1[[All, 1]] +
constsnc[[1, 2]] * TST2n1[[All, 3]] + constsnc[[1, 3]] * ConstantArray[1, 166];

sist2 = c1gof[[1]] * TST1n1[[All, 1]] + c2gof[[1]] * TST2n1[[All, 1]] +
constsnc[[1, 3]] * ConstantArray[1, 166] ;

sist3 = TSTMFITn1[[All, 1, 1]][[All, 1]];
sonl2 = LineLegend[{Red, Blue, RGBColor[0.3, 0.7, 0.68]},

{Style["Fit", 18], Style["Fit - Geoffroy parameters", 18],
Style["Temperature", 18]}, LegendMarkerSize → 30]

sp1 = ListPlot[sist1, Joined → True, PlotStyle → Red];
sp2 = ListPlot[sist2, Joined → True, PlotStyle → Blue];
sp3 = ListPlot[sist3, Joined → True, PlotStyle → RGBColor[0.3, 0.7, 0.68]];
Show[sp1, sp2, sp3, PlotLabel → Style["BCC-CSM1–1" , 22, Black],
Frame → True, FrameLabel → {"Year after 1850", "Temperature Anomaly [°C]"},
LabelStyle → {20, Black}, PlotRange → All, GridLines → Automatic,
Axes → None, Epilog → { Inset[sonl2, Scaled[{0.3, 0.8}]]}]
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