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Abstract
Having the flu is something that everyone is familiar with, and the influenza

season hits every year. The intensity and timing vary from year to year driven

by climatic conditions and antigenic evolution, through mechanisms that are

only partially understood. Most research agree that the virus originates in East

and South-East (E-SE) Asia and spread throughout the world through human

movement. In this thesis we explore the possibility of modelling this circulation

pattern using a simple semi-stochastic mathematical model. Interestingly, this

model exhibits chaotic behavior and is unable to confirm the above mentioned

hypothesis. A separate approach is to analyze influenza incidence data. How-

ever, these data are subject to substantial underreporting (or complete lack of

reporting) during the low-seasons. Some recent works have suggested using

social media data to obtain proxies of influenza-like illness (ILI) data. In this

thesis we discuss if it is possible to discern pattern or tendencies using data

from Twitter. As the data used is collected only during a short time window, we

can only say something about the feasibility of using this approach to analyze

the global circulation of influenza viruses.
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1
Introduction
�.� In�uenza

Influenza is a virus that everybody is familiar with, as it emerges with new types

every year, which in turn gives yearly outbreaks of the disease. Influenza is,

what we call, a contagious respiratory disease, and the virus itself is subdivided

into three different influenza types for humans, A, B and C. Influenza type B

is further broken into two groups, and influenza type A, is further classified

into different classes, depending on the combination of the two proteins,

haemagglutinin (HA) and neuraminidase (NA). Influenza type C is detected

less often than the other types, and only causes mild infections in humans.

Type C does not have any subclasses. There is an influenza type D as well, but

this is not a type that is known to affect humans [CDC, ����,WHO, ����].

The well-known symptoms of the influenza virus, or the flu, as it is called, is

fever, body aches, headaches, coughing and tiredness. And for most people,

it is harmless. There are people that are at a higher risk of getting infected

and seriously ill. That is elders, newborns, pregnant women, and people with

diseases such as asthma, these are said to be in risk groups. For the people in

these risk groups, the virus could be lethal. And therefore, it is an important

�
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virus to monitor and prevent, so that the morbidity and mortality numbers

goes down for these groups [CDC, ����].

It is known that both influenza type A and B cause epidemics, but only influenza

type A is known to cause pandemics, like the swine influenza in ���� [WHO,

����], which was of the type H�N�. Another subtype of A, H�N�, is the major

cause of human influenza morbidity andmortality, world-wide, and on average,

� to �� % of the World’s population are infected with this type of influenza at

any time [Russell et al., ����a].

Despite progress in many areas of influenza research, it is largely unknown

when or to what extent the virus will change, and to what extent it will spread

throughout the world. It is known that in temperate countries, the influenza

seasonality is typically during the coldest part of the year, but it does not have

to be. This makes the influenza season to some extent, predictable.

In tropical countries it is muchmore difficult to say anything about the seasonal-

ity, but it often coincides with the rainy season, but we can see influenza activity

throughout the whole year in this region. World-wide, the yearly epidemic

result in approximately � to � million cases of serious illness, and consequently

being able to predict influenza epidemics would be of great benefit for health-

care, society and economic welfare [Azziz Baumgartner et al., ����, Viboud

et al., ����a].

The influenza virus seasonality does vary with latitude, but why it does, is not

exactly known. There has not been found any environmental links that have

been convincing to describe this. But, as stated above it often coincide with

the rainy season or in the coldest months. Estimating the burden of influenza

is difficult to measure, and in tropical countries it is even more difficult to do.

Since there are many unknown facts and many questions on how the influenza

virus behave in the tropical region, more research need to be done. To get a

goodmodel of the influenza burden in tropical countries, good surveillance data

is needed. And since there are big variation from year to year in the impact of

influenza, the model depends on several years of data. Since good surveillance

data just started in this region, the research studies are of short burden duration,

and they will get better as time goes by [Viboud et al., ����a].
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The influenza season of ����-���� has been a really bad influenza season

compared to previous seasons. Because of a low efficiency in the influenza

vaccine. There has been an increase of deaths and hospitalization in this

season, and scientist are therefore wondering why and how this could happen.

They are also wondering how they could make the vaccine preparation more

efficient in the following years. Trying to figure out this question, they analyzed

the influenza virus, the circulation of that year influenza strain, and analyzed

the predictions they made, when they made that seasons vaccine. One way to

make the influenza vaccine better is to make mutation to the influenza strain

in the vaccine. Which will lead to an increase in the immune response, making

the vaccine better [Teitzel, ����].

�.� Prevention, Complication and Transmission

of the In�uenza Virus

Since influenza is so well-known, the virus has different prevention strategies.

How the virus is transmitted and what complications they may arose, are also

therefore well-known. Even because of this, there are still some uncertainties

attached to this problem.

�.�.� Prevention

Since there is a highmorbidity andmortality each year because of the influenza

virus, prevention of this virus is very important, so that these number potentially

can go down.

Each person is susceptible of the new virus, but some are at a higher risk, which

is mention earlier. Increasing age, pregnancy, chronicle illnesses, and residential

care all increases the risk of being infected, and with a higher risk of complica-

tion and deaths. Today there are two ways to lessen and prevent the impact

of the influenza virus, a vaccine that contains inactivated virus-organism and

prophylaxis with antivirals, a drug that works on viruses. Different countries

have policies considering prevention, but they all recommend people in the
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risk group to take the influenza vaccine against influenza annually [Cooper

et al., ����].

The In�uenza Vaccine

From the recent paper "Factors associated with influenza vaccination among

healthcare workers in acute care hospitals in Canada", the author suggested

that the influenza vaccine uptake would increase exponentially with every year

the vaccine was taken. Other studies have shown the same or similar thing as

well. This will thus suggest the individual perceptions, that are associated with

vaccine recognition and rejection will be stable over several years.

In the paper, they determined that physicians with a higher knowledge about

influenza and vaccination were less likely to expect a severe reaction to the

vaccine, and more likely to consider influenza vaccine effective than what a

person with a lower knowledge would [Hussain et al., ����].

Vaccines that not contains the correct influenzas strain, because the strain

has changed after the vaccine decisions was made, will of course not be as

effective as a year where the vaccine matches the strain that is in the influenza

season. One example is for the ����-���� season in the United States. This

season more than �� % of the influenza viruses that circulated where different

from what the vaccine would protect from. The influenza vaccine effectiveness

was only �� % that year. Which led to an increased number of mortalities and

morbidities. Even in years when the vaccine is matched to the circulating

viruses, the effectiveness is not ��� % of it, but normally somewhere between

�� to �� %. Which is actually lower than for most of the non-influenza virus

vaccines [Paules et al., ����].

It is also recommended that health care workers get vaccinated to stop spread-

ing the virus at their work place [Hayes, ����].

Tracking the virus, where it is and what kind of it that is circulating, helps

prevent influenza. Since it helps with the vaccination. It is possible to figure out

when the vaccination should be given, and what kind of vaccine that it should
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be. Different types of the influenza virus, needs different types of vaccines. The

best time for the vaccination to be given, is just before the season starts. After

the vaccination is given to a person, it takes approximately � weeks before a

person is immune to the annual virus. How well the vaccines help depends on

the age of the person getting the vaccine [Hayes, ����].

The vaccine that is developed each year targets the virus strains that is predicted

to be the most prevalent by the Centers of Disease Control and Prevention

(CDC). And is therefore not effective to every type of influenza strain [Hayes,

����]. Vaccination on both health care personnel and patients, is the best way

to prevent an influenza spread. Since vaccinated health care personnel has

been associated with a decrease of influenza illnesses among the patients and

mortality in long-term care facilities [Weinstein et al., ����].

Other Prevention Strategies:

In the influenza season, preventing the virus itself, strict hand washing is a

very effective strategy to prevent the spread of the virus [Hayes, ����].

Another way to prevent influenza is by using antiviral medication, but this is

not possible to buy in every country, as in some countries, only hospitals have

access to it [Paul et al., ����]. These medications can be a helpful medication

with the vaccination. These are useful at health care facilities, since they can

effectively reduce the spread of influenza, when used in combination with

other control measures [Weinstein et al., ����].

It is also possible to have isolation precautions to prevent influenza spread.

This prevention procedure is thus very important in health care facilities. This

precaution could be, placing patients alone in a room, or with other infected

patients [Weinstein et al., ����].

�.�.� Complications

Complications that may occur for someone that are infected with the influenza

virus, may be inflamed mucous membranes, that is sinuses, ears and bronchi,



� C H A P T E R � I N T R O D U C T I O N

and also pneumonia. More than ���,��� people are hospitalized each year,

and about ��,��� in the United States of America, because of complications.

And therefore, prevention work is important for all [Hayes, ����].

Is has been shown that pregnant women who get infected by the virus has a

three-to four-fold higher risk than the non-pregnant women. Pregnant women

are therefore hospitalized more than non-pregnant women. It has been shown

that fetal and newborn conditions that are related to maternal influenza, are

congenitalmalformations, altered brain development,miscarriage and stillbirth.

Some recent studies have found a correlation between utero exposure to

influenza and increased risk of Parkinson’s disease and schizophrenia [Hayes,

����].

We have seen influenza pandemics before, the latest in ����, which was known

as the Swine Flu. All of the latest pandemics are studied and especially the

latest three. The four pandemics that where in ����, ����, ���� and in ����,

where all influenza type A [Kilbourne, ����]. To get a pandemic, at a minimum,

the virus needs itself to have a major change in the HA antigen. One could see

that in ����, there were changes in both HA and NA antigens. Which again

caused a higher rate of illnesses and deaths. The Spanish flue in ����, may have

been special because of wartime conditions and also a less important bacterial

infections [Kilbourne, ����]. When there is sufficient change in the virus to

get a pandemic, the change is called an antigenic shift to the virus, whereas

small changes is called antigenic drift.

In the brief period of the modern virology, the �� different HA antigens that are

known to exist. Only the three different antigens, H�, H� and H�, are known

to cause a pandemic [Kilbourne, ����].

One of the worst complications of influenza is pneumonia. And for elders this

is much worse than for adults and young adults. Treatment is more difficult for

elders, and hospitalization and death is frequent among the elder patients [Mee-

han et al., ����]. But, pneumonia is not the only cause of hospitalization and

deaths, but with influenza, there is an increase in other pulmonary and cardio-

vascular diseases. There is also some hospitalization because of neuromuscular

complications [Rothberg et al., ����].
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It is possible to prepare for an epidemic, but even though people do a big

amount of hand washing, public education and masks to prevent spreading in

health care services, there will be epidemics each year, and even pandemics

of influenza in the future. Even though, it is very important to prevent it from

spreading, since this will be a part of reducing deaths and hospitalization of

infected people [Kilbourne, ����]. Because of these preventions actions that

have been put into place, we have seen a decrease in deaths over the years as

more knowledge on the virus has been known [Doshi, ����].

�.�.� Transmission

The influenza virus is transmitted by aerosols, large droplets, or direct contact

with secretions. Therefore, it is possible to be infected, if you are susceptible

for the particular version of the virus, at any public place where an infected

person has visited [Hayes, ����].

The drier the air, the longer the viral particles live, which leads to that the

virus is more prevalent in the winter months, or at least, this is what we think.

Since the air is colder and drier, but also that the nasal passageways will be

direr as well. And in colder months the heated buildings will contain a drier air

than what it will in the other seasons, which makes it easier to spread [Hayes,

����].

If a person gets infected by the influenza virus, the person will be contagious

for � to � days before, and up to � days after symptoms begins. It appears

so that children have a longer incubate time than adults. We know that the

viral particles can live on non-porous surfaces for up to �� hours, and on

paper surfaces for up to �� minutes, so that this need to be thought of [Hayes,

����].

Aerosols are small particles that are suspensions in air. They are small enough

to remain airborne for some time, because of their low settling. Aerosols

transmission is the mode of transmission that may have the greatest impact for

infection control, since this requires specialized personal protective equipment.

Since these particles moves very slowly in still air, they are easily carried over



� C H A P T E R � I N T R O D U C T I O N

a long distance by air columns and air currents. Which can in turn cause

long-distance infections [Tellier, ����]. Coughing and sneezing will generate

a substantial quantity of particles to infect others [Tellier, ����].

Early studies of influenza transmission in humans, showed that infection is

activated more efficiently when the virus is collected in the lower respiratory

tract rather than the upper respiratory tract [Weinstein et al., ����]. The

respiratory tract is a part of the human anatomy. It is divided in two, the upper

and the lower tract. The upper part includes, among other things, the nose and

nasal passages. The lungs could be a part of the lower part of the respiratory

tract, if it is not looked upon as a separate part. Trachea is a part of the lower

tract [Weinstein et al., ����].

From one research paper that where published in ����, they looked at how the

aerosol spread of the influenza virus where dependent on relative humidity

and temperature on guinea pigs. In this paper they discovered that the virus

transmission of influenza is in fact dependent on temperature and the relative

humidity. They did �� experiments where they had a range between �� to ��

% in humidity and in three different temperatures, � °C, �� °C and �� °C. And

the result was that it indicated that both the cold and the low humidity where

favored for the virus to transmit. They suggest that these two environmental

factors could be a part of the seasonal pattern of influenza. Not that it is not

possible to get infected during the summer, but that it is much easier when

temperatures are cold, and the humidity is low [Lowen et al., ����].

In this research there where a lack of transmission at �� °C, which question

if their research represents human infections, as we have that the virus also

transmit in tropical areas [Lowen et al., ����].

Influenza does not always spread from human to human, and often the virus

emerges in animals, like birds. Avian influenza is influenza where all birds are

susceptible, and therefore we often see outbreaks in birds, especially turkeys

and chickens. Humans are rarely infected by this type of the virus. Humans

are believed to be infected through pigs, that act as a host. Where the virus

need to go through mutation to the virus in airborne transmission. When a

mammal first gets infected by the virus, the virus is transmitted from mammal
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to mammal by the airborne route [Webster, ����].

The influenza virus is proposed to transmit with aerosols, but the importance

of this transmission tool is unclear. One study even suggests that it is enough

to breath to spread the influenza virus [York, ����].

�.� Thesis Structure

Chapter �: In this chapter we are looking at Twitter and how this can be used

to tell us something about Influenza.

Chapter �: In this chapter we are looking at the global circulation of influenza,

and how the virus is changing.

Chapter �: In this chapter The SIR model is represented.

Chapter �: In this chapter we are looking at community structures, and how

this is used in this thesis.

Chapter �: In this chapter the results are presented.

Chapter �: In this chapter the discussion is made.

Chapter �: In this chapter the conclusion is made, with a summery and further

work within this problem.

Finally, the appendix and the bibliography come, containingMathematica codes

that has been used in this thesis, and the time series of the Twitter influenza

data.





2
Collecting Data About
In�uenza Like Illnesses
Using Twitter
Another way to see if we can see the pattern in real life and other interesting

things, is to use influenza data. One way of collecting these data from the

whole world, is to download data from the health care services. Another way,

that has been showed to work well, is to use internet profiles and social media

to collect these data.

In the past �� years, there have been powerful advances in computer science,

and with this, algorithms and advanced hardware on the known problems of

understanding spoken and written text. Today this science is wildly used by

everyone. Machine translation, speech synthesis is examples of things that is

used every day. Social media may be one of the most used computer science

today, and here I am looking at the most leading social networking and micro-

blogging service, Twitter [Agogo and Hess, ����].

��
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Another way of downloading data that has been used, to get influenza like

illnesses-data (ILI), is Google Flu Trends (GFT). Which is when Google is

capturing the queries from people that search about influenza. There are even

some that have used a service to analyze blogs, where people have written

about themselves being sick [Corley et al., ����].

�.� What is Twitter?

Twitter is what we call a micro-blog, developed in ����, where the users

may post short messages, called tweets, which was original a maximum of ���

characters, but has since November ���� doubled their character limitation¹.

Twitter is the most famous micro-blog service all over the world.

Each Twitter-profile have what they have called followers, which will get these

messages in their own feed. These followers could be anybody, but most often

they are friends and people you know. For well-known persons, they typically

have many followers, and can therefore share their thoughts and opinions to

many people. These messages, these tweets, can be retweeted, which is when

another user take your tweet and post it on their profile. Each of this retweeted

messages, will have RT in the beginning of the text, and with the original’s

profile name. This means that you will always be able to see the original

tweet.

Because of this, one tweet could possibly spread to many different users. Twitter

has multiple times shown to be a good source of information on what is going

on in a country, and as well in the whole world, as many of the users post their

opinion about the community and about what they see, on their public Twitter

profile [Java et al., ����,Kwak et al., ����].

�. https://twitter.com/
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�.� Why Using Twitter as a Source of In�uenza

Data?

Since influenza is under-reported, as not everyone goes to see a doctor when

they get sick, other sources needs to be found. And one may wish to look

for other sources to find data. Twitter has shown to be a good source with a

great correlation for Influenza-like illnesses (ILI). One reason for using this

method of collecting influenza data, is that it is a quite fast way to collect

data. Since it is, as stated above, that the users of Twitter often publish their

thoughts on their public profile as it happens. It is possible to get the data

simultaneously, whereas collecting data from the health reports could take

several weeks [Signorini et al., ����a]. Using twitter as a source opens up for

easier access for collecting influenza data.

Twitter has more than ��� million users worldwide and produces over ��

million tweets each day from all over the world. Most of the tweets is mostly

conversation between a few users, spam or general shatter. But even though

there is a lot of noise in the site, it is possible to find useful information from

this. Twitter profiles has previously and, it will most likely in the future, been

or be used to measure political opinion, impact on earthquake effects, and

national sentiment from the public [Signorini et al., ����a].

As it says above, Twitter will give us a real time information of people with

an ILI, while data from people who has confirmed the influenza virus, will be

delayed by �-� week after the diagnosis has been made. Since the data system

of influenza diagnosed patients is mainly manual. For the best intervention and

prevention for an epidemic, the public health authorizes need to be informed

as soon as possible as it is a growth of the influenza virus proportion in the

public. So faster ways to get the influenza data for the healthcare services, the

more efficient would the preventive intervention be for every year [Achrekar

et al., ����].

The reason for choosing Twitter over for example, Facebook or other different

micro-blogs, is that the Twitter-profiles are often open for the public and has

many users. You do not need your own profile to see others, like most of the
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Facebook profiles are. The threshold for publishing something on Twitter is

much lower than it is for publishing a text on Facebook amongst the people,

particularly for young people. Since Twitter is made for publishing random

thoughts and opinions [Dawar et al., ����]. Most of the tweets are also posted

with geographical coordinates, because of the heavy use of smart phones.

With the geographical coordinate on almost every tweet, it is possible to say

something about the spread of the influenza virus [Lampos and Cristianini,

����]. Here in this thesis, only the text-messages that have a geographic

location is used, since the spreading pattern of influenza is what we are

looking for.

Although there are most young people that have a Twitter profile, we still see a

diversity in demographic groups. Twittermay not only be used to collecting data

but can also be used to enlist people to studies [Sinnenberg et al., ����].

Something that has been shown is that if the media talks about the influenza

virus, there will be more tweets that mentions influenza, than if the media

did not talk about it. So, in these periods when the are some talk about the

influenza virus, in the media, there are more tweets that mentions influenza,

but actually not tweets where people are sick. This has been seen in other

web-based flu surveillance systems as well [Broniatowski et al., ����]. But,

since the media often increase their stories about influenza, in the influenza

season, there will most likely be an increase also in the number of infected

people.

In a paper from ����, they showed that Twitter surveillance would highly

improve influenza forecasting. The paper also states that it is possible to

forecast the influenza prevalence rates some weeks into the future using only

Twitter. They state that Twitter is more accessible, and that it will provide

better forecasting of epidemics [Paul et al., ����].
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�.� Hashtags and Queries

In these so called tweets, often people use hashtags in front of a word, which

is the hash character #. These "hashtagged" words will be marked with a

different color and on Twitter, these words are blue. Clicking on these words

that are "hashtagged", will lead to many tweets with the same hashtag. And

thus, it would be much easier to find exactly those tweets that contains the

information or content that you are looking for.

To collect data we could be looking for text, or tweets, that contains words that
could be symptoms, like "headache", "sore throat" and so on, but also search for

"flu", and "influenza". It is also possible to look for words like "#flu", where we

have used the hashtag [Lampos and Cristianini, ����]. And as stated, the data

that will be collected will not be forecasting the influenza season, but rather

give us the real time reports of influenza. Since we are looking for people that

are sick with influenza right now. But an increasing number of people that

write that they are sick could indicate that an epidemic is in the starting.

Searching only for "headache" and "sore throat" could be symptoms for other

things than the influenza virus. So, using more symptoms could be smarter.

But that again would lead to less tweets. Only searching for "flu" or "influenza"

lead to a lot of tweets in the biggest cities, but in small cities we get a nice and

small number.

This means that in the biggest cities,many people use Twitter daily, but also that

we have more noise in the downloaded data. The noise could be information

from the health care services about vaccines or influenza precautions, or it could

be statistics about this or previous influenza seasons. That not actually people

that have the influenza virus or people that has influenza-like illnesses.

�.� Twitter’s REST API

It is possible to download data form Twitter, because of its free application

programming interface (API). Which can be used to interact with users and

feeds of the social media platform. But, to download data from Twitter, you
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need to have your own user on the website. Twitter API allows users to analysis

data (tweets), and trending topics in time. In this thesis, downloading the data

from Twitter, the REST API way to downloading information has been used.

Using this way to get the interesting tweets, it is only possible to download ���

queries per �� minutes [Dawar et al., ����].

REST stands for representational State Transfer, and is the word Roy Fielding,

a computer scientist, gave his own description of his Web’s architectural style

[Masse, ����]. These API’s uses the pull strategy for collecting the wanted data.

There is also another way to download data from twitter, called Streaming API,

but this is not used in this thesis. Using the REST API will give us data from the

last �� days, unless we take a maximum of tweets we want to download.

Downloading less data, takes a shorter time, and since the tweets were down-

loaded within ten days, a maximum of downloads per Twitter search is used.

This way of downloading data, we search for words that we are interested in,

as queries. It is possible to search for several words in one tweet using comma

between the words, or the queries, while downloading the data [Kumar et al.,

����].

The Twitter API is allowed access to � % its data, and in real time. This is one

of the strengths of the Twitter database, since it allows free access to a large

set of data immediately after the data was created and published.

Twitter as a source for collecting data within health services, is a new way

of collecting data, and is a rapid growing field. Which can be seen by the

number of publications. The most commonly researched topics within health

and sickness on Twitter, are cases with high morbidity and mortality. Such

as influenza, cancer and Ebola. But there is also research about other health

behaviors such as smoking [Sinnenberg et al., ����].

�.� Geolocation of the Tweets

While we are downloading the data, we are only searching for tweets that have
a location. Since we only want the tweets where we know what the location is,
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since we are trying to analyze the spreading pattern. Because of this, we will

not be able to get all of the tweets that contains influenza data. Not all of the

user has a geographical location on their tweet or they may want the location

of where they are to be private.

Getting a tweet with a geographical location is available from two different

sources, which is geotagging information and from the profile descriptions

from the users [Kumar et al., ����].

Geotagging information is when the users have chosen to provide their location

of their tweets, and with the smart phone’s GPS, the location will be highly

accurate. The profile of the users can have the location of the user in their

biography. The biography is on every profile page, where someone can say

something about themselves, which one could be where they live.

�.� Problems in Using Di�erent Cities From All

Over the World

The proportion of tweets from different cities in the world is of course different,

which we would suspect since the population in those cities are quite different.

The more people in a population, the more Twitter users there might be. The

culture of a population, might also have a significant saying in how many

that have a Twitter profile. We also know that there are a bigger proportion

of people that have a Twitter profile in the United States than in any other

country [Statista, ����]. Which will be influencing the Twitter-data.

From the difference in the number of Twitter-users, we can see that even in

big countries with a big population, the proportion does not have to be the

same. Some countries have a much bigger proportion of Twitter-users. What

we also see is a difference in the age groups between countries.

One problem that also arose in downloading the influenza data is that not

every city has English as first language, and that the code did not translate the

queries to different languages, only a few do in what that has been downloaded,
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or even non or a few English speakers. Because if this, we also need to search

for tweets in the city’s native language. To do this, Google Translate² was

used to find the words in different languages. Some cities that has several first

language which is used, the most used language of those was used, as it often

where not many tweets on those other languages.

Since English is such a highly used language, and since the "culture" on Twitter

is to write it in in English, every Twitter-search was also done in English in the

non-English countries. One reason for users to write it in English, is that in this

way it is possible to communicate to the rest of the world.

In this thesis data from over �� countries was search for from all over the world.

It is clearly a difference in number of influenza incidents which can be seen on

the plots in the appendix Fig. A.�.

�.� Scienti�c Papers

�.�.� Using Yahoo

As stated, not only Twitter and GFT can be used to surveillance influenza.

But, also the search engine Yahoo³. Which one study did and collected data

influenza data fromMarch ���� to May ���� [Polgreen et al., ����]. They have

used the idea that people search for influenza information online, when they

do need it, and the fact that the large number of health-related information

makes it more difficult to find precisely what you are looking for. As there are �

million people that search for health-related issues every day makes it possible

to find patterns in search history.

In this study they used � different types to measure the influenza occurrence.

The first type to get data, were based on weekly influenza cultures. Which

comes from clinical laboratories that report the total number of respiratory

specimens tested, and the number of positive influenza tests in the influenza

�. https://translate.google.no/
�. https://www.yahoo.com/
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season. The second type of data they used were of weekly mortality attributable

to pneumonia and influenza. From this data, the study obtained figures of the

influenza mortality in the USA. As the influenza query search data needed

to match these numbers, they collected data from March ���� to May ����

[Polgreen et al., ����].

They collected the search queries that were from the States only, as it were only

in this region they had collected data, and the fact that the season of influenza

vary geographically. They calculated the daily influenza search, by dividing

the daily number of influenza search by the total number of all searches that

had been done. As the influenza data they had collected were on a weekly

basis, they calculated the weekly average of influenza search [Polgreen et al.,

����].

To see what relationship there was between culture-positive cases of influenza

and influenza-related searches, they examine the relationship between these

two at a national level. They discovered that the fractions between these two,

have a similar pattern over time, but there is s sharp increase in the search for

influenza that precedes the cultures that are tested positive for influenza. To

be able to test the search queries data, they fitted it into a linear model, so that

they could test the predictability of the search frequency on positive influenza

culture results, which also include a time variable, and it is as follows:

ct = �0 + �1st�x + �2t + �0 (�.�)

In this equation, Eq. �.�, t is a time trends that is measures in weeks, ct is

the rate of positive influenza cultures received during week t, and st�x is the

search frequency in the week of t-x. To determine the appropriate lag, they

examined �� different possible values for x and compared it with R2 value for

each of these models. And the best fit for this model, was given for �-week

lag. The coefficient �2 is not significant different form zero in any of the tried

models. As for this model, the best fitting model predicted an increase in the

number of cultures positive for influenza three weeks in advanced [Polgreen

et al., ����].
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As for the search and the influenza mortality results, they also made a fitted

linear model, so that they could test the predictability of search frequency with

regard to the mortality rate, and it is as follows:

mt = �0 + �1st�x + �2t + �0 (�.�)

Where in this case mt is the total number of deaths. All the other variables

are defined as in Eq. �.�. For the best fitted model in this case, the search data

peaked �-� weeks prior an increase in mortality attributable to influenza and

pneumonia [Polgreen et al., ����].

They discovered that there is a distinct temporal association that exist between

influenza-related search-terms frequency and disease activity. In the States,

the search activity seems to increase some weeks prior to the positive influenza

cultures and in influenza related deaths [Polgreen et al., ����].

�.�.� The Use of Twitter to Track Diseases

Another study that also use Twitter to see if it is able to detect disease activity

is, "The Use of Twitter to Track Levels of Disease Activity and Public Concern in

the U.S during the Influneza A H�N� Pandemic" [Signorini et al., ����b].

In this study they also looked at the public concert of the influenza pandemics,

as stated in the title. They started to collect a number of tweets, starting in

April ��, ����, with the pre-specified search terms, flu, swine, influenza, vaccine,
tamiflu, oseltamivir, pneumonia, h�n�, symptom, syndrome and illness. Each of

their collected tweets where geolocated using the profiles home location. In

October �, ���� they began downloading expanded sample of tweets, using
Twitter’s API [Signorini et al., ����b].

As in the previous study, they were only interested in tweets from the United

States, and tweets that were not in English. And because of the volume of post

on Twitter varies over time, and varying across geographical regions, they used

statistics that were expressed in terms of the fraction of the total tweets emitted
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within the corresponding time interval and geographical region [Signorini

et al., ����b].

To determine the contribution of each of the influenza-related Twitter term,

they used Support Vector Regression, which is a more general class of Sup-

port Vector Machine, a supervised learning method generally applied to solve

classification problems. This model will produce a nonlinear model that will

minimize a preselected linear-error-cost function where features serve as re-

gression variables [Signorini et al., ����b].

Their Results

They manage to get a data set that contained ���,��� tweets in their first data

set. And these were collected from April �� and June �, ����. Their second

data set contained approximately �.� million tweets, that were selected from

about � million influenza-related tweets that were observed between October

�, ���� and until the end of the year. When they had collected these tweets,
they made estimates on ILI based on this data set. To verify their method, they

used a standard leaving-one-out cross-validation methodology. And they got

an average error of �.��%, and a standard deviation of �.��% [Signorini et al.,

����b].

Their results showed that Twitter data not only can be used to track the users

interest and their concern related to influenza, especially the H�N�-influenza

pandemics in ����, but it is also possible to estimate disease activity in this

moment. They do mention, since there is no comparable data they are available,

it is not possible to validate their results. But, the results and trends that are

observed are reasonable and quite consistent with what we would expect. One

example of this, where when there were a drop in the number of tweets that
contained antiviral drugs, at the same time as official disease reports indicated

that most of the cases were mild [Signorini et al., ����b].

The tweets which reflects the user’s own level of disease and discomfort, they

researchers devised an estimation method that were based on well-understood

machine learning methods. Which showed that the accuracy of the resulting ILI
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estimates identified and used in theirmodel,which contains closely information

that were associated with disease activity. Their result was also able to create

a distinct relationship between Twitter data and the epidemic curve of the

H�N� pandemic in ����. Both at the national level and at a geographical

level [Signorini et al., ����b].

In this study, they did not try to forecast an influenza epidemic, as many others,

but rather to be able to make real-time estimates using Twitter. Which will

be much faster than traditional estimates, which will be �-� weeks delayed

[Signorini et al., ����b].

�.�.� An Analysis of the ����-���� In�uenza Epidemics
using Twitter

In the paper "National and Local Influenza Surveillance through Twitter: An

Analysis of the "����-���� Influenza Epidemic", the authors demonstrate that

influenza surveillance using social media with a system build and deployed be-

fore the influenza season have started. They found out that the number of tweets
declined as the media attention declined [Broniatowski et al., ����].

In this research the authors were able to create a new classification model that

overcomes the barrier of tweets that contains the word influenza but is not

actually about an infected person. By separating tweets indicating influenza

infection, and those who indicate concern or influenza awareness. Which

makes the model able to estimate influenza prevalence from normalized tweet
volume [Broniatowski et al., ����].

Their downloading of Twitter data, started at September ��, ����. Which was

the start of the ����-���� epidemic defined by the Centers of Disease Control

and Prevention (CDC). Which ended in May ��, ����. Their collection contained

�.� billion tweets.

To filter data, they authors used a binary classification models to identify rele-

vant data for influenza surveillance at each stage. And these models indicated

if the tweetwere relevant to health, to influenza, or indicative of an actual infec-
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tion. The first filter, indicated if the tweet were relevant of irrelevant of health,

which the classifier was estimated to have �� % precision. Each of the tweets,
were labelled with three different labels, (�) if the tweet discussed influenza

or not, (�) if the tweet indicated infection or the user’s awareness of influenza

and (�) whether the tweet referenced the user themselves, or someone else.

The third classifier was not used in the final classifiers. The labelled data was

then used to trained parameters of separate logistic regression models for the

two classification tasks. Using this, they manage to get ���,��� tweets that
indicated an infected user. After this has been identified, they normalized the

weekly number of these infected tweets by the total number of tweets in that

week so that they were able to produce a Twitter-based influenza prevalence

measure. To evaluate this, they compared their result with the CDC’s US Outpa-

tient Influenza-Like Illness Surveillance Network (CDC ILISN) [Broniatowski

et al., ����].

To manage to get the geographical location of each tweet, they used their

recently geolocation system, called Carmen. With the GPS information which

were associated with the small percentage of the collected tweet, Carmen will

collect information from the user’s biographies profiles [Broniatowski et al.,

����].

Their Results

On the national level of the United States, their system managed to identify

���,��� influenza infections. These tweets correlated strongly with the CDC

ILISN data, from October ���� to May ���� (r=�.��, p<�.���). On the contrary,

the weekly number of tweets containing influenza keywords provided by the

US Department of Health and Human Services is much less strongly correlated

(r=�.��, p<�.���). And the difference between these are significant at a

p<�.��� level. The absolute error of their estimates is �.���� after normalizing

the weekly rates to sum �. The mean absolute error of their infection estimates

is �.����, a �� % reduction error over the keyword filter [Broniatowski et al.,

����].

On the municipal level, they looked at New York, where they also used the
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same technique. In this case they had �,��� tweets which were identified form

New York City. The New York City Department of Health and Mental Hygiene,

did a blind evaluation of their algorithm, and it showed a strong correlation

between the city’s weekly emergent department visits for ILI, and the city’s

number of tweets in the same week (r=�.�� , p<�.���) [Broniatowski et al.,

����].

They did weekly correlation with the Twitter-data and the national ILI-data,

which the Pearson correlation coefficient varied between �.�� to �.��. The

mean is �.��, with a standard deviation of �.��. Their system also matched

the direction of the change in cases by �� % accuracy, which for baseline

keyword-based systems, is �� % [Broniatowski et al., ����].

Any correlation analysis of time series could be potential bias if the underlying

data is not stationary. One example, if each week influenza infection count is

a function of the previous week’s count, then it would be expected these two

weeks would be correlated. This additional time series analysis, shows that it

is possible to capture the detail beyond the overall trend [Broniatowski et al.,

����].

Their algorithm of collecting data establish significant improvements and is

less sensitive to noise on Twitter. As when there were talk about the H�N� virus

in China, which had massive media attention. They observed a large increase

of tweets with influenza keywords, which is expected, but tweets with infection

only, had just a slight increase, or not at all. Their Twitter data correlated

strongly with the governments data over influenza throughout all of the weeks

of the influenza season [Broniatowski et al., ����].

�.�.� Detecting In�uenza Epidemics Using Search Engine

Their Model

In this research paper, "Detecting Influenza Epidemics Using Search Engine

Query Data", they are looking at query data from search engine as the title states.

They mention that to get a faster detection of influenza than the original ways
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of doing it, which often has a lag from � to � weeks, many different surveillance

system has been created so that it would be possible to monitor influenza

with no lag. As that �� million American are believed to search online to

get information of dieseases or medical problems each year, which makes the

web search queries uniquely source of information about all kinds of health

problems [Ginsberg et al., ����].

It has been showed that a set of Yahoo search queries that contains influenza

keywords, have correlated with virology and mortality surveillance data over

multiple years. In this research, they are looking at Google as a search engine.

The authors of this paper have looked at hundreds of billions of search-logs

from � years of Google searches. Their system generated a more comprehensive

model which can be used in influenza surveillance, which has both national

and regional estimates of ILI in the United States [Ginsberg et al., ����].

They collected historical logs from ���� to ����, which they computed a time

series of weekly counts for the �� million of the most common search queries

in the United States. Each of these time series were normalized by dividing

the count for each query in a particular week by the total number of online

searches that same week and in the same location. They wanted to make a

simple model that would estimate the probability that a random physician

would visit a particular region is related to an ILI, which is equivalent to the

percentage if ILI-related physician visits. Only a single explanatory variable

was used, the probability that a random search query submitted from the same

region is related to an ILI. They fitted a linear model by using the log-odds of

an ILI-physician visit the log-odds of an ILI search query. Their linear model,

is as follows:

logit(I (�)) = � logit(Q(t)) + � (�.�)

In this equation, Eq. �.�, I(t) is the percentage of ILI physician visits, Q(t) is
the ILI-related query fraction at time t, � is the multiplicative coefficient, and

� is the error term [Ginsberg et al., ����].

To help build this model, the research paper’s authors used influenza data from

the CDC’s influenza Sentinel Provider Surveillance Network (CDC’s ISPSN),

which is free of cost. For each of the nine regions in the United States that
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CDC have surveillance for, the CDC reported the average percentage for all

outpatients visits to sentinel provides that were ILI-related on a weekly basis.

No data were provided outside of the influenza season, and those ILI-data

that were collected outside of this season are left unvalidated [Ginsberg et al.,

����].

They designed an automated method for selecting ILI-related search queries,

which required no previous knowledge about influenza. They have also mea-

sured how efficient their model would fit the CDC ILI-data in each of the nine

regions if they only would use one query, as the variable Q(t). Each of the

�� million candidates queries which was in their database were separately

tested in this manner, so that the queries that could most accurately could

model the CDC ILI visit percentage in each of the nine regions [Ginsberg et al.,

����].

Their Results

In the ����-���� influenza season they used preliminary versions of their

model to generate ILI estimates, and shared their result each week with the

Epidemiology and Prevention Branch of Influenza Division at the CDC to

evaluate the timeliness and accuracy. And across the nine regions in the United

States, their model was able to estimate consistently the current ILI percentage

�-� weeks prior of the publications of reports by the CDC’s Influenza Sentinel

Provider Surveillance Network [Ginsberg et al., ����].

Since local surveillance is especially useful for health planning in the area,

they wanted to validate their model even further against weekly ILI percentage

for individuals state, instead of those nine regions. The CDC does not make

state-level ILI-data public, but the authors were able to validate their data with

the state of Utah ILI-reports, which they obtained a �.�� correlation across ��

validation points. From the validation of the model, they concluded with that

Google queries can be used to estimate the ILI percentage, and accurately, in

the nine regions prior to the CDC’s ILI surveillance reports manage [Ginsberg

et al., ����].
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As we can see from all of these four papers, using social media and search

engine, it is possible to use them to get ILI-data, which in fact make a good

correlation of official health department’s ILI-reports. Which, in use, could

make the health care more prepared for an epidemic or a pandemic as it could

see an increase in infected before reports can see it.





3
Global Circulation and
Antigenic Drift

How the global circulation of the influenza virus works, is something that has

been wanted for many years. And if it is perfectly understood, it would help

understand the influenza season, and help predicting when it will hit much

better. Precisely the global circulation is what they try to figure out in the paper,

"Global Circulation Patterns of Seasonal Influenza Viruses Vary with Antigenic

Drift" from ���� [Bedford et al., ����]. Despite the better understanding in

the complete genome sequence data of influenza, there are many aspects

of how the virus evolves, and the epidemiological of it that are not known,

that is, measurments of viral diversity across time, across space and among

the influenza subtypes [Rambaut et al., ����]. In this study, that study the

antigenic drift, which means that they are analyzing the virus itself, and how

it changes.

Most of the study of the influenza virus, has only focused on a single segment,

without trying to see at how the subtypes of the virus interact with each other.

Most of the studies have not determined how the viruses relates to antigenic

��
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evolution. And even though the two influenza viruses of type A, H�N� and

H�N� have a seasonality, the forces who decide the periodicity, and how they

vary are unknown [Rambaut et al., ����].

In "The Global Circulation of Seasonal Influenza A (H�N�) Virus" [Russell et al.,

����a] they are just looking at the evolution of the H�N� virus, as it is states

in the title. They looked at how the virus evolves and changes, and where this

happens. Their result tells us that there are evidence of seeding from a region,

against local persistence in temperate regions. Where the seeded region would

be East-Southeast Asia (E-SE Asia). What they also discovered is that it seems

that the virus is travelling from this region to Europa, Oceania, and North

America, and after this it travels to South America. Which could be explained

by these regions travel and trade connections. They did not either find evidence

of influenza seeding back to this region.

There are some evidence that even though the most important contributions

are from China and South-East Asia, it has been found out that small temperate

regions outside of Asia could contribute to the global circulation of influenza.

It has been found evidence of migration virus from temperate to tropical

countries, and that their linage may exist outside of Asia for several seasons.

They manage to persist because of dynamical migration between regions and

different seasonality [Bedford et al., ����]. Some studies have shown that

China, South-East Asia and the United States contribute to the trunk of the

influenza genealogy, and hence mutation of the virus have affected the global

influenza population, where the virus who were contributed from the United

States, often is the one found in South America. Which could be consistent

with aviation [Bedford et al., ����].

�.� Studies of Di�erent In�uenza Viruses

The authors mention that studies have shown that, each year, the H�N� epi-

demics, a type A influenza, results from the introduction of new genetic variants

in E-SE Asia, where it is believed that the virus circulates all the time, because

of a network of temporally epidemics, rather than local percitence [Bedford
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et al., ����, Russell et al., ����a]. In addition to this particular influenza

virus, H�N� viruses, and two antigenically diverged lineages of type B, called

B/Victoria/�/����-lik (Vic) and B/Yamagata/��/����-like (Yam), are viruses

that circulate among humans, and they have considerable disease burden. The

global circulation of these influenza viruses is overlooked, even though it is an

important part of understanding influneza [Bedford et al., ����].

Considering that both influenza type A and B gives comparable symptoms

and that they evolve in a similar matter, the authors of [Bedford et al., ����],

suggest that these viruses will follow the same pattern for global circulation.

Where the new variant of the influenza types originates in E-SE Asia, which will

replace the already exciting variant. To test this in this paper, the researchers

compared the global circulation of HA genes of H�N�, the former H�N�, Vic,

and Yam viruses. They managed to cover viruses from ����-����, and they

reduced the impact of surveillance biases by subsampled these data to more

equitable spatiotemporal distributions.

What they were able to see, was that faster rates of nucleotide mutation and

amino acid in H�N� and in H�N�, than in the type B viruses, which was previous

shown as well. But they also discovered genealogical diversity in the B virus

than what it is in the A virus. It is possible to discover a consistent pattern

for the H�N� virus. In addition to China and Southeast Asia, India frequently

contributed to new viruses. Which means that India is a part of the contributing

countries in the E-SE Asia pattern. It has also been briefly periods where other

regions outside of this leading pattern have contributed with new viruses, once

in ����-���� Northern Hemisphere winter. But this is very rare, and those

viruses descend directly from E-SE Asia [Bedford et al., ����].

Studies have shown that the global circulation of H�N� surprisingly do not

follow the same global circulation pattern as H�N� [Bedford et al., ����]. What

has been discovered is that the H�N� virus’ lineages do unite with the viruses

from E-SE Asia and India, but at a much slower than for the H�N� viruses.

Analyses of the influenza type B viruses, Vic and Yam have revealed further

differences from the H�N� virus. Where one can see the lineages circulating

outside of E-SE Asia for many years, without any evidence of seeding from this
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region. A good example of this, is the seeding of the North American ����/����

Vic season, it was directly from the ����-���� North American viruses, which

also with the seeding of the North American ����-���� Yam viruses, directly

being seeded by Northern American viruses. Which also the same pattern can

be seen in E-SE Asia. That the viruses circulate exclusively in the same region

for more than � year [Bedford et al., ����].

What have been showed is that the persistence of the different types of in-

fluenza viruses, H�N� for approximately � months [Bedford et al., ����,Russell

et al., ����a], H�N� for about � months, Vic about �� months, and Yam for

approximately �� months [Bedford et al., ����]. H�N� has the shortest persis-

tence time across the world, but it is longer in China and India. Patterns that

have been seen inside of China, has shown a characterization by North and

South contributing the same to persistence, as combining the North and South

phylogeny nodes resulted in substantially greater persistence estimates then

from North and South alone. For the type B viruses, in India and in China they

have a persistence time which were over two years [Bedford et al., ����].

To see differences in the global migration pattern of these four different types

of influenza, two types of A and two types of B. A study estimated the amounts

of virus movements between different regions [Bedford et al., ����]. The

rates between pairs of regions were highly correlated, which suggest a similar

global connectivity for all the viruses. Nonetheless, even though the overall

arrangement of the pattern were similar, it is possible to see that the H�N�

migrate between regions more often than the other type A virus H�N�, and the

two B type viruses. [Bedford et al., ����] hypothesize that this is because of

a relationship between the global movement and the rates of antigenic drift.

What they also hypothesize that there are lower rates of immune escape for B

viruses and for H�N�, compared to the H�N� virus.

In [Russell et al., ����a], they do mention that Japan, Thailand and Malaysia

are expectation of this E-SE Asian migration pattern.
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�.� The Genomic and Epidemiological Dynamics

of In�uenza

A study that used a data set of the two influenza type A viruses, H�N� and

H�N�, from New York from a ��-year period at the genomic and epidemiological

scale from viral isolates fron New York state and New Zealand [Rambaut et al.,

����].

The viral isolated from New York state’s and New Zealand’s changing pattern

in genetic diversity definitely show the seasonal dynamic of influenza. The

peak of the epidemic in the two regions are clearly in their respectively winters.

In New Zealand are offset of New York state with appropriately � months.

A similar pattern is discovered when Australia is a part of the analysis. The

genetic diversity of the H�N� virus in New Zealand was in general lower than

what it was in New York state. This could be because of the lower susceptible

population in New Zealand than in New York state. The difference in this

population could also explain why the virus type A, H�N� in New Zealand

are sometimes less diverse than the type A, H�N� in New York state, even

though the H�N� is more epidemiologically dominant than the H�N� virus. The

genetic diversity that is seen, is modest compared the other evolving viruses

that evolves rapid which also infect fewer people. Which suggest that there is

strong natural selection, in addition to periodic bottlenecks, will reduce the

level of diversity that is co-circulating at any time [Rambaut et al., ����].

In both of the population of New York state and in New Zealand, the H�N�

virus’s season highly described peaks in diversity are coinciding with the weakly

described peaks in the H�N� virus diversity, that is, the measure of the peaks

of these two viruses are negative correlated. Where the Wilcoxon signed-rank

test gave: W = ���, n =��, p<�.���. From this one can say that there is an

interaction with these two viruses, that is, the H�N� will be suppressed by herd

immunity when the H�N� virus is dominant. We have that the H�N� virus

will only dominate and cause an epidemic when there has been a mild H�N�

epidemics the previous year [Rambaut et al., ����].

The persistence of the viral diversity in epidemic peaks of these to type A viruses
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in these regions, H�N� and H�N�, have two explanations, (�) the chains of

infection will survive within each of the population and across inter-epidemics

interval, (�) or that the genetic diversity is imported into the temperate regions

each year. Taking what is stated above, and from other studies [Russell et al.,

����a, Bedford et al., ����, Russell et al., ����b], the second explanation is

strongly weighted.

It is believed by many that the influenza virus circulates continually in the

tropics, and if this is true, it would explain the E-SE Asia leading pattern better,

that is that the virus is being able to persist in Asia [Russell et al., ����a].

In "The Genomic and Epidemiological Dynamics of Human Influenza a Cirus"

[Rambaut et al., ����], to look for evolutionary interactions, they used multi-

variate statistics to summarize the difference in the history of the H�N� virus

from New York state. In this paper they are concluding with that the dynamic

of how the type A viruses evolves, is a complex interplay with rapid mutation,

frequently reassortment, widespread gene flow, natural selection, functional

interactions among segments, and global epidemiological dynamics [Rambaut

et al., ����].

It is possible to see consistent patterns in the two population,NewYork state and

NewZealand, two temperate regions in the Northern andSouthernHemisphere,

with the persistence of viral lineages across multiple epidemics [Rambaut et al.,

����].

To fully understand the antigenic evolution of influenza, it will be essential to

consider the complex spatial epidemiological dynamics, with the genome-wide

interaction of the virus [Rambaut et al., ����].

�.� Flight Tra�c

One of themost used transportation option thatwe have today to travel between

different countries and cities are air planes. It is therefore a great way to spread

diseases between humans and continents. An infected person travels with a

plane to a new country or city, where there are many susceptible people of this
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distinct influenza virus. For a spreading of the virus from one city to another,

it could be interesting to look at the flight traffic between those same two

cities. To see if there could be an option that flying could be a big part of the

explanation of the influenza spread between regions.

It is obvious that air traffic is a part of the mechanism for spreading influenza,

but to what extent is unclear. A better understanding of this issue is something

that is wanted. Should air traffic be stopped if there is a pandemic is one

question that arises with the better understanding of the relationship between

air traffic and on influenza spreading. But recent modelling of a pandemic has

shown that air traffic has little to say compared to other prevention mechanisms.

But this model that say this, has not been challenged with an observation

study [Viboud et al., ����b].

Mathematical modelling is important within influenza research, as it provides

information about changes and impacts to the human population and how the

global spread of infectious agents. There are only a few studies that directly

explore the importance of air travel, even though this is an important area

of research. One of the biggest reason for this, is the difficulty of getting

air travel data. In the model of air travel spreading of influenza of Rvachev

and Longini [Rvachev and Longini Jr, ����], they manage to reconstruct the

migration of the ����-���� influenza pandemic where they used �� different

cities and compared this with the air traffic. In their model they assumed that

this pandemic only spread through normal air transportation [Flahault et al.,

����].

In a study from ���� [Flahault et al., ����], they also looked at the impact of air

travel with influenza, where they had � different scenarios to explore this. One

with none control measures, one with immediate isolation and air travel restric-

tions. Another where the treatment of all symptomatic infectious individuals.

In scenario �, they included vaccination. They also did modelling where they

varied the reduction of air traffic, varying the proportion of isolated infections

individuals, varying in duration of antivirals, varying in vaccination coverage,

and they looked at the impact of seasonality and transmissibility.

Their results from this study showed that an influenza pandemic cannot be
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contained in that specific area, it would be much more difficult to control. They

model showed that air traffic had little impact until it was almost stopped

[Flahault et al., ����].

With the increase of flights that has been over the past year, it is believed that

in the next pandemics, flight will be a one of the causes of the transmission

of influenza [Leitmeyer and Adlhoch, ����]. As air planes are closed settings,

transmission of influenza, so that person to person contact and contact with

contaminated surfaces is major causes of transmission.

There is evidence that transmission of influenza does exist on air planes if

there is an infected person on-board. But the data that has been published do

not permit any conclusive estimates of the likelihood and extent. And many

studies were often biased because of other potential exposures before or after

the flight [Leitmeyer and Adlhoch, ����].

Something that does not come as a surprise, is that, a longer flight time will

lead to more people getting infected by the virus. The infection rate of influenza

on planes do also depend on which class one is travelling on. And within flight

transmission, economic class could be more significant, and especially on long

flights. The transmission rate is as well as dependent on how many that is on

the plane. Not only that there are less people on the flight, and less people that

could get infected. But there will be less people getting infected due to people

not sitting to close to each other [Wagner et al., ����].

It has been found that aircrew have a high rate of ILI, where there was one study

that showed a �� % attack rate over a � month period in unvaccinated. In ����,

there was an airplane the was delayed because of engine failure during take-off,

which resulted in a �-hour delay. In this time, all of the passengers stayed in

the plain during the delayed. While this was happening, the ventilation was

turned off. The infected individual symptoms while on board, and within ��

hours, �� % of the passengers, and ��% of the crew experienced symptoms

in ILI. This made that ventilation must be on if there is a delay on over ��

minutes [Leder and Newman, ����].
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�.�.� In This Thesis

In this thesis we are looking at direct flights at a given data between every

city that is used when downloading Twitter data. To being able to analysis the

flight data, we made a matrix with the cities at both the rows and columns. We

made an assumption that where there was a direct flight between two cities,

there would be a direct flight the other direction as well. Thus, making the

��x��-matrix much easier to do, as it in this case would be symmetric. On the

diagonal, there will be zero, because that in this specific place in the matrix

represents direct flight from the same city, which is not possible.

To look for direct flights between two cities, Expedia¹ was used. Which showed

us how many direct flights there was. In all, there were made ��� searches

between all cities. We did not consider different flights, and how many passen-

gers there where room for. To get the data, a random date was used, which

in this case were June �st. This because one need to get an idea of how many

flights that travels between cities. We did not look at travels where one needed

to change flights to get to the destination.

If a city had more than one airport, all of the possible airports were of course

chosen.

To compare the flight data with the influenza data, a fitted linear model was

made between them, which make it easier to see how they fitted together. The

influenza data was smoothed by using moving average and then correlated.

So that the correlation number was the one we used in the fitted model with

the number of direct flights.

�. https://www.expedia.no/
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The SIR Model
The SIR model is a model that simulate influenza data, or other viruses. There

are many different ways to use this model, and in this case, it is as follows:

€S = �SI
n
+ µ (�.�)

€I = �SI
n
+ � I (�.�)

€R = � I (�.�)

Here S stands for susceptible, that is the people in the population that are

not immune to the virus, and can therefore possibly be infected with it. The

I represents the size of the population that are infected with the influenza

virus, and R is the part of the population that have recovered of the influenza

virus, and which cannot be infected again with the same virus. Here µ is the

birth rate, whereby at all times there are new individuals introduced into that

are susceptible to get the influenza virus. Also, � is the recovery rate, n is

the population in the model, which in this simulation is set to ���, and � is

the infection rate. In this run of the model, the time is given by weeks. The

��
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infection rate is given by:

� = 0.1 · 0.17 ·
✓
1 � cos

✓
2�t
104

� �

5

◆◆
(�.�)

�.� Northern and Southern Hemisphere

In this simulation, the northern hemisphere and the southern hemisphere

were simulated separately by using a phase shift in � , which corresponds to

a difference in season. Defining the equation above, Eq. �.� to be for the

Northern hemisphere, gives us therefore that the infection rate in the Southern

hemisphere to be given as:

� = 0.1 · 0.17 ·
✓
1 � cos

✓
2�t
104

� �

5
+
�

2

◆◆
(�.�)

From these two simulated data, one can simulate E-SE Asia, by taking the

superposition of these two simulations. Since E-SE Asia is a part of the tropics,

adding these two together well-describes the influenza incidence in the region,

at least with respect to seasonality.

�.� The Simulation

In this simulation, we have included a random process to describe viral evolu-

tion. This is modelled as a part of the birth rate, since viral evolution represents

recruitment of susceptible in the sameway as births. The waiting times between

random jumps in the birth rate is chosen to be exponentially distributed with

parameter � = 1
50 weeks�1, and the jump sizes are drawn randomly from the

numbers �, ��, �� or �� (which must be seen in relation to the total population

size in the model n = 200). We also have a deterministic birth rate in our

model.
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To describe the E-SE Asia leading pattern, we model the transmission of the

influenza virus from Asia to Europa as a result of human movement. We

introduce a threshold, so that there has to be a certain number of infected

humans travelling from Asia to Europa to produce a European influenza

epidemic. If we assume that human movement is approximately constant in

time, this implies a threshold on the incidence in E-SE Asia. Once the threshold

is exceeded, the virus type that is currently causing influenza cases in E-SE

Asia is established in Europe. A consequence of this modelling approach is that

viral evolution in Europe appears more abrupt than in E-SE Asia.

�.� The Aim of Doing This

One of the aims of this thesis is to explore how this proposed mechanism

fits with observations, and to see if European influenza epidemics can be

predicted from E-SE Asian influenza incidence. Or alternatively, that despite

a causal mechanism, the dynamics is chaotic, and hence unpredictable. To

investigate the latter question, we will run whole the model repeatedly with

slight perturbations in the initial conditions, and the exact same realizations

of the stochastic birth rates.
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Community Structure
As we know, many different systems takes a network form, a set of nodes or

vertices that are joined together in pairs by links or edges. Some examples of

this is social network such as acquaintance networks and also collaboration

networks. Other examples could be technological network such as the Internet,

and power grids. Other networks are neural networks, food webs andmetabolic

networks [Girvan and Newman, ����]. Example of different networks is shown

in Fig. �.� and in Fig. �.�

Figure �.�: A small example of a clustering tree

��
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�.� Networks

The most recent research on network has focused on a number of distinct

statistical properties that most of the network seems to share. One network

that has this property is the small world effect. In this network the finding of

average distance between vertices in a network is short, most usually scaling it

logarithmically with the total number n of vertices. Another important property

that many networks have in common is clustering, or network transitivity. This

is a property where two vertices are neighbors with the same third vertex have

a high probability of also being neighbors. This effect of clustering is quantified

by Eq. �.� [Girvan and Newman, ����]

C =
3 ⇥ number of triangles on the graph
number of connected triples of vertices

(�.�)

And this number, C, is exactly the probability of two of one’s friends are friends

themselves. If it is �, then the graph is fully connected, everyone knows everyone.

In many real-world networks, is it somewhere between �.� and �.� [Girvan

and Newman, ����].

Figure �.�: An example of a community structure of Cosine

In the paper, Community Structure in Social and Biological Networks from ����,

they look at the property that appears to be common in many networks, which

is the property of community structure [Girvan and Newman, ����]. Regarding

a social network, a network with friendship or other acquaintances between

individuals in this network. In this community there will be communities within

it. Subset of groups within the network which are more dense, but between
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which connections are less dense [Newman and Girvan, ����], which is exactly

what we see in Fig. �.�.

Having the ability to detect these community structure in a network would

clearly give practical applications. Different communities could represent real

social groupings, where this could be background or interest. In this paper

they are giving a way of detecting community structure and to apply it to

the study of a number of different social and biological structures. The result

from this paper is that when it is applied to networks that the information

about the community is given, it gives promising results that may help to better

understand the relationship between network structure and function [Girvan

and Newman, ����].

�.� The Traditional Methods

The traditional method to detect community structure which is seen in Fig.

�.�, is hierarchical clustering. What is done first it to calculate the weight, Wi j ,

for every pair i, j of vertices in the network, which to some extent represent

the distance between the vertices. After this, one takes the n vertices in the

network, with no edges between them, and adds edges between pairs one

by one, in order of their weights, starting with the pair that has the strongest

weight, and then continuing to the weakest. As the edges are being added to

the structure, the resulting graph will show a nested set of increasingly large

components which are taken to be communities. There are many different

weights that have been proposed to be used in this hierarchical clustering,

which in some cases they give reasonable results, and in others where they are

less successful [Girvan and Newman, ����].
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�.� Edge "Betweenness" and Community

Structure

In this paper from ����, they avoid the shortcomings of the hierarchical clus-

tering method, and they proposed another method. Instead of measuring the

edges, and which is most central to the community, they focus on the edges

that are least central, the edges that are most "between" communities. In this

method they rather than construct communities by adding the strongest edges

to an initially empty vortex set, they construct them by progressively removing

edges from the original graph [Girvan and Newman, ����].

Vertex betweenness has been studied in the past asmeasure of the centrality and

influence of nodes in networks. The first definition of betweenness centrality of

a vertex i is the number of shortest paths between pairs of other vertices through

i. This is a measure of the influence of a node over the flow of information

between other nodes, and especially in cases where information flow over other

a network primary follows the shortest available path [Girvan and Newman,

����].

To find the edges of a network that are most between other pair of vertices, they

have generalized the definition stated above, and define the edge betweenness

of an edge as the number of shortest paths between pairs of vertices that run

along it. If there is more than one of the shortest way between a pair of vertices,

each path is given equal weight such that the total weight of all of the paths

are unity. If a network contains communities or groups that are only loosely

connected by a few intergroup edges, then all shortest paths between different

communities must go along one of these few edges, and therefore the edges

that are connected to communities will have high edge betweenness. When

these are removed, the groups will be separated groups form each other and

will therefore reveal the underlying community structure of the graph [Girvan

and Newman, ����,Newman and Girvan, ����].

From this we get the following algorithm:

�. Calculate the betweenness for all the edges in the network.
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�. Remove the edge with the highest betweenness.

�. Recalculate betweenness for all the edges affected by the removal

�. Repeat from step � until no edges remain.

�.� Application

The authors of this paper, tested their algorithm, and the result of their testing

indicated that this method is sensitive and accurate method for extracting com-

munity structure from both real and artificial networks [Girvan and Newman,

����].

�.�.� Collaboration Network

They applied their application of the community structure on a collaboration

network of scientist at the Santa Fe Institute. This network includes all journal

and book publications, and along all papers that where published, and they

looked at if they had any co-authors. Their algorithms split their network into

a few strong communities. Their algorithm found two different communities,

the scientist that grouped together because of similar research topics, and

grouped together because of methodology. The last group, methodology, is

more interesting, and it may be the mark of truly interdisciplinary work. One

example is the grouping of those who are working on economics and those who

are working with traffic models. That these are collected in the same groups,

might be surprising, but when one realizes that these have quite the same

technical approaches, it is not so surprising [Girvan and Newman, ����].

�.�.� Food Web

Applying their algorithm into the food web, which contains �� vertices rep-

resenting the ecosystem’s most prominent taxa. Their algorithm found two

well defined communities of roughly the same size, plus some vertices. This
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network is divided into those who dwell near the surface or in the middle, and

those who dwell near the bottom [Girvan and Newman, ����].

�.� Community Structures in This Thesis

�.�.� In�uenza Data

The first thing that need to be done so that we will be able to analyze the data

is that one need to make the tweets, into a time series of each of the cities of

where the Twitter data were collected. Which in this case, is days after �st of

January on the x-axis, and how many tweets that were collected on the y-axis

at the specific time. The data need to be smoothed by using a moving average,

by using an averaging run of �.

Figure �.�: Lines between cities using correlation

In this thesis we are using the Twitter data about influenza to make community

structures. To analyze this data, different methods have been used. One way

to analyze it and to make it into a community structure, is to look at the

correlation between two cities and when the influenza tweets starts. In this
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thesis and this case, we make one line between two cities if the correlation

is over �.��, two lines if it is over �.��, three if it is over �.�� and four if the

correlation between two cities are over �.��. Which is done by first collecting

all of the cities that have a correlation that is over �.��, and then make a line

between them. After this, the cities that has a correlation over �.�� get collected

from this group, and a new line is drawn between them. This continues until

only cities with over �.�� in correlation is collected and gets the fourth line.

This is done so that the cities with a stronger correlation will have something

more to say in the community structure.

Another way to analyze it is to look at the peak of the tweets, or in other words,

analysis that is based on the timing of maximum of each city. In this way

to analyze it, one looks for how much the different days of the peaks differ

from city to city. If it is the same day, we see more lines between them, with

a maximum of �, and if it differs with many days, than we only see one line

between cities. The way to do is, or at least here, is that we take the maximum

of each city from the data and take the difference with it and another city. After

this we divide these into different groups depending on what the difference is.

A difference that is � gives � lines, while a difference with over � days, give �

line between them. And after this, the Community Structure is made.

Figure �.�: Lines between cities using timing of maximum

How the arrangement of these two different analysis look like, can be seen

in Fig. �.� and Fig. �.�. Where Fig. �.� is where the analysis is based on

correlation, while in Fig. �.� is based on the timing of the maximum.

In this thesis, real life influenza data from over the whole world in a community

structure plot is of interest. In which case we are looking at where countries

coincide with the influenza season for � or more years. The season is defined

such that we first calculate the onset, � = xt+1
xt in �� weeks window. And when

� change it sign from negative to positive the season has started. One line is

made between two countries if the onset is within the same three weeks.



�� C H A P T E R � CO M M U N I T Y S T R U C T U R E

After this, put arrows from a country to another if the influenza season for the

different countries are following each other in � years or more. Which tell us

more about how the influenza virus is moving. In this analysis empty values

of infected persons, that is, where there is no data, these dates of that country

get removed. Not every country started at the same time, and some of the data

is missing. In Fig. �.� one can see the countries where the influenza season is

following another country for some time.

The community structure of this issue, is divided into three groups. Where

one can see which countries are more related with each other than with

others.

To be able to analyze the influenza data better for all cases, the following

groups will be color coded, and each city or in the influenza data set case,

country, are marked on the world map with their respectively group color. Such

that the city, or countries, is marked on the map with the color of which group

from the community graph it belongs. A city which belongs in one group that

is, for example red, will be seen as a red dot on the world map. Therefore,

making in much easier to analyze.

Figure �.�: Influneza data with lines between the countries

From the Fig. �.�, we see that the pattern gives us three different groups. One
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big, one that is small with only � countries, and then a group in between them,

with � countries. This figure could indicate what type of pattern influenza

has.

�.�.� Flight Data

When making the community structure for the flight data, we take as many

lines between each city as there is direct flights. Meaning that where there

are more direct flights, it will lead to a closer connection, and therefore it will,

with a higher probability be in the same group in the community plot.

Figure �.�: Flight data with lines between the countries

To get this plot, Fig. �.�, the flight-matrix we made is used. This is used to get

the number of direct flights between cities. From this figure, we see that each

line corresponds to one direct flight. From this plot, we can see reading the

number of direct flights is much easier from the matrix. Since the cities are

clustering in the middle.

The flight matrix is found in the appendix, Fig. C.�.
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Results
�.� Time Series

The time series of the Twitter influenza is in the appendix, Fig. A.�

As we would suspect there are big differences in the number of tweets from
each city. Los Angeles has a maximum of ��� tweets, while Lagos, and Cairo

has a maximum of �. Nairobi is the city with the highest number of tweets at
one day with ���� tweets. While, Paris is a city that has a peak of ��� tweets.
These differences continue with all of the time series.

In some of the time series of the tweets, it is difficult to see the pattern, as it has

one or two days with high peaks, compared to other days. Like Berlin, it has

one day where it peaks at ���, and a small peak some days before. Because of

this, it is difficult to see the even smaller peaks, so that it looks like zero, even

though it is not. Whereas at cities with not as high peaks, it is much easier to see

the difference day to day, as they are not too different from each other.

Nairobi only have one peak at this time period, while Oslo only have two peaks

in this time period. And we can see, that Sydney has three. There are a few

��
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other cities that also have a few number of tweets, see Fig. A.�.

What we can see from these time series of the number of tweets, it that most of

the peaks happens around �� days after January �st, which in ����, is March

�st. Some before, and some after. The reason for this, is because of when

downloading began. All of the tweets ended a short time after �� days, when

downloading was no longer available to do, for some unknown reason.

The cities with the most tweets are Nairobi, Los Angeles, Berlin, as mention

above, Paris, New York, and Tokyo.

�.� The Community Structures

From the Community structure plots, we get the following:

a

Group 1
Group 2
Group 3
Group 4

Figure �.�: Community Structure based on the correlation

In Fig. �.�, we see what community structure we get when we are looking at

the different correlation between tweets from different cities. Where, as stated

in the previous section, there are four lines the correlation is over �.��. Three

lines are a correlation for over �.��, two lines for �.��. And finally, where there

is one line, the correlation is over �.��. The number of lines between cities,

can be seen in Fig. �.�a. What one may see in Fig. �.�b is that group �, the

red dots, are placed in the eastern part of Northern and Southern America,

eastern part of Asia and Oceania, and with one city in Europe. Group �, yellow,

is placed mostly in central Europe, with Cairo, Los Angeles and one city in
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South America. Group �, is placed mostly in Asia and South-East Europe has

two cities. The group also have one city in the South of America. Finally, group

�, the orange dots, are placed in some way randomly over the whole world, in

every continent.

In Fig. �.�a we see that every group is dependent on each other. While group

� and � are barely connected, as it looks like only two lines between these

groups. The other groups are more connected with each other. Which of the

groups that are most connected, is difficult to see from the plot. But group �

and �, may seem to have a bit weaker connection than with the others.

In Fig. �.� we see the community structure if we are looking at the time of

the maximum of the tweets. And which is also stated above, the lines between

each city, are determined on how close the maximum of tweets are to each

other.

a

Group 1
Group 2
Group 3
Group 4

Figure �.�: Community Structure based on the time of the maximum

In Fig. �.�b group �, the red, is placed mostly in Europe, but also cities in Africa,

Asia, and Oceania. This group also have one city in South America. Group �,

yellow, is placed in the eastern part of Northern America, and east in Asia and

Oceania, this group does not either have a city in South America, which is the

only group in this case that does not. Group �, purple, is mostly in Asia, with

two cities in South America. The last group, is placed in Europe, with one city

in Northern and Southern America, one, and one in the northern part of Africa,

Cairo.

When one look at Fig. �.�a, one can see that group � and group � are not

directly connected. Indirectly since group � is directly connected with group
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�, which is directly connected to group �, which in turn, is directly connected

with group �. It does look like group � and � are directly connected with two

groups, while group � and �, are only directly connected with one other group.

It does not look like other groups are directly connected with each other, as

we do not see any lines between these groups.

In Fig. �.� we are looking at the community structure of real influenza data by

country from over the whole world. In Fig. �.�b one can see that the countries

in the Southern Hemisphere, and with some countries in Africa, are connected,

since they have the same color. Which is what we could expect, to some extent,

as the southern hemisphere, typically has the influenza season on a different

time than the northern hemisphere. The countries in Africa that is not a part

of the southern hemisphere, is close to the border. What one further can see

is that, Asia and eastern part of Europe is connected from the influenza data,

and that west Europe and Northern America is connected.

a

Group 1
Group 2
Group 3

Figure �.�: Community Structure based on real influenza data

What is very clear in Fig. �.�b, is that there are, in some way, two separate

groups, for the Northern and Southern Hemisphere. Which, is of course, what

one sees in real life. As one sees in Fig. �.�a is that all of the groups are

connected, where group � and � have a stronger bond between them, then

what these groups have to group �. Which is impossible to decide by just looking

at the community structure plot Fig. �.�a.

In Fig. �.�, Fig. �.� and in Fig. �.�, the community structure is the one to the

left, part a, whereas the one to the right is the color coded map of the world,

part b, so that we can see which area belongs to which group.
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�.� Flights and Community Structure

As we can see from the matrix containing all the flight data there are not

surprisingly many zeros, Fig. C.�. Some cities almost do not have any direct

flights, as Brisbane and Karachi. Which is not surprising. Both if these cities

only had direct flights from and to Sydney and Istanbul receptively. Which

were the only cities which has direct flights in this group of cities. The number

of direct flights between cities can also be seen in Fig. �.�.

Another thing that we see from the matrix is that the cities that are closer in

distance are more connected, as we would suspect. The big cities have more

direct flights than the smaller cities, as we would suspect. And from the matrix

we see that there is a high probability that there are more direct flights within

the same continent. As mention, the matrix for the flight data is in the appendix,

Fig. C.�.

a

Group 1
Group 2
Group 3
Group 4

Figure �.�: Community Structure based on flight data

In the community structure Fig. �.�, we see that, and not surprisingly, that each

city in the same continent is in its on group. Or at least for almost every group.

As Africa is in the same group as Europe and the Middle-East. All in all, this

is not a surprising plot considering how it is divided, as we would guess that

there will be more flights in the same continent. And thus, more connected.

This was something we already saw in the matrix of direct flights. As we see

in Fig. �.�a, the groups a very close connected with each other. There is also a

strong bond between the group, but of course not as strong.

In group �, which is red, which is consisting of Europe, Africa and the Middle-
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East, is the group which is mostly surprising together. As there is quite a

distance from Europe to the two cities in the middle of Africa. Group �, the

yellow group, is the group that consist of cities in Asia and Oceania. Group �,

the purple group, consist of cities in North America. And finally, group �, which

is orange is South America.

Group � is the group with the most cities, where group � follows, then group

�, and at last group �. But, as we can see in the community structure plot

in Fig. �.�a, is that all of the groups are connected directly with each other,

except group � and �. As we could not find any direct flights between these

regions.

�.� Flight Data with Correlated Twitter signals

To get a better look at how the flight and Twitter data are connected, a

fitted linear model with these data sets, direct flights and the correlation

between cities, was made, and it gave the following results, with the best fit

parameters:

lm = 0.462294 + 0.005131x (�.�)

With the following Parameter Table:

Estimate Standard Error t-Statistics P-value

� �.������ �.������� ��.���� �.�����x10�152

x �.�������� �.�������� �.����� �.���������

Table �.�: The Parameter Table for the fitted linear model

Fig. �.� is the plotted fitted linear model, where Table �.� tell us the parameter

values. In the plot, the red line is the fitted linear model, whereas the red dots

are the mean between ten direct flights. Where the first dot, is the mean for

the ten first, the second, for the next ten etcetera. The small black dots are the

actually number of direct flights between each city. Which is why there are
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many small black dots at zero direct flights. The p in the plot, indicates that

the slope has a p-value that is less than 10�4

As we can read form the figure Fig. �.�, we see that on the x-axis, is the number

of direct flights between the chosen city. And the y-axis is the correlation

between the influenza Twitter data, or signals.
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Figure �.�: Fitted linear model of direct flights and influenza Twitter signals
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�.� The SIR Model

What we would like to see from this model, is that the new simulated data

from Europe, would follow the simulated data from Asia. Which we do not see

in Fig. �.�. Trying different values from the parameters, does not either give

the result that we would like to see. The new simulated data of what should

represent Europe, Fig. �.� is simulated using what we would like to call E-SE

Asia, Fig. �.�, does not either follow the old simulated data from Europe, Fig.

�.��, the one that E-SE Asia is simulated on, even though it does so closely

in the beginning. That is for a small period of time, the original and the new

simulation of Europe follow each other. After this we do not see a distinct

pattern in either of the two cases, everything looks random.

Figure �.�: Simulated influenza data of Northern (blue) and Southern (red) Hemi-
sphere with µ = �.�

Figure �.�: Simulated influenza data of Asia with µ = �.�

Figure �.�: Simulated influenza data of Europa with µ = �.�, using the simulated
data from Asia
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Figure �.�: Simulated influenza data of Europa (green) and Asia(black) with µ = �.�,
using the simulated data from Asia

Figure �.��: Simulated influenza data of "Old-Europa", "New-Europe" and a region
in the Southern Hemsiphere and Asia(black) with µ = �.�, using the
simulated data from Asia

Figure �.��: Two simulated data from the same region with a small perturbation in
the initial condition in the purple curve

All of this could be reminded of chaos in the system. And therefore, this is also

simulated to see Fig. �.�� and Fig. �.��. From this simulation we can see that

we do get the characteristic pattern of a system with chaos. It does follow each

other for some time, and then not for other times. It might follow each other

again, but it will always diverge from each other. In Fig. �.��, the model is ran

with µ=�.� for all cases, for both simulated Asia and simulated Europe. One

can see in this figure that these two runs follows each other for some time,

then differ, and then follow each other again, as we saw in the previous plot as

well Fig. �.�� From this we get the characteristic pattern of a chaotic system,

and we thus have a chaotic system for this model.
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Figure �.��: Two simulated data from the same region with a small perturbation in
the initial condition in the purple curve

Figure �.��: Birth/recruitment rate

In Fig. �.�� one can see the affect in having a birth rate that has these jumps.

The dashed line will be where there is a constant birth rate, whereas the solid

line is the birth rated with the jumps, as we can see. And this is the one that is

used later on in this model.

Figure �.��: Birth/recruitment rate for Asia.
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In Fig. �.�� the viral evolution is found by subtracting the birth rate and the

birth rate with jumps with each other.

Figure �.��: Birth/recruitment rate for Europe

In Fig. �.�� and Fig. �.�� one can see the difference a threshold of people

coming from Asia with the virus to infect the people in Europe has to say for

the birth/recruitment rate in Europe. The threshold makes so that we get less

and larger jumps as we can see in Fig �.�� and Fig. �.��. A larger threshold

would make less jumps, and thus a smaller threshold would make more jumps

in the birth/recruitment rate.
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Discussion
�.� Twitter-Data

The reason for the small amount of data, is that we were not able to download it

the way we did it before, for some unknown reason. Although the downloading

stopped, the ILI-tweets that was downloaded, was enough to analyze it in some

way. The data analyzed where approximately from February ��th to March ��th.

Which means that we were able to download data for about � weeks.

One of the risk of using Google Translate as a translator is that it is known

to make mistakes. It is not given that the input will produce the right answer,

and as not every language is known, one cannot guarantee that every word is

correct. But, as there were only made searches for simple words, we can assume

these are the real words. In addition to this, it is known that Mathematica

managed to understand Japanese tweets who said something about influenza,

even though it was not written in English. This did not happen in Norwegian, so

the choice to translate words to get more of the tweets were made. The reason

for this, that Mathematica understood the Japanese tweets, could be due to the

fact that it is a more used language than Norwegian, and that Mathematica has

their own edition in Japanese. That is, Mathematica do know Japanese.

��
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It was not tested, if Mathematica could understand other languages than

Japanese, since we think that it would be much easier to translate the words

into the first language in every country. Than to go through all the tweets to
see if this are being collected as well.

Another thing that was discovered, is that Mathematica was able to understand

a tweet that were written in another language, if it mentioned an article that

contained the English word that we searched for, if it was in its title. So that

we were able to download tweets, that were non-English, even though we did

searches in English.

As Twitter is most used by young people, rather than the oldest and the youngest,

we get data from the population where there is the smallest proportion of

complications among them. As well as the proportion where it is less likely will

get the influenza virus confirmed. This is a large group, and as time goes by,

more and more people use social media. Which can lead Twitter to become

even more representative for influenza data in the future.

In Fig. �.�, we see that most of group � is in central Europe which is in all, �

cities. The three others in this group are Los Angeles, Cairo and Rio De Janeiro.

That the � cities in Europe are grouped together, is no surprise, that these cities

are more correlated. It is stranger that the other three are in the same group.

If we look at the flight matrix, Fig. C.�, and flights from and to Los Angeles, we

see that there are some flights going from and to this city with Europe, and in

one day, there are ��� flights. This might explain the grouping. Which also is a

bit interesting, is that even though we only have few weeks of data, one can

see that west Europe and North American is connected in both Fig. �.� and Fig.

�.�. This do we also see in Fig. �.�.

The other groups in North America, group � and �, do have a direct connection

with group �. Where it is a stronger connection between � and �, because of the

darker color we can see between them. From this figure, Fig. �.�, we therefore

can see some interesting tendencies that we also see in real influenza.

In Fig. �.�, where we are looking at the maximum of peaks. It is safe to say that

the small amount of data collected, affects the results. Which could indicate
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the result we get when looking at the time of the maximum, as these looks a

bit random.

What we really would like to see, would be that E-SE Asia would be grouped

together. And then North America, Europe and Oceania in another group. And

then South America alone in the last group. If this was the case, we would be

able to see the migration pattern as it possible is. But, this is not the case. And

getting this grouping could potentially take several years.

In the figure, Fig. �.�, and the fact that group � and � are not directly connected,

gives an interesting result. We do also believe that group � and � are not directly

connected, with the same property for group � and �. This tell us that some

of the cities in Europe, is not directly connected to most of the cities in North

America. But, as we can see, is that these cities in Europe, is directly in contact

with the other cities in Europe. Which in turn is in directly contact with North

America.

Another thing we see in this figure, is that Asia is divided into three. As the

groups in Asia, is group �, � and �. As we can see in Fig. �.�a, is that group � is

not directly in contact with the two others. Group � is closer to group �, than

to group �. This is not what we see in �.�, as Asia in not divided into different

groups.

A thing that is interesting, is that Japan, is in the same group as North America

in both of these figures Fig. �.� and Fig. �.�. That is that Tokyo/Japan is

separated from Asia in both of these. Since in Fig. �.�, Japan is in group �,

which is not in directly contact with group � or �, as stated above. And what

we see in Fig. �.�, is that Japan is in the group with Western Europe and North

America. This is something we also see in Fig. �.�, but in that structure, Tokyo

is not alone in Asia. As stated previously, Japan is not a part of the E-SE Asian

migration pattern. Thus, that Japan/Tokyo is not a part of the Asian group,

could be explained by this.
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�.� In�uenza Data

In Fig. �.�, we see that Oceania and South America is in the same group. And

thinking about the seasonality, this makes sense. It often occurs in the winter

season, and since they are in the same hemisphere, the season of influenza

in these two continents will coincide. The cities in Africa, that is not in the

Southern Hemisphere, are quite south and close to the border. This makes it

more reasonable to be in this group.

If we think about the leading pattern and antigenic part of influenza, it says

that it will first come to Oceania and then to South America, which it might be.

But, which of these two continents it will first hit, is impossible to see from this

plot, as this plot does not tell us anything about time. Only which of the groups

that have more in common when the influenza season hits. But something that

is interesting in this picture, is that Asia, with some countries in Europe and

Africa, is alone in one group. If we do not look at group �, we see that Asia and

some countries in Europe, is alone, and the rest of Europe with North America

is in another group. This is something we would like to see. This could mean

that we, somehow, can see that the virus evolves and occurs as a new virus, in

Asia. It would be even better to see if we could have some information about

the time of the peak in these groups. Which we also see in this, is that group �

and � are strongly connected with each other. More than with group �.

As we can see from the same figure, Fig. �.�, is that the countries in group �

are mostly countries in Asia with some countries in the East of Europe. Since

Europe is divided into two, and most of the east part is connected with the

group from Asia, we can assume that these countries get the influenza virus

before, as they are closer to Asia, than the others. This does not sound to

unlikely, that something that are closer to the origin, get infected first. Maybe

most flights have a stop in these countries, and from there it spread.
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�.� Flight Tra�c

Considering the fact that only a certain date was used to collect the flight data,

it is not a guarantee that all of the direct flights between cities were discovered.

That is, another date could have more direct flights, or less flights. And the fact

that it was not a date that is normal in the influenza season, since past flights

are not available at Expedia, and the fact that next season will not hit for a

long time, at least for most of the chosen cities. The direct flights still make a

good representation of flight traffic between cities, as it still say us something

about it. That is, which cities that have more visits from different cities, and

the connections between them.

It is safe to assume that if there is one direct flight one way from a city to

another, it will return to the origin city after this, as this is something that

occurs frequently. But, of course since this is an assumption there could be

an error. But, we are thinking this would be small, as it makes sense that the

flights will go the other way as well. Another error that could occur, is that

it might be that the flight will return the next day. But, this will not be for

absolutely all the flights, only a small portion of them, if it even happens. Even

though it flies back the next day, which can have a different number of direct

flights, it still goes back. Thus, we can make this assumption.

Taking a random day and looking at direct flight does not need to show the

whole picture of direct flights. The number of flights change over the year, and

in the summer, where more people take flights and travels, we could make the

assumption that there will be more flights. One could make the assumption

that there will be more flights in other seasons as well, that could be for

example, Christmas. As more people travelling, the need for available seats

increases.

Expedia¹ is a web page that use an algorithm to go through all available flights

between cities. This was chosen to use, so that we did not need to go through

all the airline companies to see if there was direct flights between cities. As it

only shows available flights, there could be more direct flights between cities. It

�. https://www.expedia.no/
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may as well be commercial flights flying with cargo, rather than people. But as

these flights do not transport as many people, the probability of infecting many

people, are much less, and thus it will not have much to say in the circulation

of influenza compared to commercial flights. These planes do not have the

same contact with people in the same extent as planes with people.

As we were only interested in flights between those cities where we had

managed to collect Twitter data, we did not look for flights that stopped in

different cities. This is much easier and therefore less to collect. If there was

a stopover in one of the cities that we were interested in, it would be picked

up later on, when we looked at those two cities. Because of this choice, of only

looking at direct flights, leads to the fact that there will be many elements in

the flight matrix that is zero.

The flight matrix tells us how many flights one can assume flies directly from

one city to another. There is no surprise that the biggest airports are the ones

with the most flights, and that most of the flights between airports are in

the same continent. Which we also see in the community structure of flight

transport, where each group is in the same group. Expect Africa, which is

included in Europe. This makes sense as we can see in the matrix. The direct

flights that goes from Africa goes mostly to Europe and the other two countries

in Africa.

One surprise, in some way, is that in the community structure, is that Karachi

is in the Europe group as it is much closer to the Asian group. But, if we look

at the flight matrix again, Fig. �.�, we see that the only direct flight to Karachi,

is from Istanbul. If we had chosen different cities in Asia, we might have seen

a different picture as there might be other direct flights into Asia.

What we see in the community structure, Fig. �.�a, is that South America

and Asia is not connected, that is, no direct flights between them. This was

discussed in [Russell et al., ����a], where they believed that the reason for

South America’s late new influenza introduction, was because of little travel

and trade between these continents.
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�.� Comparing Flight Tra�c and the In�uenza

Data

If we look at the different community structures of the Influenza data, Twitter

data and flight data, we can see that the groups are different. And that even

though there are similarities, they are not that easy to see in every case.

�.�.� Correlation Twitter Data

Comparing these two structures Fig. �.� and Fig. �.�, we may see that in these

figures, they do not completely show the same picture. As we can see in Fig.

�.�a, that even though they are in different groups they are all connected. But as

mentioned in the previous section, group � and � are poorly related compared

to the others. Using the fact that the groups are related, one sees that almost

all of the cities in Asia and Oceania are related with each other, with some

correlation. This can we also see in the flight data, Fig. �.�, where all of the

cities in Asia and Oceania are related. Another thing we see, is that group �,

mostly in Europe, which in Fig. �.�, is alone in one group.

�.�.� Time of Maximum Twitter Data

In these two different structures, we can see that Africa is connected with cities

in Europe in both of these. Even though we can see that not all of the cities in

Europe is in the same group. Another thing that also is similar in these two

structures, is that North and South America is separated in both of these.

Another thing that these structures have in common, is that, Karachi and New

Delhi is in two different groups, even though they are close to each other. This

is actually something we see in all of the figures. Expect, of course Fig. �.�, as

this one looks at the countries and not cities.
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�.�.� Actual In�uenza Data

One problem comparing these two figures, Fig. �.� and Fig. �.�, is that we

have only three large groups in the Influenza data structure, and four groups

with a small portion of cities in the flight community structure.

If we look at these groups in these two plots, Fig. �.� and Fig. �.�, one can see

that the groups are quite different. As Africa, South America and Oceania are

in one group in Fig. �.�, while they are in three different groups in Fig. �.�.

As we see from these two figures, is that some cities are in the same group in

both of them, but not all, which does not come as a surprise. In �.�, Europe is

divided into two groups, while in Fig. �.�, it is only one group.

In the community structure of the flight data Fig. �.�a, we see that South

America and Asia are not connected as mention. In Fig. �.�a we see that these

continents are not as closely connected as Asia is with Europe. But in this, there

are big areas in the same groups. This could affect it.

The flight data, which in some way could be seen as an average, which it is

clearly not. As there is only data from one day. There could be changes in the

number of flights over the years. And comparing cities with countries, and with

the fact that the influenza data is for over many years, is not the best thing to

do.

�.�.� Linear Model of Direct Flights and Twitter signals

As we can see from Table �.�, and Fig. �.� the p-value for the slope, is quite

small. This tell us that it is statistically significant for the model. Which we also

have for the y-intercept, that tell us again that it is statistically significant for

the model.

As we can see in this figure, Fig. �.�, there are especially three mean dots, that

are further away from the linear regression line, called outliers, with the last

dot being the mean with the furthest apart from the regression line. But, still

with the p-value being so little, the regression model is a good one.
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What we can see from the same figure, Fig. �.�, is that the higher number

of direct flights between cities, the higher number of correlation of influenza

between those same cities. This tell us that number of flight do have an impact

on influenza cases. And that it can be a part of the influenza migration, and

how it spreads.

Even though it can be difficult to see it, from looking only at the community

structure in Fig. �.� and Fig. �.�, we see that there is a dependence between

them from Fig. �.�.

As this is a fitted model, we made some assumptions in the beginning, which

the validity depends on. That is, constant variance, where the points should be

constant distributed around the mean, and we have that the residuals should

be normal distributed. But, as the p-value is so small that it is in this thesis, it

is a good indication that the slope is a good fit for the model.

As the data is so small, the black dots in Fig. �.�, it will be easier to look at the

red dots, the average over them, to say something about the residuals. From

this we see that the average dots, does not differ to much from the red line.

This is a good thing. But as the p-value is so small, as we can see in Table �.�,

it is safe to say that the assumptions are being held.

This tell us that even though we have only a few weeks of Twitter data, it

is possible to see a pattern with the flight data. This indicates that a bigger

collection of data, should be even better. And that it is possible to use Twitter to

get influenza data, but that it needs to be downloaded for a much longer time

span, so that we might be able to get something like Fig. �.�, actual influenza

proven data. Which we have seen other studies have managed to show.

�.� Migration Pattern Continued

�.�.� The SIR Model

This model was done to see if it is possible to model the pattern of in-

fluenza.
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From the results from the different plots from the SIR model, Fig. �.�-�.��,

and the fact that it is a chaotic system, it would be impossible to predict when

and to what extent an epidemic would be. Even though there is evidence,

from antigenic analysis of the virus, that new viruses first emerge in E-SE

Asia and then travels to the rest of the world, first in Europe, Oceania and

the North of America, and finally the South America, this model could not

predict this result, because of chaos in the model. For some cases it might be

possible to predict it for some small-time lag, but we would not know when

these two would diverge from each other again. It would also be impossible

to say something about when and if they would meet again. And therefore, it

would be impossible to predict influenza epidemics in Europe using influenza

data from E-SE Asia.

Even though the virus itself comes from E-SE Asia, predicting when this certain

virus reach Europe is difficult to say something about. Sometimes there is even

an epidemic in Europe, that is not in E-SE Asia and vice versa, Fig. �.�. One

could also see that between ��� and ��� weeks in Fig. �.�, there are two

incidents of small influenza epidemics in Asia, one could interpret these two

epidemics for being to small, such that it will not come to Europe. But we still

see a small one after these two in Europe, that hits approximately at the same

time as the third epidemic hits Asia. As we can see in these plots, they do

not either tell us anything about how the virus travels between the different

regions, since everything seems to be independent of each other Fig. �.�.

�.�.� The Community Structures

As there in only a few weeks of data, it is suspected that we will not see the

influenza pattern, because of the short time. Even though if we were able to

download more data, it is not sure that we would see this. As it might take

several years to see it. It might be easier to see it, if we have started to download

data from before this year influenza season.

From the community structures, Fig,�.� and Fig. �.�,which is of the downloaded

Twitter data. There is no clear evidence of a leading pattern.
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In Fig. �.�, we see that Group � and �, are the ones that are in the E-SE Asia. Both

of these two groups have cities over the whole world. And they are strongly

connected to each other, as we see in Fig. �.�a. From this figure, we also see

that group � is strongly connected with these two groups. As mentioned in the

results. This indicates that all of the cities in these groups are more connected

with each other, than with group �. This tell us that that most of the cities over

the whole world in connected, expect one city in North America, and many

cities in Europe. That group � and � are strongly connected is a good sign.

Since it is in E-SE Asia is believed to be the origin area of influenza.

As in the we can see in the same figure, is that all of the groups are represented

in South America. And as it is not typically the influenza season in this region,

and by looking at it as noise, we can disregard this.

In Fig. �.�b, as group � is strongly connected with both � and �, which tell us

that all of Europe, with most of Asia is strongly connected with, as the leading

pattern tell us. As we can see from group �, is that it is in East of Asia and

in Northern America. This could indicate that these are from the same origin.

Group � is connected with group �, and therefore it could be possible that it

origins from E-SE Asia. As it is not possible to know the time, and the fact that

it is only from a few weeks, every peak from every time series, is close to each

other. And to be able to see a much better and more believable pattern, would

take several years.





8
Conclusion
�.� Summary

Influenza has a high mortality and morbidity rate across the world, and a

decrease in these numbers are something that is wanted. To get these numbers

down, prevention need to get better, and the understanding on how it circulates

needs to be better understood and known. As young persons that get infected

most likely will not go to a doctor and get the influenza virus confirmed. It

is difficult to get the total number of the influenza infected population. A

confirmed infected person will further take some time, so that other sources

of influenza data may be a good idea.

There are known ways of collecting data, and there are many influenza data

set on the Internet, some are from health organization but another source of

data, is social media. Which is more and more used, and especially Twitter.

Twitter gives in time data, where people write about their sickness. These data

will be ILI, and it has been showed that it has a good correlation with the

confirmed number of infected people [Paul et al., ����,Doshi, ����,Agogo and

Hess, ����].

��
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Even though it is difficult to say exactly when an influenza epidemic could

hit, we know to some extent when an epidemic could hit, as it often starts in

the coldest months as previously stated. But, as always, there are exceptions,

and epidemics could start in the summer months, with one example being the

swine flu in ���� [WHO, ����].

Social media is growing, and more and more people get a public profile where

they publish their thoughts and meanings. Which makes it a great and easy

platform to get and collect ILI-data from over the whole world, with especially

Twitter, because of its open API. The are many studies that have used social

media for research, where some of them have been mention in this thesis.

In the future when everything is much better understood, preventing a pan-

demic would be much easier. This means that the people in the risk groups,

would be more capable to prevent it. And with it, less deaths and hospitaliza-

tions.

Trying to figure outmore about the migration pattern of influenza scientist have

tried to determine the origin of different virus over the years. And they figured

out that, for the most part, the influenza virus origin form E-SE Asia.

As there is so much deaths and hospitalizations because of the influenza virus

each year, and there is also a big cost for the community, the study of the

influenza cannot stop. It is important to discover new things and to understand

the virus better. How it moves, and changes. How the virus likes the different

climate factors, as this could help understanding when the epidemic could

hit.

�.� Conclusion Remarks

Even though we only got a few weeks of data, there is possible to describe and

conclude with something. As there is possible to see small tendencies, in the

different groups in the community structure. The SIR model gave chaos, which

will not be able to use to describe the pattern.
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From the tweets collected about ILI, there were different numbers of them,

which is not a surprise. As the use of Twitter is different for every city. We

were still able to see something for every city. As we got data from every city,

where none of them had much less data than others, we may assume that the

translation is right, and for cities with different languages, the right languages

was used.

The community structures are good to use to see patterns more clearly. As it

is a way to divide data into groups with common properties. Where it can be

difficult to see, only by looking at the data.

The community structures in this thesis, from the Twitter-data, look like they

are random for the most part. But we are able to see some patterns that might

be right. If we take a look at Fig. �.� and Fig. �.�, one can see that Europe and

North America are connected, and in the same group. Since all of the groups

in North America, is close with groups in Europe in both of the community

structures.

Looking to see if we can find a pattern in twitter-data versus real influenza data

is difficult. But we can see small tendencies. If we got a bigger data-set, it might

have been possible to see a better picture. That we can see this tendencies

after only a few weeks of data, is quite interesting, and it could indicate that

this should be continued, and that we will be able to see something after a

while.

The flight data in Fig. �.�, were not the biggest surprise, as most of the cities

within the same group is in the same continent. With the exception of Africa,

which is in the same group as Europe.

From the results in this thesis, we can see that it indicated that Twitter can be

used to say something about Influenza. Even though we only have a few weeks

of data, because of downloading problems. Especially looking at Fig. �.�, where

we see that the correlation of two cities is higher if there are more direct flight

between them. This tell us that flight traffic could be a part of the spreading

of influenza, and that countries that have more with each other to do, more

often have the influenza season approximately at the same time.
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The difficulty of finding the influenza pattern in the community structures, is

for a big certainty because of the few weeks of data, or at least it could be one of

the reason. A few weeks make many limitations, and a whole influenza season

do last for several months. And even if we had data for the whole season, it

might have not shown a clear and distinct pattern.

Even though it was not clear and that it did not tell that much, we know

that Twitter can be used to say something about the influenza season for this

year, there is evidence that it can by other studies. But as mention, there are

tendencies that are quite interesting from only a few weeks. That could be

the fact, that Tokyo was not in group with other cities in almost all of the

community structures. This could be the tendency of the E-SE Asian circulation

pattern, because of what is known about the origin of the influenza viruses

and that Japan is not a part of this.

The result from the SIR model told us that it was not possible to predict or

to see the migration pattern of influenza, if it comes from Asia because there

was chaos in the model. As this makes it impossible to make predictions, and

thus not possible to predict the influenza pattern or the origin of it. Chaos in

mathematical SIR model have occurred in other studies as well [Glendinning

and Perry, ����]. This does not mean that this is not true. Only that this model

was not able to predict it. As from other research studies have shown the

pattern, using antigenic and genetics of the influenza virus to show it.

�.� Further Work

For a better data set, downloading more Twitter data is needed. A bigger data

set would make a better understanding of these question that we may have.

To get a bigger data set, downloading need to be done over a larger time

scale. It is also possible to download data from a higher number of cities in the

world.

As problem with downloading Twitter data arose, different ways of download-

ing these need to be looked at to get a bigger data set. Or other ways to evaluate
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the location of the tweets could be done. A bigger data set would produce a

more convincing result, and the result would thus be more believable and more

legitimate.

It might be possible to model this pattern using another SIR model with

different variables, or another model completely, so this could be something to

work further with. A new model must be more advanced than the SIR model

used here, such that we get a much better understanding on how it works.

And a more complex model might be able to see the pattern which antigenic

analysis have been able to see.





A
Cities and Their Time Series
Used in This Thesis

Buenos Aires, Amsterdam, Beijing, Berlin, Brisbane, Cairo, Chicago, Copen-

hagen, Dallas, Delhi, Istanbul, Jakarta, Karachi, Los Angels, Lagos, London,

Madrid,Manila,Mexico,Moscow, Nairobi, New York, Oslo, Paris, Rio de Janeiro,

Roma, Santiago, São Paulo, Seoul, Singapore, Sydney, Tokyo and Toronto.
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Figure A.�: The Time Series of all the cities.



B
The Mathematica codes
used in this thesis

B.� For the SIR model

jumptimes = {} ;

Do[

jumptimes =

Append[ jumptimes ,

Round[RandomReal [ Exponen t i a lD i s t r i bu t i on [1/50 . ] ] ] ] ;

, {100}];

jumptimes = FoldLis t [Plus , 0 , jumptimes ] ;

rand = RandomChoice [{5 , 10 , 15 , 20} , 100];

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5]) ;

� = 0.06;

��
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m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{ eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

Flat ten [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;

�1 = Last [L1 ] [ [ 2 ] ] ;

�2 = Last [L1 ] [ [ 3 ] ] ;

�3 = Last [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ All , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Par t i t ion [ Flat ten [Thread[{#1 , #2}

&[Range[Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s tP l o t [B[[ All , 2]] , Joined �> True ,

AspectRatio �> 1/5 ,
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ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o t S t y l e ��>�Black , �Epi log ��>
In s e t [ Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2=L i s t P l o t [B[[ Al l , 3 ] ] , Joined�>True ,

AspectRat io �>1/5,ImageSize�>800,

FrameStyle�>Di r e c t i v e [16 , Black , FontFamily��>�Times ] ,

Axes�>False , Frame�>True ,

FrameLabel�>{" Time ( t ) " , " S} ,

PlotSty le�>Black , Epilog�>
In s e t [Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt = Par t i t ion [B[[ All , 3]] , 2][[ All , 2 ] ] ;

synt = synt [[1 ; ; 1196]];

synt1 = synt ;

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5] + +�/2]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50;

�2 = � ;
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�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{ eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

Flat ten [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;

�1 = Last [L1 ] [ [ 2 ] ] ;

�2 = Last [L1 ] [ [ 3 ] ] ;

�3 = Last [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ All , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Par t i t ion [ Flat ten [Thread[{#1 , #2}

&[Range[Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s tP l o t [B[[ All , 2]] , Joined �> True ,

AspectRatio �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o t S t y l e ��>Black , Epi log�>
In s e t [ Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;
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PL2=L i s t P l o t [B[[ Al l , 3 ] ] , Joined�>True ,

AspectRat io �>1/5,

ImageSize�>800,

FrameStyle�>Di r e c t i v e [16 ,�Black , FontFamily�>Times ] ,

Axes�>False , Frame�>True ,

FrameLabel��>�{ " Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt = Par t i t ion [B[[ All , 3]] , 2][[ All , 2 ] ] ;

synt = synt [[1 ; ; 1196]];

synt2 = synt ;

f i g b = L i s tP l o t [{ synt1 , synt2 } ,

Plo tS ty le �> {{Blue } , {Red}} ,

Joined �> True , AspectRatio �> 1/4 , Axes �> False ,

Frame �> True ,

PlotS ty le �> {Black , Thick } ,

FrameStyle �> Di r e c t i v e [16 ,

FontFamily �> " He lve t i ca " , Black ] ,

FrameLabel �> { " time (weeks ) " , I ( t ) " } ImageSize��>�800 ,

Epi log�>
In s e t [ Text [

S t y l e [ "B " ,22 , FontFamily��>" He lve t i ca " , Background�>White ] ] ,

Scaled [ { . 06 , . 9 } ] ] , PlotRange�>Al l ]

� j= Drop[ jumptimes , 1] � Drop[ jumptimes , �1];

jumps = F l a t t en [ Table [ Table [ Fo l dL i s t [ Plus , 0 , rand ][ [ k ] ] ,

{� j [ [ k ] ] } ] , {k , 1 , Length [ rand ] } ] ] ;

de ter = � + µ *Range[ Length [ jumps ]] + jumps ;

deter = deter [[1 ; ; Length [ synt ] ] ] ;

f i g a = L i s t P l o t [{ deter , µ*Range[1196]} , Joined �> True ,

AspectRat io �> 1/4 , Axes �> False , Frame �> True ,
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P l o t S t y l e �> {{Black , Thick } , {Black , Dashed }} ,

FrameStyle �> Di r e c t i v e [16 ,

FontFamily �> " He lve t i ca " , Black ] ,

FrameLabel�>{" time (weeks ) " , " Cumulative recru i tment " } ,

ImageSize�>800,Epi log�>In s e t [ Text [ S t y l e [ "A" ,22 ,

FontFamily�>" He lve t i ca " , Background�>White ] ] ,

Scaled [{ .06 , � . 9 } ] ] ]

f i g c=L i s t P l o t [ synt1+synt2 , P l o tS t y l e �>{Black } , Joined�>True ,

AspectRat io �>1/4,Axes�>False , �Frame�>True ,

P l o tS t y l e �>{Black , Thick } ,

FrameStyle�>Di r e c t i v e [16 , FontFamily�>" He lve t i ca " , Black ] ,

FrameLabel�>{" time (weeks ) " ,� " I ( t ) " } , ImageSize�>800,

Epi log�>In s e t [ Text [ S t y l e [ "C " ,22 , FontFamily�>" He lve t i ca " ,

Background�>White ] ] , �Scaled [ { . 06 , . 9 } ] ] ]

FIGA=L i s t P l o t [ deter�µ*Range[1196] , P l o tS t y l e �>{Black } ,

Joined�>True , AspectRat io �>1/4,Axes�>False , Frame�>True ,

P l o tS t y l e �>{Black , Thick } ,

FrameStyle�> Di r e c t i v e [16 , FontFamily�>" He lve t i ca " ,

Black ] , FrameLabel�>{" time (weeks ) " , " v i r a l evo lu t ion " } ,

ImageSize�>800,Epi log�>In s e t [ Text [ S t y l e [ "A" ,22 ,

FontFamily�>" He lve t i ca " , Background�>White ] ] ,

Scaled [ { . 06 , . 9 } ] ] ]

z=(UnitStep [ synt1+synt2 �30])*( deter�µ*Range [1196]);
Z = Sp l i t [ z ] ;

Do[

I f [ F i r s t [Z[[ k ] ] ] == 0 ,

Z[[ k ]] = Z[[ k ]] + F i r s t [Z[[ k � 1] ] ] ;

] ;

, {k , 3 , Length [Z ] } ] ;

Z = F l a t t en [Z ] ;
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L i s t P l o t [Z]

FIGB = L i s t P l o t [Z , P l o t S t y l e �> {Black } , Joined �> True ,

AspectRat io �> 1/4 , Axes �> False , Frame �> True ,

P l o t S t y l e �> {Black , Thick } , FrameStyle �>
Di r e c t i v e [16 , FontFamily �> " He lve t i ca " , Black ] ,

FrameLabel�>{" time (weeks ) " , " v i r a l evo lu t ion " } ,

ImageSize�>800,

Epi log�>In s e t [ Text [ S t y l e [ "B " ,22 , FontFamily�>" He lve t i ca " ,

Background�>
White ] ] , Scaled [ { . 06 , . 9 } ] ] ]

a=Map[ Length [#]�&, S p l i t [Z,#2�#1<10&]];

a=F l a t t en [ Table [a , {20} ] ] ;

b=Drop[Map[ F i r s t [#]�&, S p l i t [Z,#2�#1<10&]],1]�
Drop[Map[ F i r s t [#]�&, S p l i t [Z,#2�#1<10&]],�1];
rand=F l a t t en [ Table [b , � {20}]] ;

jumptimes=Fo l dL i s t [ Plus , 0 , a]+3;

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50;

�2 = � ;

�3 = 0 . ;
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Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;

�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2 = L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,
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Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o tS t y l e�>Black , �Epi log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , 3 ] ] , 2 ] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt1=synt ;

f i gbb �=L i s t P l o t [ synt1 , P l o tS t y l e �>{Darker [Green ]} ,

Joined�>True ,

AspectRat io �>1/4,Axes�>False , Frame�>True ,

P l o tS t y l e�>Black , Thick } ,

FrameStyle�>Di r e c t i v e [16 ,

FontFamily�>" He lve t i ca " , Black ] ,

FrameLabel�>{" time (weeks ) " , " I ( t ) " } , ImageSize�>800,

PlotRange�>Al l ]

Show[ f igb , f igbb , PlotRange�>Al l ]

Show[{ f i g c , f i gbb } , Epi log�>In s e t [ " " ] , PlotRange�>Al l ]

EXPLORING CHAOS IN THE MODEL :

jumptimes = {};

Do[

jumptimes =

Append[ jumptimes ,

Round[RandomReal [ Exponen t i a lD i s t r i bu t i on [1/50 . ] ] ] ] ;

, {100}];

jumptimes = Fo l dL i s t [ Plus , 0 , jumptimes ] ;
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rand = RandomChoice [{5 , 10 , 15 , 20} , 100];

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] , {

t t , t1 , t2 } ] ;

�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;
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LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �>{" Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2 = L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel�>{" Time� ( t ) " , " S} ,

P l o tS t y l e�>Black , Ep i log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , � 3]] ,2] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt1=synt ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5] + +�/2]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};
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�1 = 50;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;

�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black ,

FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,
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Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2=L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o tS t y l e�>Black , Ep i log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , 3 ] ] , 2 ] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt2=synt ;

� j= Drop[ jumptimes , 1] � Drop[ jumptimes , �1];

jumps = F l a t t en [ Table [ Table [ Fo l dL i s t [ Plus , 0 , rand ][ [ k ] ] ,

{� j [ [ k ] ] } ] , {k , 1 , Length [ rand ] } ] ] ;

de ter = � + µ *Range[ Length [ jumps ]] + jumps ;

deter = deter [[1 ; ; Length [ synt ] ] ] ;

z=(UnitStep [ synt1+synt2 �30])*( deter�µ*Range [1196]);
Z = Sp l i t [ z ] ;

Do[

I f [ F i r s t [Z[[ k ] ] ] == 0 ,

Z[[ k ]] = Z[[ k ]] + F i r s t [Z[[ k � 1] ] ] ;

] ;

, {k , 3 , Length [Z ] } ] ;

Z = F l a t t en [Z ] ;

L i s t P l o t [Z]

a=Map[ Length [#] &, S p l i t [Z,#2�#1<10&]];
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a=F l a t t en [ Table [a , {20} ] ] ;

b=Drop[Map[ F i r s t [#] &, S p l i t [Z,#2�#1<10&]],1]�
Drop[Map[ F i r s t [#] &, S p l i t [Z,#2�#1<10&]],�1];
rand=F l a t t en [ Table [b , {20}]] ;

jumptimes=Fo l dL i s t [ Plus , 0 , a]+3;

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;
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�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2 = L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o tS t y l e�>Black , �Epi log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , 3 ] ] , 2 ] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt1=synt ;

F1�=� L i s t P l o t [ synt1 , � P lo tS t y l e �>{Darker [Green ]} ,

Joined�>True ,

AspectRat io �>1/4,Axes�>False , Frame�>True ,

P l o tS t y l e �>{Black , Thick } ,
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Sperturb=10;

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50 + Sperturb ;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;

�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;
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LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �>{" Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2 = L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel�>{" Time� ( t ) " , " S} ,

P l o tS t y l e�>Black , Ep i log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , � 3]] ,2] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt1=synt ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5] + +�/2]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};
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�1 = 50;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] , {

t t , t1 , t2 } ] ;

�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black ,

FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,
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Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2=L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o tS t y l e�>Black , Ep i log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , 3 ] ] , 2 ] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt2=synt ;

� j= Drop[ jumptimes , 1] � Drop[ jumptimes , �1];

jumps = F l a t t en [ Table [ Table [ Fo l dL i s t [ Plus , 0 , rand ][ [ k ] ] ,

{� j [ [ k ] ] } ] , {k , 1 , Length [ rand ] } ] ] ;

de ter = � + µ *Range[ Length [ jumps ]] + jumps ;

deter = deter [[1 ; ; Length [ synt ] ] ] ;

z=(UnitStep [ synt1+synt2 �30])*( deter�µ*Range [1196]);
Z = Sp l i t [ z ] ;

Do[

I f [ F i r s t [Z[[ k ] ] ] == 0 ,

Z[[ k ]] = Z[[ k ]] + F i r s t [Z[[ k � 1] ] ] ;

] ;

, {k , 3 , Length [Z ] } ] ;

Z = F l a t t en [Z ] ;

L i s t P l o t [Z]

a=Map[ Length [#] &, S p l i t [Z,#2�#1<10&]];
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a=F l a t t en [ Table [a , {20} ] ] ;

b=Drop[Map[ F i r s t [#] &, S p l i t [Z,#2�#1<10&]],1]�
Drop[Map[ F i r s t [#] &, S p l i t [Z,#2�#1<10&]],�1];
rand=F l a t t en [ Table [b , {20}]] ;

jumptimes=Fo l dL i s t [ Plus , 0 , a]+3;

µ = 0.4 ;

� = 0.1 + 0.17*(1 � cos[2�t/(104) � �/5]) ;

� = 0.06;

m = 5;

� = 5 . ;

� = 0.10;

n = 200;

Clear [R , S , i ]

L = {} ;

LL = {};

�1 = 50;

�2 = � ;

�3 = 0 . ;

Do[

t1 = jumptimes [[ kk ] ] ;

t2 = jumptimes [[ kk + 1]] ;

r0 = rand [[ kk ] ] ;

s l u t t = {�1 + r0 , �2 , �3} ;

eq = {S ’ [ t ] == �� S[ t ]* i [ t ]/n + µ ,

i ’ [ t ] == � S[ t ]* i [ t ]/n � � i [ t ] ,

R ’ [ t ] == � i [ t ] } ;

s o l = NDSolve [{eq , S[ t1 ] == s l u t t [ [1] ] ,

i [ t1 ] == s l u t t [ [2] ] ,

R[ t1 ] == s l u t t [ [3] ]} , {S , i , R} , { t , t1 , t2 } ] ;

L1 = Table [

F l a t t en [{ t t , S[ t t ] , i [ t t ] , R[ t t ]} / . s o l ] ,

{ t t , t1 , t2 } ] ;
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�1 = Las t [L1 ] [ [ 2 ] ] ;

�2 = Las t [L1 ] [ [ 3 ] ] ;

�3 = Las t [L1 ] [ [ 4 ] ] ;

L = Join [L , L1 [[ Al l , 2 ; ; 3 ] ] ] ;

LL = Append[LL , L1 ] ;

, {kk , 1 , 50}];

B = Pa r t i t i o n [ F l a t t en [ Thread [{#1 , #2}

&[Range[ Length [L ] ] , L ] ] ] , 3] ;

PL1 = L i s t P l o t [B[[ Al l , 2]] , Joined �> True ,

AspectRat io �> 1/5 ,

ImageSize �> 800 ,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time t " , " S} ,

Plo tS ty le �> Black , Epilog �>
In s e t [Text [ S t y l e [ " (C) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

PL2 = L i s tP l o t [B[[ All , 3]] , Joined�>True ,

AspectRatio�>1/5,ImageSize�>800,

FrameStyle �> Di r e c t i v e [16 , Black , FontFamily �> Times ] ,

Axes �> False , Frame �> True ,

FrameLabel �> { " Time� t " , " S} ,

P l o tS t y l e�>Black , �Epi log ��>
In s e t [ Text [ S t y l e [ " (D) " ,22 , FontFamily�>Times ] ] ,

Scaled [ { . 0 6 , . 9 } ] ] ] ;

synt=Pa r t i t i o n [B[[ Al l , 3 ] ] , 2 ] [ [ Al l , 2 ] ] ;

synt=synt [ [1 ; ;1196] ] ;

synt1=synt ;

F2=L i s t P l o t [ synt1 , P l o tS t y l e �>{Purple } , Joined�>True ,

AspectRat io �>1/4,Axes�>False , Frame�>True ,

P l o tS t y l e �>{Black , Thick } ,

FrameStyle��>�D i r e c t i v e [16 ,

FontFamily��>[" He lve t i ca " , Black ] ,
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FrameLabel��>{" time (weeks ) " , " I ( t ) " } , ImageSize�>800,

PlotRange�>Al l ]

Show[F1 , F2 , PlotRange�>Al l ]

B.� Community Structures

B.�.� Based on correlation

smooths =

Table [N[MovingAverage [ rekker [[ i ] ] , 7]] ,

{ i , 1 , Length [ rekker ] } ] ;

co r t ab l e =

Table [ Co r r e l a t i on [ smooths [[ i ] ] , smooths [[ j ] ] ] ,

{ i , 1 ,

Length [ smooths ]} , { j , 1 , Length [ smooths ] } ] ;

Do[

co r t ab l e [[ i , j ] ] = 0; ,

{ i , 1 , Length [ smooths ]} , { j , 1 , i } ] ;

par = Posi t ion [ cor tab le , _?(# > 0.65 &)];

gr1 = Table [

navn [[ par [[ k ] ] [ [ 1 ] ] ] ] �> navn [[ par [[ k ] ] [ [ 2 ] ] ] ] ,

{k , 1 , Length [ par ] } ] ;

par = Posi t ion [ cor tab le , _?(# > 0.75 &)];

gr2 = Table [

navn [[ par [[ k ] ] [ [ 1 ] ] ] ] �> navn [[ par [[ k ] ] [ [ 2 ] ] ] ] ,

{k , 1 , Length [ par ] } ] ;

par = Posi t ion [ cor tab le , _?(# > 0.85 &)];

gr3 = Table [

navn [[ par [[ k ] ] [ [ 1 ] ] ] ] �> navn [[ par [[ k ] ] [ [ 2 ] ] ] ] ,

{k , 1 ,Length [ par ] } ] ;

par = Posi t ion [ cor tab le , _?(# > 0.95 &)];

gr4 = Table [

navn [[ par [[ k ] ] [ [ 1 ] ] ] ] �> navn [[ par [[ k ] ] [ [ 2 ] ] ] ] ,
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{k , 1 , Length [ par ] } ] ;

gr = Join [ gr1 , gr2 , gr3 , gr4 ] ;

GraphPlot [ gr , Ver texLabe l ing �> True ]

f i g a = CommunityGraphPlot [ gr , FindGraphCommunities [ gr ] ,

P lotLegends �> { " Group�1 " , " Group�2 " , " Group�3 " ,

" Group�4 " } , Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " a\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 ,

CommunityBoundaryStyle �> {{Thick , Dashed } ,

{Thick , s Dashed } , {Thick , Dashed } , {Thick , Dashed }}]

c l u s t e r s = FindGraphCommunities [ gr ]

{{ " London " , "New�York " , " Sao�Paulo " , " Seoul " ,

" Singapore " , " Tokyo " , " Toronto " , " Br i sbane " ,

" Mexico " , " Chicago " } , { " Rio�de� Jane i ro " ,

" Madrid " , " Be r l i n " , " Los�Angeles " ,

"Moskva " , " P a r i s " , " Cairo " ,

" Copenhagen " , " Oslo " } ,

{ " Buenos�Ai re s " , " B e i j i n g " , " Delh i " ,

" I s t anbu l " , " Jakar ta " , " Manila " ,

" Na i rob i " , "Roma" } , { " Amsterdam " ,

" Da l l a s " , " Karachi " , " Lagos " , " Sant iago " ,

" Sydney " }}

r1 = Graphics [{Red , Disk [{0 , 0} , 0 . 2 ] } ] ;

r2 = Graphics [{ Yellow , Disk [{0 , 0} , 0 . 2 ] } ] ;

r3 = Graphics [{Purple , Disk [{0 , 0} , 0 . 2 ] } ] ;

r4 = Graphics [{Orange , Disk [{0 , 0} , 0 . 2 ] } ] ;

f i g b = GeoGraphics [{GeoMarker [g1 , r1 , " Sca le " �> 0.15] ,

GeoMarker [g2 , r2 , " Sca le " �> 0.15] ,
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GeoMarker [g3 , r3 , " Sca le " �> 0.15] ,

GeoMarker [g4 , r4 , " Sca le " �> 0.15]} , GeoRange �> All ,

GeoBackground �> " S a t e l l i t e " ,

GeoPro jec t ion �> " Mollweide " ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " b\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 600 , AspectRatio �> 2/3]

Grid [{{ f iga , f i g b }}]

B.�.� Based on Time of Maximum

f i g a = CommunityGraphPlot [ gr , FindGraphCommunities [ gr ] ,

P lotLegends �> { " Group�1 " , " Group�2 " , " Group�3 " ,

" Group�4 " } ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " a\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 ,

CommunityBoundaryStyle �> {{Thick , Dashed } ,

{Thick , Dashed } , {Thick , Dashed } , {Thick , Dashed }}]

c l u s t e r s = FindGraphCommunities [ gr ]

{{ " London " , "New�York " , " Sao�Paulo " , " Seoul " , " Singapore " ,

" Tokyo " , " Toronto " , " Br i sbane " , " Mexico " , " Chicago " } ,

{ " Rio�de� Jane i ro " , " Madrid " , " Be r l i n " , " Los�Angeles " ,

"Moskva " , " P a r i s " , " Cairo " , " Copenhagen " , " Oslo " } ,

{ " Buenos�Ai re s " , " B e i j i n g " , " Delh i " , " I s t anbu l " ,

" Jakar ta " , " Manila " , " Na i rob i " , "Roma" } ,

{ " Amsterdam " , " Da l l a s " , " Karachi " , " Lagos " ,

" Sant iago " , " Sydney " }}

r1 = Graphics [{Red , Disk [{0 , 0} , 0 . 2 ] } ] ;

r2 = Graphics [{ Yellow , Disk [{0 , 0} , 0 . 2 ] } ] ;
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r3 = Graphics [{Purple , Disk [{0 , 0} , 0 . 2 ] } ] ;

r4 = Graphics [{Orange , Disk [{0 , 0} , 0 . 2 ] } ] ;

f i g b = GeoGraphics [{GeoMarker [g1 , r1 , " Sca le " �> 0.15] ,

GeoMarker [g2 , r2 , " Sca le " �> 0.15] ,

GeoMarker [g3 , r3 , " Sca le " �> 0.15] ,

GeoMarker [g4 , r4 , " Sca le " �> 0.15]} ,

GeoRange �> All ,

GeoBackground �> " S a t e l l i t e " ,

GeoPro jec t ion �> " Mollweide " ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " b\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 600 , AspectRatio �> 2/3]

Grid [{{ f iga , f i g b }}]

maks = Table [ Last [Ordering [ smooths [[ i ] ] ] ] ,

{ i , 1 , Length [ smooths ] } ] ;

matr i se =

Table [Abs[maks [[ i ]] � maks [[ j ] ] ] , { i , 1 , Length [maks ]} ,

{ j , 1 ,

Length [maks ] } ] ;

Do[

Do[

matr i se [[ i , j ] ] = 999

, { i , 1 , j } ] ;

,

{ j , 1 , Length [ matr i se ] } ] ;

par = Join [ Posi t ion [ matr ise , _?(# == 0 &)] ,

Posi t ion [ matr ise , _?(# <= 1 &)] ,

Posi t ion [ matr ise , _?(# <= 2 &)] ,

Posi t ion [ matr ise , _?(# <= 3 &)] ,

Posi t ion [ matr ise , _?(# <= 4 &)] ,

Posi t ion [ matr ise , _?(# <= 5 &)]] ;
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gr = Table [

navn [[ par [[ k ] ] [ [ 1 ] ] ] ] �> navn [[ par [[ k ] ] [ [ 2 ] ] ] ] ,

{k , 1 , Length [ par ] } ] ;

GraphPlot [ gr , Ver texLabe l ing �> True ]

CommunityGraphPlot [ gr , FindGraphCommunities [ gr ] ,

ImageSize �> 400]

f i g a = CommunityGraphPlot [ gr , FindGraphCommunities [ gr ] ,

P lotLegends �> { " Group�1 " , " Group�2 " , " Group�3 " ,

" Group�4 " } ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " a\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 ,

CommunityBoundaryStyle �> {{Thick , Dashed } ,

{Thick , Dashed } , {Thick , Dashed } , {Thick , Dashed }}]

c l u s t e r s = FindGraphCommunities [ gr ]

{{ " Lagos " , " Karachi " , " Manila " , "Moskva " , " Be r l i n " ,

" Na i rob i " , " Sant iago " , " Amsterdam " , " Sydney " ,

" Madrid " , " Oslo " } , { " Da l l a s " , " Br i sbane " , " Mexico " ,

"New�York " , " Singapore " , " Chicago " , " Tokyo " ,

" Toronto " } , { " Delh i " , " Buenos�Ai re s " , " Sao�Paulo " ,

" Seoul " , " B e i j i n g " , " I s t anbu l " , " Jakar ta " , "Roma" } ,

{ " London " , " Copenhagen " , " P a r i s " , " Cairo " ,

" Los�Angeles " , " Rio�de� Jane i ro " }}

r1 = Graphics [{Purple , Disk [{0 , 0} , 0 . 2 ] } ] ;

r2 = Graphics [{Red , Disk [{0 , 0} , 0 . 2 ] } ] ;

r3 = Graphics [{Orange , Disk [{0 , 0} , 0 . 2 ] } ] ;

r4 = Graphics [{ Yellow , Disk [{0 , 0} , 0 . 2 ] } ] ;
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g2 = Map[ I n t e r p r e t e r [ " C i t y " ][#] &, c l u s t e r s [ [2] ] ]

g3 = Map[ I n t e r p r e t e r [ " C i t y " ][#] &, c l u s t e r s [ [3] ] ]

g4 = Map[ I n t e r p r e t e r [ " C i t y " ][#] &, c l u s t e r s [ [4] ] ]

f i g b = GeoGraphics [{GeoMarker [g1 , r1 , " Sca le " �> 0.15] ,

GeoMarker [g2 , r2 , " Sca le " �> 0.15] ,

GeoMarker [g3 , r3 , " Sca le " �> 0.15] ,

GeoMarker [g4 , r4 , " Sca le " �> 0.15]} , GeoRange �> All ,

GeoBackground �> " S a t e l l i t e " ,

GeoPro jec t ion �> " Mollweide " ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " b\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 , AspectRatio �> 2/3]

B.�.� Real In�uenza Data

worldonsets = {} ;

Do[

land = l i s t e [[ i ] ] ;

S = Extract [ s ,

Posi t ion [

Map[ S t r ingSp l i t [# , " , " ] &, s ] [ [ All , 1]] ,

_?(# == land &)]] ;

S = Map[ S t r ingSp l i t [# , " , " ] &, S ] ;

f l u = S[[ Flat ten [ Posi t ion [S [[ All , 2]] ,

_?(# == " f l u " &)] ] ] ] ;

f = f l u [[ All , 6 ] ] ;

dates = f l u [[ All , 3 ; ; 5 ] ] ;

n = Length [ f ] ;

F = Thread[{#1 , #2} &[Range[n ] , f ] ] ;

pos = Posi t ion [ f , _?(# == "NaN" &)];

F = ToExpression [Delete [F , pos ] ] ;

dates = Delete [ dates , pos ] ;

t imes = F[[ All , 1 ] ] ;

\[ Cap i t a lDe l t a ] = Drop[ times , 1] � Drop[ times , �1];
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pos = Posi t ion [\[ Cap i t a lDe l t a ] , _?(# == 1 &)];

a = F[[ All , 2 ] ] [[ Flat ten [ pos ] ] ] ;

b = F[[ All , 2 ] ] [[ Flat ten [ pos ] + 1]] ;

p a i r s = Thread[{#1 , #2} &[a , b ] ] ;

t imes = Extract [ times , pos ] ;

win = 20;

L = {};

Do[

ppos = Posi t ion [ times , _ ?( t � win < # < t &)];

I f [Length [ ppos ] > 0 ,

par = Extract [ pa i r s , ppos ] ;

\[Lambda] = F i t [ par , { zz } , zz ]/ zz ;

L = Append[L , { t , \[Lambda ] } ] ;

] ;

, { t , 1 , Last [ t imes ] } ] ;

segs = Sp l i t [L [[ All , 2]] � 1 , #1*#2 > 0 &];

s ign = Map[Mean[#] &, Map[Sign [#] &, segs ] ] ;

hv = {};

Do[

I f [ s ign [[ i ]] == 1 && s ign [[ i � 1]] != 1 &&

Length [ segs [[ i ] ] ] >= 3 , (* c ond t i on s f o r on s e t s *)

hv = Append[hv , i ] ;

] ;

, { i , 2 , Length [ s ign ] } ] ;

g r ids0 =

Table [Length [ Flat ten [ segs [[1 ; ; hv [[ k ]] � 1]] ] ] ,

{k , 1 , Length [hv ] } ] ;

g r i d s = L [[ All , 1 ] ] [[ gr ids0 ] ] ;

i = 1;

poss = {} ;

While [ i <= Length [ g r i d s ] ,

mid = gr id s [[ i ] ] ;

pos = Posi t ion [ gr ids , _ ?(mid < # < mid + 12 &)];

poss = Join [ poss , pos ] ;
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I f [Length [ pos ] > 0 ,

i = Last [ pos ] [ [ 1 ] ] ;

,

i = i + 1;

] ;

] ;

g r i d s = Delete [ gr ids , poss ] ;

QL1 = L i s tP l o t [F , PlotRange �> All , Joined �> True ,

PlotRange �> All , AspectRatio �> 1/5 ,

ImageSize �> 800 ,

Axes �> False , Frame �> True ,

FrameStyle �> Di r e c t i v e [16 ,

FontFamily �> Times , Black ] ,

PlotS ty le �> Black ,

FrameLabel �> { " time� (weeks ) " , " Inc idence " } ,

GridLines �> { gr ids , None} , Gr idL ine sS t y l e �> Blue ] ;

onse t s = gr i d s ;

onse tdates =

ToExpression [

dates [[ Flat ten [

Table [ Posi t ion [F [[ All , 1]] , _?(# == onset s [[ k ]] &)] ,

{k , 1 , Length [ onse t s ] } ] ] ] ] ] ;

worldonsets = Append[ worldonsets , { land , onse tda tes } ] ;

, { i , 1 , Length [ l i s t e ] } ] ;

func = DateDi f f e rence [{1995 , 1 , 1} , #][[1]] &;

worldonsets2 =

Table [{ worldonsets [[ i ] ] [ [1 ] ] ,

Map[ func , worldonsets [[ i ] ] [ [2 ] ] ] } ,

{ i , 1 , Length [ worldonsets ] } ] ;

Z = Union[ Flat ten [ worldonsets2 [[ All , 2 ] ] ] ] ;

landZ = Table [

l i s t e [[ Posi t ion [ worldonsets2 ,
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_?(# == Z[[ k ]] &)] [ [1] ] [ [1 ] ] ] ] ,

{k , 1 , Length [Z ] } ] ;

ZZ = Table [{Z[[ k ] ] ,

Extract [Z , Posi t ion [Z ,

_ ?(Z[[ k ]] < # < Z[[ k ]] + 28 &)]]} ,

{k , 1 , Length [Z ] } ] ;

p i l e r = Flat ten [

DeleteCases [

Table [Table [

l i s t e [[ Posi t ion [ worldonsets2 ,

_?(# == ZZ[[ k ] ] [ [1 ] ] &)][[1]][[

1]]]] �>
l i s t e [[ Posi t ion [ worldonsets2 ,

_?(# == ZZ[[ k ] ] [ [ 2 ] ] [ [ j ]] &)][[

1 ] ] [ [1 ] ] ] ] , { j , 1 , Length [ZZ[[ k ] ] [ [2 ] ] ] } ] ,

{k , 1 , Length [ZZ]}] , _?(# == {} &)]] ;

p i l e r 2 = Extract [Normal[ Counts [ p i l e r ] ] ,

Posi t ion [Normal[ Counts [ p i l e r ] ] [ [ All , 2]] ,

_?(# >= 3 &)]]

{( " United�Kingdom " �> " France " ) �> 3 ,

( " France " �> " Finland " ) �>
3 , ( " Japan " �> " France " ) �> 3 ,

( " Japan " �> " Spain " ) �>
3 , ( " France " �> " Belgium " ) �> 4 ,

( " France " �> "Canada " ) �> 3 ,

( " Belgium " �> "Canada " ) �> 3 ,

( " South�A f r i c a " �> " Argent ina " ) �> 3 ,

( " Japan " �> " I s r a e l " ) �> 3 ,

( " Japan " �> "Canada " ) �> 3 ,

( " Canada " �> " Japan " ) �> 3 ,

( " Argent ina " �> "New�Zealand " ) �> 6 ,
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( "New�Zealand " �> " Chi le " ) �> 3 , (

" Canada " �> " Belgium " ) �> 3 ,

( " China " �> " I t a l y " ) �> 3 ,

( " France " �> "Germany " ) �> 4 ,

( "New�Zealand " �> " Au s t r a l i a " ) �> 3 ,

( " Ch i le " �> " Au s t r a l i a " ) �> 3 ,

( " Canada " �> " Egypt " ) �> 3 ,

( " Belgium " �> " Croa t ia " ) �> 3}

GraphPlot [ p i l e r 2 [[ All , 1]] , Ver texLabe l ing �> True ,

DirectedEdges �> True , ImageSize �> 800]

GraphPlot [ p i l e r ]

f i g a = CommunityGraphPlot [ p i l e r ,

FindGraphCommunities [ p i l e r ] ,

P lotLegends �> { " Group�1 " , " Group�2 " , " Group�3 " } ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " a\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 ,

CommunityBoundaryStyle �> {{Thick , Dashed } , {Thick ,

Dashed } , {Thick , Dashed }}]

c l u s t e r s = FindGraphCommunities [ p i l e r ]

gruppe1 = Map[ I n t e r p r e t e r [ " Country " ][#] &,

c l u s t e r s [ [1] ] ]

gruppe2 = Map[ I n t e r p r e t e r [ " Country " ][#] &,

c l u s t e r s [ [2] ] ]

gruppe3 = Map[ I n t e r p r e t e r [ " Country " ][#] &,

c l u s t e r s [ [3] ] ]
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f i g b = GeoGraphics [{

GeoStyl ing [ Opacity [ . 7 ] ] , EdgeForm[Black ] ,

Red , Polygon /@ gruppe1 ,

GeoStyl ing [ Opacity [ . 7 ] ] , EdgeForm[Black ] ,

Yellow , Polygon /@ gruppe2 ,

GeoStyl ing [ Opacity [ . 7 ] ] , EdgeForm[Black ] ,

Purple , Polygon /@ gruppe3

} , GeoRange �> All , GeoBackground �> " S a t e l l i t e " ,

GeoPro jec t ion �> " Mollweide " ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " b\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 600 , AspectRatio �> 2/3]

Grid [{{ f iga , f i g b }}]

B.�.� Flight Tra�c

gr = Flat ten [

Table [Table [ par [[ i , j ] ] , {B[[ i , j ] ] } ] ,

{ i , 1 , Length [A]} , { j , 1 ,

Length [A] } ] ] ;

GraphPlot [ gr , ImageSize �> 800 , Ver texLabe l ing �> True ]

f i g a = CommunityGraphPlot [ gr , FindGraphCommunities [ gr ] ,

P lotLegends �> { " Group�1 " , " Group�2 " , " Group�3 " ,

" Group�4 " } ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " a\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 ,

CommunityBoundaryStyle �> {{Thick , Dashed } , {Thick ,

Dashed } , {Thick , Dashed } , {Thick , Dashed }} ,

Method �> " H i e r a r ch i c a l " ]
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c l u s t e r s = FindGraphCommunities [ gr ]

r1 = Graphics [{Purple , Disk [{0 , 0} , 0 . 2 ] } ] ;

r2 = Graphics [{Red , Disk [{0 , 0} , 0 . 2 ] } ] ;

r3 = Graphics [{Orange , Disk [{0 , 0} , 0 . 2 ] } ] ;

r4 = Graphics [{ Yellow , Disk [{0 , 0} , 0 . 2 ] } ] ;

f i g b = GeoGraphics [{GeoMarker [g1 , r1 , " Sca le " �> 0.15] ,

GeoMarker [g2 , r2 , " Sca le " �> 0.15] ,

GeoMarker [g3 , r3 , " Sca le " �> 0.15] ,

GeoMarker [g4 , r4 , " Sca le " �> 0.15]} , GeoRange �> All ,

GeoBackground �> " S a t e l l i t e " ,

GeoPro jec t ion �> " Mollweide " ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " b\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 600 , AspectRatio �> 2/3]

Grid [{{ f iga , f i g b }}]

R = Table [

N[Mean[ Extract [X ,

Posi t ion [X[[ All , 1]] , _ ?( i � 5 <= # < i + 5 &)]]]] ,

{ i , 5 , 60 ,

5}] ;

This is the code for the fitted linear model:

gr = Flat ten [

Table [Table [ par [[ i , j ] ] , {B[[ i , j ] ] } ] , { i , 1 , Length [A]} ,

{ j , 1 , Length [A] } ] ] ;

GraphPlot [ gr , ImageSize �> 800 , Ver texLabe l ing �> True ]

f i g a = CommunityGraphPlot [ gr , FindGraphCommunities [ gr ] ,

P lotLegends �> { " Group�1 " , " Group�2 " , " Group�3 " ,
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" Group�4 " } ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " a\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 400 ,

CommunityBoundaryStyle �> {{Thick , Dashed } , {Thick ,

Dashed } , {Thick , Dashed } , {Thick , Dashed }} ,

Method �> " H i e r a r ch i c a l " ]

c l u s t e r s = FindGraphCommunities [ gr ]

r1 = Graphics [{Purple , Disk [{0 , 0} , 0 . 2 ] } ] ;

r2 = Graphics [{Red , Disk [{0 , 0} , 0 . 2 ] } ] ;

r3 = Graphics [{Orange , Disk [{0 , 0} , 0 . 2 ] } ] ;

r4 = Graphics [{ Yellow , Disk [{0 , 0} , 0 . 2 ] } ] ;

f i g b = GeoGraphics [{GeoMarker [g1 , r1 , " Sca le " �> 0.15] ,

GeoMarker [g2 , r2 , " Sca le " �> 0.15] ,

GeoMarker [g3 , r3 , " Sca le " �> 0.15] ,

GeoMarker [g4 , r4 , " Sca le " �> 0.15]} , GeoRange �> All ,

GeoBackground �> " S a t e l l i t e " ,

GeoPro jec t ion �> " Mollweide " ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " b\ " ,\ nFontWeight�>\" Bold\ " ]\) " , 16] ,

Scaled [{0 .1 , 0 .9}] ] ,

ImageSize �> 600 , AspectRatio �> 2/3]

Grid [{{ f iga , f i g b }}]

X = Par t i t ion [

Flat ten [Table [

Table [{AA[[ i , j ] ] , c o r t ab l e [[ j , i ] ] } , { i , j + 1 , 33}] ,

{ j , 1 , 32}]] , 2] ;

lm = LinearModelF i t [X , x , x ]
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lm[ " ParameterTable " ]

gg = F i t [X , {zz , 1} , zz ] ;

PL1 = Plot [gg , {zz , 0 , 60} , PlotS ty le �> {Red , Thick } ] ;

PL2 = L i s tP l o t [X , PlotRange �> All , Axes �> False ,

Frame �> True ,

AspectRatio �> 1 , PlotS ty le �> {Black ,

PointSize [0 .002]}] ;

R = Table [

N[Mean[ Extract [X ,

Posi t ion [X[[ All , 1]] , _ ?( i � 5 <= # < i + 5 &)]]]] ,

{ i , 5 , 60 ,

5}] ;

PL3 = L i s tP l o t [R , PlotRange �> All , Axes �> False ,

Frame �> True ,

AspectRatio �> 1 , PlotS ty le �> {PointSize [0 .02] , Red} ] ;

Show[{PL1 , PL2 , PL3} , PlotRange �> All , Axes �> False ,

Frame �> True ,

AspectRatio �> 1 , FrameStyle �> Di r e c t i v e [Black , 14] ,

FrameLabel �> { "Number�of� d i r e c t � f l i g h t s �between� c i t i e s " ,

" Co r r e l a t i on �between� ( i n f l u e za )�Twi t te r � s i g n a l s " } ,

Epilog �> In s e t [ S t y l e [ " \ !\ (\*
StyleBox [\ " p\ " ,\n\

FontSlant�>\" I t a l i c \ " ]\) <\!\(\* Superscr ip tBox [\(10\) ,

\(�4\)]\) " ,

14] , Scaled [{0 .5 , 0 .72}]]]

R = Table [

N[Mean[ Extract [X ,

Posi t ion [X[[ All , 1]] , _ ?( i � 5 <= # < i + 5 &)]]]] ,

{ i , 5 , 60 , 5}] ;
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B.�.� The Community Structure Examples

WolframLanguageData [ " Cos " , " RelationshipCommunityGraph " ]

co l = RandomColor [20] ;

C lus t e r ingTree [ co l ]

B.� For Downloading Twitter Data

This is an example for only one city, but it is done precisely the same way, only

that where it says London is changed with the other cities name. After the

query, other words where used as well.

london = tw i t t e r [ " TweetSearch " , " Query " �> " f l u " ,

" GeoPos i t ion " �> In t e r p r e t e r [ " C i t y " ][ " London " ] ,

MaxItems �> 1000];

f i lnavn london =

Str ingJoin [ " /Users / inga /Dropbox/ tw i t t e r / " ,

Str ingJoin [

Str ingJoin [Drop[Drop[ S t r ingSp l i t [ DateSt r ing [

Date [ ] ] ] , 1] , �1]] ,

" _london .M" ] ] ;

Export [ f i lnavnlondon , london ] ;
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Figure C.�: The Flight Matrix.
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