
 Department of Physics and Technology

Uncertainty Modeling and Interpretability in

Convolutional Neural Networks for Polyp

Segmentation

—

Kristoffer Wickstrøm

FYS-3900 - Master’s thesis in physics 60 SP - Mai 2018

M

Abstract

Colorectal cancer is one of the leading causes of cancer-related deaths worldwide,

with prevention commonly done through regular colonoscopy screenings. During a

colonoscopy, physicians manually inspect the colon of a patient using a camera in

search for polyps, which are known to be possible precursors to colorectal cancer.

Seeing that a colonoscopy is a manual procedure, it can be susceptible to human

factors such as fatigue which can lead to missed polyps. As a method to increase

polyp detection rate, automated detection procedures which are not affected by

such flaws have been proposed to aid practitioners.

Deep Neural Networks (DNNs) are propelling advances in a range of different

computer vision tasks such as object detection and object segmentation. These

advances have motivated research in applications of such models for medical image

analysis. If DNN-based models are to be helpful in a medical context, they need to

be precise, interpretable, and uncertainty in predictions must be well understood.

In this thesis, we introduce a novel approach for visualizing uncertainty in DNNs

and evaluate recent advances in uncertainty estimation and model interpretabil-

ity in the context of semantic segmentation of polyps from colonoscopy images.

We evaluate and enhance several architectures of Fully Convolutional Networks

(FCNs) and provide comparison between these models. Our highest performing

model achieves a considerable improvement over the previous state-of-the-art on

the EndoScene dataset, a publicly available dataset for semantic segmentation of

colorectal polyps. Additionally, we propose a novel approach for analyzing FCNs

through the lens of information theoretic learning.

i

Acknowledgements

I would first like to thank my supervisor, Associate Professor Robert Jenssen, for

his counsel and guidance throughout my time working on this thesis.

I would also like to thank my co-supervisor Michael Kampffmeyer, for his aid and

assistance in all aspects of this thesis.

Furthermore, I would like to thank the entire UiT Machine Learning Group for

their academic and social contributions during the last couple of years.

To my friends, my family, and to Sigrid, thank you for your love and support.

Kristoffer Wickstrøm

iii

Contents

Abstract i

Acknowledgements iii

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1

1.1 Colorectal Cancer and Screening Procedures 1

1.1.1 Limitations of colonoscopy and WCE 2

1.1.2 Designing DSSs . 3

1.2 Deep Learning . 4

1.2.1 Deep Learning Difficulties 5

1.3 Scope . 5

1.4 Contributions . 6

1.5 Notation . 6

1.6 Structure of Thesis . 7

1.7 Notes from author . 8

2 Background and Related Work 9

2.1 Machine Learning . 9

2.1.1 Machine Learning Based DSSs 10

2.1.2 Support Vector Machines . 10

2.1.2.1 Nonlinear SVMs 15

2.1.2.2 DSSs Using Support Vector Machines 16

2.1.2.3 Advantages and Limitations of SVMs 18

2.2 Deep Learning . 19

2.2.1 Deep Learning Based DSSs 19

2.2.2 DSS using Convolutional Neural Networks 19

2.2.2.1 Advantages and Limitations of CNNs 20

v

Contents vi

3 Deep Neural Networks and Convolutional Neural Networks 23

3.1 Deep Feedforward Networks . 23

3.1.1 Multilayer Perceptron . 24

3.1.2 Backpropagation and Gradient Descent 26

3.1.3 Vanishing and Exploding Gradients 28

3.1.4 Activation Function . 30

3.2 Overfitting and Regularization . 34

3.2.1 Parameter Penalties / Weight Decay 34

3.2.2 Weight Initialization . 37

3.2.3 Early Stopping . 41

3.2.4 Dropout . 42

3.2.5 Transfer Learning . 44

3.2.6 Data Augmentation . 45

3.2.7 Batch Normalization . 45

3.3 Convolutional Neural Networks . 47

3.3.1 Convolution . 48

3.3.2 Motivation . 51

3.3.3 Pooling . 52

3.3.4 Architecture . 53

3.4 Fully Convolutional Networks . 55

3.4.1 Encoder Network and Decoder network 55

3.4.1.1 Upsampling . 56

3.4.2 Architecture . 57

3.5 Uncertainty and Interpretability in DNNs 57

3.5.1 Uncertainty Estimation . 58

3.5.2 Interpretability . 61

3.5.2.1 Guided Backpropagation 63

4 Innovations and Network Details 67

4.1 A Proposed Method for Estimating Gradient Uncertainty 67

4.2 Towards Analysis of FCNs Through Information Theoretic Learning 69

4.3 Network Details and Proposed Improvement 75

4.3.1 Fully Convolutional Network 76

4.3.1.1 Author Contributions and Motivation 77

4.3.2 U-Net . 78

4.3.2.1 Author Contributions and Motivation 78

4.3.3 SegNet . 79

4.3.3.1 Author Contributions and Motivation 81

5 Results 83

5.1 Experimental Setup . 83

5.1.1 Training Approach Discussion 86

5.2 Development of DSSs for Semantic Segmentation of Colorectal Polyps 87

5.2.1 Results . 87

Contents vii

5.2.2 Discussion . 89

5.3 Estimating Uncertainty in DSSs Based on DNNs 95

5.3.1 Results . 95

5.3.2 Discussion . 95

5.4 Determining Importance of Input Features 101

5.4.1 Results . 101

5.4.2 Discussion . 101

5.5 Estimating Uncertainty in Input Feature Importance 106

5.5.1 Results . 106

5.5.2 Discussion . 106

5.6 Towards Understanding FCNs Through Information Theory 111

5.6.1 Results . 111

5.6.2 Discussion . 112

6 Discussion and Conclusion 115

6.1 Conclusion . 115

6.2 Discussion . 116

6.2.1 Potential of FCNs as DSSs 116

6.2.2 Understanding DNNs . 118

A Appendix Chapter 2 121

A.1 Cost Function . 121

A.2 SVM details . 123

A.2.1 KKT conditions . 123

B Appendix Chapter 3 125

B.1 Optimization techniques . 125

C Appendix Chapter 4 129

C.1 Network Details . 129

C.1.1 FCN-8 . 129

C.1.2 U-Net . 129

C.1.3 SegNet . 129

D Appendix Chapter 5 133

D.1 Experimental Setup . 133

D.1.1 Data . 133

Bibliography 135

List of Figures

1.1 Figure displays example of polyps 1

1.3 Figure displays an illustration of a colonoscopy procedure 2

1.2 Figure displays a capsule for WCE 3

2.1 Figure illustrates a two-dimensional classification problem 12

3.1 Figure illustrates a typical MLP . 25

3.3 Figure displays a linear threshold function 30

3.5 Figure displays tanh function and its derivative. 32

3.6 Figure displays the ReLU and its derivative. 33

3.7 Figure illustrates overfitting . 35

3.8 Figure illustrates the early stopping procedure 43

3.9 Figure illustrates the Dropout procedure 44

3.10 Figure illustrates a data augmentation procedure 46

3.11 Figure displays an example of edge detector filters. 49

3.12 Figure illustrates the convolution operation 50

3.13 Figure illustrates the difference between matrix multiplication and
convolution in neural networks. 52

3.14 Figure illustrates the pooling operation 53

3.15 Figure displays a LeNet-5 inspired CNN 54

3.16 Figure displays the FCN-32 . 58

3.17 Figure illustrating saliency maps . 64

3.18 Figure illustrate the difference between saliency maps, deconvolu-
tional network and Guided Backpropagation 66

4.1 Figure displays a diagram illustrating mutual information 70

4.2 Figure displays an example of mutual information setup for a simple
MLP . 75

4.3 Figure displays the FCN-16 and the FCN-8 77

4.4 Figure displays the U-Net . 79

4.5 Figure illustrate the upsampling procedure of Segnet 80

4.6 Figure displays SegNet . 80

5.1 Figure displays an example pair from the Endoscene dataset 84

5.2 Figure displays cost convergence for all models 88

5.3 Figure displays plot of IoU score on the validation set 89

5.4 Figure displays plots of error on test set 90

ix

List of Figures x

5.5 Figure displays qualitative results on the Endoscene dataset 91

5.6 Figure displays qualitative results on the Endoscene dataset 92

5.7 Figure displays uncertainty estimation of EFCN-8 96

5.8 Figure displays uncertainty estimation of ESegNet 97

5.9 Figure displays uncertainty estimation of EU-Net 98

5.10 Figure displays interpretability visualization of EFCN-8 102

5.11 Figure displays interpretability visualization of ESegNet 103

5.12 Figure displays interpretability visualization of EU-Net 104

5.13 Figure displays gradient uncertainty of EFCN-8 107

5.14 Figure displays gradient uncertainty of ESegNet 108

5.15 Figure displays gradient uncertainty of EU-Net 109

5.16 Figure displays ESegNet labeled for mutual information estimation 111

List of Tables

5.1 Results on test set. 88

5.2 Results of mutual information estimation 112

5.3 Kernel widths used in estimating mutual information 112

C.1 Architecture details for our FCN-8 implementation 130

C.2 Architecture details for our U-Net implementation 131

C.3 Architecture details for our SegNet implementation 132

D.1 Summary of the split used to construct the Endoscene dataset from
CVC-Colon and CVC-Clinic. 133

xi

Abbreviations

CNN Convolutional Neural Networks

CRC ColoRectal Cancer

CRF Conditional Random Fields

CVC Computer Vison Center

DL Deep Learning

DNN Deep Neural Network

DPI Data Processing Inequality

DSS Decision Support System

FCN Fully Convolutional Networks

GPU Graphics Processing Unit

HOG Histogram of Oriented Gradients

ITL Information Theoretic Learning

KKT Karush-Kuhn-Tucker

MFCN Modified Fully Convolutional Networks

MLP MultiLayer Perceptron

MSE Mean Squared Error

RBF Radial Basis Function

RF Random Forest

RNN Recurrent Neural Network

SIFT Scale Invariant Feature Transfor

SGD Stochastic Gradient Descent

SMO Sequential Minimal Optimization

SVM Support Vector Machine

WCE Wireless Capsule Endoscopy

xiii

Chapter 1

Introduction

1.1 Colorectal Cancer and Screening Procedures

Colorectal Cancer (CRC) is one of the leading causes of cancer-related deaths world-

wide [1–3]. The five-year survival rate for a distant stage CRC diagnosis is estimated to

be 14%, whereas the estimated survival rate for early diagnosis is 90% [4]. A common

approach to increase the chance of early diagnosis is a process known as screening,

where physicians perform tests to detect indications of cancer. Currently, one of the

most common screening procedures for CRC is a colonoscopy, where physicians probe

for non-cancerous growths referred to as colorectal polyps (shown in Figure 1.1), a

possible precursor to CRC. Furthermore, Colorectal cancer has also been estimated to

be one of the most expensive diseases to treat [3].

Figure 1.1: Images containing polyps, each marked in yellow. Images are
obtained from the CVC-Colon Database [5]

A colonoscopy is performed by inserting a thin flexible tube (colonoscope) with a small

camera (endoscope) through the anus to visually inspect the colon (see Figure 1.3)

and usually takes between 20 minutes and 1 hour. Wireless Capsule Endoscopy (WCE)

is an alternative screening method where the patient swallows a small, wireless camera

1

Chapter 1: Introduction 2

that transmits images of the intestines to a recorder worn around the waist (an example

of a capsule is shown in Figure 1.2). After the procedure, the images are downloaded

and assessed by a physician.

The Norwegian Directorate of Health estimates that a screening program would reduce

mortality by 27% and occurrences of colorectal cancer by 22% in Norway, prompting a

recommendation for a national screening program for persons older than 55 years [6].

Figure 1.3: Figure illustrating a colonoscopy procedure. Image obtained from
The National Cancer Institute.2

1.1.1 Limitations of colonoscopy and WCE

Despite the benefits, colorectal screening procedures do have their limitations. A

colonoscopy is a manual procedure performed by a physician, which will be affected

1http://www.gastroenterologist-london.com
2https://www.cancer.gov

http://www.gastroenterologist-london.com
https://www.cancer.gov

Chapter 1: Introduction 3

by human factors such as fatigue and experience. One study has estimated the polyp

miss rate during a screening to be between 8-37% depending on the size and type of

polyp [7]. Also, patients consider the procedure uncomfortable, both the preparations

and the actual process. Furthermore, there is already a long waiting time associated

with the procedure, and introducing a screening program could potentially increase the

waiting time even further3.

Figure 1.2: Example of
capsule containing camera
for WCE. Image obtained
from West Thames Gas-

troenterology.1

Utilizing WCE could alleviate some of these problems. It

is much less invasive and does not require hospitalizing

patients. Also, it has the benefit of being able to exam-

ine inaccessible regions, like the small intestine. However,

there are difficulties linked with WCE, too. Between 30

and 60 thousand images are produced during the capsules

passage through a patient. Processing such an amount

would only increase the workload on physicians. Addition-

ally, although it is a rare occurrence, the capsule can get

stuck that might necessitate surgery for removal.

Some of the limitations associated with both colonoscopy and WCE can be diminished

by designing Decision Support Systems (DSSs). These are computer-based information

systems that assist in decision making. During a colonoscopy, such a system could be

consulted in challenging cases and act as a safeguard against human inaccuracy. For

WCE, a reliable DSS could quickly analyze the images obtained from the procedure

and single out images that need further investigation.

1.1.2 Designing DSSs

A popular approach for constructing DSSs is based on machine learning, a branch

of artificial intelligence that intend for computers to solve tasks based on experience

instead of being explicitly programmed. For detection of colorectal polyps, a physician

might analyze images from a colonoscopy to provide an experts opinion of the images,

often referred to as a ground truth or label. A machine learning algorithm could then

be presented with the original images along with the corresponding labels provided by

the physician and learn from these examples to produce similar outputs as the physician

3https://www.aftenposten.no/norge/i/8wjvd/Inntil-100-ukers-ventetid-for-
tarmundersokelse

https://www.aftenposten.no/norge/i/8wjvd/Inntil-100-ukers-ventetid-for-tarmundersokelse
https://www.aftenposten.no/norge/i/8wjvd/Inntil-100-ukers-ventetid-for-tarmundersokelse

Chapter 1: Introduction 4

produced. However, there is a wide range of available machine learning algorithms and

determining which to employ can depend on a wide range of factors, such as the data

at hand or time-requirements. Furthermore, although results have been promising,

machine learning based DSSs for finding colorectal polyps have yet to achieve the

precision that physicians require.

1.2 Deep Learning

The performance of machine learning algorithms is very often dependent on the way the

data is presented to the algorithm, often referred to as the representation of the data.

Finding a good representation can be a time-consuming and challenging procedure,

sometimes also requiring specific domain knowledge. Deep learning is a subfamily

of machine learning which consists of algorithms that are capable of extracting a

useful representation automatically from raw data, many of which have been known

in the machine learning community since the late 1960’s. However, deep models

have, historically speaking, been very difficult to train and are associated with a high

computational burden. As a result of these limitations, deep learning saw little research

compared to other areas of machine learning. However, in 2012 the SuperVision group

won the ImageNet Large Scale Visual Recognition Challenge4, an annual competition

for visual recognition tasks, by a remarkably large margin using a deep learning based

approach. Their success spurred an explosion in deep learning research with deep

models significantly improving the state-of-the-art in several computer vision tasks

such as object location [8] and semantic segmentation [9].

Recent innovations and increased computing power were vital contributions to the deep

learning renaissance, but the introduction of extensive datasets, containing millions of

images, also played a crucial role. In addition to scaling in a superior way when

presented with large-scale data compared to previous machine learning methods, the

automatic representation of deep learning algorithms enabled them to harness the full

potential of large and complex datasets resulting in an increased performance whenever

applied to more massive datasets[10].

4http://www.image-net.org/challenges/LSVRC/2012/results.html

http://www.image-net.org/challenges/LSVRC/2012/results.html

Chapter 1: Introduction 5

1.2.1 Deep Learning Difficulties

Deep learning based methods were quickly applied to different domains and provided

state-of-the-art results, but one domain proved difficult to conquer, namely the medical

domain. The reason for this difficulty is because several aspects of medical image

analysis highlight many of the limitations that deep learning methods suffer from. First

of all, patient privacy concerns make data sharing difficult and inhibits the development

of large-scale datasets. However, recent years have seen the introduction of several

large medical image datasets [11–13] providing more room for deep learning research.

But the real limitations lie in the underlying understanding of models based on deep

learning. Deep learning models can contain millions of parameters and give little or no

indication as to the uncertainty in a prediction or what influenced the prediction in the

first place. Such constraints have not obstructed deep learning from being widespread

in many industrial application such as voice5 and face recognition6 or in music7 and

movie recommendations8, where a poor decision will have little or no consequences.

But for medical application, determining how certain and what influences a prediction

is essential as it can be a matter of life and death. If methods based on deep learning

are to form a reliable basis for DSSs in the medical domain, it would require better

tools for understanding the predictions of the models and the models themselves.

1.3 Scope

This thesis will focus on development and evaluation of deep learning based models

on the task of semantic segmentation of colorectal polyps. We seek to assess if deep

learning based models can provide the necessary precision to act as a basis for DSSs

that aim to benefit physicians. Furthermore, we also want to develop and evaluate

methods that seek to increase understanding of deep models.

5https://research.googleblog.com/2015/08/the-neural-networks-behind-google-
voice.html

6https://machinelearning.apple.com/2017/11/16/face-detection.html
7https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-

finds-your-new-music-19a41ab76efe
8http://www.cs.toronto.edu/~fritz/absps/netflix.pdf

https://research.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://research.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://machinelearning.apple.com/2017/11/16/face-detection.html
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
http://www.cs.toronto.edu/~fritz/absps/netflix.pdf

Chapter 1: Introduction 6

1.4 Contributions

The main contributions of the thesis are the following:

• We develop and improve three recent deep learning based models for the task

of semantic segmentation of colorectal polyps, two of which, to the best of

our knowledge, has prior to this work not been applied in the field of polyp

segmentation.

• We develop and evaluate a recent method for estimating uncertainty in models

based on deep learning, a method that has, to the best of our knowledge, not

been applied in the medical field previous to this work.

• We develop and evaluate a recent method for visualizing what features in the

input data affect the predictions of models based on deep learning, a method

that has, to the best of our knowledge, not been applied in the medical field

previously.

• We propose a novel method for estimating uncertainty in input feature impor-

tance for predictions of models based on deep learning. To the best of our

knowledge, we are not aware of any other methods capable of providing such

quantities.

• We proposed to utilize an Information Theoretic Learning (ITL) framework for

analyzing Fully Convolutional Networks (FCNs), an approach that, to the best

of our knowledge, have yet to be analyzed in the field of deep learning prior to

this work..

1.5 Notation

Unless otherwise stated, the following notation will be used throughout this thesis:

• Scalars will be written in lowercase, for example, x

• Random variables be written in uppercase, for example, X

• Vectors will be written in lowercase bold, for example, x

Chapter 1: Introduction 7

• Matrices will be written in uppercase bold, for example, X

• The transpose of a vector x or a matrix X will be written as xT or XT

• I refers to the identity matrix.

1.6 Structure of Thesis

This thesis consists of six chapters, including this introductory chapter.

Chapter 2 presents previous work done on analysis of medical images containing col-

orectal polyps based on non-deep machine learning methods and describes the methods

used in those works, along with the strength and weaknesses of such practices. The

chapter continues by presenting studies done on analysis of medical images containing

colorectal polyps using deep learning based methods and the prospect and limitation

of these methods. This chapter aims to introduce the reader with some works that

have been conducted on analysis of medical images containing colorectal polyps, to

motivate why it is desirable to build DSSs based on deep learning based method and

to highlight some of the issues associated with these methods.

Chapter 3 gives a detailed explanation of Deep Neural Networks (DNNs), followed by

an introduction to Convolutional Neural Networks (CNNs). Additionally, the chap-

ter concludes by presenting several techniques that can be used to provide a greater

understanding of deep models. This chapter intends to give the reader a rigorous un-

derstanding of Deep Neural Networks and in particular Convolutional Neural Networks.

In Chapter 4 we provide a detailed introduction to the two novel methods we propose

in this thesis. Additionally, Chapter 4 also describes the architecture we utilize in this

thesis as well as the improvement we suggest to said architectures.

Chapter 5 deliver the results of all development and analysis conducted in this thesis,

which includes quantitative and qualitative results on publicly available datasets, model

comparisons, and results from several different techniques that seek to increase our

understanding of DNNs.

Chapter 6 gives an overarching discussion of the results presented in Chapter 5, along

with possible paths for future research or other aspects of the thesis that could warrant

Chapter 1: Introduction 8

further exploration. Additionally, we provide some concluding remarks and summarize

the result of this thesis.

1.7 Notes from author

Parts of this work is submitted to the IEEE international Workshop on Machine Learn-

ing for Signal Processing in Aalborg, Denmark in September 2018. We are also working

on a journal paper for the International Journal of Medical Informatics entitled ”Under-

standing and Uncertainty in Convolutional Neural Networks for Polyp Segmentation”

based on the work done in this thesis.

Details regarding data and methods, which may be important but not directly applied

in this thesis are moved to the Appendix to benefit the reader. Also, interested readers

can obtain all code utilized in this thesis online9.

9https://github.com/Wickstrom/Thesis

https://github.com/Wickstrom/Thesis

Chapter 2

Background and Related Work

This chapter will review previous work done on the development of DSS for colorectal

polyps and discuss some of their limitations. First, a general overview of machine

learning will be presented, followed by a description of some popular methods for

designing DSSs based on machine learning, accompanied by studies where they have

been applied. Next, we give a high-level report of deep learning along with work done

on DSSs based on such methods.

2.1 Machine Learning

Systems based on machine learning underpin a wide range of technologies regarded as

staples of the modern day world: facial recognition systems, online recommendation

engines, natural language processing and autonomous vehicles, to name a few. Ma-

chine learning is the science of giving computers the ability to learn from data without

being explicitly programmed. Algorithms based on machine learning are often divided

into three parts:

• Supervised Learning is the most common form of machine learning and also

the form considered in this thesis. Given a pair of samples (x, y), the goal of

supervised learning is to find a function f that maps x to a proper y, i.e. f(x) =

y. Therefore, supervised learning can be thought of as function approximation

where you have some data and want a mapping to a desired output.

9

Chapter 2: Background and Related Work 10

• Unsupervised Learning is used when presented with unlabeled data or the

desired outcome is unknown. Given a collection of N samples x1, x2, ..., xN ,

the goal is to discover a compact description of the data. This could be an

estimation of the underlying distribution or an attempt to group the data based

on similarity, referred to as clustering.

• Reinforcement Learning is a form of machine learning that has seen a surge of

research in recent years and stands out compared to supervised and unsupervised

learning. In reinforcement learning, an agent interacts with an environment to

produce action that can give a reward or punishment. Based on this feedback

the agent automatically develops a policy that maximizes its performance.

There is a wide range of different algorithms available for supervised learning, each with

their advantages and obstacles. Determining what algorithm to employ can depend on

the task at hand, what kind of data is available and the designer’s domain knowledge.

2.1.1 Machine Learning Based DSSs

Development of DSSs based on machine learning algorithm is a fruitful research area,

with improvements and advances occurring continuously [14–17]. Describing all the

different methods would be impractical, so instead, one of the most widely used al-

gorithms is presented, namely the Support Vector Machine (SVM) [18]. There are

several popular algorithms, like Random Forests (RFs) [19] or K-nearest-neighbour

(KNN) classifier [20], which are capable of achieving comparable results to SVMs. But

considering that SVMs has been considered state-of-the-art on many tasks [21, 22],

their widespread use, and for brevity, the SVM will be used to highlight the strengths

and weaknesses of machine learning algorithms for designing DSSs. Accompanying

the description of SVMs is several examples where SVMs have been used to analyze

medical images containing colorectal polyps.

2.1.2 Support Vector Machines

Support Vector Machines are supervised learning models commonly used for classifica-

tion and regression. For classification, an object, described by l measurable quantities

Chapter 2: Background and Related Work 11

xi, i = 1, 2, ..., l, is to be assigned to a class. These measurable quantities are referred

to as features, and together they form a feature vector

x = [x1, x2, ..., xl]
T .

This feature vector is accompanied by a label that indicates what class the object

belongs to. For the two-class case, this label is represented by a scalar y, which takes

the value 1 for the first class and -1 for the second class. Given a set of objects, the task

of separating them into the correct class can be solved by analyzing what features differ

between the objects. For a two-dimensional feature vector, it is possible to visualize

the features with a plot, as illustrated in Figure 2.1. This example displays twenty

objects, each described by two features, which can be assigned to one of two classes.

One possible way of separating the two classes is to create a line and assign an object

to either class depending on which side of the line it appears. For a general dimension,

such a line is referred to as a hyperplane and can be described mathematically as

f(x) = wTx + b, (2.1)

that multiplies the feature vector with a weight vector, w = [w1, w2, ..., wl]
T and

adds a bias b. The weights and bias, referred to as the parameters of the hyperplane,

determine the separation boundary. However, as illustrated in Figure 2.1, there are

several possible hyperplanes that separate the classes entirely, denoted by f1, f2 and

f3. How does one choose the hyperplane that discriminates these objects in the ”best”

possible way? Furthermore, how to find the parameters of this hyperplane?

One possible solution to the first question is to note that both the f1 and f2 hyperplane

shown in Figure 2.1 have features located close to the hyperplane, while the f3 hyper-

plane has a large margin to both classes. Intuitively, this leaves more ”room” from the

hyperplane to the features, which might generalize better if a new object with slightly

different features is introduced. Finding the hyperplane with the maximum possible

margin from the hyperplane to the features is the central idea of SVMs. It can be

shown that1 the distance of a point from the hyperplane is given by

1Showed in [23], for example.

Chapter 2: Background and Related Work 12

Figure 2.1: An example of a two-dimensional, two-class classification problem,
where blue circles represents one class and orange triangles represent the other.
Several possible hyperplanes that entirely separates the two classes are drawn.

z =
|f(x)|
||w||

(2.2)

However, each hyperplane is determined within a scaling factor ||w||. To avoid scaling

issues the parameters are sized such that the value of f(x), at the nearest points

in class one or class two, is equal to one for class one and two for class two. This

description is equivalent with

• Having a margin of 1
||w|| + 1

||w|| = 2
||w|| .

• Require that

* wTx + b ≥ 1, ∀x ∈ Class one

* wTx + b ≤ 1, ∀x ∈ Class two

So the SVM solution to the question of finding a hyperplane which optimally sepa-

rates the classes is to find a hyperplane with the maximum possible margin from the

hyperplane to the features. Next, we address the problem of finding the parameters

Chapter 2: Background and Related Work 13

of this hyperplane. In machine learning, this is usually solved by introducing a cost

function C to be optimized. This cost function can take many forms depending on the

algorithm and the task2, but for SVMs the cost is given by

C(w, b) =
2

||w||2
. (2.3)

As explained, the objective of SVMs is to maximize the margin described above, which

is equivalent to minimizing the inverted fraction. Minimum is achieved by tuning the

weights w and bias b to the optimal configuration. Furthermore, because of the square

in Equation 2.3 the optimization is convex. Convex optimization problems are desirable

since a local minimum must be a global minimum. So the answer to the question of

how to find the hyperparameters corresponding to the optimal hyperplane becomes;

find the parameters of the hyperplane that achieves the maximum possible margin.

We can find these parameters by

minimze C(w, b) =
2

||w||2
(2.4)

subject to yi(w
Txi + b) ≥ 1, i = 1, 2, ..., N (2.5)

where N is the number of objects in the set. Finding these parameters is a nonlinear

optimization task subject to a set of linear inequality constraints, often referred to as

the primal problem. Solving such an optimization problem can be done using Lagrange

multipliers, where the Lagrangian function is defined as

L(w, b, λ) =
1

2
wTw −

N∑
i=1

λi[yi(w
Txi + b)− 1]. (2.6)

Here, λ is the vector of Lagrange multipliers λi. To proceed further it is required

that the minimzer of Equation 2.4 and 2.5 satisfy the Karush-Kuhn-Tucker(KKT)

conditions:

2See Appendix A.1 for a more detailed description of cost functions.

Chapter 2: Background and Related Work 14

∂L(w, b, λ)

∂w
= 0 (2.7)

∂L(w, b, λ)

∂w0

= 0 (2.8)

λi ≥ 0, i = 1, 2, ..., N (2.9)

λi[yi(w
Txi + b)− 1] = 0, i = 1, 2, ..., N (2.10)

Interested readers can turn to the Appendix A.2 for more details about the KKT

condition. Combining Equation 2.6 with Equation 2.7 and 2.8 results in

w =
N∑
i=1

λiyix (2.11)

N∑
i=1

λiyi = 0 (2.12)

Equation 2.11 provides an expression to calculate the weights of the desired hyper-

plane and using 2.10 the bias can also be obtained. But it turns out that computing

the parameters from the primal problem is computationally intractable. Instead, the

problem can be solved by considering the Lagrangian duality. Stating the problem in

its Wolfe dual representation form [23], i.e.

maximize L(w, b, λ) (2.13)

subject to w =
N∑
i=1

λiyix (2.14)

N∑
i=1

λiyi = 0 (2.15)

λ ≥ 0 (2.16)

Substituting Equation 2.14 and 2.15 into Equation 2.13 accompanied by some algebra

results in

Chapter 2: Background and Related Work 15

max
λ

(N∑
i=1

λi −
1

2

∑
ij

λiλjyiyjx
T
i xj

)
(2.17)

subject to
N∑
i=1

λiyi = 0 (2.18)

λ ≥ 0 (2.19)

There are many proposed algorithms for finding the optimal Lagrange multiplier, for ex-

ample, the Sequential Minimal Optimization (SMO) algorithm [24]. Once the optimal

Lagrange multipliers have been found, the parameters corresponding to the optimal

hyperplane is obtained using Equation 2.14 for the weights and via Equation 2.10 for

the bias.

2.1.2.1 Nonlinear SVMs

Figure 2.1 displays an example where the two classes are linearly separable. However,

more complex problems can be more difficult to separate, and it might require a

nonlinear boundary to separate the classes optimally. At first glance, it might not

be obvious how SVMs are extended to enable nonlinear separation, but an elegant

approach, know as the kernel trick [23], allows SVMs to transform from a linear

to a nonlinear algorithm. The central idea is to map the features to a new higher

dimensional space (possibly infinite) where the features are more easier to separate.

Equation 2.17 displays that the feature vectors occur in pairs, via the inner product

operation. If the separation is to take place in a new k-dimensional space, the only

difference would be the additional mapping of the original feature vectors. Suppose

that there is some mapping φ

x 7→ φ(x) ∈ H, x ∈ Rl

where H is a Hilbert space. The inner product between a pair of feature vectors in

Equation 2.17 would now become φ(xi)
Tφ(xj), which has an equivalent representation

φ(x)Tφ(x) = κ(xi,xj) (2.20)

Chapter 2: Background and Related Work 16

Here, κ(·) is known as a kernel function, which corresponds to an inner product in

some alternative feature space if it satisfies Mercer’s conditions [25]:

∫
κ(xi,xj)g(xi)g(xj)dxidxj ≥ 0 (2.21)

for any g : Rl → R such that

∫
g(xi)dx < +∞ (2.22)

Furthermore, κ must be continuous, symmetric, and have a positive definite Gram

matrix, where a Gram matrix is a matrix consisting of the inner products between all

pairs of vectors in a set of vectors. So even though the mapping is not known the dot

product in that space will have the same value as the kernel function, which is efficient

and straightforward to compute. There are several available kernels, but one of the

most common is the Radial Basis Function (RBF)

κ(xi,xj) = exp
(
− ||xi − xj||2

σ2

)
(2.23)

where σ is a kernel-parameter that must be tuned by the designer.

2.1.2.2 DSSs Using Support Vector Machines

In general, when analyzing medical images containing colorectal polyps, there are two

questions of particular interest:

• Is there a polyp present in the image? (Detection)

• If so, where is it? (Localization)

For detection, the algorithm must classify an image as containing a polyp or not

containing a polyp, where images are labeled by physicians such that the ground truth

is known. One of the first steps to designing DSSs based on SVMs is deciding what

features will be presented to the algorithm. In [26] they divide the original image

of resolution (768 × 576) into sub-images of resolution (40 × 40), where each pixel

Chapter 2: Background and Related Work 17

is labeled as polyp or not polyp. Each pixel is represented by 5 features; its RGB

components and its coordinated in the sub-image, resulting in 8000 features for a single

sub-image. This sub-image is then classified as containing a polyp or not based on the

number of pixels classified as a polyp, and if a sub-image is classified as containing

a polyp, then the parent image is also classified as containing a polyp. Pixels are

classified using a nonlinear SVMs with an RGB kernel.

Merely using the RGB components and the coordinates of a pixel as features can be

compelling, but for more challenging problems it might not be sufficient. There is

a vast number of algorithms for finding discriminative features to present a classifier

with, and we will give a brief description of some popular approaches. One of the most

widely used algorithms for extracting feature for a machine learning algorithm is the

Scale Invariant Feature Transform (SIFT) algorithm [27]. Extracting SIFT features

follow four main stages. First, potential interest points are located through a scale-

space extrema detection using edge detecting filter of different size. Secondly, a Taylor

expansion is used to determine the location and scale of a potential interest point and

key points are selected based on a measure of their stability. Thirdly, each key point is

assigned a direction to obtain invariance to image rotation. This is achieved by consid-

ering a neighbourhood around each key point and calculating the gradient magnitude

and direction. Lastly, our feature vector is constructed by considering a neighbour-

hood around a key point, a so-called key point descriptor, and calculating the gradient

magnitude and orientation at each point in the neighbourhood. This neighbourhood

is split into smaller subregions where gradient magnitude and orientation is calculated

once again. The size of the neighbourhood and subregions will then decide the length

of the feature vector. SIFT features are invariant to scale and rotation and know to

produce highly discriminative features. Also, by focusing on key points instead of all

samples, it eases the computational burden for the following classifier. Several works

have been done with SIFT features for detection of colorectal polyps that have shown

improved performance compared to previous methods [28].

Another popular algorithm is the Histogram of Oriented Gradients (HOG) algorithm

that was popularized in the machine learning community in 2005 [29]. HOG features

are constructed by splitting an image into equal sized neighbourhoods and computing

the gradient of each point in that neighbourhood. Next, histograms are calculated for

each neighbourhood based on the gradients. These histograms are used to construct

the feature vectors that are passed on to the classifier. HOG features have also been

explored in the context of colorectal polyp detection and shown good performance [30].

Chapter 2: Background and Related Work 18

However, in many cases it is not enough to know that the polyp is present, it needs to

be located as well. For location, each pixel is classified as polyp or non-polyp, so-called

semantic segmentation. Numerous methods have been proposed for segmentation of

images [31, 32] and some have been designed specifically for semantic segmentation of

colorectal polyp. In [33] they propose a two-step procedure for segmenting polyps that

is based on two assumptions. First, the center of a polyp has a negative maximum

principal curvature, that is, the colon curves downwards from the center of the polyp.

Second, the polyp is delimited by positive values of maximum principal curvature. The

first step of the procedure estimates coarse curvature information and the second step

refines the coarse prediction to obtain a finer segmentation. Another method is based

on the assumption that valleys should surround a polyp in several directions [34], where

valleys are detected through a valley detector based on gradient information.

2.1.2.3 Advantages and Limitations of SVMs

Building DSSs based on SVMs provides reliable systems with high precision, espe-

cially for detection. Furthermore, SVMs have a strong theoretical foundation that

makes model interpretability straightforward. However, there are several complications

with SVM-based DSSs. Firstly, the computational burden is high when processing

high-dimensional data like images and may require partitioning the images or creating

algorithms that extract regions of interest. Additionally, complicated tasks might need

more features to obtain acceptable performance, which increases computational issues

further. Secondly, features must be extracted manually. Determining what features

to choose and how to extract them is a complicated task in itself, and might require

domain knowledge to get optimal results. Lastly, SVMs have yet to achieve satisfac-

tory results on segmentation of colorectal polyps, inhibiting DSSs that are supposed

to aid physicians in locating polyps. Many of these problems are not unique to SVMs.

All traditional machine learning methods require manual crafting of features and are

limited by their high computational requirements. Moreover, other machine learning

algorithms also struggle with segmentation tasks. These are problems that needs to

be addressed if reliable DSSs are to be based on machine learning algorithms.

Chapter 2: Background and Related Work 19

2.2 Deep Learning

In recent years, deep learning methods have provided significant advances in several

computer vision tasks such as image classification [10, 35], object detection [36–38]

and image segmentation [9]. Conventional machine learning methods are dependent

on the data representation (or features). Transforming raw data into a representation

that is suitable for the machine learning algorithm can be time-consuming and might

require significant domain knowledge. Deep learning methods tackle the representation

issue by stacking multiple processing layers in succession that automatically transforms

raw, unprocessed data into a more abstract and useful representation.

2.2.1 Deep Learning Based DSSs

Research on DSS design has shifted toward deep learning based approaches during the

last couple of years. This shift is especially true for image analysis, where recent years

have seen over 300 contributions to the field [39]. In the following examples we will

illustrate how CNNs can perform detection and localization of colorectal polyps. Since

the succeeding chapter includes a detailed description of CNNs these examples will

be given a ”high-level” description, aimed to show the promise of deep methods for

further research and their limitations.

2.2.2 DSS using Convolutional Neural Networks

Several studies have been done on polyp detection and localization using CNNs, where

the majority has been made on detection. In [40] they employ a CNNs inspired by the

LeNet-5 [41] to classify an image as containing or not containing a polyp. To deal

with the lack of data they use a patch-based approach, where sub-images are extracted

from the original image. This extraction provides more training data and reduces the

number of units required in the fully connected layers toward the end of the network.

During inference, the final decision is obtained through majority voting of several

sub-images extracted from the full-sized test image. This approach yielded superior

performance compared to previous methods based on manually extracted features.

Additionally, to increase model interpretability, filters from the first convolutional layer

is visualized. These filters display that the network has learned a collection of filters

Chapter 2: Background and Related Work 20

such as edge detectors and texture extractors. In a recent masters thesis they also

explored the prospect of detecting polyps using CNNs, but employ a more recent

architecture [42], which produced encouraging results. However, this patch-based

approach is computationally demanding, particularly during inference, and does not

give any information regarding the position of the polyp if it is present.

Another more recent study used an extension of CNNs known as Fully Convolutional

Networks (FCNs) [9], particularly suited for per-pixel predictions such as semantic

segmentation [11]. These networks resemble typical CNNs but perform upsampling

to recover the resolution of the original image, thus enabling per-pixel classification.

Another benefit is that FCNs are capable of processing images of arbitrary size and can,

therefore, utilize the patch-based approaches for training but process the entire test

image in one pass through the network during inference. Results showed a significant

improvement over previous approaches, yielding precise segmentation maps with no

further post-processing. However, their model lack interpretability and provide no

notion of uncertainty.

2.2.2.1 Advantages and Limitations of CNNs

Convolutional Neural Networks tackle many of the issues that traditional machine

learning algorithms suffer from. They have significantly improved performance on both

detection and segmentation tasks [9, 10], approaching the necessary precision required

for medical applications. Also, since the network molds the features into the ideal

form for discrimination the time consuming and complicated process of handcrafting

features is removed. However, DNNs introduce their own set of obstacles that demand

attention. First of all, they require large amounts of data to tune the millions of

parameters, which can be challenging in the medical domain. Also, the large number of

parameters makes the model capable of learning the training data, so-called overfitting,

which might generalize poorly to unseen data. Another problem with a large number

of parameters is the lack of transparency. It can be difficult to asses what influence a

decision or what parameters are affected by what features, which can make deep models

less trustworthy. Furthermore, DNNs have no clear way of representing uncertainty in

a prediction, which add to the trust issues. Lastly, there is a wide range of available

models aimed at the same task. Deciding which model suits the task at hand lacks

a solid theoretical foundation and one must often resort to heuristics. Tackling these

Chapter 2: Background and Related Work 21

issues is crucial if CNNs are to become a precise and trustworthy component of DSSs

and in this thesis, we look at several ways to address the problems stated here.

Chapter 3

Deep Neural Networks and

Convolutional Neural Networks

While the previous chapters have motivated the desire to evaluate and develop deep

learning methods for medical image analysis, this chapter will give a detailed descrip-

tion of how it is done. First, we look at the general workings of a standard feedforward

network, its central components and some essential techniques associated with such

networks. Next, CNNs are introduced and explained. Finally, recent methods associ-

ated with increasing the interpretability of CNNs and providing uncertainty estimates

are presented.

3.1 Deep Feedforward Networks

Feedforward networks also called Multilayer Perceptrons (MLPs), form the bedrock for

all of deep learning. Feedforward networks stack layers of simple mappings and trans-

formation in a hierarchical fashion that results in function approximators of universal

capabilities under certain assumptions [43]. For a task like classification, y = f(x),

an input x is assigned to a class y by a function f . A feedforward network defines

a mapping y = f̂(x; θ) and learns the value of the parameter θ that results in the

best function approximation f̂ of the true function f . Although not all deep learning

models are focused on finding a deterministic function, they all employ the idea of

hierarchically stacking mappings and transformations.

23

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 24

We will start by introducing the MLP and the general procedure for deploying such

networks, and then the following sections will explore important concepts related to

MLPs in further detail.

3.1.1 Multilayer Perceptron

As already stated, MLPs are constructed by stacking layers of mappings and transfor-

mations in succession. Figure 3.1 display a typical MLP, which consists of an input

layer, three hidden layers and one output layer, where each of these layers contains a

number of units, often referred to as neurons. In the general case, we assume that a

network consists of L layers, with k0 units in the input layer and kl units in the hidden

layers, where l = 1, ..., L. The input layer represents the data passed into the network;

no actual operations are carried out in this layer. In the example network shown in

Figure 3.1 the input layer contains four units corresponding to the number of features

used to represent a sample of this particular data. At the end of the network, we

find the output layer, which corresponds to the network prediction for a given feature

vector. In this example, the output layer has two units that could correspond to two

classes in a classification problem. Between the input and output layer, we find one

or more hidden layers. These are responsible for mapping and transforming the input

into a representation where the output layer can optimally perform the desired task.

By including more layers, more units or both, we can increase the capacity of the

network to handle more complex data. Increasing the number of units is referred to as

increasing the ”width” of the network while increasing the number of layers is referred

to as increasing the ”depth” of the network, which is where the ”deep” part of Deep

Feedforward Networks originates.

For each neuron a weighted sum is computed by multiplying the output of the previous

layer with the weight and bias of the current layer, that is

z
(l)
j (i) =

kl∑
j=1

kl−1∑
k=1

w
(l)
jka

(l−1)
k (i) + b

(l)
j , i = 1, ..., N (3.1)

where b
(l)
j is the bias of the jth unit in the lth layer, w

(l)
jk is the weight connecting the

kth unit in the (l − 1)th layer with the jth unit in the lth layer, kl is the number of

units in the lth layer, kl−1 is the number of units in the (l − 1)th layer, N is the total

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 25

Figure 3.1: Figure illustrating a typical MLP with three hidden layers con-
sisting of five, four and six units and two output units.

number of samples and a
(l−1)
k (i) is the output of the kth unit in the (l − 1)th layer.

This weighted sum is passed into a non-linearity called an activation function f(·),

which acts as approximate unit step function to indicate unit activation and results in

the output of a unit,

a
(l)
k (i) = f(z

(l)
j (i)). (3.2)

When l = L, that is, the network output, alk(i) = ŷk(i), k = 1, ..., kL, and when

l = 1, alk(i) = xk(i), k = 1, ..., k0, that is, the network input.

Multilayer perceptrons can be utilized to a wide range of different tasks, but they

all share a common goal, to optimize a cost function on some test data, where the

cost function is dependent on the task. Interested readers can read more about cost

functions in Section A.1 of the Appendix, but one common choice in neural networks

is the sum of squared errors cost function, such that

C =
N∑
i=1

E(i) =
1

2

N∑
i=1

e2m(i) =
1

2

N∑
i=1

kl∑
m=1

(ym(i)− ŷm(i))2 (3.3)

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 26

where N is the number of samples, kL is the number of output units and ŷm(i) = aLk (i),

that is network output. If the task is classification, we usually want to minimize the

error computed by the cost function. However, since the test data is not available

during the training of a model, we use training data to approximate the test error and

minimize the error based on the training set instead.

3.1.2 Backpropagation and Gradient Descent

Minimization of the cost function can be acquired by iteratively updating the weights of

the network, commonly done using the gradient descent algorithm. However, there is

a wide range of modern optimization algorithms that build upon the standard gradient

descent algorithm that are discussed in Appendix B.1. The gradient descent algorithm

iteratively updated the weights and biases with the update rules

w
(l)
j (new) = w

(l)
j (old)− µ ∂C

∂w
(l)
j

(3.4)

b
(l)
j (new) = b

(l)
j (old)− µ ∂C

∂b
(l)
j

(3.5)

where µ is a positive hyperparameter known as the learning rate. A large learning rate

results in faster training but might miss a good minimum, while a small learning rate

might not reach a good minimum at all. Determining the learning rate is, therefore,

an integral part of network design that recent algorithms has sought to automatize

(see Appendix B.1). Both Equation 3.4 and 3.5 requires computing the derivative of

the cost function with respect to the parameters of the network. Computing these

derivatives is done using the backpropagation algorithm, introduced by Werbos [44]

and popularized by Rumelhart et.al [45]. From Equation 3.3 we can see that the costs

dependency on the parameters passes through zlj(i). We consider the weights first and

use the chain rule, which gives

∂E(i)

∂w
(l)
j

=
∂E(i)

∂z
(l)
j (i)

z
(l)
j (i)

∂w
(l)
j

. (3.6)

Differentiating Equation 3.1 with respect to the weights yields

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 27

z
(l)
j (i)

∂w
(l)
j

= a
(l−a)
k (i), k = 1, ..., kl−1. (3.7)

Next we define

∂E(i)

∂z
(l)
j (i)

= δ
(l)
j (i), (3.8)

which gives the following update rule for the weights,

w
(l)
j (new) = w

(l)
j (old)− µ

N∑
i=1

δ
(l)
j (i)a

(l−1)
k (i) (3.9)

and using the same procedure, the following update rule for the bias

b
(l)
j (new) = b

(l)
j (old)− µ

N∑
i=1

δ
(l)
j (i). (3.10)

To update the weights, we need to compute the gradients of each layer. Assuming the

sum of squared errors cost function from Equation 3.3 is used, it can be shown that

the gradients of the output layer can be computed by

δ
(L)
j (i) = ej(i)f

′(z
(L)
j (i)), (3.11)

and for the remaining layers, the gradients can be computed by

δ
(l−1)
j (i) = e

(l−1)
j (i)f ′(z

(l−1)
j (i)), (3.12)

where

e
(l−1)
j (i) =

kl∑
k=1

δ
(l)
k (i)w

(l)
kj . (3.13)

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 28

The only component that has not been addressed is f ′(z
(l−1)
j (i)), where the derivative

of the activation function must be computed. Choice of activation function is an

important part of network design and will be explored thoroughly in Section 3.1.4. To

summarize, backpropagation can be performed using the following procedure:

1. Initialization: Initialize all the weights and biases according to some initialization

scheme (see Section 3.2.2 for further details).

2. Forward pass: For all training samples, compute the activation of each unit using

Eq 3.2 and evaluate the cost using the current parameters.

3. Backward pass: Compute the gradients of all layers using Eq 3.11, 3.12 and

3.13.

4. Update parameters: Update all parameters using Equation 3.9 and 3.10.

5. Iterate: Repeat steps 2-4 until convergence.

3.1.3 Vanishing and Exploding Gradients

One of the fundamental obstacles of DNNs is the vanishing and exploding gradients

problem [46]. As we move backward through the network, the gradients tend to get

smaller, which causes the units in the early layers to train more slowly. To illustrate

the problem we consider a simple neural network, shown in Figure 3.2, consisting of

one neuron in each layer and two hidden layers. Seeing that, for this simple case, all

quantities are scalars, we simplify the notation for the benefit of the reader and drop

the sample index i and neuron indices j and k. For the output layer, where l = L, the

gradients can be found using Equation 3.11, resulting in

δ(l) = e(l)f ′(z(l)) = (y − ŷ)f ′(z(l)), (3.14)

where we have assumed the sum of squared errors loss function from Equation 3.3.

To find the gradients of the second hidden layer, we use Equation 3.12, which gives

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 29

δ(l−1) = e(l−1)f ′(z(l−1)), Use Eq 3.13 to find e(l−1) (3.15)

δ(l−1) = δ(l)w(l)f ′(z(l−1)) (3.16)

δ(l−1) = (y − ŷ)f ′(z(l))w(l)f ′(z(l−1)). (3.17)

Following the same strategy, the gradients of the first hidden layer can be found, and

we get

δ(l−2) = (y − ŷ)f ′(z(l))w(l)f ′(z(l−1))w(l−1)f ′(z(l−2)). (3.18)

From Equation 3.18 we can see that each layer adds a factor of f ′(z(·))w(·) to the

derivatives. As we will see in Section 3.1.4, the derivative of the activation function

tend to have a low value. For example, the derivative of the most common activation

functions, the sigmoid, is always less than or equal to 0.25. As networks grow deeper

and more factors of f ′(z(·)) are added, the gradients will vanish if the weights are

not sufficiently large to counter the effect. But large weights are likely to cause the

opposite effect, namely exploding gradients, where the gradients become very large.

Development of new activation functions that address the vanishing gradient problem

has been one of the key components of DNNs recent success and discovering more

effective activation function is still an active field of research.

Figure 3.2: Figure displays a simple neural network for demonstrating van-
ishing and exploding gradients.

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 30

3.1.4 Activation Function

As mentioned in Section 3.1.1, the activation function acts as an approximation of

the unit step function, also referred to as a linear threshold function, which indicates

unit activation and enables the hidden layers to discover non-linear transformations

of the input. Early research in neural networks were inspired by neurons in the brain,

where a neuron would activate if the strength of the received input signal surpassed a

certain threshold [47, 48]. Initial models of artificial neurons deployed a linear threshold

function as activation function, shown in Figure 3.3, which produces a binary output

depending on a set threshold. These early models had potential but were restricted by

their binary output and the fixed threshold. Furthermore, backpropagation requires a

differentiable activation function which excludes the linear threshold unit.

−2 −1 1 2

0.2

0.4

0.6

0.8

1

x

y

Figure 3.3: Linear threshold function with threshold at x = 0 and binary
output y.

Traditional Activation Functions

Historically speaking, the most common activation function has been the sigmoid

function, which is defined as

fsig(x) =
1

1 + exp(−x)
(3.19)

and can be seen in Figure 3.4a. Inputs are squashed between 0 and 1 which represents

the potential for a neuron to ”fire”, where we generally assume a neuron to be firing

if the output is above 0.5. For large positive or negative input values a sigmoid unit

saturates, i.e. the output of the unit approaches 1 and 0, respectively, to indicate

that the unit is very certain about firing or not firing. In Section 3.1.2 we needed to

compute the derivative of the activation function, which for the sigmoid is

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 31

f ′sig(x) = f(x)sig(1− f(x)sig) (3.20)

and can be seen in Figure 3.4b. From Figure 3.4b we can see the magnitude of

the sigmoid derivative will always be less than or equal to 0.25, and as discussed in

Section 3.1.3, when the derivatives of the activation is small and many of these small

derivatives are multiplied together the gradients tend to diminish or vanish altogether.

This effect is reinforced as networks grow deeper and is why the sigmoid activation is

rarely used in DNNs.

−4 −2 2 4

0.2

0.4

0.6

0.8

x

f(x) = 1
1+e−x

(a) The sigmoid function.

−3 −2 −1 1 2 3

0.1

0.2

0.3

0.25

x

f ′(x)

(b) Derivative of the sigmoid function.

Figure 3.4: Figure displays the sigmoid function and its derivative.

Another commonly applied activation function is the hyperbolic tangent function, often

simply referred to as tanh, which is defined as

ftanh(x) =
2

1 + exp(−2x)
− 1 (3.21)

and can be seen in Figure 3.5a. Similarly to the sigmoid it also squashes the input

into a fixed range, but for the tanh this range is between -1 and 1, where positive

values indicate an active unit and negative values indicate an inactive unit. The

tanh and sigmoid function are similar in many ways and related by the expression

tanh(x) = 2 sigmoid(2x)− 1, that is, a scaled version of the sigmoid. The derivative

of tanh is

f ′tanh(x) = 1− f(x)2tanh (3.22)

and can be seen in Figure 3.5b. Figure 3.5b shows that the tanh allows for larger

gradients that could help with the vanishing gradients problem, but experiments [10]

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 32

have shown that for deep networks using tanh units exhibits the same problem as the

sigmoid and is, therefore, also, rarely used in DNNs.

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

x

f(x) = tanh(x)

(a) The tanh function.

−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

x

f ′(x)

(b) Derivative of the tanh function.

Figure 3.5: Figure displays tanh function and its derivative.

New Activation Functions

One of the key components to the recent success of DL is the adoption of a new

activation function that avoids the vanishing gradient problem, the Rectified Linear

Unit (ReLU)[49–51]. If a single value x is considered, the ReLU is defined as

fReLU(x) =

x, if x > 0

0, if x ≤ 0
(3.23)

and can be seen in Figure 3.6a. To understand why the ReLU diminish the vanishing

gradient problem we look at the derivative, which is

f ′ReLU(x) =

1, if x > 0

0, if x ≤ 0
. (3.24)

For positive inputs, the gradient is always equal to one, which evades the vanishing gra-

dients problem. Another advantageous attribute of the ReLU is sparse activations, as

sparse representations are more likely to produce disentangled information disentangled

and information that is more likely to be linearly separable [49].

There are some concerns associated with the ReLU. One is the possible blocking of

gradients from the hard saturation at x = 0, but experimental results have shown

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 33

that the opposite is true and that the hard zeros can actually help the supervised

training so long as the gradient can propagate along some paths [49]. Another is the

unbounded behaviour of the activation that can be handled by restricting the weights

of the network, as explained in Section 3.2.1. Lastly, we have the ”dying ReLU”

issue, which might occur if large gradients flows through the network and updates the

parameters in such a way that it never activates again. For example, a large negative

bias will effectively render a unit inactive and unable to recover, since its gradient will

remain zero. Several modifications of the ReLU has been proposed to solve the ”dying

ReLU” problem. One extension is the Leaky ReLU, proposed by Maas et al., [52],

which allows for a small, non-zero gradient when the unit is saturated and not active.

Another popular approach is the Parametric ReLU (PReLU), proposed He et al., [53],

which adds a parameter that controls the slope of the negative part for each unit. This

extra parameter is learned as part of the backpropagation, adds negligible computation

cost and has been shown to increase performance [53].

−2 −1 1 2

0.5

1

1.5

2

x

f(x) = max(0, x)

(a) The ReLU activation function.

−2 −1 1 2

0.2

0.4

0.6

0.8

1

x

f ′(x)

(b) Derivative of the ReLU activation
function.

Figure 3.6: Figure displays the ReLU and its derivative.

Softmax Function

To conclude the description of activation functions we introduce the softmax function

that is, strictly speaking, not an activation function yet a standard inclusion in both

neural networks and DNNs that perform classification. Softmax is a generalization

of the sigmoid function that ”squashes” a vector of arbitrary values into the range

(0, 1) and is generally used at the output layer of a network to produce a probability

distribution over all the classes in the dataset. More formally, for a network consisting

of L layers tasked with assigning a data point into one of C classes, the softmax

function is defined as

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 34

ŷc =
exp(z

(L)
c)∑C

c=1 exp(z
(L)
c)

, c = 1, 2, ..., C (3.25)

where z
(L)
c is the output of the network and ŷc can be interpreted as the probability

of the given data point to be assigned to class c. However, this interpretation can be

ill-advised, as we will explain in Section 3.5.1.

3.2 Overfitting and Regularization

Deep Neural Networks can have millions of free parameters, enabling the possibility to

model a wide range of complex phenomena. However, a sufficiently large network might

memorize peculiarities of the training data, achieving high performance on the training

set without discovering the actual underlying distribution of the data that results in

poor performance on the test set. In such cases, we say that the network is overfitting.

Figure 3.7 displays a typical example of overfitting, where the training error keeps

decreasing while the test error starts increasing. One approach to counter overfitting

is to reduce the number of free parameters, i.e. reduce the capacity of the network.

But determining the number of parameters needed is not a trivial task, and too few

parameters might lead to the opposite effect, namely underfitting, where the network

has insufficient capacity to model the data. Instead, we deploy a range of different

techniques to reduce overfitting, referred to as regularization techniques, which aim

to restrict the network such that strong generalization capability is encouraged. This

section will give an overview of the most common techniques and how to apply them.

3.2.1 Parameter Penalties / Weight Decay

One of the most common techniques to prevent overfitting is penalizing large-valued

weights since those weights tend to lead to overfitting [54]. Parameter penalization,

sometimes also referred to as weight-decay, is achieved by including a penalty term in

the cost function, such that Equation 3.3 becomes

C =
N∑
i=1

E(i) + αh(W) (3.26)

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 35

Figure 3.7: Error as a function of iteration steps for training and test set.

where W is a matrix containing the weights of all layers in the network, h(·) is an

appropriately chosen differentiable function, and α is a hyperparameter referred to

as the regularization parameter that controls how ”hard” the weights are penalized.

Notice that the bias terms are usually not penalized. Hinton argues that since there

are far fewer biases, they are less likely to cause overfitting [55]. Also, in some cases

the bias might need to be large and imposing a penalty will only increase the time to

reach the required size for the bias. One of the most widely used forms of parameter

penalization is penalizing the sum of the squares of the weights, known as Tikhonov

regularization or L2-regularization [56], such that the cost function becomes

CL2 =
N∑
i=1

E(i) +
1

2
α

L∑
l=1

kl∑
k=1

w2
lk (3.27)

where wlk refers to lkth element of the weight matrix W, L refers to the number

of layers in the model and kl refers to the number of units in the lth layer. L2-

regularization drives the weights closer to the origin that inhibits them from growing

to large [57]. Another popular penalization technique is L1-regularization [56], which

penalizes the sum of the absolute values of the weights, such that the cost function

becomes

CL1 =
N∑
i=1

E(i) + α

L∑
l=1

kl∑
k=1

|wlk| (3.28)

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 36

L1-regularization is known to encourage zero valued weights, which works as feature

selection and can work well when large amounts of features are present. Choosing the

α parameter is a heuristic process dependent on the data, but 0.0001 is suggested as

a sensible initial choice [55].

Why L1 and L2 regularization is referred to as parameter penalties should be evident

from the preceding explanations, but it is not clear why they are also referred to as

weight decay. To see why we need to look at the derivative of the modified cost

function. Taking the derivative of Equation 3.27 with respect to the weights and the

biases yields

∂CL2
∂wjk

=
∂
∑N

i=1 E(i)

∂wlk
+ αwlk (3.29)

∂CL2
∂blk

=
∂
∑N

i=1 E(i)

∂blk
, (3.30)

where blk refers to the lkth element of the matrix B that contains the biases of all

layers in the network. For L1 regularization we take the derivative of Equation 3.28

with respect to the weights and the biases, which yield

∂CL1
∂wlk

=
∂
∑N

i=1 E(i)

∂wlk
+ α sgn(wlk) (3.31)

∂CL1
∂blk

=
∂
∑N

i=1 E(i)

∂blk
(3.32)

where sgn(w) represents the sign function that returns −1 for negative input and 1 for

positive input. From Equation 3.30 and 3.32 we can see that the derivative of the cost

function with respect to the bias results in the derivative of the regular cost function

with no modifications. From Equation 3.29 and 3.31 we recognize the derivative of the

unmodified cost function as the first term of both equations, but we get an additional

term αw for L2 regularization and αsgn(w) for L1 regularization, which alters the

update rule from Equation 3.4 into

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 37

w
(l)
j (new) = w

(l)
j (old)− µ∂CL2

∂w
(l)
j

= (1− µα)w
(l)
j (old)− µ ∂

∂w
(l)
j

N∑
i=1

E(i) (3.33)

for L2-regularization. For L1-regularization we get

w
(l)
j (new) = w

(l)
j (old)− µ∂CL1

∂w
(l)
j

= w
(l)
j (old)− µα sgn(w

(l)
j (old))− µ ∂

∂w

N∑
i=1

E(i).

(3.34)

From Equation 3.33 we can see that the weights will be multiplied by a factor of

(1 − µα) at each iteration. This factor will be slightly smaller than one, resulting in

a slight decay of the weights. Similarly for Equation 3.34 we get an additional term

of µα sgn(w
(l)
j (old)) subtracted at each iteration, also resulting into a slight decrease

in the weights. Both modifications have the effect of shrinking the weights but in a

slightly different way. For L2-regularization, the shrinkage is proportional to w, while

in L1-regularization the shrinkage is constant. When the magnitude of w is large,

L1-regularization shrinks the weights less than L2-regularization, and opposite when

the magnitude of w is small. This shrinkage explains the previous statement that

L1-regularization drives the weights toward zero while retaining some high-importance

connections. Choosing which form of weight decay to employ can be a process of trial

and error and sometimes they are also used in conjunction.

3.2.2 Weight Initialization

Weight initialization is a procedure for restricting the network by initializing the weights

closer to an ideal configuration. Careless initialization of weights and biases can result

in a number of different problems. If weights are drawn randomly, and some happen

to be very large, the gradients might explode. If many weights and biases end up in

a range where a unit is saturated, the gradients might vanish. In DNNs infancy a

common heuristic was to initialized the weights from a zero-mean Gaussian distribu-

tion with a standard deviation of 0.01 [10] or a uniform distribution in the interval

(− 1√
n
, 1√

n
) [58](n = # units in previous layer.), but several developers encountered

convergence difficulties when training very deep models [53, 59]. It was observed that

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 38

back-propagated gradients were smaller as one moves from the output layer towards

the input layer, just after initialization [60]. Analysis showed that the variance of

the back-propagated gradients decreased as they flowed backward through the net-

work [60]. Work done on weight initialization in DNNs is mainly built upon this idea

of investigating the variance of the response in each layer.

For the forward pass, the response of a layer was described in Equation 3.1, but for

clarity, a simplified formulation is:

z(l) = w(l)a(l−1) + b(l). (3.35)

where z(l) is the response vector of layer l, w(l) is a vector comprised of all weights in

layer l, a(l−1) is a vector comprised of all activation in layer l − 1 and b(l) is a vector

comprised of all biased in layer l. Assuming that all biases are initialized to zero, the

variance of Equation 3.35 is:

V ar[z(l)] = n(l)V ar
[
w(l)a(l−1)

]
(3.36)

where n(l) is the number of units in layer l. To proceed, several assumption are made:

• Weights are mutually independent and share the same distribution.

• Weights are drawn from a symmetric distribution with a mean of zero.

• Responses of each layer are mutually independent and share the same distribu-

tion.

• Responses of each layer have a mean of zero.

• Weights and responses are independent random variables.

With these assumptions, the variance of the product of independent variables in Equa-

tion 3.36 becomes:

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 39

V ar[z(l)] = n(l)V ar
[
w(l)a(l−1)

]
(3.37)

= n(l)
(
V ar[w(l)]V ar[a(l−1)] +

��
���

���
���:0

V ar[w(l)]E[a(l−1)]2 +
��

���
���

���:0

V ar[a(l−1)]E[w(l)]2
)

(3.38)

= n(l)V ar[w(l)]V ar[a(l−1)] (3.39)

where the expectation of in last two terms of Equation 3.38 are zero. For a network

with L layers Equation 3.39 becomes:

V ar[z(L)] = V ar[x]
L∏
l=2

n(l)V ar[w(l)] (3.40)

where x is the input vector to the network. Now follows the key idea to weight

initialization; A proper initialization scheme should neither magnify or diminish the

input signal exponentially. To achieve this the product from Equation 3.40 should take

a proper scalar (e.g 1), which can be accomplished by the condition:

n(l)V ar[w(l)] = 1, ∀l. (3.41)

For the backward pass, the gradients was described in Equation 3.12, but for clarity, a

simplified formulation is:

δ(l) = δ(l+1)w(l+1)f ′(z(l)). (3.42)

Here, δ(l) is the gradient vector of layer l, δ(l+1) is the gradient vector of layer l +

1, w(l+1) is the weight vector of layer l + 1 and f ′(z(l)) is the derivative of the

activation vector of layer l. Assuming unit derivative, i.e. f ′(z(l)) ≈ 1, the variance of

Equation 3.42 becomes:

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 40

V ar[δ(l)] = n(l+1)V ar[δl+1w
(l+1)] (3.43)

= n(l+1)
(
V ar[w(l+1)]V ar[δ(l+1)] +

���
���

���
���:0

V ar[w(l+1)]E[δ(l+1)]2 +
���

��
���

���
�:0

V ar[δ(l+1)]E[w(l+1)]2
)

(3.44)

= n(l+1)V ar[w(l+1)]V ar[δ(l+1)]. (3.45)

For a network with L layers Equation 3.45 becomes

V ar[δ(2)] = V ar[δ(L)]
L∏
l=2

n(l+1)V ar[w(l+1)] (3.46)

Once again, the idea is that the initialization should not magnify or diminish the

gradients, which can be achieved by the condition

n(l+1)V ar[w(l+1)] = 1, ∀l. (3.47)

As a compromise between the two constrains, one approach could be

V ar[w(l+1)] =
2

n(l) + n(l+1)
. (3.48)

For a uniform distribution, U(−a, a), this amounts to choosing

a =

√
6√

n(l) + n(l+1)
,

which results in weights being drawn from the following distribution

U
(
−

√
6√

n(l) + n(l+1)
,

√
6√

n(l) + n(l+1)

)
, (3.49)

which is referred to as Xavier initialization [58]. This initialization scheme was derived

when the most common activation functions were sigmoid and tanh. But when ReLUs

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 41

began to occur more frequently, the assumption that the response of each layer has

an expectation of zero was no longer valid, since z(l) = a(l−1) = max(z(l−1), 0).

To compensate for the lost of information, [53] proposed to alter the conditions in

Equation 3.41 and 3.47 by multiplying with a factor of 1/2. For a normal distribution,

this amount to drawing the weights from one of the two following distributions

N
(

0,

√
2√
n(l)

)
(3.50)

N
(

0,

√
2√

n(l+1)

)
, (3.51)

which is referred to as HeNormal initialization [53]. Equation 3.50 ensure that the

forward pass is scaled properly while Equation 3.51 scales the backward pass properly.

Nevertheless, both approaches are sufficient to aid model convergence.

3.2.3 Early Stopping

For the development of DNNs it is common to split the data into the following three

parts:

• Training set: A set of examples used to find the optimal parameters to perform

the desired task.

• Validation set: A set of examples used for model selection and hyperparameter

tuning.

• Test set: A set of examples used to evaluate the performance of the network.

Although we must always consider the available data, a rule of thumb is to split the

complete data set such that the training set make up 50% of the data while the

validation and test set make up on 25% each. It is essential that the test set is kept

entirely separate and treated as unknown up until evaluation. This separation is to

ensure we are testing the model on unseen data to asses if the network has found a

good general description of the underlying structure of the data or overfitted on the

training set.

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 42

A validation set is needed for several reasons. Firstly, since the weights and biases are

initialized randomly we cannot be confident that a decrease in error on the training

set was a result of an adjustment to some hyperparameter or just a particularly good

initial weight configuration. By monitoring the validation set, we can see how the

adjustment of hyperparameters affects data separate from the training set. Secondly,

it is not guaranteed that the model corresponding to lowest error on the training set

will be the model that yields the best performance on the test set, as it might be

overfitted like in Figure 3.7. Instead, we monitor the validation set, stop training when

the error on the validation set starts increasing and save the model corresponding to the

lowest error on the validation set. This procedure is referred to as early stopping [61],

and act as a regularization technique since it limits the amount of iteration and ends

the training before it overfits. However, the example shown in Figure 3.7 is idealized,

and when working with real data the output error might fluctuate like illustrated in

Figure 3.8, which means that the error of the validation set can increase for some

steps before it decreases to a new, lower value. To solve this predicament, a new

hyperparameter called patience is introduced, which determines how many iterations

we are willing to wait before training is stopped. If the validation error starts increasing

and does not reach a lower validation error than the previous lowest validation error

before the number of iterations since the previous lowest value becomes larger than the

number of iteration allowed by the patience parameter we stop the training and save

the model corresponding to the lowest validation error, as illustrated in Figure 3.8.

Determining the value of the patience parameter is currently a process of trial and

error, but there has been recent studies into more theoretical approaches to setting

the patience parameter [62].

3.2.4 Dropout

One of the more recent regularization techniques is a technique referred to as Dropout [63],

which has been particularly successful in DNNs [64]. Dropout is performed by ran-

domly dropping units (along with their connections) during the training procedure.

Computing the forward pass with Dropout included is performed by using the follow-

ing procedure:

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 43

Figure 3.8: Error as a function of iteration steps for training and validation
set.

r
(l)
k ∼ Bernoulli(p),

ã
(l−1)
k = r

(l)
k a

(l−1)
k ,

z
(l)
j = w

(l)
jk ã

(l−1)
k + b

(l)
j ,

a
(l)
k = f(z

(l)
j).

For each layer we sample a Bernoulli random vector r(l), where each element of the

vector has a probability p of being 1, with the same size as the activation vector a(l−1)

from the previous layer. Element-wise multiplication is performed between r(l) and

a(l−1), which produces the thinned activation vector ã(l−1). Next we apply Equation 3.1

and 3.2 to obtain the output a(l). Figure 3.9 displays a possible configuration of the

network shown in Figure 3.1 when the Dropout procedure is applied. Note that nodes

in the input can be dropped but nodes in the output layer is always preserved.

At each training step, a thinned network is trained and the weights that remained

after Dropout are updated. For each training step, we might obtain a new, unique

network that is trained and updated. Dropout can interpreted as an ensemble method

where many different networks are combined. At test time we want to utilize the full

capability of the network, therefore we retain all units (p = 1) and scale the weights

such that w
(l)
test = pw

(l)
train before the test input is presented to the network. Also note

that determining the value for the hyperparameter p, the probability of retaining a

unit, depend on several factors. For the input layer, it depends on the input data.

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 44

Figure 3.9: A possible configuration of the network from Figure 3.1 when the
Dropout procedure is applied.

For real-valued data, like images or speech frames, p is usually chosen to be 0.8 [63].

This ensures that most of the information contained in the input is kept while still

introducing some noise to prevent overfitting. But for very low dimensional or sparse

input it might be necessary to set p equal to one, to keep the limited amount of

information in the input. For the hidden layers, the choice of p is associated with the

number of units in a given layer. A small value of p will result in the majority of units

being dropped, so the number of units must be large. But a large number of units can

make the network difficult to train that can lead to underfitting. A large value of p will

result in the majority of units being kept, which might lead to overfitting. However, a

common convention supported by empirical studies is to set p equal to 0.5 [63].

3.2.5 Transfer Learning

One of the key components to deep leanings success is the availability of very large

datasets, like the ImageNet dataset [65], which enable training of very deep models

with millions of parameters without overfitting. It was also discovered that these deep

models trained on large datasets learned filters that generalized well to other data as

well [66], and reusing these weights on different datasets is what we refer to as transfer

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 45

learning. But training a model on millions of images can take many days and require

costly hardware. A solution is to use publicly available, pretrained networks as the

basis for a new network and adjust the parameters based on the new data, a process

referred to as fine tuning. Such pretrained networks can be particularly useful in cases

where data is limited, or you have data that is similar to the data your network was

pretrained on. However, transfer learning is not always viable. Using a pretrained

network constrains the choice of architecture since the structure has to match the

network where weights are imported from. Another issue might arise if the new data

is too different from the original data.

3.2.6 Data Augmentation

Data augmentation is a technique to reduce overfitting by artificially increasing the

amount of training data. Such methods are especially popular when training CNNs

that mostly process images, since a wide range of image transformations are available.

Typical transformations include cropping, rotation, zoom, and shearing. Figure 3.10

displays an example where all the transformations mentioned above are applied. Note

that the transformations are applied randomly, except for the cropping that is always

applied. For example, an image can be rotated within a certain range specified by the

designer in advance. Since samples are presented to the network many times during

training and data augmentation is performed every time an image is presented the

network might see a new version at each iteration.

Data augmentation has shown to increase performance [67], but there is a limit to the

effectiveness of such techniques. Since the augmented training samples are obtained

from the original training data they are not statistically independent an does not have

a comparable effect to gathering more real data.

3.2.7 Batch Normalization

Batch Normalization [68] is a recent technique that aims to accelerate training of

DNNs by reducing internal covariate shift. Internal covariate shift refers to the fact

that the distribution of each layers input changes during training, as the parameters

of the previous layer changes. When a network grows deeper, these shifts can become

amplified, and the learning rate must be kept small to avoid large adjustments. But

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 46

Figure 3.10: Illustration of data augmentation procedure with images as in-
put. Rotation, zoom, and shearing are applied randomly a cropped region of the
original image. Note that the size of the transformed images shown below the
original image is not preserved in order to save space. Image obtained from [11].

a small learning rate slows down training considerably and might prevent the model

from finding a good minima. Batch Normalization aims to diminish the effect of

internal covariate shift by normalizing the input of each layer, such that the mean and

variance is approximately 0 and 1, respectively. In doing so, the gradient’s dependence

on the scale of the parameters is reduced which allows a higher learning rate without

divergence issues. Additionally, Batch Normalization can act as a regularizer since it

restricts the activations to a certain range.

For a layer l with kl units, the activation vector a(l) will be normalized by

â(l) =
a(l) − E[a(l)]√

Var[a(l)]
(3.52)

where the expectation and variance are computed over the training set. However,

since networks are often trained using mini-batches (see Appendix B.1), estimates of

the mean and variance are produced from each mini-batch. But by normalizing the

input, information about the absolute scale of activations is discarded, which limits the

networks ability to represent data. In [68], they exemplify this limitation by considering

the case where inputs to a sigmoid are normalized and not scaled or shifted, which

would result in the input being constrained to the linear range of the sigmoid. To

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 47

preserve information, two trainable parameters, γ(l) and β(l), are added to each layer

l that scales and shift the normalized activation vector in the following way:

ã(l) = γ(k)â(l) + β(k), (3.53)

where γ(l) and β(l) are of equal size as the activation vector. These normalized

activations are dependent on the mini-batch used to estimate the mean and variance.

However, during inference, the output should only depend on the input. There are two

approaches for estimating a mean and variance that can be utilized for model testing.

One approach is to use the population mean and variance during inference. Another

is to keep a running average of the mean and variance during training, which enables

monitoring of the accuracy during training.

The algorithm is illustrated by focusing on an activation vector a(l) and considering a

mini-batch B of size m,

B = {a(l)
1 , ..., a

(l)
m }.

Normalized values are denoted {â(l)
1 , ..., â

(l)
m } and their linear transformations are {ã(l)

1 , ..., ã
(l)
m }.

This transform is referred to as

BNα(l),β(l)(xi) : {a(l)
1 , ..., a

(l)
m } → {ã

(l)
1 , ..., ã

(l)
m },

and the algorithm is presented in Algorithm 1.

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a particular kind of DNNs designed to

process data in a grid-like structure, such as images. Traditional DNNs like the MLP

introduced in Section 3.1.1 consists of layers where all units in the previous layer

are connected to all units in the current layer and are commonly implemented using

matrix multiplication. Applying an activation function to the result of the matrix

multiplication creates a layer referred to as a fully connected layer. In CNNs we replace

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 48

Algorithm 1 Batch Normalizing Transform, applied to activation a(l) over a
mini-batch.

Input: Values of a(l) over the mini-batch B
Parameters to be learned: α(l),β(l)

Output: {ã(l)
i = BNα(l),β(l)(a

(l)
i)}

1: µB ←−
1

m

m∑
i=1

a
(l)
i % Mini-batch mean

2: σ2
B ←−

1

m

m∑
i=1

(a
(l)
i − µB)2 % Mini-batch variance

3: â
(l)
i ←−

a
(l)
i − µB√
σ2
B + ε

% Normalize

4: ã
(l)
i ←− α(l)â

(l)
i + β(l) ≡ BNα(l),β(l)(a

(l)
i) % Scale and shift

this matrix multiplication with a convolution operation in one or more layers. Applying

an activation function to the result of the convolution results in a convolutional layer.

This section will introduce the essential components of a CNN along with some key

ideas that CNNs benefit from.

3.3.1 Convolution

A convolution is an integral that expresses the overlap of two functions g and f as g

is shifted over f , defined as

s(t) = (f ∗ g)(t) =

∫
f(a)g(t− a)da (3.54)

or in the discrete case

s[t] = (f ∗ g)[t] =
∞∑

a=−∞

f [a]g[t− a]. (3.55)

A typical use of the convolution operation is to filter an image I using a kernel K,

often referred to as a filter, which requires computing the two-dimensional discrete

convolution, given by

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 49

s[i, j] = (I ∗K)[i, j] =
∑
n

∑
m

I[m,n]K[i−m, j − n]. (3.56)

Figure 3.11 displays an example where small filters for detecting horizontal and vertical

edges are applied to an image that produces two filtered images. In the context of

deep learning, such filtered image are commonly referred to as the feature maps.

Figure 3.11: Example of image convolved with simple edge detector filters.
From left to right: Original image, image filtered with horizontal edge detector
and image filtered with vertical edge detector. Original image obtained from

Scitkit-Image1.

A filter is applied to an image by considering a small neighbourhood and calculating the

weighted sum of the pixel values contained in this neighbourhood, where the weights

are dependent on the choice of kernel. This filter is initially placed in the upper-left

corner where the first weighted sum is calculated, where the resulting value corresponds

to the upper-left pixel in the feature map. This filter is then shifted to the right and

the process is repeated. For the example shown in Figure 3.11 the following kernels,

known as Sobel filters [69], were applied:

Kh =


1 0 −1

2 0 −2

1 0 −1

 , Kv =


1 2 1

0 0 0

−1 −2 −1

 ,
where Kh detects horizontal edges and Kv detects vertical edges. In this example,

the feature maps end up with the same size as the original image, but that is not

necessarily the case. There are three factors that affect the size of the feature map,

namely kernel size, stride, and zero-padding. Kernel size refers to the size of the

considered neighbourhood and is generally chosen as a square matrix of size (d, d),

where d is usually an odd number. Choosing d as an odd is to ensure that the filter

has a center, which will correspond to the pixel at the same position in the feature

1http://scikit-image.org/

http://scikit-image.org/

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 50

map. However, if the filter is placed in the upper-left corner to obtain a value for

the upper-left corner pixel it results in boundary issues since there are no pixels on its

left or above it. Such a scenario is shown on the left of Figure 3.12, where a 3 × 3

kernel is applied to a 6× 6 image, resulting in a feature map with both its height and

width reduced by two pixels. Solving this predicament is commonly done by padding

the border around the image with zeros, which does not affect the weighted sum but

ensure that the resolution is preserved. Displayed on the right of Figure 3.12 is an

example where a 3× 3 kernel is applied to a 6× 6 image, but with padding included,

resulting in a feature map of equal size as the original image. Also, note that a larger

kernel would require more zero-padding to keep the resolution of the input. Lastly,

one must also consider the number of pixels the filter is shifted, referred to as stride.

In the example shown in Figure 3.12, the resulting feature map would only have the

same size if the filter was shifted one pixel at the time. If the filter was shifted two

pixels after computing a weighted sum, it would result in a feature map with half the

size of the original image.

(a) Convolution without padding. (b) Convolution with padding.

Figure 3.12: Illustration of convolution operation with and without zero-
padding.

Taking all these factors into account, the size of a feature map can be calculated using

the following equation:

nout =
nin + 2p− k

s
+ 1, (3.57)

where nout is the number of output features, nin is the number of input features, p is

the amount of padding, s is the stride, and k is the size of the kernel. Determining

the kernel size, zero-padding and stride is an important part of network design that is

dependent on several details. A large stride might be desirable to reduce the resolution

and ease the computational burden when large images are concerned. Small images,

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 51

on the other hand, might require zero-padding to keep the images from becoming too

small to process. As for kernel size, small kernels like 3× 3 kernels are common since

they contain few parameters that allow more filters and deeper network. However,

large kernels have also seen use, particularly in early layers to reduce the size of the

feature maps [10].

3.3.2 Motivation

From the outset, it might not be obvious how convolution improves DNNs, but it is

a crucial component of networks designed for computer vision task. How convolution

improve DNNs is based on two central ideas. Firstly, convolution exploits the idea

that, particularly in images, local groups of values are often highly correlated and form

distinct patterns, detectable by small filters that consider local neighbourhoods. In

a fully connected layer, all pixels in the input image are connected to a single unit,

which produces the value for a single pixel. A convolutional layer only considers a

small neighbourhood around the pixel in question, referred to as sparse connectivity.

Figure 3.13 illustrates the difference between the two approaches when applied to a

small 6×6 image. In this example, a fully connected layer would require 36 parameters

to produce a single pixel value. Using convolution and considering a 3× 3 neighbour-

hood, only 9 parameters would be required to produce the same value. Secondly, local

regions in structured data (such as images) tend to be invariant to location, that is,

an edge is an edge regardless of where in the image it appears. As seen in Figure 3.11,

a small filter can be used to process an entire image. Returning to the example in

Figure 3.13, a fully connected layer would require 36 additional parameters for each

new pixel value. If a picture of equal size was to be produced, this would result in

36∗36 = 1296 parameters. A convolutional layer would use the same 9 parameters for

the entire image, an idea referred to as parameter sharing, thus reducing the number

of parameters needed significantly. Also, notice that a fully connected layer require

the number of inputs to be known, such that the number of weights can be specified.

This limits a fully connected layer to only processing images of equal size, while a

convolutional layer can tackle input of arbitrary size.

Convolution allows for deeper with fewer parameters, thus reducing the potential for

overfitting. Also, studies have shown that as a network grows deeper its performance

increases [53, 59]. The increase in performance is often explained by considering

how the data is transformed when processed by the network. As previously stated,

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 52

(a) Matrix multiplication. (b) Convolution.

Figure 3.13: Illustration of the difference between processing a 6 × 6 image
using matrix multiplication and convolution. For matrix multiplication, shown
on the left, 36 parameters are required to produce the value for the top-left
pixel of the feature map. If a feature map of equal size was desired it would
require 36 ∗ 36 = 1296 parameters. For convolution, showed on the right, only
9 parameters are required to produce the value for the top-left pixel of the
feature map. These 9 parameters would also be used to process the remaining
pixel values, thus dramatically reducing the number of parameters needed to

produce a feature map of equal size as the input.

the network tries to transform the data into a representation where discrimination is

optimal. Early layers of deep CNNs tend to learn simple filters that extract general

features such as edges [66]. Succeeding layers build upon these general features to

create a more complicated representation, obtaining what is known as a distributed

representation. However, this increased depth also brings challenges concerning model

training as a result of the vanishing gradient problem discussed earlier in this chapter.

To harness the true benefits of convolution it should be complemented by recent

innovations such as ReLUs and Batch Normalization.

3.3.3 Pooling

Another component that is often included in CNNs is pooling. A pooling function

replaces a region of a feature map with a summary statistic of said region. A common

choice is the max pooling function, which returns the maximum value within the region.

Other options are available, for instance, taking the average value of the region, but

max pooling is by far the most used pooling function in the context of CNNs. Because

the pooling operation is applied individually on each feature map the total number of

feature maps will remain the same before and after the pooling operation. Figure 3.14

illustrates the max pooling operation when applied to an image of size 4 × 4. The

image is separated into non-overlapping neighbourhoods of size 2 × 2, a stride equal

to 2 and each region is replaced by the maximum value of each neighbourhood, thus

reducing the size of the original image by 2.

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 53

Figure 3.14: Illustration of a 2 × 2 max-pooling operation with stride = 2
applied to a 4× 4 grid resulting in a new image of size 2× 2.

Pooling is motivated by a desire to make the representation approximately invariant

to small translations in the input. If a feature is present in the input image, we want

most of the pooled outputs to remain the same even if the feature is shifted slightly.

Pooling also has the effect of reducing the size of the feature maps, which reduces the

computational burden. However, in some cases, we might be concerned about small

shifts in the input which means that the amount of pooling must be considered in the

context of the problem at hand.

3.3.4 Architecture

As CNNs have been applied to an increasing amount of tasks so has the number

of different architectures also increased. Modern CNNs can consist of hundreds of

layers [70] with different tweaks and adjustments included to enhance performance.

With that in mind, we consider a simple network inspired by one of the first successful

CNNs to illustrate the structure of a typical CNN, namely the LeNet-5 [41], displayed

in Figure 3.15. LeNet-5 was originally used to classify grey-scaled, 28 × 28 images

of hand-written digits from the MMNIST dataset2, which is why the output layer is

shown to have ten output nodes, one for each digit. Images are commonly presented

to the network as a multidimensional-array on the form (N,C,H,W), where N refers

to the number of images, C refers to the number of channels in an image, H is the

height of an image and W is the width of an image. For the MNIST dataset, N can

be chosen by the designer, C is equal to 1, and both H and W is equal to 28.

The first layer of the network shown in Figure 3.15 is a convolutional layer, composed

of 6, 5×5 filters with a stride of 1 and no zero-padding. After an activation function is

applied to all pixels in the resulting feature maps, the output of the first convolutional

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 54

layer is a multidimensional-array on the form (N, 6, 26, 26). Following the first layer is

a pooling layer, where a 2× 2 max-pooling operation with stride equal to 2 is applied

to each feature map, which results in the feature maps from the second layer to have

the form (N, 6, 12, 12). Next follows another convolutional layer, consisting of 16,

5× 5 filters with a stride of 1 and no zero-padding that, after an activation function,

results in feature maps on the form (N, 16, 8, 8). Succeeding the third layer is another

pooling layer that, again, applies a 2 × 2 max-pooling operation with a stride equal

to 2, resulting in feature maps on the form (N, 16, 4, 4). The next layer is a fully

connected layer consisting of 84 units, which requires some modification of the feature

maps. Since fully connected layers process data through matrix multiplication, the

feature maps are converted from the form (N, 16, 4, 4) to the form (N, 16 ∗ 4 ∗ 4).

After matrix multiplication and an activation function the resulting features are on the

form (N, 84). Finally, the last layer of the network is a fully connected layer consisting

of 10 units, one for each digit, where the output of these units is passed through

a softmax function. Computing the cost is done with the MSE cost function, and

training is performed using the backpropagation algorithm and gradient descent.

Figure 3.15: Architecture inspired by the LeNet-5 [41]. Each convolutional
layer performs convolution with the input and applies an activation function.
Each pooling layer performs max-pooling using a 2× 2 kernel with stride equal
to 2. Fully connected layers consists of matrix multiplication followed by an
activation function. At the end of the network, a softmax function is applied.

From the preceding description one should have a general idea of how a CNN works,

but some aspect of the network might still seem arbitrary. Why is the number of

filters and units chosen as they are? Why are there two convolutional layers and

three or more? Should convolutional layers always be followed by pooling layers and

why do these pooling layers always reduce the resolution by a factor of 2? At this

point, DNNs lack the theoretical framework to answer such questions accurately, and

2http://yann.lecun.com/exdb/mnist/

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 55

network architectures are usually chosen empirically by evaluating networks on different

datasets.

3.4 Fully Convolutional Networks

Early CNNs achieved impressive results on both object classification and detection

tasks, but there was no obvious way they could perform tasks where each pixel had a

corresponding label, such as semantic segmentation. As a result of the pooling layers

commonly applied in CNNs, the resolution of the feature maps is gradually decreased

throughout the network. The decrease in resolution leave the feature maps with fewer

pixels than the labeled image, making per-pixel predictions difficult. However, a recent

extension to CNNs referred to as Fully Convolutional Networks (FCNs) are particularly

suited to tackle per-pixel prediction problems [9]. FCNs employ an encoder-decoder

architecture and are capable of end-to-end learning. The encoder network consists of

one or more encoders that extract useful features from an image and maps it to a low-

resolution representation. The decoder network consists of one or more decoders that

are tasked with mapping the low resolution representation back into the same resolution

as the input image. This section will look closer at the different components needed

to construct FCNs.

3.4.1 Encoder Network and Decoder network

Similar to ordinary CNNs, the encoder network of FCNs is tasked with extracting useful

features from the input and mapping it to a low-resolution representation. An encoder

network consists of one or more encoders, where each encoder is comprised of one

or more convolutional layers. Feature maps within a single encoder are usually zero

padded such that the resolution remains constant within the encoder, but an encoder

is commonly followed by a pooling layer that reduced the resolution of the feature

maps. Only decreasing the resolution in the pooling layers provides clarity as to how

much the resolution has been decreased throughout the encoder, which is helpful when

recovering the original resolution.

To enable per-pixel prediction the low-level representation provided by the encoder

network must be mapped into the same resolution as the original image. This task

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 56

is performed by the decoder network, which consists of one or more decoders. Each

decoder is comprised of one or more convolutional layers and an upsampling layer at the

end of the decoder. This upsampling layer is tasked with increasing the resolution of

the feature maps, which can be achieved in several ways, some of which are presented

in the following subsection.

3.4.1.1 Upsampling

Increasing the resolution of an image requires interpolating values for pixels that are

not in the original image, based on pixels in the original image. One widely used

method is nearest-neighbour interpolation, where a new pixel is assigned the same

value as the nearest point. Nearest-neighbour’s strength lies in its simplicity, but it

is known to produce pixelated images when used for upsampling of image. Another

popular method is bilinear interpolation, where a new pixel is assigned a value based

on a weighted average of nearby pixels. For instance, given four pixels with values

(x1, y1), (x1, y2), (x2, y1) and (x2, y2) and a new pixel with unknown values (x, y),

bilinear interpolation would determine its value by calculating

(x, y) =
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

] [(x1, y1) (x1, y2)

(x2, y1) (x2, y12

][
y2 − y
y − y1

]
.

In contrast to nearest-neighbour interpolation, bilinear interpolation can create new

values for pixels and therefore generate a smoother looking image after upsampling.

However, it does come at the cost of performing a number of calculations, which can

be demanding for large image data. A third option is known as transposed convolu-

tion, an approach that is often employed in FCNs [9, 71, 72]. Transposed convolution

performs ordinary convolution, but by controlling the kernel size, padding and stride

of the operation we can increase the resolution of the image. A new pixel is therefore

assigned a value based on the weighted sum of nearby points and the weights of the

kernel. Compared to nearest-neighbour and bilinear interpolation, which is constant,

transposed convolution has the advantage that it can learn the weights for the upsam-

pling procedure, thus providing greater flexibility. Nevertheless, this introduces more

parameters to the network, which might lead to overfitting. Empirical evaluation of the

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 57

different methods has shown that using transposed convolution for upsampling in FCN

improve performance and is generally the approach employed in most FCNs [9, 72].

3.4.2 Architecture

As with CNNs, a variety of FCNs have been developed with different modifications and

adjustments. To illustrate the general structure of FCNs we consider one of the first

and most basic networks, namely the FCN-32, displayed in Figure 3.16. The encoder

network is composed of five encoders, each followed by a pooling layer. Each encoder

applies convolution followed by an activation function, where the two initial encoders

repeat convolution followed by activation function twice, and the three succeeding

encoders apply convolution followed by activation function three times. Each pooling

layer applies a max-pooling function with a 2×2 neighbourhood with a stride equal to

two, thus reducing the resolution by a factor of two for each encoder, and by a factor

of 32 in total.

The decoder network consists of only a single decoder, made up of two convolutional

layers and followed by an upsampling layer. Upsampling is performed using transposed

convolution, where the resolution is increased by a factor of 32, hence the name FCN-

32. These feature maps are then passed into a softmax function to obtain the final

prediction of the network.

3.5 Uncertainty and Interpretability in DNNs

Despite DNNs success on a large variety of computer vision tasks they are not without

flaws. Most deep models are unable to represent the uncertainty associated with

their predictions and they give no indication as to which features are affecting their

decisions. These limitations have not stopped deep learning from being the tool of

choice for tasks like facial recognition and machine translation, but such impediments

are more problematic if deep learning aims to make a difference in the medical field. A

physician will be reluctant to make a diagnosis based on a singular prediction with no

notion of uncertainty or indication of which features the prediction is based on. This

section introduces several recent methods that address exactly these issues.

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 58

Figure 3.16: Illustration of the Fully Convolutional Network-32 architecture
from [9]. Images are obtained from [73]. Color code description:

Red: Pooling.
Green: Soft-max.

Yellow: Upsampling.
Blue: Convolution, Batch Normalization and ReLU.

3.5.1 Uncertainty Estimation

Uncertainty modeling is a crucial component of any model, deep or not. Determining

how confident a model is can bolster trust in high certainty cases or allow experts to

asses special cases with high uncertainty. For example, when segmenting colorectal

polyps, a model might output some uncertainty measure to accompany its predic-

tion, which physicians could use to judge if a case requires further investigation before

making a diagnosis. For network designers, determine which cases result in high un-

certainty predictions can provide valuable information about the model. For instance,

if a model classifies an object correctly but fails after the object is rotated, one might

include data augmentation to artificially inflate the number of rotated examples in the

training set. Or if the model consistently struggles with one particular kind of cases it

would indicate which kind of data is lacking in the training set.

Unfortunately, deep learning based models do not have any inherent notion of uncer-

tainty. Although the softmax output at the end of the network is often treated as

model confidence this is generally ill-advised [74]. A simple example that illustrates

the limitations of treating the softmax output as model confidence is to consider a

network trained to classify an image as containing a cat or a dog. If this network is

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 59

given an image showing a car, the softmax output might still indicate high confidence

for one of the classes when it should have produced a low probability for both classes

or indicate a high degree of uncertainty. However, a recently proposed framework

offers a simple approach to the problem of uncertainty modeling inspired by Bayesian

probability theory [74, 75].

Bayesian models are accompanied by an intrinsic notion of uncertainty provided by the

mathematical framework that Bayesian probability theory is built upon. To evaluate

the probability of a hypothesis, such as the value of a parameter, a Bayesian approach

would be to assign a prior probability for the hypothesis and then update it to a

posterior probability as new data is presented. Updating the posterior is done using

Bayes’ rule that can be expressed as

P (H|D) =
P (D|H)P (H)

P (D)
, (3.58)

where H represents the hypothesis and D represents the data. The term P (D|H) in

Equation 3.58 is known as the likelihood function and expresses the probability of the

observed data, given that the hypothesis is true. A likelihood function is chosen by

assuming some model based on knowledge about the data. The term P (H) is referred

to as the prior probability and describe our prior knowledge about the data. The term

P (D) is known as the marginal probability of the data, a term that is often omitted,

in that case Bayes’ rule takes the following form

P (H|D) ∝ P (D|H)P (H). (3.59)

The marginal distribution of the data is something we are given thus it does not depend

on the hypothesis we wish to investigate and only acts as a normalizing constant, which

is why it is often excluded. Lastly, the left side of Equation 3.58 is called the posterior

distribution and, as mentioned, indicates the probability of the hypothesis after the

data has been examined.

To see how a Bayesian approach would provide a notion of uncertainty to neural

networks, we first revisit how a typical neural network solves a task. Given a dataset

X = {x1, ...,xN} and the corresponding labels Y = {y1, ...,yN}, the task is to find

a function f : X → Y using some parameters θ. Finding this function would be

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 60

done using the procedure we have outlined throughout this chapter, by designing a

neural network and finding the parameters of the network using backpropagation and

gradient descent. Using the trained network on a new input vector, x∗, to predict the

label vector, y∗, would amount to a forward pass through the network ŷ∗ = f(x∗; θ)

using the parameters found during training of the network. But using a fixed estimate

for θ ignores the uncertainty associated with the parameters, which could result in

a function that produces more extreme predictions than is probable. For a Bayesian

neural network, the predictive distribution is given by

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,θ)p(θ|X,Y)dθ. (3.60)

The first term of Equation 3.60, p(y∗|x∗,θ), is just the output of the network after

applying the softmax function, that is p(y∗|x∗,θ) = Softmax(f(x∗;θ)). The second

term, p(θ|X,Y)dθ, is the posterior of the parameters and can be written as

p(θ|X,Y) ∝ p(Y|X,θ)p(θ) (3.61)

We recognize p(θ) as the prior distribution of the model parameters and by revisiting

our assumptions about the distribution of the parameters from Section3.2.2 it is natural

to assume a Gaussian prior distribution, p(θ) ∼ N (0, I). However, there is no natural

choice for the likelihood function, which means that the integral in Equation 3.60

must be evaluated numerically through Monte Carlo integration. But, evaluating the

posterior to find plausible model parameters is computationally intractable, so instead

we replace the posterior with an approximate variational distribution q(θ) that is simple

to evaluate. Using q(θ) we obtain a new, approximate predictive distribution given by

q(y∗|x∗) =

∫
p(y∗|x∗,θ)q(θ)dθ. (3.62)

Nevertheless, this begs the question, how to choose q(θ)? The idea put forth in [74]

was to utilize the Dropout procedure presented in Section 3.2.4 in order to sample

from q(θ). Assuming that θ = {Wi}Li=1, i.e. the weights of a neural network with L

layers (biases could be incorporated but omitted for clear notation), we wish to sample

plausible weights from the approximate variational distribution. Recalling the Dropout

procedure, we sample a set of vectors, {ri}Li=1 ∼ Bernoulli(p), each with similar size

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 61

as the weights of the corresponding layer. By taking the Hadamard product, denoted

by ◦ between the weights of each layer and their corresponding Bernoulli vector we

obtained a new set of weights

{Ŵi}Li=1 = {Wi ◦ ri}Li=1. (3.63)

By sampling T sets of {ri}Li=1 we can obtain T sets of sampled weights that can be

used in the approximate predictive distribution from Equation 3.60 by

q(y∗|x∗) =
1

T

T∑
t=1

Softmax(f(x∗; Ŵt)) (3.64)

Practically, Equation 3.64 amounts to performing T forward passes and gathering the

results, which in turn can be used to estimate mean and uncertainty of the prediction.

The authors [74] referred to this method for approximating samples from the predictive

distribution as Monte Carlo Dropout.

We utilize Monte Carlo Dropout to estimate the uncertainty in FCNs polyp predictions,

producing novel uncertainty maps in the context of semantic segmentation of colorectal

polyps. In Section 5.3 of Chapter 5 we present the results of this uncertainty estimation.

3.5.2 Interpretability

Understanding what influences the prediction of a model is not only crucial for building

trustworthiness, it can also be helpful for analyzing the shortcomings of a network. For

instance, if we notice that a model can detect an object at some position but fails

if the object is rotated, we might be encouraged to perform data augmentation to

artificially inflate the train set with rotated examples. Interpretability, or rather the

lack of it, has been one of the main criticisms directed at DNNs and they have often

been accused of being ”black boxes” [76], capable of high performance but with no

possibility to understand its inner workings. Such criticism is certainly justified to some

degree, but recent works have started addressing the lack of interpretability in DNNs.

One of the first approaches used a deconvolutional network to visualize what features

the network deemed important for a particular prediction [66] . Aided by this new

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 62

technique they won the ILSVRC3 in 2013 and opened the door for more interpretable

DNNs. Nevertheless, deconvolutional networks are known to produce visualizations

that can, in some cases, be difficult to interpret and can be complicated to construct.

Therefore, this thesis will concentrate on a different approach that utilizes the gradients

of the network prediction with respect to the input feature map to visualize what the

network considers important; a technique first explored in the context of DNNs in [77].

One can think of this as a way of examining which pixels need to be changed the least

to affect the prediction the most since those pixels should have the greatest impact on

the prediction. Gradient-based visualization techniques are less complicated and can,

with certain modifications, produce distinct visualizations of important features for the

model. As a motivational example4, consider a linear score model for the class c:

Sc(I) = wT
c I + bc , (3.65)

where Sc is a score function for class c, I is an image represented on vector-form(one-

dimensional), wc is the weight vector of the model and bc is the bias of the model,

respectively. By inspecting Equation 3.65 it is possible to see that the magnitude of

different elements of wc affect how important the model considers a pixel of the image

I for the class c. If each pixel is evaluated an image visualizing the importance of each

pixel to that class can be constructed, called a class saliency map. However, in the

context of DNNs, the score function Sc would be the output of the network, which is

a highly non-linear function of I, making such interpretations very difficult. But Sc(I)

can be approximated with a linear function in the neighbourhood of an image I0 by

computing the first-order Taylor expansion:

Sc(I) ≈ wT I + b, (3.66)

where w is the derivative of Sc with respect to the image I at the point I0:

w =
∂Sc
∂I

∣∣
I0
. (3.67)

3http://www.image-net.org/challenges/LSVRC/
4Inspired by Section 3 of [77].

http://www.image-net.org/challenges/LSVRC/

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 63

From Equation 3.67 one can obtain the class score derivatives for the given image, and

one can interpret the magnitude of these derivatives as indicators of each input pixels

importance. Obtaining the derivatives from Equation 3.67 is done using the backprop-

agation algorithm. Constructing saliency maps is done by presenting an image the

trained network that produces a score. Note that, the softmax function is not applied

when these maps are computed. This is to preserve the relative magnitudes of the class

scores, which will give more a distinct indication as to what pixels are important. Next,

the gradients from Equation 3.67 are computed using the backpropgation algorithm.

If the gradients are propagated all the way back to the beginning of the network we

end up with similarly shaped gradients as the original image, such that the magnitude

of each element of the gradients indicate the importance of the corresponding element

in the input image. Images are often presented in RGB form, so the gradients will also

have three channels. To obtain a single number for a pixels importance we take the

maximum across the color channels, resulting in an image with the same height and

width as the original image but with only a single channel.

Figure 3.17 display an example where the procedure just described has been applied

to a CNN tasked with classification. In this specific example, the network is presented

with an image containing a dog, shown at the top of Figure 3.17, and computes a

score for the given image. From this score vector we extract the score for the class in

question, in this case, the dog class that is used to compute the gradients. The image

displayed at the bottom of Figure 3.17 indicates what pixels are deemed important by

the network to assign this image to the dog class. It shows of background pixels are

irrelevant to the prediction while pixels associated with the dog is considered important.

Accompanying network predictions with visualization of discriminative features increase

model interpretability and bolster the trustworthiness of deep networks. Furthermore,

saliency maps can be consulted in poor prediction cases to asses what features caused

the confusion.

3.5.2.1 Guided Backpropagation

Saliency maps are easy to compute and give insight into the networks inner workings,

but there are difficulties associated with the approach. Consider the following feature

map from layer l − 1 of some network

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 64

Figure 3.17: Example obtained from [77] that illustrates what pixels a network
deems important. Top image display an image belonging to the dog class and
the bottom image is saliency map constructed by propagating the gradients

associated with the top image backward through the network.

f (l−1) =


1 −1 5

2 −5 −7

−3 2 4

 . (3.68)

Assuming ReLU will produce the following activation in layer l − 1

max
(
f (l−1), 0

)
=


1 0 5

2 0 0

0 2 4

 , (3.69)

and the following derivative for layer l − 1

max
(
f (l), 0

)′
=


1 0 1

1 0 0

0 1 1

 . (3.70)

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 65

Next, assume that the error of the succeeding layer l is found to be

e(l) =


−2 3 −1

6 −3 1

2 −1 3

 . (3.71)

Combining the results from Equation 3.70 and 3.71 with Equation 3.12

δ(l−1) = max
(
f (l−1), 0

)′ ◦ e(l) =


−2 0 −1

6 0 0

0 −1 3

 , (3.72)

where ◦ denotes the Hadamard product. Equation 3.72 shows that both negative and

positive gradients are propagated backward through the network, where positive gradi-

ents are associated with discriminative features and negative gradients are associated

with features that should be suppressed. Both negative and positive gradients are im-

portant during the optimization procedure but not necessarily during network analysis.

We are concerned about the features that the network deems important, which means

that negative gradients might contribute to noisier visualizations. A recent technique

that address the problem of noisy visualizations is Guided Backpropagation [78], which

propose to impute the gradient such that only positive gradients flow backward through

the network. Consider Equation 3.72 again, but with negative gradients zeroed out:

δ(l−1) = max
(
f (l−1), 0

)′ ◦ e(l) ◦ (e(l) > 0) =


0 0 0

6 0 0

0 0 3

 , (3.73)

Comparing Equation 3.72 and 3.73 it is straightforward to see that fewer values are

propagated backward through the network, which should provide more distinct visual-

izations of discriminative features. Implementation of Guided Backpropagation follows

the same procedure as for saliency maps, but the backward pass of the trained net-

work is modified such that negative gradients are canceled out. To provide further

comparison we present an example from [78], shown in Figure 3.18 that exemplify the

difference between deconvolutional networks, saliency maps, and Guided Backpropa-

gation. Notice how both the results produced through a deconvolutional network and

Chapter 3: Deep Neural Networks and Convolutional Neural Networks 66

the saliency map highlight a large number of features while Guided Backpropagation

single out some important features located in the center of the image.

Figure 3.18: Example obtained from [78], which illustrate the difference be-
tween saliency maps (backpropagation), deconvolutional networks (deconvnet)

and Guided Backpropagation. From left to right

We utilize Guided Backpropagation to determine which features in the input motivate

a FCN to produce a particular prediction, resulting in novel interpretability maps in the

context of semantic segmentation of colorectal polyp. In Section 5.4 of Chapter 5 we

present the result of this Guided Backpropagation procedure.

Chapter 4

Innovations and Network Details

Chapter 3 provided the theoretical foundation required to grasp deep models and

several techniques associated with increasing our understanding of such models. In

this chapter, we propose several novel methods that aim to improve our understanding

even further. Additionally, we give a detailed description of the models employed in

this thesis and outline the modifications we propose in order to improve these models.

4.1 A Proposed Method for Estimating Gradi-

ent Uncertainty

In Section 3.5.1 of Chapter 3 we discussed DNNs inability to produce any notion of

uncertainty and described Monte Carlo Dropout that provides a method to obtain

approximate measures of uncertainty for DNNs by utilizing dropout during inference.

Accompanying a model’s prediction with an uncertainty estimate add options to assess

if a particular prediction is highly certain or a case that could require further analysis

from a human expert. In Section 3.5.2 of Chapter 3 we described Guided Backpropa-

gation, a technique developed to visualize the relative importance of input features for

CNNs by considering the positive gradients from a backward pass through the network.

But, determining the importance of the input features based on gradients from a single

backward pass runs into the same problems we discussed regarding decisions based on

predictions from a single forward pass. How confident are we that these features are

important for the decision of the network?

67

Chapter 4: Innovations and Network Details 68

To determine the uncertainty associated with input feature’s importance we propose

a novel approach inspired by Monte Carlo Dropout combined with Guided Backpropa-

gation. Given a new sample x∗, we want to find the gradients that correspond to the

input features, denoted by δ0. Taking a similar approach as in Section 3.5.1 of Chap-

ter 3, the approximate predictive distribution for the gradients of the input features is

given by

q(δ0|x∗) =

∫
p(δ0|x∗,θ)q(θ)dθ. (4.1)

Calculating p(δ0|x∗,θ) is done through the backpropagation algorithm described in

Section 3.1.2 of Chapter 3, i.e. computing the gradients with respect to the output

of the network and then using the chain rule to work backward toward the input

gradients. Also, we want to modify the backward pass such that negative gradients

are canceled, following the Guided Backpropagation procedure. For clear notation,

we denoted this procedure as ∇θfgb(x∗;θ), where ∇θ indicated finding the gradients

of each layer with respect to the parameters of the network and fgb(x
∗;θ) is the

prediction of the model with the modified backward pass. Again, we assume that

θ = {W}Li=l is the set of weights of a neural network with L layers, sample a set

of vectors {ri}Li=1 ∼ Bernoulli(p) and take the Hadamard product {W ◦ ri}Li=l to

obtain a sampled set of weights from the network. Sampling T sets of weights give

the following approximate predictive distribution for the gradients of the input features

q(δ0|x∗) =
1

T

T∑
t=1

∇fgb(x∗; Ŵt). (4.2)

In practice, this amount to performing T forward and backward passes with dropout

applied and storing the gradients, a method we refer to as Monte Carlo Gradients.

We utilize Monte Carlo Gradients to estimate the uncertainty of which features in the

input motivate a FCN to produce a particular prediction, resulting in novel gradient

uncertainty maps. In Section 5.5 of Chapter 5 we present the result of the Monte

Carlo Gradients procedure.

Chapter 4: Innovations and Network Details 69

4.2 Towards Analysis of FCNs Through Infor-

mation Theoretic Learning

Up until now, we have considered several approaches to address the lack of methods

for analyzing DNNs that have focused on network gradients or a Bayesian approach to

DNNs. Yet, recent works have begun examining the possibility of understanding DNNs

through the lens of information theory and Information Theoretic learning (ITL) [79–

84]. Information theory was originally proposed by Claude Shannon and studies the

properties of data using measures such as entropy and mutual information [85]. In

information theory, entropy also referred to as Shannon entropy, is a measure of the

uncertainty associated with a random variable and defined as

H(X) = E[−logb(P (X))] (4.3)

where X is discrete random variable with possible values {x1, ..., xn} and P (X) is the

probability mass function. Mutual information is a measure of the mutual dependence

between two variables and can be expressed as

I(X;Y) = H(X) +H(Y)−H(X, Y), (4.4)

where Y is discrete random variable with possible values {y1, ..., ym}, H(X) is the

entropy of X, H(Y) is the entropy of Y and H(X, Y) is the joint entropy of X and

Y defined as

H(X, Y) = −
n∑
i=1

m∑
j=1

P (xi, yi)logb(P (xi, yi)), (4.5)

where P (xi, yi) is the joint probability of the values xi and yi occurring together.

Another quantity that often occurs in information theory is the conditional entropy,

defined as

H(Y |X) =
n∑
i=1

m∑
j=1

P (xi, yi)logb

(P (xi)

P (xi, yi)

)
. (4.6)

Chapter 4: Innovations and Network Details 70

The units of the different quantities are determined by the base of the logarithm,

denoted as b in Equation 4.3, 4.5 and 4.6, which is usually chosen to be 2, resulting in

the various quantities being measured in bits. Figure 4.1 displays a diagram with the

different information quantities and the relationship between them. The red circle to

the left represents the entropy of the random variable X while the yellow circle to the

right represents the entropy of the random variable Y. The total region covered by the

two circles represent the joint entropy while the non-overlapping regions of the circles

are the conditional entropies. In the overlapping region between the two circles we

find the mutual information between the two random variables, represented in orange.

The theory of Shannon was originally developed based on discrete random variables,

but was eventually extended to include continuous random variables [86].

I(X; X)H(X|Y) H(Y |X)

H(X,Y)

H(X) H(Y)

Figure 4.1: Diagram illustrating mutual information. The red circle to the
left represents the entropy of the random variable X while the yellow circle to
the right represents the entropy of the random variable Y . The total region
covered by the two circles represent the joint entropy while the non-overlapping
regions of the circles are the conditional entropies. In the overlapping region
between the two circles we find the mutual information between the two random

variables, represented in orange.

One of the first works on analyzing DNNs using information theory investigated the

role of learning in deep architectures [80] by analyzing the information plane of the

network. The information plane refers to the plane of the mutual information values

that layer preservers on the input and output variables, i.e. compute I(X,Hl) and

I(Y,Hl), where Hl refer to the lth layer of a network with L layers treated as a random

variable, and plot I(X,Hl) vs I(Y,Hl) for all layers. They showed that most of the

training procedure is spent on compression of the input into a useful representation

and not on fitting the training labels and that overfitting only occurs when the training

error becomes small. However, following their findings a discussion submerged that

questioned if the results generalized to arbitrary networks [87], which suggest that

Chapter 4: Innovations and Network Details 71

further studies are needed. Nevertheless, they opened the door toward a new approach

for analyzing DNNs with many promising directions going forward.

Another promising approach proposed during the last couple of months is using ITL [88]

for analyzing DNNs [83]. As an extension to Shannon-based information theory, ITL

employs Renyi’s α-entropy [89] and Parzen windowing [90] to estimate information

quantities. Renyi’s α-entropy is defined as

Hα(p) =
1

1− α
log

∫
pαX(x)dx (4.7)

where pX(x) is the probability density function of the random variable X generating

the data set D = {x1, ..., xN}. Modelling pX(x) in the ITL framework is usually done

in a non-parametric fashion using Parzen window density estimation, given by

p̂X(x) =
1

N

∑
x,∈D

κσ(x,xt). (4.8)

In Equation 4.8, κσ(x,xt) is know as the Parzen window, or kernel, centered as xt with

the width of the window controlled by the parameter σ. Note that for p̂X(x) to be a

proper density κσ(x, ·) must also be a density function [91], where a typical example

of such a kernel is the Gaussian kernel Gσ(·) (Equation 2.23 from Section 2.1.2.1 of

Chapter 2). Generally in machine learning, and particularly in deep learning, features

often live in a high-dimensional space and few samples are available that can make

density estimation difficult. However, α = 2 gives rise to what is know as Renyi’s

quadratic entropy given by

H2(p) = −log

∫
p2X(x)dx, (4.9)

which, when combined with Parzen window density estimation, yield a convenient ex-

pression for the estimated entropy. Assuming a Gaussian kernel Gσ(·) with standard

deviation σ for the Parzen window in Equation 4.8 and plugging the estimated prob-

ability distribution function into Equation 4.9 gives the following estimate for Renyi’s

quadratic entropy:

Chapter 4: Innovations and Network Details 72

Ĥ2(x) = − log

∞∫
−∞

(1

N

N∑
i=1

Gσ(x− xi)
)2
dx

= − log
1

N2

∞∫
−∞

(N∑
i=1

N∑
j=1

Gσ(x− xi)Gσ(x− xj)
)
dx

= − log
1

N2

N∑
i=1

N∑
j=1

∞∫
−∞

Gσ(x− xi)Gσ(x− xj)dx

= − log
(1

N2

N∑
i=1

N∑
j=1

Gσ
√
2(xi − xj)

)
. (4.10)

To obtain this result, notice that the integral of the product of the two Gaussian in the

third line of Equation 4.10 is exactly evaluated as the value of the Gaussian computed

at the difference of the arguments and whose variance is the sum of the variances of

the two original Gaussian functions. In practice, this means that estimating Renyi’s

quadratic entropy can be done by only considering pairs of samples, thus avoiding the

potentially difficult high dimensional density estimation that would have been necessary

if we wanted to estimate Shannon or α-Renyi entropy for all x. From this quadratic

entropy, we can go on to find mutual information and other quantities that allows for

further analysis.

However, the last couple of months have seen the development of an alternative ap-

proach to entropy estimation that bypass the probability density estimation but still

wield the ITL framework [92]. The authors of [92] wanted to define an entropy mea-

sure directly from data, which they achieved by defining functionals on matrices with

certain properties. For a function to be considered a measure of entropy, it must fulfill

a set of axioms provided by Renyi [89] that the authors of [92] reformulated to be suit-

able for matrices. They could then describe matrices that would result in functionals

that can be considered measures of entropy. To obtain these matrices, they evaluate

a kernel κσ(·, ·) on all pairs of data points, where the kernel must be positive definite

and also infinitely divisible [93]. Given a data set D = {x1, ...,xN}, we obtain a Gram

matrix K by evaluating κσ(·, ·) on all pairs of samples and can be utilized to define

a quantity with properties similar to those of an entropy functional but without the

need to estimate any probability density function. Explicitly, a matrix-based analogue

to Renyi’s α-entropy for a normalized positive definite matrix A of size N ×N can be

Chapter 4: Innovations and Network Details 73

given by the functional

Sα(A) =
1

1− α
log2

(N∑
i=1

λi(A)α
)

(4.11)

where λi(A) denotes the i-th eigenvalue of A, a normalized version of K:

Aij =
1

N

Kij√
KiiKjj

. (4.12)

We can now go on to define a matrix-based equivalent for the joint-entropy, defined

as:

Sα(A,B) = Sα

(A ◦B

tr(A ◦B)

)
. (4.13)

Utilizing Equation 4.11 and 4.13 we can obtain an analogous quantity to the mutual

information from Equation 4.4 expressed as

Iα(A; B) = Sα(A) + Sα(B)− Sα(A,B), (4.14)

which allows us to estimate the mutual information between two random variables via

their gram matrices without estimating any probability density functions. However,

there is still the matter of determining a kernel width (σ) that captures the structure

of the data. One method for selecting the kernel width is using Silverman’s rule of

thumb [94], defined as

σ = h× n−1/(4+d) (4.15)

where n is the number of samples, d is the dimensionality of the samples and h is an

empirical value determined by evaluating the data. An alternative, empirically based

approach is to consider the mean distance from each data point to its five nearest

neighbours to determine the kernel width [95].

In [81] they put this novel ITL framework to use and examined the information plane

Chapter 4: Innovations and Network Details 74

of an autoencoder, a particular kind of DNN designed for unsupervised learning. As

in [80] they investigate the information plane of the input/output and the hidden layers,

but by utilizing the matrix based entropy approach they could investigate much deeper

models and more complex datasets. Another recent work investigated CNNs [84] using

ITL in a similar fashion as in [81]. Figure 4.2 displays a simple MLP to illustrate how

we would utilize an ITL framework for network analysis. The simple MLP consists of

an input layer, two hidden layers and an output layer, where the output of each layer

is treated as a random variable denoted by X, H1, H2 and Y , respectively. We pass

N samples through the network that produce N realizations of each random variable

and evaluate a kernel k on all pairs of realizations to produce four matrices, KX ,

KH1 , KH2 and KY of size N × N . Using Equation 4.12 we normalize each matrix

to obtain AX , AH1 , AH2 and AY and estimate the entropy of each random variable

using Equation 4.11 that in turn is used to estimate the mutual information between

all layers of the network.

We propose here to extend the ITL framework for FCNs. To do so, we need to

address certain obstacles. Experiments performed in [81] and [84] were deeper and

more complex than those used in [80], but are still fairly small compared to many

FCNs that commonly have over twenty layers. The increased complexity of FCNs

can produce computational difficulties, particularly for large images. Therefore, we

propose to consider the encoders and the decoders of the network as random variables

instead of each layer, thus reducing the number of entropy estimates. Also, in [84]

they validate the Data Processing Inequality (DPI) [86], which states that for any three

random variables that form a Markov chain X → Y → Z,

I(X;Y) ≥ I(X;Z). (4.16)

For a neural network, Equation 4.16 tell us that, for instance, the mutual information

between the input and the first layer should be equal or larger than the mutual in-

formation between the input and any layer succeeding the first layer. However, FCNs

often include skip connections between encoders and decoders, which means that the

DPI is not necessarily valid.

We utilize this proposed ITL framework as a novel approach for analyzing FCNs and

for investigating the DPI. The result of our evaluation is presented in Section 5.6 of

Chapter 5.

Chapter 4: Innovations and Network Details 75

Figure 4.2: Figure displays an example of mutual information setup for a
simple MLP, where each layer is treated as a random variable and we investigate

the mutual information between all layers.

4.3 Network Details and Proposed Improvement

Deep learning research is progressing at a rapid speed with model development and

improvements occurring regularly. A recent model might improve the state-of-the-art

on a certain task but find no improvement on another, which makes deciding on a

model a process of trial and error. Coupled with the number of available architectures

and the required training time, the choice of model can become an arduous task. With

this in mind, we chose to employ three established networks that have similar encoders

but tackle the upsampling procedure differently, providing a diverse foundation of

established deep models for developing DSSs for the task of polyp segmentation. Note

that our implementation of the networks tries to be as faithful as possible to the original

Chapter 4: Innovations and Network Details 76

model, but some modifications are made to include recent techniques or adjustment to

suit the data. Such adjustments will be addressed in the description of each network.

We would also like to add that we evaluate all models presented in this section on the

task of semantic segmentation of colorectal polyps. The result of this evaluation is

presented in Section 5.2.1 of Chapter 5.

4.3.1 Fully Convolutional Network

As mentioned in Chapter 3, Fully Convolutional Networks were introduced to tackle

per-pixel prediction problems such as semantic segmentation. In [9] they proposed sev-

eral architectures, where the most basic one was the FCN-32 displayed in Figure 3.16.

Similar for all the architectures is the encoder network, which is based on the VGG-

16 [59] and consists of five encoders. Each encoder performs convolution followed by

Batch Normalization and a ReLU, a process that is repeated several times to produce

a set of feature maps. Following each encoder is a 2× 2 max-pooling operation with

stride equal to two. In the VGG-16, the last encoder is composed of fully connected

layer, but as discussed in Section 3.4, such layers are limited by their inability to process

image of arbitrary size. Therefore, the fully connected layers at end of the VGG-16 is

replaced with convolutional layers similar to the preceding encoders, which make up

the only decoder of this network. The decoder network performs transposed convo-

lution on the feature maps produced by this decoder to recover the resolution of the

input feature maps. For the FCN-32, the output of the decoder is directly upsampled

by a factor of 32 and then passed into a softmax function.

However, upsampling directly from last feature map of the encoder network limited

the scale of detail in the final prediction. This problem was addressed by adding skips

between the encoder network and the decoder network, thus providing features of dif-

ferent scales to produce the final prediction. Feature maps from the first encoder are

upsampled by a factor of two and then summed with the feature maps of the final

encoder, after that they are processed by an additional convolutional layer. If these

feature maps are upsampled by a factor of 16, the FCN-16 displayed in Figure 4.3a is

produced. If the same procedure is repeated once more, combining information from

the fourth encoder before upsampling by a factor of 8, the FCN-8 is produced. The

FCN-8 showed superior results compared to the FCN-32 and FCN-16, whilst combin-

ing information for earlier encoders did not improve results significantly. Dropout is

Chapter 4: Innovations and Network Details 77

included between all layers of the first decoder with a probability of dropping a unit

equal to 0.5. Convolutional layers preceding a upsampling layer is not followed by

Batch Normalization or a ReLU. A detailed description of our FCN-8 implementation

is presented in Table C.1 in Appendix C.1.

(a) Illustration of the Fully Convolu-
tional Network-16 architecture from [9].

(b) Illustration of the Fully Convolu-
tional Network-8 architecture from [9].

Figure 4.3: Color code description:
Pink: Sum.

Red: Pooling.
Green: Soft-max.

Yellow: Upsampling.
Blue: Convolution, Batch Normalization and ReLU.

4.3.1.1 Author Contributions and Motivation

Albeit the FCN-8 has been applied to the task of segmentation of colorectal polyp

in colonoscopy images [11], we believe that utilizing recent techniques can improve

results and ease the training procedure. Batch Normalization was not included in the

original FCN-8 and neither in previous work [11], but is included in our implementation.

Furthermore, transfer learning is applicable since the first 13 convolutional filters of

the encoder network are identical to the first 13 layers of the VGG-16, enabling us

to initialize the model with weights trained on larger datasets. Both these techniques

have shown to improve performance and speed up training and have yet to be employed

in semantic segmentation of colorectal polyps before now, to the best of the author’s

knowledge.

We choose to use the FCN-8 for our experiments for several reasons. It has shown

impressive results on a number of different tasks, including medical image analysis

analysis [9, 11, 96]. Being based on the VGG-16 architecture, it enables transfer

learning that might be useful in medical image analysis where data can be sparse.

Chapter 4: Innovations and Network Details 78

Lastly, even with many recent architecture available the FCN-8 is still widely used and

serves as a natural foundation for our experiments.

4.3.2 U-Net

One of the first networks to build upon FCNs was the U-Net [71], which proposed

an alternative method to recover the resolution of the data. The encoder network

consists of five encoders, each of which performs 3 × 3 convolutions with a filter

bank to produce a set of feature maps. These feature maps are batch normalized and

passed into a ReLU. Every encoder performs this process twice followed by a 2×2max-

pooling operation with a stride equal to two, reducing the size of feature maps by a

factor of two. U-Nets decoder network consists of four decoders that process in the

same manner as the encoders. The feature maps produced in the fifth encoder is

upsampled by a factor of two using transposed convolution and concatenated with

the feature maps produced by the fourth encoder. These combined feature maps are

passed into the first decoder, which in turn is upsampled and concatenated with the

feature maps of the third encoder. This process is repeated until the resolution of the

input feature map is recovered. After the final decoder follows a 1 × 1 convolutions

that map the feature vector into the desired number of classes and a softmax function.

Dropout is applied at two final encoders, with a probability of dropping a unit equal

to 0.5. A detailed description of our U-Net implementation is presented in Table C.2

in Appendix C.1.

4.3.2.1 Author Contributions and Motivation

As with the FCN-8, Batch Normalization was not included in the original U-Net but

included by us to accelerate training and possibly increase performance. Additionally,

to best of our knowledge, U-Net has yet to be used for semantic segmentation of

colorectal polyps.

We consider U-Net particularly interesting for segmentation of colorectal polyp as it

was originally introduced for processing biomedical image segmentation. Also, con-

catenating feature maps from the encoder network with feature maps from the decoder

network presents and alternative method for propagating context information to higher

resolution layers compared to the FCNs. Furthermore, since it is not based on another

Chapter 4: Innovations and Network Details 79

Figure 4.4: Illustration of the U-Net architecture from [71]. Images are ob-
tained from [73].

CNN transfer learning is not applicable, which enables comparison between models ini-

tialized with weights trained on larger datasets. Finally, U-Nets architecture contains

significantly fewer parameters than the FCN-8, and could offer a lightweight alternative

if performance is comparable.

4.3.3 SegNet

Both FCNs and the U-Net rely on transposed convolution to recover feature maps with

the same resolution as the input features, but SegNet [97] presents another option.

SegNet consists of an encoder network and a decoder network, where the encoder

network consists of five encoders and the decoder consists of five decoders. Each

encoder performs convolution with a filter bank to produce a set of feature maps that

are batch normalized and passed into a ReLU, a process that is repeated two times

for the two initial encoders and three times for the three central encoders. Following

each encoder is a 2 × 2 max-pooling operation with a stride equal to two, reducing

the size of feature maps by a factor of two. This encoder corresponds to the first

13 convolutional layers of the VGG-16, which enables weights to be initialized from

networks trained on larger datasets in a transfer learning fashion. SegNet is constructed

symmetrical, such that the decoder network is identical to the encoder network but with

Chapter 4: Innovations and Network Details 80

the max-pooling operation replaced by a max-unpooling operation. Figure 4.5 displays

an example to illustrate how this max-unpooling operation is carried out. When a

feature map is downsampled the max-pooling indices are stored and used at a later

stage to perform non-linear upsampling, a procedure with several advantages. Firstly,

it produces sparse feature maps that are computationally attractive and implicit feature

selectors. Secondly, it removes the need to learn additional filter for upsampling, thus

reducing the number of parameters in the model. In the final convolutional layer of

the final decoder there is no Batch Normalization or a ReLU, but instead a softmax

function. A detailed description of our SegNet implementation is presented in Table C.3

in Appendix C.1.

Figure 4.5: Illustration of the upsampling procedure employed in SegNet. A
(2×2) max-pooling operation is applied to a (4×4) feature map, producing a (2×
2) features map. This feature map is processed further, and upon upsampling
the new feature map is inserted into an empty feature map using the indices

from the max-pooling operation.

Figure 4.6: Illustration of the SegNet architecture from [97]. Figure obtained
from [97].

Chapter 4: Innovations and Network Details 81

4.3.3.1 Author Contributions and Motivation

In contrast to the FCN-8 and U-Net, SegNet has Batch Normalization already included.

But we chose to add Dropout in the three central encoders and decoders, similar to [98].

Adding Dropout helps with regularizing the model and enables Monte Carlo Dropout

and Monte Carlo Gradients. Furthermore, to best of our knowledge, SegNet has yet

to be used for semantic segmentation of colorectal polyps.

SegNet was primarily motivated by scene understanding application and has yet to see

wide use in medical image analysis. Including SegNet in this work will show if the

novel upsampling procedure can bring advantages in the processing of medical images.

Furthermore, has a comparable number of parameters to U-Net, providing another

lightweight alternative to the FCN-8.

Chapter 5

Results

At this point, the preceding chapters have aimed at providing the reader with all the

tools necessary for understanding the models and techniques utilized to conduct the

investigations presented in this chapter. Analysis carried out in this thesis are aimed at

determining the potential of deep models as the foundation for DSSs and investigating

techniques that seek to increase the interpretability of such models. But before we

present our analysis, we give a general overview of components which are common for

all models implemented.

5.1 Experimental Setup

All evaluations were conducted on the publicly available Endoscene dataset [11], which

consists of 912 images of colorectal polyps obtained from 44 video sequences acquired

from 36 patients with annotated images included as ground truth. We split the data

into training, validation, and test set following the procedure shown in [11], and the

interested reader can find a detailed description of this split in Section D.1 of the

Appendix. Figure 5.1 displays an example of a pair of samples from the dataset,

where the leftmost image is the original image obtained during the colonoscopy and

the rightmost image is the annotated image. Each pixel is labeled as belonging to a

polyp or the background, where white pixels correspond to the polyp class, and black

pixels correspond the background class. Moreover, Figure 5.1 illustrates that the polyp

generally occupies a much smaller proportion than the background class, making the

83

Chapter 5: Results 84

dataset unbalanced. We experimented with class balancing using Median Frequency

Balancing1. (MFB) [99], but found no significant improvement.

(a) Original image. (b) Annotated image.

Figure 5.1: Example of sample pair from the Endoscene dataset. Leftmost
image is the original image take during a colonoscopy and the rightmost image
is annotated image. Each pixel is labeled as pixel or background, where white
correspond to a pixel being labeled as polyp and black as a pixel belonging to

the background.

We report our results using two metrics, global accuracy and Intersection over Union

(IoU). For a given class c, prediction ŷi, and label yi, accuracy is defined as

Acc =
1

N

∑
i

(ŷi == c ∧ yi == c), (5.1)

where ∧ denotes the logical and operation, N is the total number of pixels in the

dataset and the sum goes over all pixels in the dataset. Intersection over Union is

defined as

IoU =

∑
i(ŷi == c ∧ yi == c)∑
i(ŷi == c ∨ yi == c)

, (5.2)

where ∨ denotes the logical or operation. To calculate the global accuracy and mean

IoU we compute the score for each class and average over the classes. We employ two

measure of evaluation because the global accuracy can be misleading in cases where

one class is highly over-represented in a sample. For instance, an image containing a

small polyp will have a mostly black annotated image, which means that a model can

produce a completely black output and still achieve a high global accuracy. But the

1See Section A.1 of the Appendix for description of MFB.

Chapter 5: Results 85

IoU metric punish erroneous predictions harder, which gives a more precise description

of the model’s actual performance.

Data augmentation was performed during the training of all models, which include

cropping, rotation, flipping, shearing, and zooming. A 224 × 224 patch is randomly

extracted from either the center or one of the four corners of an incoming training

image and its corresponding ground truth. Next, rotation between -60 and 60 degrees,

zoom from 0.7 to 1.4, shearing between -30 and 30 degrees is applied randomly to the

cropped image. Also, after these transformations, the resulting image is flipped with

0.5 probability. Another thing to note is that such a heavy augmentation procedure can

inhibit convergence if images are distorted too much. We experienced that applying

all transformations from the beginning of the training caused convergence difficulties.

Therefore, we only cropped the samples for the first 100 epochs and included the

transformations after this point, which allowed for simpler training samples during

the initial training when the weights need the largest adjustment. We chose to start

transforming the training samples after 100 epochs by monitoring the results on the

validation set and observing that they had begun to level for all models at this point.

Early stopping was utilized during the training of all models. We monitor the IoU score

for the polyp class on the validation set with a patience of 50 epochs. Monitoring the

IoU score for the polyp class instead of, for example, the mean IoU score was done to

encourage the selection of models with high polyp detection, a desirable goal for two

reasons. First, as the dataset is unbalanced, a high score can be achieved by classifying

most pixels to the background class. Second, from a medical point of view, missing

a polyp is a more severe mistake than assigning parts of the background to the polyp

class.

All models were trained using the backpropagation algorithm and the ADAM opti-

mizer [100], a recent adaptive version of gradient descent that is presented in Sec-

tion B.1 of the Appendix. We use the cross-entropy cost function, also presented in

Section B.1 of the Appendix for the benefit of the reader, with a batch size of 10. All

evaluations were performed using the deep learning framework Pytorch2 on a single

Titan X Graphics Processing Unit (GPU).

2http://pytorch.org/

http://pytorch.org/

Chapter 5: Results 86

5.1.1 Training Approach Discussion

There are several decisions reported in this section that could have warranted a more

thorough analysis but were taken based on former studies or experimental results during

the design of the networks that are not presented. This is partly to benefit the reader,

as some details are not considered crucial parts of the models and partly because some

details would require such an in-depth analysis that it would be beyond the scope

of this thesis. However, we will discuss some of these points briefly to justify our

decisions.

First, picking the range for the different transformations can be considered a set of

hyperparameters that could be experimentally determined by monitoring the valida-

tion set. A high degree of augmentation can result in models that generalize better

to unseen data, but it might also distort the images too much that could worsen per-

formance. Determining the ideal range for all transformations would require tuning

the range of each transformation separately and for each model, which we consider

outside the scope of this thesis. Instead, we rely on a previous study that examined the

effect of data augmentation that showed increased performance resulting from data

augmented in the ranges described above [11].

Second, the number of epochs chosen for the patience hyperparameter was determined

experimentally during the design of the models. A large patience might allow the

network to find a better configuration resulting in a higher performance, while a smaller

patience might prevent the models from overfitting. We experience that 50 epochs

gave a sufficiently good stopping criterion, but acknowledge that it could benefit from

further study.

Third, using the ADAM optimizer to update the weight might seem arbitrary. As

described in Section B.1, there are several recent optimization techniques available

that make interesting alternatives, such as RMSprop [101]. Common for these recent

optimization techniques and the ADAM optimizer is their automatic adjustment of

update parameters, which removes the need to fine-tune the learning rate, a procedure

that can be difficult and time-consuming. Determining which optimizer provides the

greatest benefit could therefore be an interesting study but we consider it outside the

scope of this thesis.

Fourth, the batch size is sometimes considered a hyperparameter of its own. A large

batch size results in a better estimate of the gradients and could result in faster and

Chapter 5: Results 87

more stable convergence, but comes at a higher computational cost. In our case, we

were restricted by the amount of memory available on the GPU and landed on 10

images in each batch for practical reasons.

Lastly, the limited effect of the MFB is curious, seeing that it has shown improved

performance in other cases [102]. We experience similar results with and without class

balancing, which might be an effect of the cropping procedure. By extracting patches

we remove a large amount of pixels from the image, where the majority corresponds

to the background class, thus indirectly balancing the classes.

5.2 Development of DSSs for Semantic Segmen-

tation of Colorectal Polyps

We evaluated the three models introduced and enhanced in Section 4.3.1, Section 4.3.2,

and Section 4.3.3 of Chapter 4 on semantic segmentation of colorectal polyps that we

refer to as the Enhanced FCN-8 (EFCN-8), Enhanced SegNet (ESegNet), and En-

hanced U-Net(EU-Net). The primary aim was to investigate the potential of FCNs as

DSSs for colorectal polyp segmentation and to compare results from different models.

5.2.1 Results

In Table 5.1, we report our results for the models mentioned above along with re-

sults from both hand-crafted and deep learning based approaches. The hand-crafted

method computes a histogram based on the pixel values and uses peaks and valleys

information from the histogram to perform their segmentation and is referred to as the

Segmentation from Energy Maps (SDEM) algorithm [34]. For the deep learning ap-

proach, segmentation is performed using the FCN-8, but without Batch Normalization

or transfer learning. This approach is referred to as FCN-8.

Figure 5.2 displays the cost versus epochs for EFCN-8, ESegNet and EU-Net. Notice

the sudden jolt at the 100 epoch when the data augmentation commences. A single

epoch for EFCN-8 took 1 minute and 40 seconds, 1 minute and 30 for ESegNet and

2 minute and 35 seconds for EU-Net. For FCN-8, it took 326 epochs before the

training was stopped using early stopping, which resulted in a total training time of

Chapter 5: Results 88

#
P

a
ra

m
e
te

rs
(M

)

Io
U

b
a
ck

g
ro

u
n
d

Io
U

p
o
ly

p

M
e
a
n

Io
U

G
lo

b
a
l

A
cc

u
ra

cy

Model

SDEM [34] - 0.799 0.221 0.412 0.756
EU-Net 27.5 0.945 0.516 0.723 0.945
ESegNet 29.5 0.933 0.522 0.727 0.935
FCN-8 [11] 134.5 0.946 0.509 0.727 0.949
EFCN-8 134.5 0.946 0.587 0.767 0.949

Table 5.1: Results on test set.

approximately 9 hours. ESegNet ran for 338 epochs before being stopped, resulting

in a total training time of approximately 8 hours and 45 minutes. EU-Net ran for 239

epochs, resulting in a total training time of approximately 6 hours and 30 minutes.

Figure 5.2: Cost convergence of EFCN-8, ESegNet and EU-Net on the training
set.

As previously stated, we monitor the IoU score for the polyp class on the validation for

model selection. Figure 5.3 displays the IoU score for the polyp class versus epochs on

the validation set for EFCN-8, ESegNet, and EU-Net, where the red markers indicate

which model was selected. Figure 5.4 displays all metrics evaluated on the test set.

It shows, from top to bottom, the mean accuracy, IoU for background class, IoU for

polyp class and mean IoU score.

Chapter 5: Results 89

Figure 5.3: Graph displaying the IoU score for the polyp class on the validation
set.

Finally, we present some qualitative results from each model, displayed in Figure 5.5

and 5.6. Each row in both Figures represents, from top to bottom, original image,

ground truth, EFCN-8 prediction, ESegNet prediction and EU-Net prediction. In Fig-

ure 5.5, the first three columns show examples where all models successfully segment

the polyp present in the image, while the last two columns show examples where all

models fail to segment the polyp. In Figure 5.6, the first two columns present examples

where the EFCN-8 successfully segments the polyp, and both ESegNet and EU-Net

produce poor segmentation. Column three in Figure 5.6 presents an example where

EFCN-8 and ESegNet both successfully segment the polyp, but EU-Net fails. Column

four in Figure 5.6 shows an example where both ESegNet and EU-Net achieve a good

segmentation, but this time, EFCN-8 produce a somewhat flawed prediction. The fifth

and final column in Figure 5.6 displays an example where all models fail to find the

actual polyp. At the same time, all models segment a part of the column belonging

to the background class as a polyp.

5.2.2 Discussion

There are multiple aspects of these results that are interesting to address, and we start

by looking at the quantitative results shown in Table 5.1. Before FCNs were introduced,

the SDEM was one the highest performing algorithms on polyp segmentation, among

others. What is evident from Table 5.1 is the difference in performance between the

hand-crafted method and the deep methods, particularly for the IoU score for the

polyp class and mean IoU. Achieving a high global accuracy or high IoU score for

Chapter 5: Results 90

Figure 5.4: Figure displays, from top to bottom, mean accuracy, IoU score
for background class, IoU score for polyp class and mean IoU score for EFCN-8,

ESegNet and EU-Net on the test set.

Chapter 5: Results 91

Figure 5.5: Qualitative results on the Endoscene dataset. Pixels labeled as
white correspond to the polyp class and pixels labeled in black correspond to
the background class. Each row represents, from top to bottom, original image,
ground truth, EFCN-8 prediction, ESegNet prediction and EU-Net prediction.
First three columns display examples where all models successfully segment
the polyp, while the last two columns show examples where all models fail to

segment the polyp.

the background class is easier since simply predicting a black canvas will result in

a fairly high global accuracy and high IoU score for the background class because

of the majority of background pixels. Achieving a satisfying IoU score for the polyp

class is more challenging but also what we desire. After all, the goal is to detect

and locate polyps. This is also why we chose to monitor the IoU score for the polyp

class for the early stopping. Interestingly, EU-Net and ESegNet achieve comparable

results to the FCN-8 from previous work but with much fewer parameters. Our EFCN-

8 implementation, on the other hand, EFCN-8, significantly increases performance,

which we attribute to the inclusion of Batch Normalization and transfer learning.

Another interesting point is the similar results of EU-Net and ESegNet that have a

comparable number of parameters but different upsampling procedures. As presented

in the previous section, ESegNet had the shortest training time per epoch but took

Chapter 5: Results 92

Figure 5.6: Qualitative results on the Endoscene dataset. Pixels labeled as
white correspond to the polyp class and pixels labeled in black correspond to
the background class. Each row represents, from top to bottom, original image,
ground truth, EFCN-8 prediction, ESegNet prediction and EU-Net prediction.
The first two columns present examples where the EFCN-8 successfully seg-
ments the polyp and both ESegNet and EU-Net produce poor segmentation.
Column three presents an example where EFCN-8 and ESegNet both success-
fully segment the polyp while EU-Net fails. Column four presents an example
where both ESegNet and EU-Net achieve a good segmentation, but this time,
EFCN-8 produce a somewhat flawed prediction. The fifth and final column dis-
plays an example where all models fail to find the actual polyp. At the same
time, all models segment a part of the column belonging to the background class

as a polyp.

longer before stopping. EU-Net spent most time per epoch, but stopped training

earlier. The difference in training time per epoch is a result of ESegNet utilizing

the already computed pooling indices for the upsampling while EU-Net must perform

the transposed convolutions. But the difference in convergence is more curious. We

observed similar behaviour during the design phase of the networks and, judging by

Figure 5.2 and 5.3, it does seem like EU-Net converges faster than ESegNet. One

possible explanation could be that the flexibility of the learned upsampling kernels

supports faster convergence. Nevertheless, they both perform worse than the EFCN-8,

Chapter 5: Results 93

which seems to suggest that the superior capacity of the EFCN-8 combined with recent

techniques such as Batch Normalization is important for performance.

Regarding Figure 5.2, which presents the cost for all models, it is worth noting the

difference before and after data augmentation commences. Up until 100 epochs,

the EFCN-8 has already reached a cost of approximately 0.05 and begun plateauing,

but after data augmentation begins it jumps up to 0.20 and never gets below 0.10.

This might suggest that augmentation inhibits the model, but by inspecting Figure 5.3,

which keeps increasing after 100 epochs, it is clear that the data augmentation encour-

ages models better suited for unseen data. Similar behaviour is displayed by ESegNet

and EU-Net, which also obtain an increased cost but enhanced validation score.

Turning to Figure 5.4, by observing which models are selected we can see that there

were models that would yield a higher performance on the test set. But in general, the

selected models do give a truthful representation of the capabilities of the network. Do

note that the global accuracy and IoU background graphs have a different range on

the vertical axis. As discussed previously, a completely black prediction will still yield

a high global accuracy and IoU score for the background class, therefore these graphs

stay approximately unchanged during the training of the network.

For the qualitative results, we consider Figure 5.5 first. The first three columns pre-

sented examples where all models successfully segment the present polyp, which we

included to demonstrate that all networks are capable of producing clear and precise

predictions. Many of the images in the Endoscene dataset contain polyps with an

appearance similar to the one in the three leftmost columns of Figure 5.5, that is,

elliptical and with a distinct edge. In these cases, all models produced mostly pre-

cise predictions. However, when the appearance of the polyp was more irregular, the

task became more challenging. One problem that routinely troubled the models was

the presence of glare from the camera light. In the fourth column of Figure 5.5 we

presented an example where all models fail to provide a correct segmentation. Notice

that the shape is somewhat irregular and also several specs of glare below the actual

polyp. This seems to confuse the networks, which classify only part of the polyp as a

polyp and also classify large parts of the colon as a polyp. The fifth and final column

of Figure 5.5 displays an example containing a polyp that spans a large part of the

image. All models agree on parts of the image, but they unanimously miss the greater

proportion of the polyp. This is most likely because few of the training images con-

tained such highly contorted polyp, and obtaining improved predictions in such cases

Chapter 5: Results 94

would require more diverse polyps in the training set.

Figure 5.6 is intended to provide examples of more challenging images. In the first

two columns, we see an example where EFCN-8 successfully segments the polyp while

both ESegNet and EU-Net fail. Many of the test images either saw all models seg-

ment successfully, neither segments successfully or the EFCN-8 provided a successful

segmentation while ESegNet and EU-Net failed, which supports the quantitative re-

sults from Table 5.1 where EFCN-8 achieved the highest performance. Column three

of Figure 5.6 displays an example where the original image contains yellow growths

that might, to an untrained eye, be polyp suspects. But, both EFCN-8 and ESegNet

disregard the suspicious growths and identify the true polyp, and also EU-Net but with

slightly lower precision. The fourth column presents an example where ESegNet and

EU-Net achieve successful segmentation but EFCN-8 is somewhat imprecise, demon-

strating that EFCN-8 is not infallible. Judging by this example it is not obvious why

EFCN-8 is less precise in this particular case, but by inspecting the original image in

column 4 it is possible to see that EFCN-8 is segmenting part of a ridge as a polyp,

in particular, a part of the ridge where there is some degree of glare present. One

hypothesis might be that the greater number of parameters enables more attention to

detail but can also result in the model being overly sensitive. However, for the majority

of the images in the test set, EFCN-8 produced the clearest and precise predictions.

In the last column of Figure 5.6 we present a curious example where all models miss

the actual polyp but agree on a wrong prediction. Again, by inspecting the original

image we can gain some insight into the shortcomings of the three models. There is

no doubt that the example in column 5 is a challenging specimen, considering that

the polyp make up a tiny region of the image. Furthermore, to an untrained eye the

region segment as polyp might seem like a somewhat likely polyp candidate.

When discussing the qualitative results in Figure 5.5 and 5.5 we can hypothesize

and assume the reasoning behind the predictions, but it is difficult to make definite

statements. For example, how certain is the model about its prediction? What features

are influencing its prediction? Are the different models affected by the same features?

To answer such questions requires further investigation using the techniques outlined

toward the end of Chapter 3, and in the beginning of Chapter 4.

Chapter 5: Results 95

5.3 Estimating Uncertainty in DSSs Based on

DNNs

We estimated the uncertainty of the predictions presented in the previous section using

the Monte Carlo Dropout described in Section 3.5.1 of Chapter 3. This analysis was

conducted to asses the potential of Monte Carlo Dropout as tool to create more

trustworthy DSSs and as a method to provide more room for comparison between

models. We revisit five examples from Section 5.2 to illustrate the result from the

uncertainty estimation.

5.3.1 Results

Figure 5.7, 5.8 and 5.9 display the results of the uncertainty estimation of EFCN-

8, ESegNet and EU-Net, respectively, for the examples shown in column 1 and 2 of

Figure 5.5 and column 1, 3 and 5 of Figure 5.6. Each row represents, from top to

bottom, original image, ground truth, prediction and uncertainty map. The uncertainty

maps were computed by drawing 10 samples from the network with a dropout rate

of 0.5 and estimating the standard deviation from those samples. Dark blue pixels

are associated with low uncertainty while bright green pixels are associated with high

uncertainty.

5.3.2 Discussion

Results of the uncertainty estimation for each model is presented in separate figures,

such that each model is given a clear evaluation before we discuss the differences

between the models. We start by examining Figure 5.7, which displays the results

of the uncertainty estimation for EFCN-8’s predictions. First, the first four columns

present examples where EFCN-8 successfully segments the polyp and the uncertainty

maps associated with these predictions have a similar appearance. Most regions of the

image contain pixels with low uncertainty, but regions around the actual polyp stand

out. Intuitively, this should not be surprising seeing that even physicians will have a hard

time pinpoint the exact point where the colon ends, and the polyp starts. If someone

were to make a diagnosis based on EFCN-8’s prediction but felt skeptical basing a

decision on just a single image, including such uncertainty maps in the analysis clearly

Chapter 5: Results 96

Figure 5.7: Figure displays EFCN-8’s predictions and the uncertainty map
associated with the predictions. Each row represents, from top to bottom, orig-
inal image, ground truth, prediction and uncertainty map. For the uncertainty
maps, dark blue pixels are associated with low uncertainty and bright green

pixels are associated with high uncertainty.

gives a more thorough analysis and provide some assurances to the person performing

the analysis. In particular, column 4 in Figure 5.7 makes an interesting case, where

there are peculiar growths that could spur uncertainty in someone assessing the images.

However, by consulting the uncertainty map, it is apparent that the model is only

concerned with the region in the center of the image. Another interesting example is

column 5 in Figure 5.7, where the model segments part of the column as a polyp and

completely misses the polyp that is present in the image. Again, by only considering

the prediction one might be reluctant to make a decision, so we turn to the uncertainty

map for further details. This example clearly stands out compared to the examples

shown in column 1 to 4. One thing to note is that the regions of uncertainty are larger

and the model is not just uncertain about the border of the polyp, but also the polyp

itself. Also, the model is not just uncertain about regions where it has predicted the

presence of a polyp but also about a completely separate region that, by inspecting the

ground truth, we know is the region where the actual polyp can be found. Obviously,

during a real analysis, the ground truth would not be available, but the uncertainty

Chapter 5: Results 97

Figure 5.8: Figure displays ESegNet’s predictions and the uncertainty map
associated with the predictions. Each row represents, from top to bottom, orig-
inal image, ground truth, prediction and uncertainty map. For the uncertainty
maps, dark blue pixels are associated with low uncertainty and bright green

pixels are associated with high uncertainty.

map would give a clear indication to the analyst that this is an image that requires

further examination and is more ambivalent than the examples shown in column 1 to

4.

Next, we consider Figure 5.8, which presents the result of the uncertainty estimation

for ESegNet’s predictions. In column 1 and 2, ESegNet successfully segments the

polyp, but the uncertainty maps are different between the two predictions. For column

2, the uncertainty map shows a degree of uncertainty about the border of the polyp.

Column 1 on the other hand, shows the same behaviour for the region containing

the actual polyp, but there are other regions in the image also associated with high

uncertainty. In column 3 of Figure 5.8, ESegNet finds the polyp but also segments part

of the colon as a polyp. From the corresponding uncertainty map we can see that the

uncertainty associated with the correctly classified polyp is similar to that of column

2, but there is also a high uncertainty associated with a ridge going along the colon.

Column 4 shows similar behaviour as the result from column 3, but the uncertainty is

Chapter 5: Results 98

Figure 5.9: Figure displays EU-Net’s predictions and the uncertainty map
associated with the predictions. Each row represents, from top to bottom, orig-
inal image, ground truth, prediction and uncertainty map. For the uncertainty
maps, dark blue pixels are associated with low uncertainty and bright green

pixels are associated with high uncertainty.

higher, so the model avoids classifying parts of the colon as a polyp. In the last column

of Figure 5.8 the model miss the polyp completely and segment part of the colon as

polyp. The uncertainty map shows two regions with elevated uncertainty, one where

the actual polyp is and one where the model has predicted a polyp. As the uncertainty

in the latter region is lower than the region corresponding to the true polyp, the model

makes a mistake and segments the wrong region.

Finally, we consider Figure 5.9, which presents the result of the uncertainty estimation

for EU-Net’s predictions. For the first two column where EU-Net successfully seg-

ments the polyp, the uncertainty maps show relatively low uncertainty except for the

boundaries of the actual polyp. In column 3, EU-Net segments the actual polyp but

also segments a large region of the colon itself. But the uncertainty map shows us

that these two regions are considered quite differently by the model, where the region

towards the top of the region containing the actual polyp exhibits a similar appearance

as the results from column 1 and 2 and the large region towards the bottom of the

Chapter 5: Results 99

image shows a high uncertainty associated with the entire segmentation, prompting

suspicion regarding the segmentation towards the bottom of the image. Column 4

shows the example where EU-Net segments the polyp but also attaches part of the

colon to the prediction. From the uncertainty map, we can see that the model is

concerned about the entire ridge extending to the right from the polyp but slightly less

concerned about a small region which is why it is included in the prediction. For the

final column of Figure 5.9, where the network completely misses the polyp, we see that

large parts of the image are associated with high uncertainty. Although, the region

containing the prediction of the model does look similar to the results from column 1

and 2, indicating that the model is somewhat certain about its wrong prediction.

Comparing the results of each model, we can see that column 1 and 2 look similar

between all three figures but with ESegNet showing a slight concern about the first

column. This seems to support the results presented in Section 5.2, namely that polyps

with an elliptical shape and distinct boundaries are well understood by the model. In

column three we show an example where there are multiple ridges along the colon

and the polyp exhibits an elongated shape. While EFCN-8 locates the polyp with a

high certainty, both ESegNet and EU-Net are uncertain about the ridges contained

in the image, with EU-Net displaying a higher degree of uncertainty than ESegNet.

This seems to suggest that the increased complexity of the EFCN-8 has enabled a

better understanding of the difference between edges associated with polyp and edges

associated with the colon itself. We see similar behaviour is column 4, again with

EFCN-8 obtaining the highest certainty about its prediction while ESegNet and EU-

Net have larger regions of uncertainty. For the fifth column, we saw in the previous

examples that all models made the same mistake. By consulting the uncertainty

maps, we can now see that all models are equally uncertain about the small region

where the actual polyp is located, suggesting that it is a region that deserves further

analysis. Also, by considering the uncertainty map corresponding to the region where

all models falsely predicted a polyp we notice another difference between the three

models. While ESegNet and EU-Net show similar uncertainty as in their successful

predictions displayed in column 1 and 2, that is, uncertainty about the exact border

but not about the polyp itself, EFCN-8 shows that it is uncertain about the entire

prediction. This suggests that EFCN-8’s prediction for the original image in column 5

should not be considered as trustworthy as the ones in the remaining 4 columns.

In Section 5.2 we argued that EFCN-8 obtained higher quantitative results and gave

Chapter 5: Results 100

more precise predictions, but many questions were still unanswered. If EFCN-8, ESeg-

Net, and EU-Net gave the same prediction, can we trust them equally? If they gave

competing predictions, who should we trust? Using the uncertainty maps obtained

from this experiment we have gained insight into how the models compare and that

predictions, even if they look similar, can have different uncertainty. Making a defini-

tive statement about the difference between EFCN-8 versus ESegNet and EU-Net can

be difficult, but the two initial sections of this chapter might lead to the belief that the

superior complexity of the EFCN-8 is proving advantageous. Of course, there might be

other factors, such as the upsampling procedure. However, EU-Net and EFCN-8 both

employ transposed convolutions for the upsampling. If the upsampling procedure was

causing the improved performance and reliability, we would expect a difference between

ESegNet and EU-Net, which have a similar number of parameters but different up-

sampling procedures. Another explanation might be the inclusion of transfer learning

for EFCN-8. But we experimented with training ESegNet with and without weights

trained on the ImageNet dataset without seeing significant improvements. Neverthe-

less, stating a definite cause for the difference between the models would be ill-advised

and further investigation is encouraged.

To conclude the discussion of these results we would like to mention two interesting

aspects that could be investigated further, but we considered outside the scope of this

thesis. Firstly, how does the dropout rate affect the uncertainty maps? For example, if

the dropout rate is increased and more units are dropped, we might expect that more

samples would be required before the mean standard deviations begin to plateau. On

the other hand, too low dropout rate would not give enough variation in the network

and might result in an underestimate of the uncertainty. For our evaluation, we keep

the same dropout rate during inference as we used during training, similar to [75],

but determining the correct dropout rate to use during inference is a question that

would provide a greater understanding of Monte Carlo Dropout. Secondly, how many

samples are necessary to obtain stable uncertainty maps? Too few samples might

give a poor uncertainty estimate, while too many samples introduces an unnecessary

computational burden. We consider determining the optimal number of samples an

interesting direction for future research of Monte Carlo Dropout.

Chapter 5: Results 101

5.4 Determining Importance of Input Features

Our continued analysis was aimed at investigating what features affect the predictions

made by the network, utilizing the Guided Backpropagation approach described in

Section 3.5.2 of Chapter 3. We look at the same examples displayed in the previous

sections of this chapter to obtain a deeper understanding of our models. Determining

what input features are affecting the decisions of the models provide greater room

for model comparisons and also gives insight into what characteristics in the original

image makes a particular example simple or difficult to segment.

5.4.1 Results

Figure 5.10, 5.11 and 5.12 displays the results of the interpretability investigation

for EFCN-8, ESegNet and EU-Net, respectively. Each row represents, from top to

bottom, original image, ground truth, prediction, uncertainty map and interpretability

map. We chose a new color map to represent the interpretability maps such that the

difference between the uncertainty maps and interpretability maps became clear. For

the interpretability maps, blue pixels are associated with gradients of small magnitude,

that is, features with low influence on the prediction of the model while bright teal

pixels are associated with features with high influence on the prediction of the model.

5.4.2 Discussion

Results of the interpretability investigation for each model is presented in separate

figures, such that each model is given a clear evaluation before we discuss the differ-

ences between the models. Once again, we start by examining EFCN-8 and look at

Figure 5.10. One initial observation we can make by just glancing over the bottom

row of Figure 5.10 is how few pixels are strongly affecting the prediction, which im-

plies that only a few key features are instrumental to the model’s prediction. If we

consider column 1 of Figure 5.10, it is evident that top edge of the polyp is influencing

the model’s prediction. Also, the model seems to be unaffected by the bottom edge,

which seems to suggest that EFCN-8 is basing its prediction on particular properties.

Furthermore, the original image has a large, distinct edge toward the top of the image

that is completely disregarded by the model, which enhances the belief that the model

Chapter 5: Results 102

Figure 5.10: Figure displays EFCN-8’s predictions, the uncertainty map asso-
ciated with the predictions and the input features the network deems important.
Each row represents, from top to bottom, original image, ground truth, predic-
tion, uncertainty map and interpretability map. For the interpretability maps,
blue pixels are associated with low influence features and bright teal pixels are

associated with high influence features.

is considering a combination of particular features and their surrounding context. Col-

umn 2, 3 and 4 also demonstrates that EFCN-8 is affected by a certain kind of edges,

where it considers the top edge of the polyp in column 2, the left edge of the polyp in

column 3 and the bottom edge of the polyp in column 4. But if we turn to the last

column of Figure 5.10 we see a different example. There are more pixels influencing

the prediction and the particular form of the colon in this image is misleading the

model to a wrong prediction. It is also interesting to see that models are considering

pixels associated with the actual polyp in the original image but deems them not in-

fluential enough to warrant a prediction. Determining exactly why these pixels are not

considered influential enough is difficult, but one hypothesis might be that the scale,

brightness or color is discouraging a prediction, or the combined contribution of all

those factors is considered insignificant my the model.

Figure 5.11 displays the result of the interpretability investigation for ESegNet. Once

Chapter 5: Results 103

Figure 5.11: Figure displays ESegNet’s predictions, the uncertainty map asso-
ciated with the predictions and the input features the network deems important.
Each row represents, from top to bottom, original image, ground truth, predic-
tion, uncertainty map and interpretability map. For the interpretability maps,
blue pixels are associated with low influence features and bright teal pixels are

associated with high influence features.

more, we see that there are few pixels in the input image that strongly influence the

prediction of the model. In column 1, only a small portion of the top edge of the polyp is

contributing to the prediction, whilst in column 2 it seems that the model is influenced

by the left edge of the polyp. Column 3 presents an example where ESegNet falsely

segments part of the colon as a polyp, and from the interpretability map, we can observe

that the model is influenced by a ridge in the colon. For the correctly segmented polyp

in column three, ESegNet is motivated by both top and bottom edge of the true polyp.

From the first three column it might seem as tough edge information has the highest

influence on the prediction, but column four paints a different picture. Although the

model is affected by the edges of the polyp, features associated with the center of the

polyp are lit up. One interpretation could be that the model incorporates the slight

color difference that, combined with the edge information, prompts a prediction. In

the last column of Figure 5.11 we revisit the example where the model misses the

actual polyp and falsely classifies part of the colon. The interpretability map shows

Chapter 5: Results 104

Figure 5.12: Figure displays EU-Net’s predictions, the uncertainty map asso-
ciated with the predictions and the input features the network deems important.
Each row represents, from top to bottom, original image, ground truth, predic-
tion, uncertainty map and interpretability map. For the interpretability maps,
blue pixels are associated with low influence features and bright teal pixels are

associated with high influence features.

that the network is mostly affected by pixels around the falsely classified polyp and

does not consider the features corresponding to the actual polyp. But the uncertainty

map still shows an uncertain region associated with the actual polyp, even though no

features in this region is highlighted. This might lead to the belief that the model

is recognizing features that are different from the colon, but it has yet to associate

them with polyps, probably from the lack of such features in the training set. So these

features are not highlighted in the interpretability map, because the network does not

deem them important for the polyp class, but they do appear in the uncertainty map

since the network is noticing something irregular. Based on the prediction, uncertainty

map and interpretability it seems palpable that ESegNet has yet to identify polyps of

this scale, shape, and color that could be improved by collecting more images of this

character in future data gathering.

Chapter 5: Results 105

Lastly, we examine the interpretability maps constructed for EU-Net displayed in Fig-

ure 5.12. For the two successful segmentations in column 1 and 2, they both consider

edge information, but the example in column 2 is much more distinct. In column

1 there is only a tiny amount of features that influence the prediction. Seeing that

EU-Net successfully segments the entire polyp, it seems that the context around these

highlighted features is important to complete the segmentation. In the third column,

where EU-Net falsely classifies large parts of the colon as a polyp, it is fairly clear

from the interpretability map that the model is confused by the many ridges that go

along the colon in the original image. In the example presented in column 4, features

corresponding to the edges of the polyp and the polyp itself are highlighted, indicating

that a combination of features is considered. We can also see that there are a small

number of highlighted features toward the top right of the polyp, and it seems like

these features are causing the slight over-segmentation at the top right region of the

polyp. The final column shows how EU-Net’s false prediction is influenced by features

around the wrongful prediction, while features associated with the polyp itself is not

considered at all.

Comparing the interpretability maps of all models provide many interesting observa-

tions. First of all, for the successful examples shown in the first two columns of

Figure 5.10, 5.11 and 5.12 all models consider the distinct edges of the polyp, but

EFCN-8 is basing its decision on more features than ESegNet and EU-Net. This is

particularly obvious in column 1, where EFCN-8 considers the entire top region of

the polyp and ESegNet/EU-Net only considers a tiny part of the edge of the polyp.

For column 3 we have the opposite case, where ESegNet and EU-Net are, wrongfully,

considering plenty of features while EFCN-8 is able to single out the small number

of features that are needed to locate the polyp. Column 4 displays somewhat similar

results between all models, but it is interesting to see that they all extract a combina-

tion of features to produce a prediction. In the last column, we see similar behaviour

for the falsely classified polyp across all networks. But EFCN-8 is the only model

that is affected by features associated with the actual polyp in the image. Albeit it is

not affected enough to produce a prediction, it does suggest that EFCN-8 has, to a

certain degree, been able to acquire a description of polyps that encompass features

associated with small, distant polyps.

There is no doubt hat the inclusion of interpretability maps broadens the room for

analysis of each model and for model comparisons, and combined with the uncertainty

maps we command a greater understanding of these models than we did after ”just”

Chapter 5: Results 106

constructing DSSs based on FCNs. Taken by themselves, the interpretability maps

can demonstrate what features are well understood by the network and by observing

that features evade the models we can identify which type of images are lacking in the

training set, providing a clear objective when gathering new data. In combination with

uncertainty maps, the interpretability maps can display if the uncertainty is a result of

inherent uncertainty in the original image, such as exact location of polyp edges, or a

result of unfamiliar features that the network has yet to associate with the polyp class.

5.5 Estimating Uncertainty in Input Feature Im-

portance

In order to obtain an even deeper understanding and enable more room for compar-

ison we estimated the uncertainty of the input features by utilizing the Monte Carlo

Gradients method proposed in Section 4.1 of Chapter 4. Once more, we continue our

examination on the same examples as presented previously in this chapter.

5.5.1 Results

Figure 5.13, 5.14 and 5.15 displays the results of the uncertainty estimation of the

input features for EFCN-8, ESegNet and EU-Net, respectively. Each row represents,

from top to bottom, original image, ground truth, prediction, uncertainty map and

gradient uncertainty map. The gradient uncertainty maps were computed by drawing

10 samples from the network with a dropout rate of 0.5 and estimating the standard

deviation across these 10 samples.

5.5.2 Discussion

Once again, we present the result for each model separately for independent analysis

before the results are compared between the models and we start be examining EFCN-

8, presented in Figure 5.13. At first glance, the gradient uncertainty maps might seem

less distinct than the uncertainty maps, but closer inspection provides some interest-

ing observations. In the first column of Figure 5.13 there are several regions that are

highlighted, but notice that features associated with the actual polyp is not. This

Chapter 5: Results 107

Figure 5.13: Figure displays EFCN-8’s predictions, the uncertainty map as-
sociated with the predictions, the input features the network deems important
and the uncertainty map associated with the input features. Each row repre-
sents, from top to bottom, original image, ground truth, prediction, uncertainty
map, interpretability map and gradient uncertainty map. For the gradient un-
certainty maps, dark blue pixels are associated with low uncertainty and bright

green pixels are associated with high uncertainty.

indicates that EFCN-8 is consistently considering the same feature each forward pass

even when units are dropped. Also, the regions that are highlighted in the gradient

uncertainty map are associated with distinct regions of the colon, such as the ridge

toward the top of the image or the change of illumination toward the left and right

of the image, which seems to suggest that EFCN-8 is examining other features than

those shown in the interpretability map, but does not consider them important enough

to induce any prediction. We observe similar behaviour in column 2, 3 and 4, where

the model is certain about the features shown in the interpretability maps while being

uncertain about other features contained in the image. But the last column in Fig-

ure 5.13 shows a different story. During our analysis of the interpretability map from

the last column, we saw that the model was considering features associated with both

the colon and the polyp, but it was difficult to assess why the features related to the

Chapter 5: Results 108

Figure 5.14: Figure displays ESegNet’s predictions, the uncertainty map as-
sociated with the predictions, the input features the network deems important
and the uncertainty map associated with the input features. Each row repre-
sents, from top to bottom, original image, ground truth, prediction, uncertainty
map, interpretability map and gradient uncertainty map. For the gradient un-
certainty maps, dark blue pixels are associated with low uncertainty and bright

green pixels are associated with high uncertainty.

colon instigated a prediction and not the features associated with the polyp. But the

gradient uncertainty maps shows that the features associated with the polyp has a

certain degree of uncertainty associated with them, thus preventing a prediction. For

the region wrongfully segmented as polyp we see a high degree of uncertainty towards

the left of the region, but notice that the right part of region shows low uncertainty

which might point to the features that encourage the false prediction.

Figure 5.14 displays the results of the gradient uncertainty estimation for ESegNet

and in the last row of column one we can see two highlighted regions that stand

out, one located at the bottom left of the image and one at the top of the image.

By comparing the original image and the gradient uncertainty map we can see that

the region at the bottom left of the image has a shift in illumination that the model

reacts to. But seeing that they are not present in the interpretability map it indicates

Chapter 5: Results 109

Figure 5.15: Figure displays EU-Net’s predictions, the uncertainty map as-
sociated with the predictions, the input features the network deems important
and the uncertainty map associated with the input features. Each row repre-
sents, from top to bottom, original image, ground truth, prediction, uncertainty
map, interpretability map and gradient uncertainty map. For the gradient un-
certainty maps, dark blue pixels are associated with low uncertainty and bright

green pixels are associated with high uncertainty.

that the uncertainty associated with these features are too high to foster a prediction.

The region at the top of the image corresponds to a ridge in the colon. But notice

how the left half of the ridge shows up in the gradient uncertainty map while the

right half of the ridge shows up in the interpretability map. It is difficult to say why

one part of the ridge has more uncertainty associated with it compared to the other,

but it exemplifies that judging the importance of input features solely based on the

interpretability maps could be ill advised and consulting the gradient uncertainty map

gives valuable information. In column 2 and 3 we see similar results as the first column,

with high uncertainty associated with the ridge in the top left corner and change of

illumination in the bottom right corner. Column four presents an example that seems

to indicate very low uncertainty associated with all of the input features. While that

might be the case, one should also be cautious when presented with such example and

Chapter 5: Results 110

this might be an example of a faulty gradient uncertainty map. In the last column

of 5.14 we revisit the false polyp prediction. The gradient uncertainty map indicates

high levels of uncertainty in several regions of the image and reinforces the view that

ESegNet struggles with this particular example.

Figure 5.15 displays the results of the gradient uncertainty estimation for EU-Net.

Turning our attention to the first column we notice two regions that stand out in

the gradient uncertainty map. Similar to ESegNet, EU-Net notice features in the

bottom left corner where illumination changes. But EU-Net also indicates uncertainty

associated with features connected to the edges of the actual polyp, suggesting that it

has yet to acquire a full understanding of features corresponding to polyps. In column

2 and 3 we also observe uncertainty connected with polyp features, but also bright

green flecks of uncertainty that seem to correspond to features associated with glare

in the original image. Column 4 displays uncertainty with the entire ridge that expands

outward from the polyp in the center of the image, which is likely to be caused by

the edges and glare present along the ridge. In the last column, we observe that

the region toward the bottom of the image surrounding the falsely predicted polyp

is related to some degree of uncertainty. Yet, the region is not present in neither

the interpretability map or the gradient uncertainty map, indicating that EU-Net is

unaware of any noteworthy features in that region of the image.

When comparing the gradient uncertainty maps of all models one aspect that stands

out is the difference between EFCN-8 and ESegNet versus EU-Net. In particular, both

EFCN-8 and ESegNet has little or no uncertainty about the features corresponding to

an actual polyp, indicating that even when we sample different weights the model is still

focusing on the same features in each forward pass. EU-Net, on the other hand, seems

uncertain about several gradients, which might indicate that there is a need for further

adjustment of EU-Net’s weights. From Figure 5.2 we know that EU-Net’s training

was ended by the early stopping procedure earlier than EFCN-8 and ESegNet. During

the design phase, we trained all network several times to observe their behaviour, and

EU-Net consistently converged earlier than the two others. But judging by the gradient

uncertainty maps it seems as though it could have benefited from further training to

obtain a better understanding of the input features and suggest that we could have

tuned the patience hyperparameter more specifically for each network. Of course, it

is difficult to know for certain what exactly causes the difference between the models,

but including gradient uncertainty does allow for more thorough analysis of models

and greater room to observe differences between models.

Chapter 5: Results 111

5.6 Towards Understanding FCNs Through In-

formation Theory

To investigate the ITL framework for FCNs described in Section 4.2 of Chapter 4 we

utilize ESegNet to perform our analysis. We consider the input, output and the three

central encoders and decoders of ESegNet as random variables, denoted as X, Y ,

E3, E4, E5, D1, D2 and D3. Our reasoning for employing ESegNet will be clarified

in the discussion of this section. We consider 100 samples from the test set of the

Endoscene dataset to estimate the mutual information between the aforementioned

random variables.

Figure 5.16: Figure displays the ESegNet architecture from [97] with the three
central encoder and decoders labeled.

5.6.1 Results

In Table 5.2 we present the results of our mutual information investigation, where each

cell of the table represent the mutual information between the two random variables

in the corresponding row and column. We select α = 2 following the example of [83]

and determine the kernel width for each random variable using the heuristic method

of [95], where the different kernel widths are presented in Table 5.3.

Chapter 5: Results 112

X Y E3 E4 E5 D1 D2 D3

X 4.130 3.815 3.311 3.223 3.230 2.431 2.334 2.706
Y 3.815 3.921 2.837 2.934 3.336 2.730 2.652 2.948
E3 3.311 2.837 2.964 2.712 2.304 1.518 1.417 1.762
E4 3.223 2.934 2.712 2.585 2.431 1.755 1.674 1.971
E5 3.230 3.336 2.304 2.431 2.917 2.479 2.433 2.643
D1 2.431 2.730 1.518 1.75 2.479 2.462 2.449 2.474
D2 2.334 2.652 1.417 1.674 2.433 2.449 2.443 2.454
D3 2.706 2.948 1.762 1.971 2.643 2.474 2.454 2.554

Table 5.2: Results of the mutual information analysis for the three central
encoders and decoders of ESegNet with the input and output. Each cell displays
the mutual information between the variables denoted in the row and column
of the cell in question, where mutual information has been calculated using

Equation 4.14.

X Y E3 E4 E5 D1 D2 D3

σ 63.808 34.741 16.956 23.561 11.630 14.827 18.858 18.334

Table 5.3: Kernel widths used to estimate the entropy the input, output and
three central encoders and decoder of ESegNet.

5.6.2 Discussion

Before we proceed with our discussion of the results we would like to stress that

our investigation of FCNs through an ITL framework is in its infancy and should be

considered preliminary work towards an ITL framework for FCNs. Seeing as the initial

works on an ITL framework for DNNs have been developed in the last couple of

months [81, 84] we were somewhat constrained by time. Yet, we considered such an

approach a natural inclusion in our work towards understanding DNNs as it provides

more quantitative results compared to the more visual results presented up until this

point, thus broadening our analysis even further.

We intend to abstain from making bold claims based on the results in Table 5.2, but we

would like to direct the reader’s attention to some interesting aspects of the analysis.

From row one of Table 5.2 we can see that the mutual information between X and

the three central encoders, E3, E4 and E5, is quite similar, which begs the question;

If the three central encoders explain the same information about X, do we need all

three? But if we turn to the second row of Table 5.2, we encounter a different story.

Notice that the mutual information between Y and the three central encoders is rising

significantly from E3 to E5, which can indicate that the encoders are molding the

features into a representation that is suitable for predictions.

Chapter 5: Results 113

Regarding the DPI discussed in Chapter 4, we can see that I(X,D2) ≤ I(X,D3),

which seems to contradict the DPI, most likely a result of the skip-connections of

the model. Also, note that the mutual information between Y and the three central

encoders keeps rising as we move towards the decoder network, but that the mutual

information drops in the first decoder. This might imply that it is difficult to retain

information during the upsampling procedure.

Lastly, we would like to point out the curious behaviour of the second decoder, D2. By

inspecting the three last columns of Table 5.2 it is visible that the mutual information

drops for all variables in the second decoder before rising again in the third decoder.

Could this be signaling that the second decoder is in need of more training?

Our choice of ESegNet as the architecture for performing our analysis was mostly a

practical decision. Seeing as our implementation of ESegNet included dropout in the

three central encoders and decoders we had an idea of utilizing dropout to sample from

the three central encoders and decoders that could enable some form of uncertainty

estimation of the mutual information. But as time progressed we came to the con-

clusion that this was considered outside the scope of the thesis. Of course, optimally

we should have analyzed all three architectures using the ITL framework, but time

considerations limited us to only considering ESegNet.

Determining the width of the free parameter σ is an important part of kernel methods.

If the kernel width is too small we might not capture the variance of data, but if

the kernel width is too large we might be unable to distinguish important features

of the data from noisy or unimportant features of the data. We experimented with

Silverman’s rule of thumb with h = 5, following the example of [81], which suggested a

kernel width equal to 4.777. But we experienced that using such a kernel width resulted

in the mutual information between input, output and the encoders and decoders were

essential equal. This seems odd, as one would expect some information to be lost

during the forward pass, for instance after the pooling layers. Therefore, we utilized the

heuristic presented in [95] where we consider the mean of the five nearest neighbours

for each sample, which resulted in the values displayed in Table 5.3.

Chapter 6

Discussion and Conclusion

In order to tie together all the results and discussions presented in the previous chapter,

we would like to give a more overarching discussion regarding the potential of DSSs

based on FCNs and the effect of including techniques that aim at providing a better

understanding of such models. This chapter will also discuss different aspects of the

thesis that could offer interesting ideas for future research, both in the field of semantic

segmentation of colorectal polyps and in the field of deep learning. Additionally, we

provide some concluding remarks to round off this thesis.

6.1 Conclusion

In this thesis, we have developed and evaluated several FCNs for the task of semantic

segmentation of colorectal polyps. Also, to address the lack of interpretability, we

introduced, developed and evaluated a number of different methods that seek to tackle

this issue. Our results display that FCNs are capable of high performance, where our

best model achieved state-of-the-art performance on the Endoscene dataset. However,

there is still room for improvement, and DSSs based on FCNs can benefit from further

development.

Our results also demonstrate that model understanding can be significantly improved

by utilizing recent advances in DNN interpretability techniques. Utilizing Monte Carlo

Dropout and Guided Backpropagation, we were able to estimate the uncertainty in

each prediction and investigate what features each model deems important, both of

115

Chapter 6: Discussion and Conclusion 116

which have, to the best of our knowledge, yet to be investigated in the context of

semantic segmentation of colorectal polyps prior to this work.

In Chapter 4 we introduced two novel methods aimed to increase the interpretability

of DNNs, which we successfully demonstrated on the task of semantic segmentation

of colorectal polyps. Our first method, which we refer to as Monte Carlo Gradients,

enabled estimation of uncertainty in the input features that were deemed important

by the Guided Backpropagation procedure. Such uncertainty estimation has, to the

best of our knowledge, not been performed in the context of semantic segmentation

of colorectal polyps nor in the deep learning field as a whole. Our second novelty was

to develop a framework for analyzing FCNs using ITL concepts, also a procedure that

have yet to be performed in the context of semantic segmentation of colorectal polyps

nor the deep learning field as a whole prior to this work. We would also like to add that

although we demonstrated these methods on polyp segmentation, they are applicable

to any tasks where DNNs employed.

Lastly, we believe a DSS based on a FCN combined with uncertainty, interpretability

and visualization techniques can become capable of providing precise and trustworthy

prediction that can aid physicians. But in order for that to happen, the amount of

available data must be significantly increased, both to provide more training data that

produce better models but also to obtain larger test sets that foster trust.

6.2 Discussion

6.2.1 Potential of FCNs as DSSs

Perhaps the most important property a DSS must possess is consistently high precision

and few false negatives. In the worst case scenario, a detected or missed polyp might

spell the difference between being able to successfully treat a patient or not. As

mentioned in Chapter 1, physicians miss approximately 8-37% depending on the size

and type of polyp [7]. Surely, if DSSs are to be valuable they would need to be

precise enough that physicians consider them a helpful tool. From Table 5.1 in the

previous chapter it should be evident that DSSs based on FCNs have substantially

increased precision compared to previous models based on non-deep methods. But, if

we consider the IoU score for the polyp class, which provide the most accurate measure

Chapter 6: Discussion and Conclusion 117

to a model’s polyp localization capabilities, it is not as high as we might desire. Also,

when we encounter examples such as those shown in the last column of Figure 5.5 and

Figure 5.6 in the previous chapter it is clear that there is still room for improvement.

Despite the positive results , we argue that there are several options for improvements.

As we have focused more on model interpretability, there is certainly room for im-

provement concerning hyperparameter adjustments such as the dropout rate, batch

size, and patience parameter. However, it is unlikely that it would yield a dramatic

improvement in performance. Another modification that might improve the models is

utilizing more sophisticated activation functions. For instance, PReLU can sometimes

improve performance [53], but usually only by a couple of percentages. Another ap-

proach that has shown to increase performance in FCNs is to include a post-processing

step using Conditional Random Fields (CRFs) [103], which might be an interesting

addition for future research. Additionally, we could have employed even more recent

architectures of FCNs such as the Fully Convolutional DenseNets (FCDNs) [72], which

have shown impressing results on several segmentation tasks [72, 75]. Another promis-

ing architecture utilizes dilated convolutions in their network [104]. Furthermore, since

the images are extracted from video sequences taken during colonoscopy, there might

be temporal information that would be valuable to obtain. Combing a CNN with a

Recurrent Neural Network (RNN), a particular kind of network designed to handle

temporal information, such as in [105] is surely an interesting path to consider.

For all that, what would be most likely to improve all models is the inclusion of more

training data. The Endoscene dataset consists of 912 images which are a reasonable

amount but compared to large datasets like ImageNet it is still not as large as it ought

to be. A large dataset would also allow for a larger test set that would give a better

indication of how precise a model truly is. However, creating large-scale datasets is

in itself a difficult and time-consuming procedure, especially when medical data is

concerned. Sharing images in the medical domain can be difficult, seeing as they

contain private information about patients that must be protected. Also, creating the

annotated image requires a considerable time investment from trained physicians with

an already pressured time-schedule. But if a truly large scale dataset with images from

thousands of patients included was created, it would most likely provide a significant

improvement for DSSs based on FCNs.

As a part of an ongoing collaboration between the UiT Machine Learning Group and

the Department of Gastrointestinal Surgery at the University Hospital of North Norway

Chapter 6: Discussion and Conclusion 118

we are currently working on acquiring more colonoscopy related data for that hospital.

Testing our models on that data obtain from a completely different source could yield

valuable information with regards to different equipment and new patients. Closer

cooperation with medical practitioners will also allow for more input from physicians

with regards to how the techniques and methods we have discussed throughout this

thesis can be helpful for them. These are aspects, which we have considered outside

the scope of this thesis, we aim to investigate and incorporate in our journal manuscript

mentioned in Section 1.7 of Chapter 1.

6.2.2 Understanding DNNs

High precision is not the only component a DSS must inhabit. As we have argued

throughout this thesis, being able to interpret the predictions of a model is important

for a number of different reasons. For network designers, it enables model analysis

and model comparison. For physicians, it provides the necessary information to trust

the system. Also, a DSSs can potentially reveal concealed patterns in the data, which

might provide new perspectives and additional info for the diagnosis. Interpretation

of DNNs can often be difficult and they are often referred to as ”black boxes” [76].

Throughout Chapter 5 we have developed and evaluated a number of techniques that

seek to increase our understanding of FCNs, but what insights can be gained from our

analysis?

Most of the techniques we have evaluated provide visual results that try to explain

particular aspects of the networks. The uncertainty maps proposed in [74] and extended

in this thesis to a medical context by us, provide a tool to determine the uncertainty

in a prediction. When highly uncertain cases are encountered we can present the

original image to a medical expert for further assessment. Furthermore, it makes room

for comparison between seemingly similar predictions, like the examples displayed in

the first column of Figure 5.7, 5.8 and 5.9. Using Guided Backpropagation, proposed

in [78] and developed for medical analysis in this thesis, we can inspect what features in

the input are affecting the prediction of the model, thus allowing physicians to inspect

if the model is considering features in the original image that actually correspond

to a polyp. Also, designers can use the interpretability maps to see what kind of

examples a model is struggling with and adjust accordingly. In Chapter 4 we proposed

a new method called Monte Carlo Gradients, inspired by [74] and [78], which provide

information regarding the uncertainty of the important features in the original image.

Chapter 6: Discussion and Conclusion 119

From our results in Chapter 5, we argue that it is evident such techniques provide a

richer understanding of both models and the predictions they produce. But we would

also like to point out that there is a number of limitations to such techniques and that

there are still aspects that are unclear. In particular, visual results are appealing as

they can be manually inspected but they are open to interpretation, which means that

different people might interpret the results in different ways. Nevertheless, just the fact

that such techniques allow interpretation and discussion is a step forward for DNNs

and should undoubtedly be considered assets in the field of medical image analysis as

well as the deep learning field as a whole.

In contrast, using ITL to analyze DNNs provide quantitative results that might not

be suitable for visual inspection, but provide concrete numbers which are useful for

a quantitative assessment of the performance. Once again we would like to stress

that our work is the very early stages of development and one must be careful not

to jump to conclusions. Despite our work being preliminary in several aspects, we

believe that an ITL framework opens up some interesting pathways. For instance,

one could incorporate mutual information between the layers directly into the cost

function as a regularization technique. Another idea might be to inspect a trained

network for redundant layers that can be removed for computational benefits [106].

Lastly, ITL could be used to examine the information of layers as they become wider or

the information of a network as it grows deeper, which might open a window towards

a more theoretical framework for DNN architecture analysis. Again, ITL for DNNs is

still in its embryonic phase, but offer many interesting paths for future research.

Appendix A

Appendix Chapter 2

This appendix provide a more thorough explanation of cost functions and includes

some details regarding SVMs

A.1 Cost Function

Deciding which cost function to use is dependent on the specific task, and a suitably

chosen cost function can often lead to better results. A common choice is the afore-

mentioned sum of squared errors from Equation 3.3, but to interpret the output easier,

we often take the mean of Equation 3.3 resulting in the Mean Squared Error (MSE),

which is

CMSE =
1

2N

N∑
i=1

kl∑
m=1

(ym(i)− ŷm(i))2 (A.1)

where N is the number of samples, kl is the number of output neurons, ym(i) is the

desired output and ŷm(i) is the predicted output. Even though the MSE often gives

satisfactory results for most tasks, it does have some drawbacks. Since all errors are

squared and summed, large errors can have a disproportional effect on the learning

process, essentially making the network vulnerable to outliers.

For the task of classification, where the desired outputs are binary, a widely used cost

function shown to improve results is the cross-entropy cost function, defined by

121

Appendix A: Appendix Chapter 2 122

CCE = −
N∑
i=1

kL∑
k=1

(yk(i)ln(ŷk(i)) + (1− yk(i))ln(1− ŷk(i)). (A.2)

The minimal value of CCE occurs when a sample is classified correctly, that is, yk(i) =

ŷk(i). There are various interpretations of the cross-entropy cost function, but a

common understanding is that it measures surprise [107]. If the predicted output is

close to the desired output, we are not very ”surprised” and the cost is low. If the

predicted output is far from the desired output, we are very ”surprised”.

The cross-entropy cost function has several desirable properties. It depends on the

relative errors and not the absolute error like CMSE, thus it gives the same weight to

small and large values [108]. Also, it diverges if the outputs tend toward the wrong

class which produces stronger gradients that speed up learning [108].

For classification of unbalanced datasets, that is datasets where one or several classes

occur in a significantly higher number than other classes, it can be beneficial to modify

the cost function to account for the imbalance. One such modification which has shown

to improve results is Median Frequency Balancing (MFB) [99, 102], defined by

CMFB = −
N∑
i=1

kL∑
k=1

(yk(i)ln(ŷk(i)) + (1− yk(i))ln(1− ŷk(i))Wk (A.3)

where

Wk =
median

(
fk|k ∈ K

)
fk

, (A.4)

fk is the frequency of samples in class k and K is the set of all classes. If the discrepancy

between classes is large enough the network might ignore the underrepresented class

altogether and still obtain good overall performance. MFB weights the cost by the ratio

of the median class frequency and the actual class frequency, such that the significance

of errors corresponding to the underrepresented class is increased.

Appendix A: Appendix Chapter 2 123

A.2 SVM details

Further details regarding the KKT conditions presented during the SVM description.

A.2.1 KKT conditions

In Chapter 2 we stated that the minimzer of Equation 2.4 and 2.5 must satisfy the

Karush-Kuhn-Tucker(KKT) conditions. If θ∗ is a point that satisfies the regularity

condition, then there exits a vector λ of Lagrange multipliers so that the following are

valid:

1. ∂
∂θ
L(θ∗,λ) = 0

2. λi ≥ 0, i = 1, 2, ...,m

3. λifi(θ∗) i = 1, 2, ...,m

The first condition states that the minimum must be a stationary point of the La-

grangian, with respect to θ. The second is states that the Lagrange multipliers are

nonnegative. The third condition is known as the complementary slackness condition

that state that at least one of the terms in the products is zero.

Appendix B

Appendix Chapter 3

This appendix describes the gradient descent algorithm and its many variants.

B.1 Optimization techniques

All neural networks share the goal of optimizing some cost function with respect to

some parameters. Although there has been some experimentation with using Newton’s

method [109] for optimizing neural networks, the most widely used algorithm is gradient

descent. This is because gradient descent only requires computing the gradients of a

network which can be very efficient compared to methods that require higher order

derivatives to be computed.

Gradient Descent Algorithms

As mentioned in Section 3.1.2, the most common optimization algorithm for train-

ing neural networks is gradient decent where parameters are updated according to

Equations 3.4 and 3.5. In the general case gradient decent is given by

θ(new) = θ(old)− µ∇θC(θ; x,y) (B.1)

125

Appendix B: Appendix Chapter 3 126

where θ are the parameters we want to update, µ is the learning rate and ∇C(θ; x,y)

is the derivative of the cost function w.r.t θ given some training data pairs {x,y}.
Gradient decent is based on the simple idea of adjusting the parameters in the opposite

direction of the function we want to minimize and the size of the adjustment in

determined by the learning rate. However, standard gradient decent requires computing

the gradient of the entire training dataset which can be computationally demanding.

Therefore, we usually consider a batch of samples, such that Equation B.1 becomes

θ(new) = θ(old)− µ
N∑
i=1

∇θC(θ; xi,yi), (B.2)

where N is the number of samples in the batch. We refer to this algorithm as batch-

gradient descent or Stochastic Gradient Descent (SGD). SGD is computationally less

demanding but provide a more coarse estimate of the gradient. However, this stochas-

ticity can have a regularizing affect, as it might prohibit the model from finding a set

of parameters fitted to the training set.

A common issue for gradient descent algorithms are regions where the cost plateaus

before descending further, which lead to gradients close to zero and thus no parameter

updates. A typical solution is adding momentum [110] which accelerates the algorithm

in the relevant direction. Momentum is included by adding a fraction γ of the gradients

of the previous time step, expressed as:

vt = γvt−1 + µ∇θC(θ; x,y) (B.3)

θ(new) = θ(old)− vt. (B.4)

Momentum is often illustrated as a ball rolling down a hill which can traverse flat

region as a result of the momentum it gathers while rolling down the hill. However, a

ball rolling blindly down a hill might overshoot a desired minimum, so to give the ball

a sense of direction one could employ a variation of momentum known as Nesterov

Momentum [111]. Nesterov Momentum considers θ(old)− γvt−1, thus approximating

the next position of the parameters. We can implement this procedure by

Appendix B: Appendix Chapter 3 127

vt = γvt−1 + µ∇θC(θ − γvt−1; x,y) (B.5)

θ(new) = θ(old)− vt. (B.6)

There are a number of recent variations of gradient descent which seek to improve the

optimization procedure, such as Adagrad [112], AdaDelta [113], and RMSprop [101].

In this thesis we will utilize a recently proposed algorithm known as the Adaptive

Moment Estimation (ADAM) algorithm [100]. ADAM computes an adaptive learning

rate for each parameter by storing an exponentially decaying average of past gradients

and past squared gradients, defined as:

mt = β1mt−1 + (1− β1)∇θC(θ − γvt−1; x,y) (B.7)

vt = β2vt−1 + (1− β2)∇θC2(θ − γvt−1; x,y) (B.8)

where mt is an estimate of the mean of the gradients, vt is an estimate of the variance

of the gradients, β1 is the decay rate of the estimated mean of the gradients, and β2

is the decay rate of the estimated variance of the gradients. The authors of ADAM

noticed that since mt and vt are initialized as vectors of zeros they are biased towards

zero. Therefore, they computed bias corrected estimates

m̂t =
mt

1− βt1
(B.9)

v̂t =
vt

1− βt2
(B.10)

which they used update the parameters, in the following way:

θ(new) = θ(old)− µ√
v̂ + ε

m̂t. (B.11)

Because ADAM adjusts m̂t and v̂t automatically during the training we do not need

to tune these hyperparameters manually, which can be a time-consuming a difficult

Appendix B: Appendix Chapter 3 128

process.

Appendix C

Appendix Chapter 4

This appendix provides a detailed description of the three networks proposed in this

thesis.

C.1 Network Details

There are many small details one needs to consider when constructing DNNs. In order

to provide the greatest degree of clarity, we provide a detailed description of each

architecture we have used in this thesis.

C.1.1 FCN-8

Table C.1 displays details regarding our implementation of the FCN-8 from [9].

C.1.2 U-Net

Table C.2 displays details regarding our implementation of U-Net from [71].

C.1.3 SegNet

Table C.3 displays details regarding our implementation of the SegNet from [97].

129

Appendix C: Appendix Chapter 4 130

Layer (C, H, W) Kernel Size Stride Padding

Conv1 (3, 224, 224) 3× 3 1 1
Conv2 (64, 224, 224) 3× 3 1 1
Pool1 (64, 224, 224) 2× 2 2 0
Conv3 (64, 112, 112) 3× 3 1 1
Conv4 (128, 112, 112) 3× 3 1 1
Pool2 (128, 112, 112) 2× 2 2 0
Conv5 (128, 56, 56) 3× 3 1 1
Conv6 (256, 56, 56) 3× 3 1 1
Conv7 (256, 56, 56) 3× 3 1 1
Pool3 (256, 56, 56) 2× 2 2 0
Conv8 (256, 28, 28) 3× 3 1 1
Conv9 (512, 28, 28) 3× 3 1 1
Conv10 (512, 28, 28) 3× 3 1 1
Pool4 (512, 28, 28) 2× 2 2 0

Conv11 (512, 14, 14) 3× 3 1 1
Conv12 (512, 14, 14) 3× 3 1 1
Conv13 (512, 14, 14) 3× 3 1 1
Pool5 (512, 14, 14) 2× 2 2 0

Conv14(d) (512, 7, 7) 7× 7 1 3
Conv15(d) (4096, 7, 7) 1× 1 1 0

Conv16 (4096, 7, 7) 1× 1 1 0
UpConv1 (c, 7, 7) 4× 4 2 1

SkipConv1 (512, 14, 14) 1× 1 1 0
SkipConv1 + UpConv1 (c, 14, 14) - - -

UpConv2 (c, 14, 14) 4× 4 2 1
SkipConv2 (256, 28, 28) 1× 1 1 0

SkipConv2 + UpConv2 (c, 28, 28) - - -
UpConv3 (c, 28, 28) 16× 16 8 4
Softmax (c, 224, 224) - - -

Table C.1: Architecture details for our FCN-8 implementation. First column
refers to the operation carried out in that layer. Note that all convolutional lay-
ers include batch normalization and a ReLU, except Conv16 and the SkipConv
layers. Convolutional layers with (d) has dropout applied with p=0.5. Second
column refers to the number of channels, height and width of the image passed

into the layer. The c corresponds to the number of classes in the dataset.

Appendix C: Appendix Chapter 4 131

Layer (C, H, W) Kernel Size Stride Padding

Conv1 (3, 224, 224) 3× 3 1 1
Conv2 (64, 224, 224) 3× 3 1 1
Pool1 (64, 224, 224) 2× 2 2 0
Conv3 (64, 112, 112) 3× 3 1 1
Conv4 (128, 112, 112) 3× 3 1 1
Pool2 (128, 112, 112) 2× 2 2 0
Conv5 (128, 56, 56) 3× 3 1 1
Conv6 (256, 56, 56) 3× 3 1 1
Pool3 (256, 56, 56) 2× 2 2 0
Conv7 (256, 28, 28) 3× 3 1 1
Conv8 (512, 28, 28) 3× 3 1 1
Pool4 (512, 28, 28) 2× 2 2 0

Conv9(d) (512, 14, 14) 3× 3 1 1
Conv10(d) (512, 14, 14) 3× 3 1 1
UpConv1 (512, 14, 14) 4× 4 2 1
Conv11 (512+512, 28, 28) 3× 3 1 1
Conv12 (512, 28, 28) 3× 3 1 1

UpConv2 (256, 28, 28) 4× 4 2 1
Conv13 (256+256, 56, 56) 3× 3 1 1
Conv14 (256, 56, 56) 3× 3 1 1

UpConv3 (128, 56, 56) 4× 4 2 1
Conv15 (128+128, 112, 112) 3× 3 1 1
Conv16 (128, 112, 112) 3× 3 1 1

UpConv4 (64, 112, 112) 4× 4 2 1
Conv17 (64+64, 224, 224) 3× 3 1 1
Conv18 (64, 224, 224) 3× 3 1 1
Conv19 (64, 224, 224) 1× 1 1 0
Softmax (c, 224, 224) - - -

Table C.2: Architecture details for our U-Net implementation. First column
refers to the operation carried out in that layer. Note that all convolutional
layers include batch normalization and a ReLU, except Conv19. Convolutional
layers with (d) has dropout applied with p=0.5.The c in the last row corresponds

to the number of classes in the dataset.

Appendix C: Appendix Chapter 4 132

Layer (C, H, W) Kernel Size Stride Padding

Conv1 (3, 224, 224) 3× 3 1 1
Conv2 (64, 224, 224) 3× 3 1 1
Pool1 (64, 224, 224) 2× 2 2 0
Conv3 (64, 112, 112) 3× 3 1 1
Conv4 (128, 112, 112) 3× 3 1 1
Pool2 (128, 112, 112) 2× 2 2 0

Conv5(d) (128, 56, 56) 3× 3 1 1
Conv6(d) (256, 56, 56) 3× 3 1 1
Conv7(d) (256, 56, 56) 3× 3 1 1

Pool3 (256, 56, 56) 2× 2 2 0
Conv8(d) (256, 28, 28) 3× 3 1 1
Conv9(d) (512, 28, 28) 3× 3 1 1
Conv10(d) (512, 28, 28) 3× 3 1 1

Pool4 (512, 28, 28) 2× 2 2 0
Conv11(d) (512, 14, 14) 3× 3 1 1
Conv12(d) (512, 14, 14) 3× 3 1 1
Conv13(d) (512, 14, 14) 3× 3 1 1

Pool5 (512, 7, 7) 2× 2 2 0
UnPool1 (512, 7, 7) 2× 2 2 0

Conv14(d) (512, 14, 14) 3× 3 1 1
Conv15(d) (512, 14, 14) 3× 3 1 1
Conv16(d) (512, 14, 14) 3× 3 1 1
UnPool2 (512, 14, 14) 2× 2 2 0

Conv17(d) (512, 28, 28) 3× 3 1 1
Conv18(d) (512, 28, 28) 3× 3 1 1
Conv19(d) (512, 28, 28) 3× 3 1 1
UnPool3 (256, 28, 28) 2× 2 2 0

Conv20(d) (256, 56, 56) 3× 3 1 1
Conv21(d) (256, 56, 56) 3× 3 1 1
Conv22(d) (256, 56, 56) 3× 3 1 1
UnPool4 (128, 56, 56) 2× 2 2 0
Conv23 (128, 112, 112) 3× 3 1 1
Conv24 (128, 112, 112) 3× 3 1 1
UnPool5 (64, 112, 112) 2× 2 2 0
Conv25 (64, 224, 224) 3× 3 1 1
Conv26 (64, 224, 224) 3× 3 1 1
Softmax (c, 224, 224) - - -

Table C.3: Architecture details for our SegNet implementation. First column
refers to the operation(s) carried out in that layer. Note that all convolutional
layers include batch normalization and a ReLU, except Conv26. Convolutional
layers with (d) has dropout applied with p=0.5. Second column refers to the
number of channels, height and width of the feature maps passed into the layer.

The c in the last row corresponds to the number of classes in the dataset.

Appendix D

Appendix Chapter 5

This appendix describes the data utilized in this thesis and further details regarding

the exact split of the dataset into training, validation and test set.

D.1 Experimental Setup

D.1.1 Data

The Endoscene dataset was introduced in [11] and is actually a combination of two

previous polyp segmentation dataset. To obtain a fair comparison with the previous

work done using FCN-8 on semantic segmentation of colorectal polyp we follow [11]

when dividing the dataset into training, validation and test set. Table D.1 displays the

details regarding the dataset and the split.

Database Training Validation Test Resolution
CVC-Colon [5] [1-76],

[98-148],
[221-273].

[77-97],
[209-220],
[274-300].

[149-208]. 500× 574

CVC-Clinic [114] [26-50],
[104-126],
[178-227],
[253-317],
[384-503],
[529-612].

[51-103],
[228-252],
[318-342],
[364-383].

[1-25],
[127-177],
[343-363],
[504-528].

384× 288

Table D.1: Summary of the split used to construct the Endoscene dataset
from CVC-Colon and CVC-Clinic.

133

Bibliography

[1] Rebecca L. Siegel, Kimberly D. Miller, and Ahmedin Jemal. Cancer statistics,

2017. CA: A Cancer Journal for Clinicians, 67(1):7–30, 2017. ISSN 1542-4863.

doi: 10.3322/caac.21387. URL http://dx.doi.org/10.3322/caac.21387.

[2] Wanqing Chen, Rongshou Zheng, Peter D. Baade, Siwei Zhang, Hongmei Zeng,

Freddie Bray, Ahmedin Jemal, Xue Qin Yu, and Jie He. Cancer statistics in

china, 2015. CA: A Cancer Journal for Clinicians, 66(2):115–132, 2016. ISSN

1542-4863. doi: 10.3322/caac.21338. URL http://dx.doi.org/10.3322/

caac.21338.

[3] Larsen IK red. Cancer in norway 2015 - cancer incidence, mortality, sur-

vival and prevalence in norway. oslo: Cancer registry of norway; 2016.,

2016. URL https://www.kreftregisteret.no/globalassets/cancer-in-

norway/2015/cin-2015.pdf.

[4] Rebecca L. Siegel, Kimberly D. Miller, Stacey A. Fedewa, Dennis J. Ahnen,

Reinier G. S. Meester, Afsaneh Barzi, and Ahmedin Jemal. Colorectal cancer

statistics, 2017. CA: A Cancer Journal for Clinicians, 67(3):177–193, 2017. ISSN

1542-4863. doi: 10.3322/caac.21395. URL http://dx.doi.org/10.3322/

caac.21395.

[5] F. Javier Sanchez Jorge Bernal and Fernando Vilario. Towards automatic polyp

detection with a polyp appearance model. Pattern Recognition, 45(9):3166–

3182, 2012. URL http://mv.cvc.uab.es/projects/colon-qa/cvccolondb.

[6] Helsedirektoratet. Nasjonalt screeningprogram mot tarmkreft, 2017. URL

https://helsedirektoratet.no/Documents/Kreft/Rapport%20om%20et%

20Nasjonalt%20screeningprogram%20mot%20tarmkreft%20300617.pdf.

135

http://dx.doi.org/10.3322/caac.21387
http://dx.doi.org/10.3322/caac.21338
http://dx.doi.org/10.3322/caac.21338
https://www.kreftregisteret.no/globalassets/cancer-in-norway/2015/cin-2015.pdf
https://www.kreftregisteret.no/globalassets/cancer-in-norway/2015/cin-2015.pdf
http://dx.doi.org/10.3322/caac.21395
http://dx.doi.org/10.3322/caac.21395
http://mv.cvc.uab.es/projects/colon-qa/cvccolondb
https://helsedirektoratet.no/Documents/Kreft/Rapport%20om%20et%20Nasjonalt%20screeningprogram%20mot%20tarmkreft%20300617.pdf
https://helsedirektoratet.no/Documents/Kreft/Rapport%20om%20et%20Nasjonalt%20screeningprogram%20mot%20tarmkreft%20300617.pdf

Bibliography 136

[7] Stoker J Bossuyt PM van Deventer SJ Dekker E. van Rijn JC, Reitsma JB.

Polyp miss rate determined by tandem colonoscopy: a systematic review., 2006.

URL https://www.ncbi.nlm.nih.gov/pubmed/16454841.

[8] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You

only look once: Unified, real-time object detection. CoRR, abs/1506.02640,

2015. URL http://arxiv.org/abs/1506.02640.

[9] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-

works for semantic segmentation. CoRR, abs/1411.4038, 2014. URL http:

//arxiv.org/abs/1411.4038.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-

fication with deep convolutional neural networks. In F. Pereira, C. J. C.

Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neu-

ral Information Processing Systems 25, pages 1097–1105. Curran Asso-

ciates, Inc., 2012. URL http://papers.nips.cc/paper/4824-imagenet-

classification-with-deep-convolutional-neural-networks.pdf.

[11] David Vázquez, Jorge Bernal, F. Javier Sánchez, Gloria Fernández-Esparrach,

Antonio M. López, Adriana Romero, Michal Drozdzal, and Aaron C. Courville. A

benchmark for endoluminal scene segmentation of colonoscopy images. CoRR,

abs/1612.00799, 2016. URL http://arxiv.org/abs/1612.00799.

[12] Ignacio Arganda-Carreras, Srinivas C. Turaga, Daniel R. Berger, Dan Cirean,

Alessandro Giusti, Luca M. Gambardella, Jrgen Schmidhuber, Dmitry Laptev,

Sarvesh Dwivedi, Joachim M. Buhmann, Ting Liu, Mojtaba Seyedhosseini,

Tolga Tasdizen, Lee Kamentsky, Radim Burget, Vaclav Uher, Xiao Tan, Chang-

ming Sun, Tuan D. Pham, Erhan Bas, Mustafa G. Uzunbas, Albert Car-

dona, Johannes Schindelin, and H. Sebastian Seung. Crowdsourcing the cre-

ation of image segmentation algorithms for connectomics. Frontiers in Neu-

roanatomy, 9:142, 2015. ISSN 1662-5129. doi: 10.3389/fnana.2015.00142.

URL https://www.frontiersin.org/article/10.3389/fnana.2015.00142.

[13] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,

Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M. A. We-

ber, T. Arbel, B. B. Avants, N. Ayache, P. Buendia, D. L. Collins, N. Cordier,

J. J. Corso, A. Criminisi, T. Das, H. Delingette, . Demiralp, C. R. Durst,

M. Dojat, S. Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland,

https://www.ncbi.nlm.nih.gov/pubmed/16454841
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1411.4038
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1612.00799
https://www.frontiersin.org/article/10.3389/fnana.2015.00142

Bibliography 137

X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John, E. Konukoglu,

D. Lashkari, J. A. Mariz, R. Meier, S. Pereira, D. Precup, S. J. Price, T. R.

Raviv, S. M. S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H. C. Shin, J. Shot-

ton, C. A. Silva, N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M.

Thomas, N. J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D. H. Ye, L. Zhao,

B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. Van Leemput. The mul-

timodal brain tumor image segmentation benchmark (brats). IEEE Transac-

tions on Medical Imaging, 34(10):1993–2024, Oct 2015. ISSN 0278-0062. doi:

10.1109/TMI.2014.2377694.

[14] Hari Babu Nandpuru, S. S. Salankar, and V. R. Bora. Mri brain cancer classi-

fication using support vector machine. In Electrical, Electronics and Computer

Science (SCEECS), 2014 IEEE Students’ Conference on, pages 1–6, March 2014.

doi: 10.1109/SCEECS.2014.6804439.

[15] S. L. A. Lee, A. Z. Kouzani, and E. J. Hu. A random forest for lung nodule

identification. In TENCON 2008 - 2008 IEEE Region 10 Conference, pages 1–5,

Nov 2008. doi: 10.1109/TENCON.2008.4766750.

[16] W. Huang, N. Li, Z. Lin, G. B. Huang, W. Zong, J. Zhou, and Y. Duan.

Liver tumor detection and segmentation using kernel-based extreme learning

machine. In 2013 35th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), pages 3662–3665, July 2013. doi:

10.1109/EMBC.2013.6610337.

[17] Yuan Sui, Ying Wei, and Dazhe Zhao. Computer-aided lung nodule recognition

by svm classifier based on combination of random undersampling and smote, 05

2015.

[18] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach.

Learn., 20(3):273–297, September 1995. ISSN 0885-6125. doi: 10.1023/A:

1022627411411. URL https://doi.org/10.1023/A:1022627411411.

[19] Tin Kam Ho. Random decision forests. In Proceedings of the Third Interna-

tional Conference on Document Analysis and Recognition (Volume 1) - Vol-

ume 1, ICDAR ’95, pages 278–, Washington, DC, USA, 1995. IEEE Computer

Society. ISBN 0-8186-7128-9. URL http://dl.acm.org/citation.cfm?id=

844379.844681.

https://doi.org/10.1023/A:1022627411411
http://dl.acm.org/citation.cfm?id=844379.844681
http://dl.acm.org/citation.cfm?id=844379.844681

Bibliography 138

[20] N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3):175–185, 1992. ISSN 00031305.

URL http://www.jstor.org/stable/2685209.

[21] Jrme Louradour and Khalid Daoudi. State-of-the-art sequence kernels for svm

speaker verification, 11 2008.

[22] Xiangying Wang and Yixin Zhong. Statistical learning theory and state of

the art in svm. In The Second IEEE International Conference on Cogni-

tive Informatics, 2003. Proceedings., pages 55–59, Aug 2003. doi: 10.1109/

COGINF.2003.1225953.

[23] Sergios Theodoridis and Konstantinos Koutroumbas. Chapter 3 - linear

classifiers. In Sergios Theodoridis, , and Konstantinos Koutroumbas, ed-

itors, Pattern Recognition (Fourth Edition), pages 91 – 150. Academic

Press, Boston, fourth edition edition, 2009. ISBN 978-1-59749-272-0.

doi: https://doi.org/10.1016/B978-1-59749-272-0.50005-0. URL https://

www.sciencedirect.com/science/article/pii/B9781597492720500050.

[24] John Platt. Sequential minimal optimization: A fast algorithm for training

support vector machines, April 1998. URL https://www.microsoft.com/

en-us/research/publication/sequential-minimal-optimization-a-

fast-algorithm-for-training-support-vector-machines/,.

[25] J. Mercer. Functions of positive and negative type, and their connection with the

theory of integral equations. Philosophical Transactions of the Royal Society of

London. Series A, Containing Papers of a Mathematical or Physical Character,

209:415–446, 1909. ISSN 02643952. URL http://www.jstor.org/stable/

91043.

[26] Lúıs A. Alexandre, João Casteleiro, and Nuno Nobreinst. Polyp detection in en-

doscopic video using svms. In Joost N. Kok, Jacek Koronacki, Ramon Lopez de

Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron, editors, Knowl-

edge Discovery in Databases: PKDD 2007, pages 358–365, Berlin, Heidelberg,

2007. Springer Berlin Heidelberg. ISBN 978-3-540-74976-9.

[27] David G. Lowe. Distinctive image features from scale-invariant keypoints. Inter-

national Journal of Computer Vision, 60(2):91–110, Nov 2004. ISSN 1573-1405.

doi: 10.1023/B:VISI.0000029664.99615.94. URL https://doi.org/10.1023/

B:VISI.0000029664.99615.94.

http://www.jstor.org/stable/2685209
https://www.sciencedirect.com/science/article/pii/B9781597492720500050
https://www.sciencedirect.com/science/article/pii/B9781597492720500050
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/,
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/,
https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/,
http://www.jstor.org/stable/91043
http://www.jstor.org/stable/91043
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94

Bibliography 139

[28] Y. Yuan and M. Q. H. Meng. Polyp classification based on bag of features and

saliency in wireless capsule endoscopy. In 2014 IEEE International Conference on

Robotics and Automation (ICRA), pages 3930–3935, May 2014. doi: 10.1109/

ICRA.2014.6907429.

[29] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In Proceedings of the 2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume

01, CVPR ’05, pages 886–893, Washington, DC, USA, 2005. IEEE Computer

Society. ISBN 0-7695-2372-2. doi: 10.1109/CVPR.2005.177. URL http:

//dx.doi.org/10.1109/CVPR.2005.177.

[30] H Agrahari, Yuji Iwahori, Manas Bhuyan, S Ghorai, H Kohli, Robert Woodham,

and Kunio Kasugai. Automatic polyp detection using dsc edge detector and hog

features, 01 2014.

[31] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 22(8):888–905, Aug 2000.

ISSN 0162-8828. doi: 10.1109/34.868688.

[32] Xiaodong Zhang, Fucang Jia, Suhuai Luo, Guiying Liu, and Qingmao Hu.

A marker-based watershed method for x-ray image segmentation. Computer

Methods and Programs in Biomedicine, 113(3):894 – 903, 2014. ISSN

0169-2607. doi: https://doi.org/10.1016/j.cmpb.2013.12.025. URL http:

//www.sciencedirect.com/science/article/pii/S016926071300415X.

[33] Filipe Condessa and José Bioucas-Dias. Segmentation and detection of colorec-

tal polyps using local polynomial approximation. In Aurélio Campilho and Mo-

hamed Kamel, editors, Image Analysis and Recognition, pages 188–197, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-31298-4.

[34] Jorge Bernal, Joan Manel Núñez, F. Javier Sánchez, and Fernando Vilariño.

Polyp segmentation method in colonoscopy videos by means of msa-dova energy

maps calculation, 2014. URL https://doi.org/10.1007/978-3-319-13909-

8 6.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. In Computer Vision and Pattern Recog-

nition (CVPR), 2015. URL http://arxiv.org/abs/1409.4842.

http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://www.sciencedirect.com/science/article/pii/S016926071300415X
http://www.sciencedirect.com/science/article/pii/S016926071300415X
https://doi.org/10.1007/978-3-319-13909-8_6
https://doi.org/10.1007/978-3-319-13909-8_6
http://arxiv.org/abs/1409.4842

Bibliography 140

[36] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015. URL http:

//arxiv.org/abs/1504.08083.

[37] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:

towards real-time object detection with region proposal networks. CoRR,

abs/1506.01497, 2015. URL http://arxiv.org/abs/1506.01497.

[38] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:

Unified, real-time object detection. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 779–788, June 2016. doi:

10.1109/CVPR.2016.91.

[39] Geert J. S. Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud

Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M.

van der Laak, Bram van Ginneken, and Clara I. Sánchez. A survey on deep

learning in medical image analysis. CoRR, abs/1702.05747, 2017. URL

http://arxiv.org/abs/1702.05747.

[40] E. Ribeiro, A. Uhl, and M. Hfner. Colonic polyp classification with convolutional

neural networks. In 2016 IEEE 29th International Symposium on Computer-

Based Medical Systems (CBMS), pages 253–258, June 2016. doi: 10.1109/

CBMS.2016.39.

[41] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov

1998. ISSN 0018-9219. doi: 10.1109/5.726791.

[42] Qinghui Liu. Deep learning applied to automatic polyp detection in colonoscopy

images : master thesis in system engineering with embedded systems, may 2017.

[43] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral Networks, 4(2):251 – 257, 1991. ISSN 0893-6080. doi: https://doi.org/

10.1016/0893-6080(91)90009-T. URL http://www.sciencedirect.com/

science/article/pii/089360809190009T.

[44] Paul Werbos. Beyond regression: New tools for predicting and analysis in the

behavioral sciences, 11 1974.

[45] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Neu-

rocomputing: Foundations of research, 1988. URL http://dl.acm.org/

citation.cfm?id=65669.104451.

http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1702.05747
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://dl.acm.org/citation.cfm?id=65669.104451
http://dl.acm.org/citation.cfm?id=65669.104451

Bibliography 141

[46] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jrgen Schmidhuber. Gra-

dient flow in recurrent nets: the difficulty of learning long-term dependencies,

2001.

[47] Rosenblatt. F. The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65(6):386, 1958.

[48] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, Dec

1943. ISSN 1522-9602. doi: 10.1007/BF02478259. URL https://doi.org/

10.1007/BF02478259.

[49] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neu-

ral networks, 11–13 Apr 2011. URL http://proceedings.mlr.press/v15/

glorot11a.html.

[50] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference

on International Conference on Machine Learning, ICML’10, pages 807–814,

USA, 2010. Omnipress. ISBN 978-1-60558-907-7. URL http://dl.acm.org/

citation.cfm?id=3104322.3104425.

[51] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best

multi-stage architecture for object recognition? In 2009 IEEE 12th International

Conference on Computer Vision, pages 2146–2153, Sept 2009. doi: 10.1109/

ICCV.2009.5459469.

[52] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities

improve neural network acoustic models, 2013.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. CoRR,

abs/1502.01852, 2015. URL http://arxiv.org/abs/1502.01852.

[54] Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets:

Backpropagation, conjugate gradient, and early stopping. In Proceedings of

the 13th International Conference on Neural Information Processing Systems,

NIPS’00, pages 381–387, Cambridge, MA, USA, 2000. MIT Press. URL

http://dl.acm.org/citation.cfm?id=3008751.3008807.

https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://dl.acm.org/citation.cfm?id=3104322.3104425
http://arxiv.org/abs/1502.01852
http://dl.acm.org/citation.cfm?id=3008751.3008807

Bibliography 142

[55] Geoffrey E. Hinton. A practical guide to training restricted boltzmann machines,

2012. URL https://doi.org/10.1007/978-3-642-35289-8 32.

[56] Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invari-

ance. In Proceedings of the Twenty-first International Conference on Machine

Learning, ICML ’04, pages 78–, New York, NY, USA, 2004. ACM. ISBN 1-58113-

838-5. doi: 10.1145/1015330.1015435. URL http://doi.acm.org/10.1145/

1015330.1015435.

[57] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[58] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training

deep feedforward neural networks. In Proceedings of the Thirteenth Inter-

national Conference on Artificial Intelligence and Statistics, volume 9 of Pro-

ceedings of Machine Learning Research, pages 249–256, Chia Laguna Resort,

Sardinia, Italy, 13–15 May 2010. URL http://proceedings.mlr.press/v9/

glorot10a.html.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http://

arxiv.org/abs/1409.1556.

[60] David Bradley. Learning In Modular Systems. PhD thesis, Robotics Institute ,

Carnegie Mellon University, Pittsburgh, PA, May 2010.

[61] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization the-

ory and neural networks architectures. Neural Computation, 7(2):219–269,

1995. doi: 10.1162/neco.1995.7.2.219. URL https://doi.org/10.1162/

neco.1995.7.2.219.

[62] Lutz Prechelt. Early stopping — but when?, 2012. URL https://doi.org/

10.1007/978-3-642-35289-8 5.

[63] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL

http://jmlr.org/papers/v15/srivastava14a.html.

https://doi.org/10.1007/978-3-642-35289-8_32
http://doi.acm.org/10.1145/1015330.1015435
http://doi.acm.org/10.1145/1015330.1015435
http://www.deeplearningbook.org
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1162/neco.1995.7.2.219
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5
http://jmlr.org/papers/v15/srivastava14a.html

Bibliography 143

[64] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan R. Salakhutdinov. Improving neural networks by preventing co-adaptation of

feature detectors, 07 2012.

[65] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[66] Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolu-

tional networks. CoRR, abs/1311.2901, 2013. URL http://arxiv.org/abs/

1311.2901.

[67] Sebastien C. Wong, Adam Gatt, Victor Stamatescu, and Mark D. McDonnell.

Understanding data augmentation for classification: when to warp? CoRR,

abs/1609.08764, 2016. URL http://arxiv.org/abs/1609.08764.

[68] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. CoRR, abs/1502.03167,

2015. URL http://arxiv.org/abs/1502.03167.

[69] Irwin Sobel. An isotropic 3x3 image gradient operator, 02 2014.

[70] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/

abs/1512.03385.

[71] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. CoRR, abs/1505.04597, 2015.

URL http://arxiv.org/abs/1505.04597.

[72] Simon Jégou, Michal Drozdzal, David Vázquez, Adriana Romero, and Yoshua

Bengio. The one hundred layers tiramisu: Fully convolutional densenets for se-

mantic segmentation. CoRR, abs/1611.09326, 2016. URL http://arxiv.org/

abs/1611.09326.

[73] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2011 (VOC2011) Results. http://www.pascal-

network.org/challenges/VOC/voc2011/workshop/index.html, 2011.

[74] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Rep-

resenting model uncertainty in deep learning. In Maria Florina Balcan and Kil-

ian Q. Weinberger, editors, Proceedings of The 33rd International Conference

http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1609.08764
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1611.09326
http://arxiv.org/abs/1611.09326

Bibliography 144

on Machine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR. URL

http://proceedings.mlr.press/v48/gal16.html.

[75] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep

learning for computer vision? CoRR, abs/1703.04977, 2017. URL http://

arxiv.org/abs/1703.04977.

[76] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier

probes. ArXiv e-prints, October 2016.

[77] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-

lutional networks: Visualising image classification models and saliency maps.

CoRR, abs/1312.6034, 2013. URL http://arxiv.org/abs/1312.6034.

[78] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Ried-

miller. Striving for simplicity: The all convolutional net. CoRR, abs/1412.6806,

2014. URL http://arxiv.org/abs/1412.6806.

[79] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottle-

neck principle. CoRR, abs/1503.02406, 2015. URL http://arxiv.org/abs/

1503.02406.

[80] Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neu-

ral networks via information. CoRR, abs/1703.00810, 2017. URL http:

//arxiv.org/abs/1703.00810.

[81] S. Yu and J. C. Principe. Understanding Autoencoders with Information Theo-

retic Concepts. ArXiv e-prints, March 2018.

[82] Pejman Khadivi, Ravi Tandon, and Naren Ramakrishnan. Flow of information in

feed-forward deep neural networks. CoRR, abs/1603.06220, 2016. URL http:

//arxiv.org/abs/1603.06220.

[83] Eder Santana, Matthew Emigh, and José C. Pŕıncipe. Information theoretic-

learning auto-encoder. CoRR, abs/1603.06653, 2016. URL http://arxiv.org/

abs/1603.06653.

[84] S. Yu, R. Jenssen, and J. C. Principe. Understanding Convolutional Neural

Network Training with Information Theory. ArXiv e-prints, April 2018.

http://proceedings.mlr.press/v48/gal16.html
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1503.02406
http://arxiv.org/abs/1503.02406
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/1603.06220
http://arxiv.org/abs/1603.06220
http://arxiv.org/abs/1603.06653
http://arxiv.org/abs/1603.06653

Bibliography 145

[85] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27(3):379–423, July 1948. ISSN 0005-8580. doi: 10.1002/

j.1538-7305.1948.tb01338.x.

[86] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John

Wiley and Sons Inc, second edition, 2006.

[87] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy

Kolchinsky, Brendan Daniel Tracey, and David Daniel Cox. On the information

bottleneck theory of deep learning. In International Conference on Learning

Representations, 2018. URL https://openreview.net/forum?id=ry WPG-

A-.

[88] Jose C. Principe. Information Theoretic Learning: Renyi’s Entropy and Kernel

Perspectives. Springer Publishing Company, Incorporated, 1st edition, 2010.

ISBN 1441915699, 9781441915696.

[89] Alfrd Rnyi. On measures of entropy and information. In Proceedings of the

Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol-

ume 1: Contributions to the Theory of Statistics, pages 547–561, Berkeley,

Calif., 1961. University of California Press. URL https://projecteuclid.org/

euclid.bsmsp/1200512181.

[90] Emanuel Parzen. On estimation of a probability density function and mode. Ann.

Math. Statist., 33(3):1065–1076, 09 1962. doi: 10.1214/aoms/1177704472.

URL https://doi.org/10.1214/aoms/1177704472.

[91] Sergios Theodoridis and Konstantinos Koutroumbas. Chapter 2 - classifiers

based on bayes decision theory. In Sergios Theodoridis, , and Konstantinos

Koutroumbas, editors, Pattern Recognition (Fourth Edition), pages 13 – 89.

Academic Press, Boston, fourth edition edition, 2009. ISBN 978-1-59749-272-0.

doi: https://doi.org/10.1016/B978-1-59749-272-0.50004-9. URL https://

www.sciencedirect.com/science/article/pii/B9781597492720500049.

[92] Luis Gonzalo Sánchez Giraldo, Murali Rao, and José C. Pŕıncipe. Measures of

entropy from data using infinitely divisible kernels. CoRR, abs/1211.2459, 2012.

URL http://arxiv.org/abs/1211.2459.

https://openreview.net/forum?id=ry_WPG-A-
https://openreview.net/forum?id=ry_WPG-A-
https://projecteuclid.org/euclid.bsmsp/1200512181
https://projecteuclid.org/euclid.bsmsp/1200512181
https://doi.org/10.1214/aoms/1177704472
https://www.sciencedirect.com/science/article/pii/B9781597492720500049
https://www.sciencedirect.com/science/article/pii/B9781597492720500049
http://arxiv.org/abs/1211.2459

Bibliography 146

[93] Roger A. Horn. On infinitely divisible matrices, kernels, and functions.

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 8(3):219–

230, Sep 1967. ISSN 1432-2064. doi: 10.1007/BF00531524. URL https:

//doi.org/10.1007/BF00531524.

[94] Bernard Silverman. Density estimation for statistics and data analysis, 01 1986.

[95] Jonas Myhre and Robert Jenssen. Mixture weight influence on kernel entropy

component analysis and semi-supervised learning using the lasso, 09 2012.

[96] Avi Ben-Cohen, Idit Diamant, Eyal Klang, Michal Amitai, and Hayit Greenspan.

Fully convolutional network for liver segmentation and lesions detection. In

Gustavo Carneiro, Diana Mateus, Löıc Peter, Andrew Bradley, João Manuel R. S.

Tavares, Vasileios Belagiannis, João Paulo Papa, Jacinto C. Nascimento, Marco

Loog, Zhi Lu, Jaime S. Cardoso, and Julien Cornebise, editors, Deep Learning

and Data Labeling for Medical Applications, pages 77–85, Cham, 2016. Springer

International Publishing.

[97] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. CoRR,

abs/1511.00561, 2015. URL http://arxiv.org/abs/1511.00561.

[98] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet:

Model uncertainty in deep convolutional encoder-decoder architectures for scene

understanding. arXiv preprint arXiv:1511.02680, 2015.

[99] David Eigen and Rob Fergus. Predicting depth, surface normals and se-

mantic labels with a common multi-scale convolutional architecture. CoRR,

abs/1411.4734, 2014. URL http://arxiv.org/abs/1411.4734.

[100] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. CoRR, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

[101] T Tieleman and G Hinton. Rmsprop adaptive learning. in: Coursera: Neural

networks for machine learning, 2012.

[102] Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. Semantic seg-

mentation of small objects and modeling of uncertainty in urban remote sensing

images using deep convolutional neural networks. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, June 2016.

https://doi.org/10.1007/BF00531524
https://doi.org/10.1007/BF00531524
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1411.4734
http://arxiv.org/abs/1412.6980

Bibliography 147

[103] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and

Alan L. Yuille. Semantic image segmentation with deep convolutional nets and

fully connected crfs. CoRR, abs/1412.7062, 2014. URL http://arxiv.org/

abs/1412.7062.

[104] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated

convolutions. CoRR, abs/1511.07122, 2015. URL http://arxiv.org/abs/

1511.07122.

[105] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-

hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent con-

volutional networks for visual recognition and description. CoRR, abs/1411.4389,

2014. URL http://arxiv.org/abs/1411.4389.

[106] M. Ciccone, M. Gallieri, J. Masci, C. Osendorfer, and F. Gomez. NAIS-Net:

Stable Deep Networks from Non-Autonomous Differential Equations. ArXiv e-

prints, April 2018.

[107] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press,

2015. http://neuralnetworksanddeeplearning.com/.

[108] Sergios Theodoridis and Konstantinos Koutroumbas. Chapter 4 - non-

linear classifiers. In Sergios Theodoridis, , and Konstantinos Koutroum-

bas, editors, Pattern Recognition (Fourth Edition), pages 151 – 260. Aca-

demic Press, Boston, fourth edition edition, 2009. ISBN 978-1-59749-272-0.

doi: https://doi.org/10.1016/B978-1-59749-272-0.50006-2. URL https://

www.sciencedirect.com/science/article/pii/B9781597492720500062.

[109] Yann Dauphin, Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho, Surya Gan-

guli, and Yoshua Bengio. Identifying and attacking the saddle point problem in

high-dimensional non-convex optimization. CoRR, abs/1406.2572, 2014. URL

http://arxiv.org/abs/1406.2572.

[110] Ning Qian. On the momentum term in gradient descent learning al-

gorithms. Neural Networks, 12(1):145 – 151, 1999. ISSN 0893-

6080. doi: https://doi.org/10.1016/S0893-6080(98)00116-6. URL http:

//www.sciencedirect.com/science/article/pii/S0893608098001166.

[111] Yurii Nesterov. A method of solving a convex programming problem with con-

vergence rate o (1/k2), 1983.

http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1511.07122
http://arxiv.org/abs/1411.4389
http://neuralnetworksanddeeplearning.com/
https://www.sciencedirect.com/science/article/pii/B9781597492720500062
https://www.sciencedirect.com/science/article/pii/B9781597492720500062
http://arxiv.org/abs/1406.2572
http://www.sciencedirect.com/science/article/pii/S0893608098001166
http://www.sciencedirect.com/science/article/pii/S0893608098001166

Bibliography 148

[112] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–

2159, jul 2011. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=

1953048.2021068.

[113] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR,

abs/1212.5701, 2012. URL http://arxiv.org/abs/1212.5701.

[114] Snchez F. J. Fernndez-Esparrach G. Gil D. Rodrguez C. Bernal, J. and F. Vilario.

Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.

saliency maps from physicians. Computerized Medical Imaging and Graphics,

43:99–110, 2015. URL https://polyp.grand-challenge.org/site/Polyp/

CVCClinicDB/.

http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://arxiv.org/abs/1212.5701
https://polyp.grand-challenge.org/site/Polyp/CVCClinicDB/
https://polyp.grand-challenge.org/site/Polyp/CVCClinicDB/

