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1 Abstract 

Climate warming in the Arctic results in increased human use of Arctic shelf regions through 

oil and gas development and increased shipping. Such pressures necessitate the closing of 

knowledge gaps in poorly studied areas, here two areas located at outflow shelves in the Arctic, 

to record the current status of epibenthic marine ecosystems. This study characterizes 

epibenthic community structure, feeding strategies composition and their relation to 

environmental parameters in Northeast Greenland (NEG) and the Kitikmeot Sea in Nunavut in 

the Canadian Arctic Archipelago (CAA). Sample collection of trawled epibenthos in NEG was 

conducted at 33 stations at depths between 65 – 1011 m in August 2015 and September 2017, 

whereas images of epibenthos in the Kitikmeot Sea were taken at seven stations at depths 

between 20 – 93 m in August 2016. Abundance estimates were provided from both regions, in 

addition to biomass estimates from NEG. This study improves the inventory list in these regions 

with 276 putative species in Northeast Greenland collected by Campelen 1800 shrimp and 

Agassiz trawls and 33 putative species in the Kitikmeot Sea identified by photographic analysis. 

All taxa identified were known to occur in other Arctic areas. Arthropoda and Echinodermata 

were the most taxa rich groups in Northeast Greenland and the Kitikmeot Sea, respectively, 

while Mollusca and Echinodermata the most abundant taxa and Echinodermata was most 

biomass rich in NEG. In NEG, four geographically contiguous community clusters were 

recognized, namely fjord, shelf, shelf break and slope communities. Epibenthic community 

structure and its variability across the stations in NEG was partly explained by environmental 

drivers that exhibited gradients from the inner part of Bessel Fjord towards the shelf break and 

slope, with depth and bottom oxygen concentration as the most important factors, in addition 

to bottom temperature, salinity and turbidity. In the Kitikmeot Sea, feeding strategies strongly 

reflected the current situation, with suspension feeders present in high current regimes 

(dominated by hard substrate) and surface deposit feeders present where particles sink to the 

seafloor (dominated by soft substrate). As more research is ongoing in the Arctic, the inventory 

list of taxa/species are still expected to expand. Habitat and associated epibenthic community 

heterogeneity documented on sub-regional to smaller scales across both study areas suggests 

that site specific environmental assessments must be conducted before  human development in 

Arctic shelf areas.  

Key words: Arctic Epibenthos, Epibenthic community structure, Northeast Greenland, 

Kitikmeot Sea, Canadian Arctic Archipelago, baseline study, image analysis, environmental 

drivers  
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2 Introduction 

2.1 The human footprint into the Arctic is more visible now than ever 

The Arctic Ocean is unique in several ways. It is surrounded by landmasses, which 

characterizes it as a mediterranean ocean (meaning Ocean in-between land) (Jakobsson et al., 

2012). This mediterranean ocean is often inaccessible since it is seasonally and partly 

permanently covered by sea ice. Beneath the sea ice lie many secrets hidden from the human 

knowledge. Even though this region is challenging to access, human curiosity to explore the 

unknown has not stopped humans from examining the Arctic; an example is the first crossing 

of Greenland from east to west by the Norwegian scientist and explorer Fridtjof Nansen & Co 

in 1888 (Nansen 1890). A few decades later, another remarkable expedition could be written 

down in Norwegian history books when Roald Amundsen completed the first transit through 

the Northwest Passage in Canadian Arctic Archipelago in 1903 (Amundsen 1908). These 

regions are mentioned not only because they are both located in the Arctic, but also since their 

exploration reflects how much humans seeks to explore uncharted and pristine areas. While 

these two areas have totally different geographical positions and are influenced by distinct water 

masses, they have several aspects in common: Both regions are parts of shelves where cold 

water is flowing from the Arctic to the Atlantic (i.e. Outflow shelves, see Carmack and 

Wassman 2006 for details) (Figure 1), they are poorly studied, and yet human development 

plans are already ongoing in both areas of the Arctic. To contribute to expanding our knowledge 

of the unknown in the Arctic, this master’s thesis will focus on the two regions where the 

Norwegian explorers sat their first historic footprint in the Arctic, and where much of these 

regions is yet unknown until today. The purpose of this thesis is to gather more knowledge in 

these poorly studied regions and to create a better pan-Arctic understanding so we are prepared 

for future changes before the human footprint will affect these pristine areas. 

The Arctic Ocean in general acts as an indicator for anthropogenic pressure and has a significant 

importance on the global scale in that it functions as a sink for pollutants and CO2 emissions 

coming from all over the world (Barrie et al., 1992). These compounds are mainly transported 

by wind and ocean currents and accumulate in the Arctic (Barrie et al., 1992). Scientists have 

shown that this pollution affects Arctic ecosystems (Kelly et al., 2007) and there are major 

concerns that it will affect human health even more (AMAP, 1998). The increase of carbon 

emissions to the atmosphere are the result of great human activities in industries and transport 

and have led to a tremendous ice retreat in the Arctic (Comiso et al., 2008). Satellite-based 
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estimates have shown that the sea ice has decreased by about 10% per decade since the end of 

1970s (Comiso 2002; Comiso et al., 2008). Paradoxically, observations show that the sea ice is 

decreasing even faster than predictive models had forecasted and scientists have assumed that 

the Arctic will probably be ice free in the summer at the end of the 21st century (Arzel et al., 

2006). Consequently, there is an urgent need to fill the knowledge gaps in biological community 

distribution in the Arctic to be able to assess the biological responses to the human impacts. 

 

 

  

Figure 1: A simplified schematic representation of the ocean currents in the Arctic that 
influences the two study regions in the Arctic that are located on outflow shelves. The red boxes 
on map show where the two investigations take place, one on the Northeast Greenland (NEG) 
shelf in Greenland Sea and the other in the Kitikmeot Sea in Canadian Arctic Archipelago 
(CAA). The currents that are of importance in the study are EGC = East Greenland Current and 
WSC = West Spitzbergen Current. The ocean currents are modified from data that were 
presented in Carmack and Wassmann 2006; Bluhm et al., (2015). 
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Facing the fact that the Arctic is in drastic change has gathered politicians and scientists from 

different nations in the Arctic to discuss how to cope with the coming up challenges (Arctic 

Frontiers conference, Tromsø 2018, “Connecting the Arctic”). The changing Arctic has also 

become a real revelation for politicians and companies that want to take advantage of the 

irreversibly retreating sea ice and suggest economic opportunities rather than solutions to 

mitigate the underlying causes. The Greenlandic newsletter Uulex (abbreviation associated 

with “uulia” which is the Greenlandic term for oil, and “ex” is for exploration) published by 

Ministry of Mineral Resources, Government of Greenland gives yearly updates on where 

licenses allow search for oil and gas in Greenlandic waters 

https://www.govmin.gl/en/publications/uulex). The newsletter reveals that there are great 

activities and huge plans ongoing for the Northeast Greenland (NEG) Shelf that has potential 

for oil and gas (Uulex 2016). There is concurrently a debate on the other side of Arctic if the 

Canadian Arctic Archipelago (CAA) should be a shipping route that connects the Atlantic and 

Pacific oceans in the future (Smith and Stephenson 2013), which can impact the Arctic marine 

communities. Only in the recent decades, it is possible to see that the number of private yachts 

and tourist vessels crossing the Northwest Passage has also increased tremendously (Headland 

et al., 2018). Because of little research on the potential impact of marine traffic, little is known 

on how it has affected the marine communities so far.  

Predicting Pan-Arctic changes in the ecosystem remains a challenge for many reasons. Those 

include a lack of knowledge in inaccessible areas, and constantly changing anthropogenic 

pressures in space, time and intensity, as well as a lack of mechanistic understanding of change 

and consequences. Since the sea ice is retreating, research work has been easier, of higher 

priority and more common in Arctic areas where it was not even conceivable in earlier years. 

Scientists seek to understand the consequences of human activities in marine environments and 

how these will affect people (Christiansen et al., 2014). Baseline studies are essential to be able 

to assess the biological responses to the human impacts in the Arctic.  
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2.2 Epibenthos, their role and patterns in the Arctic and environmental parameters 

and physical stressors that structure epibenthic communities 

Epibenthic invertebrate communities are one of the biological components that are poorly 

studied in Northeast Greenland and in the Kitikmeot Sea located in CAA and are one of the 

Arctic ecosystem components in focus that can be influenced by human activities. The term 

benthos originates from the Greek noun and refers in today’s marine biology to all living 

organisms that are associated to the seafloor, of which epibenthos are the organisms that lives 

on top of the seafloor (epí meaning “on top of” from ancient Greek). Epibenthos, but also all 

benthic invertebrates are an important component in the Arctic food web as they provide a food 

source for higher trophic levels (Bluhm and Gradinger 2008) and also contribute to recycling 

of organic materials (Piepenburg et al., 1997a; Ambrose et al., 2001). Given the importance of 

epibenthic invertebrates, scientists seek to identify and explain benthic community patterns, a 

requirement for documenting or predicting  changes. Patterns in species richness, taxonomic 

and functional composition, abundance and biomass can reveal different types of information 

and it is, hence, advisable to look into all aspects. For example, epibenthic biomass, distribution 

and composition can also serve as an indicator for water column conditions and vulnerability 

to disturbance (Jørgensen et al., 2015a). However, part of the variability in epibenthic 

community structure can be linked to environmental drivers and other abiotic stressors, which 

will be further delineated in the next section.  

So far, a meta-analysis study throughout the Arctic has shown that arthropods, annelids and 

molluscs are the three most speciose benthic groups (Piepenburg et al., 2011). Further, 

abundance-based surveys of epibenthic distribution reveal a recurring pattern, where mainly 

echinoderms dominate (Mayer and Piepenburg 1996; Ambrose et al., 2001; Bluhm et al., 2009; 

MacDonald et al., 2010a). The patchiness of the distribution of these echinoderms, especially 

ophiuroids, seems to be a pronounced phenomenon across the Arctic. Biomass on the other 

hand, has a less consistent pattern regarding the dominant phyla. In the Pacific Arctic, high 

biomass of the arthropod snow crab Chionoecetes opilio has been recorded in Chukchi Sea 

(Bluhm et al., 2009), and the ophiuroid Ophiura sarsii in the Beaufort Sea (Ravelo et al., 2015). 

In recent years, and in light of sea ice loss, there has been even more focus on the energy transfer 

between the pelagic and benthic zones that provides food for benthos (Ambrose and Renaud 

1995; Piepenburg et al., 1997a; Christiansen et al., 2017). Epibenthic invertebrates in the Arctic 

often rely on food sources coming from the water column, mostly from the euphotic zone (e.g. 

Boetius et al., 2013). Therefore, adaptation of the appropriate feeding strategies are essential 
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for epibenthic invertebrates to survive in an environment where food can be critical on the 

seafloor. Several epibenthic invertebrates exhibit different feeding strategies to be able to 

inhabit the specific area without too high intra- or interspecific competition and without too 

high pressure from the physical stressors. Suspended particles in the water column for example, 

can advect (horizontal transport) along the seafloor and will, hence, be caught by filter feeding 

animals (used synonymously here with suspension feeders). Suspension feeders require a 

habitat with a continuously flow of suspended particles (e.g. narrow straits, locations along 

shelves, canyons, mouth of fjords) and they tend to aggregate in such areas (Gili and Coma 

1998; Grebmeier and Barry 1991). Surface deposit feeding is another remarkable feeding 

strategy that has shown to be abundant at great depths, but also at soft bottom habitats (Iken et 

al., 2001; Boetius et al., 2013), whereas grazers rely more on primary producers that are found 

in shallow areas. Consequently, predators are found whenever its prey are found, but do not 

dominate based on the trophic pyramid (Lindeman 1942). Information about the epibenthic 

invertebrates’ feeding strategies can give indications on habitat conditions or vice versa.  

There are many factors involved when trying to explain the distribution of epibenthic 

invertebrates across the Arctic. Determining which factors are most influential is difficult to 

ascertain and understand due to the complex interaction between abiotic and biotic processes 

that are involved (Godbold and Solan 2009). However, it is well known that spatial and 

temporal patterns in benthic communities are accompanied by gradients in environmental 

drivers (e.g. hydrography and sediment properties:  Mayer and Piepenburg 1996; latitude: 

Bluhm et al., 2009; depth: MacDonald et al., 2010a; Roy et al., 2014). Depth is often expressed 

in several studies as the variable that most explains the changes in community patterns 

(MacDonald et al., 2010a; Buhl-Mortensen et al., 2012; Roy et al., 2014). Nevertheless, depth 

is considered an indirect factor together with latitude, and a proxy for several environmental 

variables that vary together with changing depth and latitude (Smith et al., 2008; Buhl-

Mortensen et al., 2012; Roy et al., 2014). 

Hydrographical features such as temperature, salinity and oxygen content are parameters that 

can influence the prevalence of species and variability in community structure. Melting sea ice 

in the Arctic as a result of warming climate, but also seasonal glacial and river run off with 

endpoint in fjords, creates less saline conditions and makes it difficult for stenohaline organisms 

to survive since they do not have the ability to osmoregulate (Hickman et al., 2014). Seasonal 

melt water from glaciers and river run offs does not only affect the salinity, but are also 

influencing the environment with changes in temperature, where for example melting glaciers 
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provide cold water and rivers from mainland can bring warmer water. Furthermore, there has 

been documented that the ocean temperatures in the Arctic are rising (Comiso et al., 2008; 

Beszczynska-Möller et al., 2012). This limits the prevalence of Arctic species that are adapted 

to cold environments and creates favorable conditions for sub-Arctic species to inhabit Arctic 

conditions (e.g. Berge et al., 2005; Grebmeier et al., 2006a). Arctic species has shown to retreat 

to colder environments in fjords as an acting response to warmer climate (Weslawski et al., 

2011).  

Physical disturbances are also an important factor that contribute to variability in epibenthic 

community structure (Gutt et al., 1996; Conlan et al.,. 1998; Gutt and Piepenburg 2003). Ice 

scouring on the seafloor is a particularly common phenomenon in the Arctic (Gutt et al., 1996; 

Conlan et al., 1998.), which can cause large-scale disturbance for benthic organisms. Both 

frequent and occasional events of ice scouring in the Arctic can prevent slow-growing, long-

lived and sessile species to colonize the seafloor (Gutt et al., 1996; Conlan et al., 1998; Conlan 

and Kvitek 2005), which can create different epibenthic communities compared to adjacent 

areas.  

In areas where the seafloor is exposed to ice scouring, but also further offshore, ice-rafted drop 

stones coming from the last ice age and deglaciation of glacial ice can increase small-scale 

diversity in polar environments (Schulz et al., 2010). Sessile epibenthic invertebrates require 

hard bottom surface to settle (Tissot et al., 2006), and are hence, the reason to small-scale 

diversities. Seafloor characteristics including sediment grain sizes are important determinants 

that affect epibenthic communities, but also the structure of the benthic habitats (Feder et al., 

1994; Mayer and Piepenburg 1996; Piepenburg et al., 1997a; Bluhm et al., 2009; Buhl-

Mortensen et al., 2012). In addition to occasional drop stones, sediment characteristics in 

general can give indications on how strong the currents are influencing the seabed morphology. 

High current velocity transport away fine sediment with the remaining grains being coarse 

sediments and large rocks, whereas when there are low current velocities, fine-grained sediment 

are present. Consequently, the substrate composition will influence epibenthic invertebrate 

community structure through varied habitat preferences (Snelgrove and Butman 1995). Fine-

grained sediment also acts as a sink for organic materials coming from the euphotic zone and 

can then be a source for carbon (Schulz 2006), which surface deposit feeders and sub-surface 

deposit feeders can take advantage of.  
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Export of terrigenous inorganic particles, larger sediment and carbon supply to the benthic 

realm is another factor that can contribute to variability in community structure. Terrigenous 

discharges and sedimentation rates are particularly high in the vicinity of river runoffs and 

melting glaciers (Sylvitski et al., 1989; Holte and Gulliksen 1998; Ashley and Smith 2000; 

Włodarska-Kowalczuk et al., 2005; Renaud et al., 2007; Włodarska-Kowalczuk et al., 2012). 

High turbidity in the water column will reduce primary production and, hence, dilute the 

amount of organic materials that reaches the seafloor (Görlich et al., 1987). As a consequence 

of high sedimentation of inorganic particles, bottom-dwelling invertebrates can be buried and 

filter-feeding organs of suspension feeders can be clogged by too high inorganic sediment load, 

which results in damage (Moore 1977; Hall 1994). In other words, it is not advantageously to 

be a filter-feeding organism where there are chances to be buried and clogged.  

Water column primary and secondary production, processes and subsequent vertical flux 

provide organic material to the benthic communities and are an important component that 

influences community structure in addition to the above outlined physical factors. These events 

are highly seasonal and a larger proportion sinks to the seafloor in the Arctic (Grebmeier et al., 

1995; Wassmann et al., 1996), where benthic production highly reflects processes in the water 

column (Piepenburg et al., 1997a). High densities and biomasses of benthos in vicinity of the 

Northeast Water Polynya located on the NEG shelf is one example that there is a tight coupling 

between pelagic production the benthic realm (Ambrose and Renaud 1995).  

Given the characteristic environmental conditions in the different habitats in the study area, 

epibenthic communities are expected to vary noticeably. The NEG study contains a gradient 

with typical conditions found in Arctic fjords as glacial inputs towards the steep slope with 

drastic variations in hydrography, while the Kitikmeot Sea is characterized by a patchwork of 

areas with high and low (mostly driven) current velocities. 
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2.3 The two study areas in the Arctic 

The Arctic Ocean has a constant advection (horizontal transport) of ocean water from the sub-

Arctic that connects sub-Arctic and Arctic water properties. Concurrently, biota from the 

Pacific Ocean gets advected through the Bering Strait and biota from the Atlantic Ocean is 

advected through the Barents Sea and Fram Strait (e.g. Berge et al., 2005; Grebmeier et al., 

2006a). This connecting conveyor belt of different water masses is also known as the 

contiguous domains (Carmack and Wassmann 2006; Wassmann et al., 2016). The two study 

regions that will be in focus in this master’s thesis are at the end of the advective contiguous 

domains, specifically in the outflow areas where water has already spent some time getting 

modified, and has more Arctic character (Figure 1) (Carmack and Wassmann 2006). The water 

transport through the CAA is one of the two major outflow shelves where Arctic surface waters 

connects with Atlantic waters. The other outflow shelf is located in the western Fram Strait and 

along NEG Shelf (Michel et al., 2006). 

2.3.1 Northeast Greenland 

Greenland is characterized by spectacular glaciers and fjords that stretch hundreds of kilometers 

into the mainland, where many of them are the largest fjord systems in the northern hemisphere 

(Funder et al., 1998). The study area is located where the shelf of  Greenland is broadest, in the 

northeast between longitudes of 20oW - 5oW and latitudes 74oN - 81oN, where it extends more 

than 300 km from the Northeast Greenland coastline (Arndt et al., 2015) (Figure 2). This region 

has been almost permanently covered by sea ice throughout the year, hence, used to be difficult 

to investigate (Laberg et al., 2017). However, in recent years it has been more accessible due 

to shrinking of the Arctic sea ice (Stroeve et al., 2012). 

The Northeast Greenland shelf has a heterogeneous seabed morphology that constitutes of 

several banks and troughs on the shelf, which stretches further into the mainland often lead to 

fjord-connecting systems (Laberg et al., 2017). The fjord system in this study, Bessel Fjord has 

three basins, with the outermost basin being the deepest (Figure 2). The fjord is surrounded by 

glaciers, where the known Soranerbræen glacier (Seale et al., 2011) extends into the sea (pers. 

obs.). These geomorphological features in the region are traces from the last glacial maximum 

(Laberg et al., 2017) and create a heterogeneous habitat for benthic organisms to settle. For all 

fjords that are connected to glaciers, a common phenomenon is high sedimentation (Görlich et 

al., 1987; Sylvitski et al., 1989; Ashley and Smith 2000). In addition, the shallowest parts in an 
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ice covered fjord can expose the seabed to ice scouring (Gutt et al., 1996; Conlan et al., 1998; 

Conlan and Kvitek 2005), which makes it difficult for sessile organisms to settle and cope with.  

The Arctic character of the NEG coast and shelf is created by outflow of Arctic waters (Michel 

et al., 2015) that pass through the western Fram Strait, transported by the Transpolar Drift 

(Kwok 2008). These Arctic water masses form the East Greenland Current (EGC) that flows 

further south (Hopkins 1991; Sejr et al.,. 2017) along the NEG continental shelf. Branches of 

Atlantic water coming from the West Spitzbergen Current (WSC) cross Fram Strait, and 

converge with the EGC. These Atlantic water branches along shelf break and slope transport 

organic surplus and create warmer and more saline conditions compared to local surrounding 

waters, along the continental shelf break and slope in Greenland Sea (Schneider and Budéus 

1997). There has also been evidence of “old” water of Pacific origin that has exited through the 

Fram Strait (Jones et al., 2003). 

On the NEG shelf during spring and summer, there are recurring ice-free areas in the pack ice, 

which is known as the Northeast Water Polynya (NEW) (Schneider and Budéus 1997). This 

creates opportunities for potential phytoplankton blooms, which will thereafter provide a 

surplus to the benthic communities as it sinks (Ambrose and Renaud 1995; Piepenburg et al.,. 

1997a).  During the warmer periods from spring to fall, glacial ice melting contributes to large 

amounts of fresh water that are transported into the marine systems. Also, a large contributor 

to freshening of the coastal waters in NEG (Sejr et al., 2017) is the shrinking Greenland ice 

sheet in the northeast (Evans et al., 2009; Khan et al., 2014). Melting processes enrich the areas 

in vicinity to the glaciers with terrigenous sediment supply (Straneo et al., 2011).   

2.3.2 The Kitikmeot Sea region 

The Canadian Arctic Archipelago consists of narrow channels and interconnecting basins and 

sills that are traces of glacial activity from the past (Michel et al., 2006), where the Kitikmeot 

Sea is also a part of these traces from the past. The Kitikmeot Sea is a region located in the 

province of Nunavut in the southern CAA and encompasses Coronation Gulf, Bathurst Inlet 

and Queen Maud Gulf (Figure 3). The name Kitikmeot Region itself has so far not been 

frequently used in the oceanographic literature, but is one of the three census divisions of 

Nunavut in the CAA. This area has recently been more often mentioned in scientific studies 

since the new Canadian High Arctic Research Station in the regional seat Cambridge Bay has 

been established in response to the increased attention the region receives through its location 

in the increasingly navigable Northwest Passage.  
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The Coronation Gulf is connected to Queen Maud Gulf by the shallow Dease Strait (Carmack 

and McLaughlin 2011), where most of the stations from this study lie. Further south in the study 

region is Bathurst Inlet and consists of many islands and narrow passages in-between (B.A. 

Bluhm, UiT – The Arctic University of Norway, Tromsø, pers. comm.). Several rivers also flow 

into Bathurst inlet (Carmack and McLaughlin 2011). The largest rivers in the Kitikmeot Sea 

region that influences  the marine environment is the Coppermine River that terminates in 

Coronation Gulf (outside the study area), whereas the Burnside River and Hood River terminate 

in Bathurst Inlet (Carmack and McLaughlin 2011) (Figure 3). Additionally, the region is also 

influenced by relatively fresh oceanic water that originates from the Pacific (Codispoti and 

Owens 1975; McLaughlin et al., 2002; Jones et al., 2003). The freshwater in the Kitikmeot Sea 

creates a highly stratified water column resulting in rather low nutrient concentrations in the 

surface waters, coincident with generally low rates of primary production (C.J. Mundy, 

University of Manitoba, pers. comm.). Mostly, nutrients are trapped under a sharp pycnocline, 

but high speed of water flow through narrow passages and over sills initiates vertical mixing in 

these locations. This mixing facilitates primary production in the water column and results in a 

higher saturation level of oxygen and chlorophyll compared to the non-mixed areas in the 

region (Carmack and McLaughlin 2011).  

Shallow sills in the CAA prevent dense oceanic water with Atlantic origin to enter the 

Coronation Gulf and further east in the Canadian Archipelago (Carmack and McLaughlin 

2011). In the narrow straits in Bathurst Inlet, food particles and finer sediment are drifting away 

while coarser sediment remains on the bottom. In contrast, slowing tidal currents downstream 

from such passages allow these advected finer sediment and particles from the upper layers to 

fall to the sea floor.  

So far, few benthic studies have been done in the CAA (e.g. Dale, 1989; Brown et al., 2011; 

Roy et al., 2014; Marmen et al., 2017), and these were not conducted exactly in the same area. 

This study is the first that presents results and benthic taxonomic descriptions from the 

Kitikmeot Sea. 
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2.4 Objectives of the studies 

Given the scarcity of knowledge on epibenthic communities in the two poorly studied regions 

of the Arctic, this study aims to describe epibenthic communities and the structure in relation 

to gradients in environmental conditions. The following questions in this master’s thesis were 

therefore asked to provide a better understanding of the two poorly studied regions:  

(1) Does epibenthic community structure differ across habitats within each of two poorly 

studied Arctic regions? 

Question 1 is addressed by the following objectives: describe epibenthic communities in 

Northeast Greenland (NEG) waters from an inner fjord towards the shelf break and upper 

continental slope from trawl samples collected during TUNU-VI (2015) and TUNU-VII (2017) 

expeditions and to describe epibenthic communities in the Kitikmeot Sea in the Northwest 

Passage, from photographic transects in areas of different current regimes. 

(2) Do collected environmental variables within these areas explain epibenthic community 

structure in these two Arctic regions? 

Question 2 is addressed by the following objectives:  identify to what degree environmental 

gradients in seabed and hydrographic properties across the NEG study area from fjord to upper 

slope explain part of the patterns in community structure and see if taxonomic and functional 

community composition (specifically feeding type) in the Kitikmeot Sea region differs in 

different current regimes. 

This study also helps create baseline information on the scarcely investigated areas in NEG and 

Northwest Passage waters that so far have been difficult to access. Also, it will increase our 

understanding of an Arctic that undergoes rapid changes in the marine ecosystems.  
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3 Materials and methods 

3.1 Northeast Greenland (NEG) 

3.1.1 Field sampling in Northeast Greenland 

Sampling of epibenthic invertebrates was performed as part of the TUNU Programme 

(Christiansen 2012). The TUNU Programme is an ongoing research programme that has been 

performed since 2002, where the main focus has been to address the diversity, population 

structure and distribution of marine fishes in Northeast Greenland waters. The term TUNU 

refers to the geographical area of NEG and originates from the Greenlandic language 

(Christiansen 2012) and is, hence, used as a name for the NEG expeditions. It is only recently 

that comprehensive sample collection of epibenthic invertebrates has been included in the 

TUNU Programme (TUNU-VI in 2015 and TUNU-VII in 2017), which is the main focus in 

this part of the thesis. The first sampling of benthic invertebrates was conducted during the 

TUNU-VI expedition (8 – 15 August) in 2015. Because of intense sea ice coverage along the 

coast of NEG in 2015, sampling took place at the ice-free shelf-break and slope at depths from 

177 to 1011m (Table 1). Additional sampling was conducted two years later during the TUNU 

VII expedition (14 – 26 September) in 2017 at depths from 65 to 484 m (Table 1). Low sea ice 

cover in NEG waters at that time allowed sampling nearshore in Bessel Fjord and adjacent areas 

including Dove Bugt, Belgica Bank, another shallow bank along 76 °N latitude and other 

locations on the shelf (Table 1, Figure 2). Sampling for both years was conducted from R/V 

Helmer Hanssen (UiT – The Arctic University of Norway, Tromsø). Each specific location 

during the TUNU expeditions contained several operations where sampling of sediment, water 

column, and benthic and pelagic organisms were performed. For every new gear used in an 

operation, a unique station number was provided to avoid confusions during sampling. A station 

is, therefore, referred to as one gear deployment, whereas a location consisted mostly of two 

gear deployments, which was Campelen 1800 shrimp trawl (hereafter referred as Campelen 

trawl) and an Agassiz trawl (Agassiz 1888). However, three locations had only one gear 

deployment of Campelen trawl. During this period, 33 stations (i.e. one gear deployment = one 

station) from 18 locations were sampled between latitudes 74.55 to 79.27 °N and longitudes 

5.22 to 21.72 °W (Figure 2). Fifteen locations sampled epibenthic invertebrates from both 

Campelen trawl and Agassiz trawls, whereas the three remaining locations collected epibenthos 

with Campelen trawls only. In order to increase spatial coverage of the study area, both years 

were therefore included in the statistical analysis. 
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Figure 2: An overview of the epibenthic stations that were visited during TUNU-VI and 
TUNU-VII expeditions to Northeast Greenland in 2015 and 2017, respectively. This map 
shows both Campelen 1800 Shrimp trawl and Agassiz trawl stations, which were mostly 
deployed at the same locations. Additional map below is an enlargement of Bessel Fjord, 
which shows the locations that were visited in september 2017. 
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3.1.2 Sampling gears used to collect epibenthos 

During both expeditions, a Campelen trawl and an Agassiz trawl were used to collect epibenthic 

invertebrates. The Campelen trawl is rigged with a 35.6 m rock-hopper with rubber disks of 

356 mm in diameter, attached to the ground gear (Walsh and McCallum 1997). The trawl is 

made of polyethylene twines that are 4.0, 3.0 and 2.0 mm in diameter and are woven to make a 

mesh size that varies from 80 mm in the wings to 60 mm and 40 mm in the cod end (Walsh and 

McCallum 1997). This arrangement allows capture and retention of the smaller fishes and the 

large benthic invertebrates. The calculated swept area for this case study is based on a fixed 

width of the trawl opening of 11.7 m in accordance with the calculations used by the Institute 

of Marine Research (IMR) for their snow crab assessments (Carsten Hvingel, Institute of 

Marine Reasearch, pers. comm.). For fishes, a SCANMAR hydroacoustic instrumentation 

sensor was attached to the trawl doors and at the upper part of the net where it recorded the 

trawl opening dimensions (horizontally) during trawling time at the bottom. This can provide 

an estimate of trawling area when tow duration and speed of the boat is known (see section 

3.1.4 Data analyses for the calculations). Target towing duration of the trawl was set to 

approximately 15 minutes at the bottom, but in fact varied from 10 to 29 minutes and was 

determined by the SCANMAR sensor. Towing speed was approximately three knots for both 

years. The trawled area of the seafloor for each station was subsequently estimated and 

epibenthos counts and weights were standardized to 1000 m2 to allow comparison between 

locations. This was only done for the Campelen 1800 Shrimp trawl since tow duration at the 

bottom was known and the width was set. Even if this approach contains some errors, it is a 

standard scientific semi-quantitative method to estimate epifaunal densities in benthic ecology 

(Eleftheriou and MacIntyre 2005) and fisheries assessments (Havforskningsinstituttet 2008; 

Jørgensen et al., 2015a; Jørgensen et al., 2015b) 

In contrast to the Campelen trawl, the Agassiz trawl is a qualitative sampling tool used to collect 

epifaunal organisms (Eleftheriou and MacIntyre 2005). Therefore, all Agassiz trawl stations 

were not used for multivariate statistics, but were instead included in the determination of 

number of taxa and relative composition. The width and height of the Agassiz trawl was 

manually measured to be 1.80 m and 0.47 m, respectively. The length of the trawl was 2.78 m 

and the trawl’s mesh size was 80 x 80 mm throughout the net. The trawl was equipped with a 

metal frame for giving a fixed size of the trawl mouth. A heavy metal frame ensures that the 

trawl stays on the seafloor when trawling, but it can still jump occasionally depending on 

seafloor topography and sediment substrate (J.S. Christiansen, UiT – The Arctic University of 
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Norway, Tromsø, pers. comm.). Towing duration of the Agassiz trawl for both cruises varied 

between 9 and 40 min with a speed of 0.7 to 3.7 knots. 

Once trawls were hauled on deck, the catch from the Campelen trawl was further transported 

to the fish lab, whereas the catch from Agassiz trawl remained on deck for washing and sorted 

on a sorting table. In few cases, a sub-sample was taken from the well-mixed haul when the 

trawls had too large numbers of organisms to be sorted. Epibenthic invertebrates were then 

separated from fishes and sorted to the lowest possible taxonomic level practical in the field, 

and thereafter counted by each putative species. All unaccepted and synonymized taxa names 

that were identified were updated in the World Register of Marine Species (WoRMS) by using 

the taxon match tool (www.marinespecies.org , [Accessed: 09.03.2018]). Gram wet weight (g 

ww) was determined with electronic scales (Marel M2200) for the TUNU VII expedition (2017) 

only, due to time constraints on TUNU-VI in 2015. Organisms that were heavier than 200 g in 

total (e.g. Gorgoncephalus spp., Umbellula encrinus, Molpadia borealis) were weighed on the 

scales in the fish lab onboard.  For colonial organisms such as bryozoans, cnidarians, 

hydrozoans and poriferans, only weights were recorded, since individuals cannot be 

enumerated. Many organisms were identified to species level onboard, but organisms with 

unknown species level were provided a descriptive name for later identification in the lab at 

university when more identification keys and taxonomic expertise were available. For that 

purpose, voucher specimens were preserved in a 4% seawater-formaldehyde solution for 

fixation of tissue. Thereafter, the voucher specimens were transferred to 70% ethanol in the lab 

for long-term storage and transportation to taxonomic experts. 

The TUNU-group acknowledges that the lack of expertise and region-specific identification 

keys for specimens from some phyla (e.g. Brachiopoda, Bryozoa, Cephalorhyncha, Cnidaria, 

Nemertea, Porifera and Sipuncula) made it difficult to identify these groups. These taxa were 

therefore, given a higher taxonomical level than species level. Consequently, the term taxon 

richness is more precise in this context than species richness. In addition, I know at least for the 

TUNU-VII Expedition (where I participated in the fieldwork) that some specimens were not 

consistently separated to correct species level and therefore they were given a higher taxonomic 

rank. This applied for example to several species within the species-rich gastropod genera Colus 

and Buccinum, and therefore I combined the specimens to genus level. This also applied to 

some Amphipoda, and they were then given a higher taxonomical rank. Taxonomic 

identification of fixed voucher specimens by experts (see Acknowledgements) enabled a higher 

taxonomic resolution for estimating taxon richness at the regional level and for the community 
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analysis for both years. Yet, taxonomic identification by experts are still ongoing for subsets of 

taxa in the taxonomic ranks Cnidaria, Mollusca, Polychaeta, Porifera, Pycnogonida and 

Sipuncula. 

3.1.3 Environmental parameters 

From each location of the 2017 cruise, I compiled nine different environmental parameters 

(temperature, salinity, turbidity, bottom oxygen, chlorophyll a (Chl a), sediment properties as 

percentage sand and percentage mud and spatial gradients as latitude and depth). Environmental 

parameters for the community analysis in this study were chosen in accordance to answer this 

thesis’ research questions.  

Environmental hydrographic variables closest to the seafloor (e.g. temperature, salinity, oxygen 

and turbidity) were extracted from CTD casts performed by the Sea-Bird Electronics SBE-911 

conductivity-temperature-depth (CTD) profiler. CTD casts were performed in the vicinity of 

where the trawls were conducted for closest reliable environmental values of the seafloor. 

Chlorophyll a content in the water column was measured from water column samples taken 

with a CTD-rosette at distinct depths by phytoplankton experts onboard using standard 

methodology (S. Kristiansen, UiT – The Arctic University of Norway, Tromsø, pers. comm.). 

In this case, the integrated chlorophyll a (mg/m2) value in the entire water column was used as 

an indirect source of food to the benthic communities. This was calculated by the trapezoidal 

integration rule.  

Sediment samples were collected from every box core at each location in 2017 so sediment 

grain size analysis could be performed by staff at the Department of Geosciences at The Arctic 

University of Norway, Tromsø. Exceptionally, box core from the location where stations 1354-

TUNUVII and 1357-TUNUVII occurred, failed to sample because of too rocky habitat, hence, 

no sediments were available. The grain sizes were analyzed with Beckman Coulter Paricle Size 

analyzer LS 13320 where they were treated with HCl and H2O2 to remove organic material and 

calcium carbonate. Substrate type from the locations give indications on how strong the currents 

are influencing the seabed morphology. Epibenthic invertebrate habitat preferences can also be 

related to sediment type (Snelgrove and Butman, 1995). The geologists onboard also collected 

bathymetric information by the Multi-beam echo sounder system and used this to visualize 

where the sills, and where banks and troughs were positioned in the study region. Data gathered 

by the Multi-beam echo sounder system enabled a representative visualization of the 

bathymetry and are valuable to interpret habitat conditions.  
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3.1.4 Data analyses 

The trawling distance in meter was calculated with the following equation: 

(1) 

𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 (𝑘𝑛) ∗ 1852 𝑚 ∗
1

60
∗ 𝑡𝑟𝑎𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 min = 

𝑡𝑟𝑎𝑤𝑙𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑚𝑒𝑡𝑒𝑟 

 

Traling distance in meter was then multiplied with the fixed opening of the trawl of 11.7 m and 

then the swept area was calculated. Comparison between Campelen stations was feasible when 

standardization of abundance (no. ind per 1000 m2) and biomass (g ww per 1000 m2) to a 

defined area was performed:  

(2) 

                         
.           

  ( )
∗ 1000 . 

 

Question 1 

Univariate community composition data plot visualization was performed with the statistical 

software R (version 3.3.3. “Another Canoe”) and by using the additional software packages 

“ggplot2”, “reshape2”, gridExtra”, and “scales” and Microsoft Excel 2016. From the Agassiz 

trawl hauls only taxa richness and relative composition by count and weight were included in 

data analyses. The station map was made in Global Mapper and CorelDRAW by geologists at 

UiT (see Acknowledgements). Maps depicting taxa richness, abundance and biomass estimates 

as scaled circles were made in ArcMap 10.5 by using Jenks’ natural breaks function.   

Multivariate analysis of community composition for Campelen stations from both years was 

performed in the statistical software program PRIMER v. 7.0.13, where abundance-based 

analyses were the main focus.  

For the multivariate statistics, a Q-type analysis was performed to see if any groups formed 

similar biotic composition (Johnson and Barmuta 2015). Fourth-root transformation of 
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abundance and biomass was used in this study to even out the influence of dominant species 

and  given the many zeros in the data set (Field et al., 1982; Clarke and Warwick 2001; Johnson 

and Barmuta 2015). Similarities between the taxa and stations were computed by using the 

Bray-Curtis Coefficient (Bray and Curtis 1957). This similarity coefficient is frequently used 

in ecology since it has its advantages to take into account that stations or groups are not 

necessarily biologically similar even if they all are lacking the same taxon (Legendre and 

Legendre 1998; Johnson and Barmuta 2015). Stations with similar taxa assemblages formed 

groups and were depicted in a dendrogram using Hierarchical Cluster Analysis (HCA) with 

group average sorting and also as non-metric multidimensional scaling (nMDS) plots (Kruskal 

and Wish 1978). This was to present patterns in community structure. Groups formed in HCA 

and in nMDS were hence given the term “communities” and “habitat type” due to similar 

geographical features.  Testing the validity of the clusters in group average sorting for the HCA 

was performed by Similarity of Profile Analysis (SIMPROF) test with α = 0.05. Appearance of 

red dotted lines in the dendrogram indicated that the clusters are not statistically significant 

different. Analysis of Similarities (ANOSIM) was used to test if gear types and a priori 

determined habitat type were statistically significant (Clarke and Warwick 2001). To detect 

which taxa contributed the most to the separation of communities in nMDS and in HCA a 

similarity of percentages (SIMPER) routine was performed. 

Question 2 

To identify the combination of environmental parameters that best correlates with the biological 

pattern in community structure, Biological- Environmental interactions (BIO-ENV) was used. 

Inconsistent sampling of environmental parameters between the two TUNU expeditions 

resulted in separate analyses for BIO-ENV, one for the combined two cruises containing less 

explanatory variables (water depth, latitude, bottom temperature, bottom oxygen, bottom 

salinity and turbidity). The other BIO-ENV was conducted only for 2017 only containing 

additional environmental variables to identify if a more extensive data set could reveal other 

correlations with the biological parameters (integrated chlorophyll a, percentage of sand and 

percentage of mud). The included environmental variables were normalized and correlated with 

the biological variables based on the ranks of similarities using a Euclidian distance matrix for 

environmental variables and Bray-Curtis similarity matrix for biological variables (i.e. the 

taxa). Some stations in the study region had missing values for environmental variables, and 

they were, therefore, either given the mean value of all, which implied for the sediment grain 

size at station TUNUVII-1354 (Table 1). Principal Component Analysis (PCA) was performed 
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as an additional ordination technique to see if the environmental variables provided same 

pattern in the community as the biological variables. PCA was performed on normalized 

environmental variables for the six environmental variables that was collected for both years. 

In addition, PCA is preserving the information in the data set, where it uses the most important 

dimensions to explain the multivariate information that are present (Johnson and Barmuta 

2015). 

3.2 The Kitikmeot Sea, Canadian Arctic Archipelago  

3.2.1 Study region and field sampling 

The study was performed in the Kitikmeot Sea in the Canadian Region Nunavut between 

latitudes from 66.93 to 69.03 °N and longitudes from 105.85 to 108.23 °W (Figure 3), and took 

place during August 11 - 15 in 2016 onboard R/V Martin Bergmann. Seafloor images were 

collected at five different localities (Algak Passage, Tinney Gate, and Marcet Minch in Bathurst 

Inlet, and Turnagain Point and the Finlayson Islands in Dease Strait connecting Coronation 

Gulf and Queen Maud Gulf) (Table 2, Figure 3). From the five localities, seven stations (two 

stations from Algak Passage, one from Tinney Gate, one from Turnagain Point and three 

stations from Finlayson Islands) were used for image analysis with a depth that varied between 

20 – 93 m (Table 2, Figure 3). One location was excluded from the image analysis (Marcet 

Minch) because high current velocities resulted in very blurred images. Drift speed of the vessel 

when photos were taken varied from 0.1 – 1.25 kn (Table 2) depending on the surface currents, 

tidal cycle and wind speed. Benthic invertebrates collected by a dredge and a van Veen Grab 

were used as support materials to improve taxonomic resolution in the images. Organisms 

caught by van Veen Grab are listed in Appendix Table 1. The van Veen grab (Wilco, 0.1 m2) 

was used at soft bottom locations to collect sediment samples, macrofauna and small epifaunal 

invertebrates. Benthic invertebrates caught in the grab were washed onboard in sieves of 2 mm 

and 0.5 mm mesh size. Also, a small dredge was used to collect epibenthic invertebrates at hard 

bottom sites and taxa caught can be seen in Appendix Table 2. The dredge equipment had a 

measured width of 55 cm, height of 25 cm and length of the mesh bag of 80 cm with a mesh 

size of 10 mm. Additional weights in form of metal chains of approximately 4 kg were added 

to the frame of the dredge for better bottom contact. Bottom time of the dredge ranged from 



 

Page 22 of 100 

three to six minutes. Haul speed depended on drift speed of the vessel and ranged from < 0.1 to 

> 1 knots.  

 

 

  

Figure 3: Overview of the seven stations used for imagery analysis that were visited in the 
Kitikmeot Sea in August 2016. 
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3.2.2 Image collection, processing and analysis 

Still photos for the image analysis were taken with a downward-facing Gopro Hero 4 silver. 

Photos were taken with an interval of every 10 second for a duration of an approximately 15 

minutes long transect at each station. Original Gopro camera housings are waterproof to a depth 

of 40 meters. To be able to use the camera deeper than this, the camera was equipped with a 

different housing. The camera and the housing were mounted on a metal frame, where a light 

source (conventional SCUBA dive light) and two lasers were attached. The two laser pointers 

were positioned in the middle of the picture with a distance of 19 cm, which made it possible 

to calculate the area of every photo that was analyzed. The distance of the camera from the 

seafloor was aimed to be between 1 - 2 m above the seafloor. This distance was adjusted 

manually with a wire where the camera was affixed to and could be controlled visually by a 

small video camera screen with live feed. Sudden changes in water depth, current velocity and 

the occurrence of cobble and boulders along the transects resulted in variation in the distance 

from seafloor and, hence, the area imaged which varied from 0.10 m2 to 7.13 m2 for all stations. 

The camera captured between 57 – 139 pictures from each station. The selection of the sub-set 

of images analyzed was based on image quality. To assess the quality of the images analyzed, 

some criteria were applied to allow a precise and consistent quantification of organisms on the 

seafloor as possible. Some images were considered as ineligible and excluded from the analysis 

based on the following criterias; if pictures that were too bright so that the laser points were 

invisible, photos with too high turbidity, so the seafloor could not be seen, and also, photos 

where one laser pointer was not on the seafloor were excluded. This was to minimize the bias 

during the image analysis. After sorting out the images that could be included in the analysis, a 

sub-selection was then randomly chosen by www.numbergenerator.org to reduce the pool of 

photos to an amount that was both considered representative of the area and manageable for 

this thesis. A goal of thirty images for each station was set for this study to analyze, but in some 

cases the number was lower (25 images for station UN4, 28 images for UN2 and 29 images for 

station TG) due to the criterias mentioned above. On many occasions, subsequent images 

overlapped at some stations with low current velocity (i.e. AP1 and AP2). Therefore, 

overlapping photographs were not analyzed to prevent double counting of organisms present 

on images.  

Photos were affected by the fish eye effect of the GoPro lens and will give wrong estimates of 

the area in the pictures when the distorted edges are included. Therefore, every picture used for 
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image analysis was cropped to show the center of the image with the laser pointers positioned 

as close to the middle of the image as possible. Cropping varied depending on how strong the 

fish eye effect was in the corners of the photos, but it was attempted to keep the level of 

distortion consistently low based on visual assessment (Table 2). The dive light produced a 

light cone that did not illuminate the entire image evenly, which made it difficult to quantify 

the percentage cover of the coralline red algae. Instead, they were recorded as “present” or 

“absent”. Area in the photo was calculated using the program Image J by knowing the exact 

number of pixels between the laser pointers that had a fixed distance of 19 cm. 

 Individuals and colonies of all taxa were counted and counts on the images were standardized 

to an area of 1 m2. There were some doubtful cases were the specimens on the images were 

difficult to identify. Therefore, determination of taxa on the images was supported by voucher 

specimens that were caught in the dredge trawl and in the van Veen Grab (Appendix Table 1, 

Appendix Table 2). After one round of image analysis, images were analyzed one more time to 

even out learning effects during the analysis. Organisms that still could not be identified were 

given a higher taxonomic rank. Organisms that were too difficult to identify on the images, 

were given a descriptive name with “morphotype” and the name of the taxon that had similar 

morphological features. Polychaeta tubes that were clearly sticking out of the sediment were 

counted and included in the analysis, but the proportion of living organisms remains unknown. 

Other studies have considered Polychaeta tubes as habitat rather than a taxon (Rees et al., 2005) 

since the number of alive organisms in tubes are difficult to quantify. These organisms were 

included in count since they are visible on the seafloor and therefore considered as epibenthos. 

Brown algae and some red algae were not counted, but were instead measured with the 

percentage cover on the images, which is typical for algae (e.g. Kortsch et al., 2012). In 

addition, bivalve shells were seen at some stations, but the proportion of dead or alive animals 

were unknown and these bivalves were therefore marked as “present” in the images. Bivalve 

shells were also difficult to separate from the sediment because of the quality on the images. 

Feeding strategies of the organisms were determined by scientific literature and are listed up in 

Table 3. 
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3.2.3 Environmental parameters 

Environmental parameters were used to better describe the epibenthic communities in the 

scarcely studied the Kitikmeot Sea in CAA. Several environmental parameters (bottom 

temperature, bottom salinity, bottom oxygen, turbidity and sediment type) were recorded in 

vicinity of where images were taken. Salinity, temperature, oxygen and turbidity values closest 

to the seafloor were extracted from CTD casts using a Seabird SBE19 that was done in each 

area. Sediment grain size in the images was given a description of “hard bottom”, “soft bottom” 

or “mixed sediment” and was used as an indicator and surrogate of long-term integrated current 

velocities. These categories were chosen based by what the images were dominated of.  “Mixed 

sediment” is an intermediate category that was suited for the stations that had drastic changes 

in sediment grain size along a station transect. This implied for the transitional sites. 

 

Size fractions of sediment were used to describe the seafloor features on the stations. The terms 

that were used for descriptions of seafloor features at the stations were boulder, cobble, pebble 

and sand. More categories within sediment size exists, but since sediment were determined 

visually from the images with support from distance between laser points, only these four 

categories were taken into account (for details see Wentworth 1922) due to limited visibility on 

image. The size fractions are listed up in Table 4.  
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Table 4: Overview of size fraction used to describe the sediment found on the seafloor when 
analyszing images from the Kitikmeot Sea in Nunavut region, Canadian Arctic Archipelago. 
Sediment grain size values are from Wentworth (1922). 

Sediment fraction Size  (mm) 

Boulder > 256 

Cobble 64 – 256 

Pebble 4 – 64 

Sand < 1 

 

3.2.4 Data analyses 

The same software programs that were used to produce results from Northeast Greenland (see 

section 3.1.4 Data analyses for details) were also used for the Kitikmeot Sea study. Mean 

abundance per m2 from each station were square-root transformed to even out the influence of 

the dominant species (Field et al., 1982; Clarke and Warwick 2001; Johnson and Barmuta 

2015). In this case, percentage cover of algae and count of taxa was collected during image 

analysis. These mixed values were included in the same data set for this part of my Master’s 

thesis and same procedure has also been done in other studies as well (e.g. Beuchel et al., 2006; 

Kortsch et al., 2012). The drawback of using percentage cover and count is that they are not 

adjusted to the same standardization scale, but the Gower similarity coefficient (S15) (Gower 

1971) solves issue this and align mixed scale data to same scale (Greenacre and Primicerio 

2013, M. Greenacre, Universitat Pompeu Fabra, Barcelona, pers. comm.). Gower similarity 

coefficient was used to compute the similarities between the stations. Bray-Curtis was another 

option to choose because the range of the data were not extreme and not that different and could 

also been taken into account when considering correct similarity matrix (M. Greenarcre, 

Universitat Pompeu Fabra, Barcelona, pers. comm.). Again, HCA were used to identify similar 

taxa assemblages in dendrogram and nMDS were used to increase the confidence of 

ordinations. ANOSIM test were used to test if there was a statistically significant difference 

between the flow regimes in the study region.  
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4 Results 

4.1 Northeast Greenland (NEG) 

4.1.1 Epibenthic community structure in NEG 

4.1.1.1 Distribution of taxa richness for Campelen and Agassiz trawls 

During both TUNU expeditions combined, a total of 276 putative epibenthic species were 

identified to the lowest possible taxonomic level from 33 Campelen and Agassiz hauls at 18 

locations. The three phyla that contributed most to taxonomic richness in the study area were 

Arthropoda (27%), Porifera (17%) and Mollusca (15%) (Figure 4). The two locations with the 

highest taxa richness were interestingly at bank locations, Belgica Bank (1365-TUNUVII and 

1368-TUNUVII) (88 taxa) and a bank along the 76° N latitudinal gradient (1346-TUNUVII 

and 1349-TUNUVII) (58 taxa), respectively (Figure 5). In contrast, the lowest taxa richness (8 

taxa) was found at a deep location at the slope where sampling with only the Campelen trawl 

was conducted. The location with the second lowest taxa richness of 17 was also located at the 

slope, but both sampling gears were applied here. This was also the deepest location in the study 

area (994 – 1011 m) and had the lowest taxa richness of all locations that included both gears 

with a catch of eight taxa for the Campelen and nine taxa for the Agassiz trawl (Station 1357-

TUNUVI and 1355-TUNUVI), where no taxa overlapped. At the shelf break locations (see 

Table 1 for identifying stations) the phylum Porifera had high taxa richness in the southern part 

of the study region (Figure 5). In Bessel Fjord, the number of taxa were relatively similar 

throughout the fjord. However, only one taxon from phylum Porifera was found at the inner 

fjord location which made it different from the other Bessel Fjord locations in terms of 

taxonomic composition. 

In general, the number of taxa caught varied between the different gear types that were used. 

Taxa richness in Agassiz trawl hauls was higher compared to the Campelen trawl at 10 of 15 

stations, while Campelen was higher than Agassiz hauls at five stations (Figure 6). Though 

station numbers are low in the study area, there appeared to be a habitat-specific shifting pattern 

in which gear type that caught more taxa from inner-fjord locations towards the shelf break and 

slope (Figure 6). Agassiz trawls conducted inside the fjord caught more taxa compared to the 

Campelen trawls. The shelf and shelf break stations had a less clear pattern though Campelen 

tended to catch more taxa on the shelf and Agassiz on the outer shelf. Towards the slope stations 

the Agassiz trawl again caught the highest taxa richness. Taxa accumulation curves for both 
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gear types show that Agassiz trawl collected more taxa than Campelen. Additionally, it also 

suggests that sampling effort has not captured all epibenthic taxa present in the region (Figure 

7). 
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Annelida Arthropoda Chordata Cnidaria

Echinodermata Mollusca Porifera Others

Figure 4: The total taxonomic composition of epibenthic invertebrates that was collected 
during TUNU-VI (2015) and TUNU-VII (2017) expeditions in Northeast Greenland (NEG) 
waters collected by Campelen 1800 trawl and Agassiz trawl. 

Figure 5: The pie charts in the map represent taxonomic composition of epibenthic 
invertebrates at eighteen locations where Campelen 1800 shrimp trawl and Agassiz trawl were 
deployed (i.e.  taxonomical catches in Campelen and Agassiz were combined) during TUNU-
VI (2015) and TUNU-VII (2017) expeditions to Northeast Greenland. The numbers indicate 
the total number of taxa that was found at each location for both sampling gear, except stations 
with (*), which means that only Campelen trawl hauls were performed at this location. 
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Figure 6: Number of taxa caught by Campelen 1800 shrimp trawl (blue) and Agassiz trawl 
(orange) during TUNU-VI (2015) and TUNU-VII (2017) expeditions to Northeast Greenland. 
Bar charts of Campelen and Agassiz trawls are closely put together for better visualization that 
they were taken at same location (not showing 1307-TUNUVI, 1321-TUNUVI and 1375-
TUNUVII since not both gears were deployed at these locations).  
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Figure 7: Taxa accumulation curve for the two gear types Campelen 1800 shrimp trawl and 
Agassiz trawl used during the two TUNU cruises to NEG in 2015 and 2017. Eighteen Campelen 
trawl stations and fifteen Agassiz trawl stations were collected and are shown here. Shaded 
light red and light blue area on the graph represent the confidence intervals for random samples. 

 

4.1.1.2 Most frequent taxa found in NEG 

In general, larger taxa and decapods were caught in the Campelen trawl whereas smaller taxa 

were caught in Agassiz trawl. Many of the taxa listed in Table 5 contributed to station similarity 

and dissimilarities, which will be mentioned in the section below. Some taxa were more 

frequently caught in the study area compared to others. Table 5 presents the top ten taxa that 

were caught most frequently for Campelen and Agassiz trawl. The polar shrimp Lebbeus 

polaris were present at all eighteen Campelen stations, whereas the brittle star Ophiacantha 

bidentata were present in twelve Agassiz trawls out of thirteen.  
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Table 5: Top ten benthic invertebrate taxa that were most frequent (frequency of occurrence = 
FO) across the study area during TUNU-VI (2015) and TUNU-VII (2017) expeditions caught 
in Campelen 1800 Shrimp trawl (18 stations) and Agassiz trawl hauls (15 stations). 
 

 

Taxa 

 

Phylum 

 

Class 

 

FO (Campelen) 

Percentage (%) FO 

across study area 

18 stations = 100 % 

1 Lebbeus polaris Arthropoda Decapoda 18 100.0 

2 Ophiopleura borealis Echinodermata Ophiuroidea 13 72.2 

3 Sclerocrangon ferox Arthropoda Decapoda 11 61.1 

4 Anonyx spp. Arthropoda Amphipoda 10 55.6 

5 Strongylocentrotus pallidus Echinodermata Echinoidea 10 55.6 

6 Colus spp. Mollusca Gastropoda 10 55.6 

7 Sabinea septemcarinata Arthropoda Decapoda 9 50.0 

8 Umbellula encrinus Cnidaria Anthozoa 9 50.0 

9 Pontaster tenuispinus Echinodermata Asteroidea 9 50.0 

10 Gorgonocephalus spp. Echinodermata Ophiuroidea 9 50.0 

 
 

Taxa 

 

Phylum 

 

Class 

 

FO (Agassiz) 

Percentage (%) FO 

across study area 

13 stations = 100 % 

1 Ophiacantha bidentata Echinodermata Ophiuroidea 12 92.3 

2 Ophiopleura borealis Echinodermata Ophiuroidea 11 84.6 

3 Ophiocten sericeum Echinodermata Ophiuroidea 11 84.6 

4 Sclerocrangon ferox Arthropoda Decapoda 8 61.5 

5 Pontaster tenuispinus Echinodermata Asteroidea 8 61.5 

6 Lebbeus polaris Arthropoda Decapoda 7 53.8 

7 Colus spp. Mollusca Gastropoda 7 53.8 

8 Boreonymphon spp. No eyes Arthropoda Pycnogonida 7 53.8 

9 Nothria conchylega Annelida Polychaeta 7 53.8 

10 Icasterias panopla Echinodermata Asteroidea 7 53.8 
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4.1.1.3 Abundance and biomass 

The estimated swept area covered by the semi-quantitative Campelen trawl varied from 9,641 

m2 to 20,817 m2 for both years. Epibenthic abundance across the NEG study region ranged 

from 4.1 ind. per 1000 m2 at shelf break station 1322-TUNUVI to 854.1 ind. per 1000 m2 at 

shelf station 1346-TUNUVII across the 18 Campelen stations (Table 1, Figure 8A). The two 

Campelen stations with the highest estimated abundance were interestingly found at both bank 

stations located at the shelf. Station 1346-TUNUVII (76º N Bank) had 854.1 ind. per 1000 m2 

and station 1365-TUNUVII (Belgica Bank) had 64.0 ind. per 1000 m2, respectively. At both 

stations abundance was dominated by a single species each: The bivalve (Mollusca) 

Similipecten greenlandicus was by far the taxon that contributed most to abundance at station 

1346-TUNUVII, whereas the ophiuroid (Echinodermata) Ophiopleura borealis dominated by 

abundance at station 1365-TUNUVII (Figure 8B). 

The two innermost stations in Bessel Fjord were dominated in abundance by echinoderms, 

specifically Ophiopleura borealis (inner fjord), whereas the station located at the mouth of the 

fjord was dominated by asteroids Ctenodiscus crispatus in abundance. The dominance of which 

taxa that had the highest abundance varied across the five shelf stations. In comparison to the 

two bank stations at the shelf, the three remaining shelf stations did not have that high 

abundance. One of the shelf stations 1316-TUNUVII located in Dove Bugt, had high 

abundances of crinoids (Heliometra glacialis and Poliometra polixa, respectively) and were the 

species that contributed to the high abundance in phylum Echinodermata (Figure 8B). Mainly 

Arthropoda dominated in abundance at shelf station 1354-TUNUVII where the amphipod 

Eusirus spp. was the contributor, whereas shelf station 1338-TUNUVI was also dominated by 

Arthropoda by abundance, but rather the polar shrimp Lebbeus polaris. The abundances at the 

shelf break and slope stations were very low and varied only from 4.1 ind. per 1000 m2 at shelf 

break station 1322-TUNUVI to 37.3 ind. per 1000 m2 at shelf break station 1312-TUNUVI. The 

stations along the shelf break and slope were dominated in abundance by Arthropoda and 

Echinodermata (Figure 8B). Again, single species contributed to abundance, specifically from 

south to north Lebbeus polaris, Strongylocentrotus pallidus (pale sea urchin), Pasiphaea tarda 

(Crimson glass shrimp), Sclerocrangon ferox (warrior shrimp), Gonatus spp. (squid) and 

Sabinea septemcarinata (sevenline shrimp), respectively.  

Biomass estimates from TUNU-VII ranged from 65.0 g ww per 1000 m2 at fjord station 1300-

TUNUVII to 527.7 g ww per 1000 m2 at shelf station 1316-TUNUVII (Figure 8C). The highest 
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estimated biomass from the Campelen trawl during 2017 was found at station 1316-TUNUVII 

in Dove Bugt, where the basket star Gorgoncephalus spp. was the main contributor to high 

biomass (Figure 8D).  The station with the second highest biomass was shelf station 1346-

TUNUVII located at the bank on the 76º N latitude with 374.2 g ww per 1000 m2. Here, mainly 

the bivalve Similipecten greenlandicus contributed to the biomass at this station. 

Stations from inside of Bessel Fjord towards the mouth were dominated by holothuroid 

Molpadia borealis (two innermost stations) and Forcepia-like sponges, respectively. Further 

out on the shelf at station 1338-TUNUVII, high estimated biomass were mainly because of 

catches of Pandalus borealis (deep water shrimp) and were only caught at this station during 

sampling on the TUNU-VII expedition in 2017. Station 1375-TUNUVII was the only station 

at the shelf break where estimates of biomass were calculated, since this was the only shelf 

break station that was visited during TUNU-VII expedition. Here at this station, Sclerocrangon 

ferox was the main contributor to the biomass. Additionally, detailed information about relative 

taxonomic composition in count and weight by phyla between trawl gears can be seen in 

Appendix Figure 1 and Appendix Figure 2. 
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Figure 8: a) Distribution of epifaunal abundance (no. of ind. per 1000 m2), b) estimated abundance  
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Figure 8: A) Distribution of epifaunal abundance (no. of ind. per 1000 m2) from Campelen 1800 
shrimp trawl from the TUNU expeditions to Northeast Greenland in 2015 and 2017. Scaled circles 
of abundance and biomass were adjusted to Jenks’ natural breaks. B) estimated abundance for both 
years, C) Distribution of biomass (g ww per 1000 m2) for epifaunal catches for 2017 only and D) 
Estimated biomass caught during TUNU-VII (2017). 
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4.1.1.4 Spatial pattern in epibenthic communities 

First, I had to decide if Campelen and Agassiz trawl could be combined for the multivariate 

analysis. Factor gear was tested and showed a statically significant difference between the gears 

Campelen trawl and Agassiz trawl using relative abundance data, where Global R suggests little 

separation (ANOSIM, global R = 0.18, p = 0.007). Therefore, further analyses were only 

conducted for abundance-based estimates for Campelen trawl to reduce possible biases, but 

ordination results of both gears can be seen in Appendix Figure 3A, Appendix Figure 3B. This 

resulted in 18 remaining Campelen stations that could be used for the multivariate analyses.  

Hierarchical cluster analysis (HCA) with group average linkage revealed that the different 

factors habitat type had a distinct separation in the dendrogram for abundance-based data with 

fourth-root transformation (Figure 9A). Six clusters in the dendrogram were statistically 

significant different (SIMPROF analysis with α = 0.05). The ordination of the stations in the 

nMDS showed an even more distinct pattern of habitat separation (Figure 9B). Most of the 

clusters contained stations with same habitat type categories (Figure 9A, Figure 9C). 

There was a statistically significant difference between the communities when habitat type were 

used as a factor in one-way ANOSIM, where also Global R suggested a large separation 

between the habitat types (Global R=0.78, p = 0.001) Table 6. The pairwise test showed that 

the communities were statistically significant different, except the communities with habitat 

type fjord and slope different (ANOSIM, R = 1, p = 0.1). The largest differences between the 

communities were found between shelf break and fjord (R=0.845, p=0.008) and shelf break and 

slope habitats (R=0.754, p=0.008). More details can be seen in Appendix Table 3. 

Table 6: The results from the one-way ANOSIM test, where differences between the trawl 
gears (Campelen 1800 Shrimp trawl and Agassiz trawl) and habitat types (Fjord, shelf, shelf 
break and slope) were tested for Campelen 1800 Shrimp trawl only. 

Factors tested Data type Global R p-value  

Trawling gears Relative abundance 0.18 0.007 

Habitat type for Campelen trawl  Abundance 0.78 0.001 
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The taxa that contributed most to similarity within the community groups and dissimilarities 

between the community groups based on the SIMPER analysis are shown in Table 7 and Table 

8. Average similarity percentages within the community groups varied from 37.0 to 48.7 % and 

was highest for habitat type slope and lowest for habitat type shelf break. Ophiopleura borealis 

was the species that contributed to most average similarity within the fjord stations, whereas 

Lebbeus polaris to the shelf stations, Sclerocrangon ferox to the shelf break stations and 

Gonatus spp. to slope stations. Other species and taxa that contributed to approximately 50% 

to the similarity within the community groups can be seen in Figure 7. Much more taxa 

contributed to the average dissimilarity, than average similarity. Between 11 and 29 species 

contributed approximately 50% to the average dissimilarity between the communities, where 

the average dissimilarity between the community groups varied from 69.2 to 91.1 % (Table 8). 

The three taxa in each community group that contributed most to the dissimilarities are shown 

in Table 8 and are largely combinations of the taxa in Table 7. 
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Figure 9: Station similarities where the stations are grouped by habitat type. A) Station clusters 
that were obtained from the hierarchical cluster analysis with fourth-root transformed 
abundance-based data, B) nMDS plot of the abundance-based data and C) The distribution of 
habitat type clusters of Campelen 1800 Shrimp trawl stations collected during TUNU-VI and 
TUNU-VII. Habitat types were used in the multivariate statistics. 

A) B) 

C) 
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Av. Abun. 

(no. of ind. per 
1000m2)

Group Fjord

Average similarity: 45.4 %

Ophiopleura borealis 1.3 7.4 5.3 16.2 16.2

Lebbeus polaris 1.0 5.7 6.9 12.6 28.8

Themisto libellula 1.0 5.6 16.4 12.3 41.1

Styela spp. 0.7 4.1 35.6 9.0 50.1

Group Shelf

Average similarity: 40.2 %

Lebbeus polaris 1.3 3.4 2.8 8.5 8.5

Ophiopleura borealis 1.4 3.4 4.0 8.4 16.8

Sabinea septemcarinata 1.2 3.2 5.3 7.9 24.7

Umbellula encrinus 1.0 2.7 6.4 6.8 31.5

Boreonymphon  spp. (No eyes) 0.8 2.4 6.0 6.0 37.5

Anonyx  spp. 0.9 1.9 1.1 4.7 42.2

Zoantharia 0.7 1.6 1.2 4.1 46.3

Nymphon hirtipes 0.8 1.6 1.2 3.9 50.1

Group Shelf break

Average similarity: 37.0 %

Sclerocrangon ferox 1.0 6.2 4.7 16.8 16.8

Lebbeus polaris 1.1 5.5 2.3 14.9 31.7

Strongylocentrotus pallidus 0.7 4.1 1.4 11.1 42.8

Ophiopleura borealis 0.61 2.3 0.9 6.3 49.2

Crinoidea 0.6 2.2 0.9 5.8 55.0

Group Slope

Average similarity: 48.7%

Gonatus spp. 1.0 13.29 4.1 27.3 27.3

Pasiphaea tarda 1.1 13.0 8.6 26.7 54.0

Av. 
Similarity 

(%)

SD of 
similarity

Contribution 
(%)

Cumulative 
(%)

Av. Abun. 
(no. of ind. 

per 1000m2)
Av.Diss Diss/SD

Contribution 
(%)

Cumulative 
(%)

Groups Fjord  &  Shelf

Average dissimilarity = 69.2 % Fjord Shelf        

Sabinea septemcarinata 0 1.19 2.52 5.23 3.65 3.65

Similipecten greenlandicus 0 1.07 2.11 0.48 3.06 6.7

Ophiacantha bidentata 0 0.81 1.69 1.62 2.44 9.14

Groups Shelf break  &  Shelf

Average dissimilarity = 74.0 % Shelf break Shelf

Similipecten greenlandicus 0 1.1 2.2 0.5 2.9 2.9

Sabinea septemcarinata 0.5 1.2 1.8 1.9 2.4 5.3

Umbellula encrinus 0.2 1.0 1.8 2.3 2.4 7.7

Groups Slope  &  Shelf

Average dissimilarity = 91.0 % Slope Shelf

O phiopleura boreali s 0 1.4 3.6 3.9 3.9 3.9

Sabinea septemcarinata 0 1.2 3.1 5.9 3.4 7.3

Pasiphaea tarda 1.1 0 2.9 2.9 3.2 10.5

Groups Shelf break  &  Fjord

Average dissimilarity = 79.6 % Shelf break  Fjord

Sclerocrangon ferox 1.0 0 3.4 4.1 4.3 4.3

Themisto libellula 0 1.0 3.3 4.8 4.2 8.5

Ophiopleura borealis 0.6 1.3 2.6 1.4 3.3 11.8

Groups Slope  &  Fjord

Average dissimilarity = 87.9 % Slope Fjord

O phiopleura boreali s 0 1.3 6.2 4.6 7.0 7.0

Gonatus spp. 1.0 0 4.8 4.2 5.5 12.5

Themisto libellula 0 1.0 4.5 6.4 5.1 17.6

Groups Slope  &  Shelf break

Average dissimilarity = 80.4 % Slope Shelf break

Pasiphaea tarda 1.2 0 5.4 3.0 6.7 6.7

Sclerocrangon ferox 0 1.0 5.0 3.5 6.2 12.8

Strongylocentrotus pallidus 0.2 0.7 3.2 1.7 4.0 16.8

Table 8: The top three epifaunal taxa caught in Campelen 1800 Shrimp trawl that contributes 
to dissimilarity between the community groups that were used to detect a pattern in nMDS and 
hierarchical clustering. 

Table 7: Epifaunal taxa caught in Campelen 1800 Shrimp trawl that contributes approximately 
50 % of the similarity within the four community groups that were used to detect a pattern in 
nMDS and hierarchical clustering. 
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4.1.2 Environmental variables that can explain epibenthic communities 

Out of the six environmental variables considered in the combined 2015-2017 data set (latitude, 

depth, bottom salinity, bottom temperature, bottom oxygen and turbidity) (Table 9), where the 

combination of depth and bottom oxygen were the two variables that best correlated with the 

biological parameters (correlation coefficient 0.671) (Table 9). The single variable with the 

highest correlation coefficient was depth for both BIO-ENV analyses. When the three 

additional environmental variables (integrated chlorophyll a, percentage of sand and percentage 

of mud) were included for the latter cruise only, the combination of depth and bottom salinity 

were correlating best with the biological parameters (0.530). The correlation coefficient was in 

general lower for TUNU-VII when more environmental variables were included (Table 9).  

  
No. Of 

environmental 
variables

ENV. variables with best combination to epibenthic community
Correlation 
coefficient

1. Depth 0.577
2. Depth, Bottom oxygen 0.671
3. Depth, Bottom oxygen, Turbidity 0.641
4. Depth, Bottom oxygen, Bottom salinity 0.562

5.
Depth, Bottom oxygen, Bottom temperature, Bottom salinity, 
Turbidity

0.486

6.
Latitude, Depth, Bottom oxygen, Bottom temperature, Bottom 
salinity, Turbidity

0.428

1. Depth 0.378
2. Depth, Bottom salinity 0.530
3. Depth, Bottom salinity, Integrated chla 0.529
4. 0.528
5. Depth, Bottom oxygen, Bottom salinity, Turbidity, Integrated chla 0.486

6.
Latitude, Depth, Bottom oxgen, Bottom salinity, Turbidity, 
Integrated chla 0.459

7.
Latitude, Depth, Bottom oxygen, Bottom salinity, Turbidity, 
Integrated chla 0.439

8.
Latitude, Depth, Bottom oxygen, Bottom temperature, Bottom 
salinity, Turbidity, Integrated chla, Percentage sand 0.364

9.

Latitude, Depth, Bottom oxygen, Bottom temperature, Bottom 
salinity, Turbidity, Integrated chla, Percentage sand, Percentage 
mud 0.311

  Environmental variables from TUNU-VI (2015) and TUNU-VII (2017)

Additional environmental variables from TUNU-VII (2017)

Table 9: Biological-Environmental (BIO-ENV) results. This table has results from both TUNU 
expeditions in 2015 and 2017 when six environmental variables (depth, latitude, bottom 
temperature, bottom salinity, turbidity, bottom oxygen) were correlated with the biological 
variables. Additional BIO-ENV routine were performed for three additional variables collected 
during TUNU-VII (integrated chlorophyll a, percentage sand and percentage mud). 
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Principal Component Analysis was conducted to explore the spatial variability in the 

environmental parameters in the study area, where Principal Component 1 (PC1) and Principal 

component 2 (PC2) explained 74.3 % of the variability between the stations. The fjord stations 

were mostly spread along the PC1 axis that explained 54.9 % of the variation (Figure 10, Table 

10). Here, turbidity, bottom oxygen and bottom temperature were the drivers to the variation 

between the fjord stations. The shelf stations were more closely clustered together compared to 

fjord stations and were explained by bottom temperature. One shelf station was more distinct 

compared to the other shelf stations and was more explained by turbidity and bottom oxygen 

rather than bottom temperature. The shelf break stations were clustering together where 

temperature accounted for the little variation between the stations. The slope stations were 

strongly grouped together by depth.  

 

Figure 10: Ordination of Principal Component Analysis (PCA) of six environmental variables 

(depth, latitude, bottom salinity, bottom temperature, bottom oxygen and turbidity) that were 

collected during TUNU-VI (2015) and TUNU-VII (2017) cruises. The vectors depicted in the 
graph are representing the direction and the strength of the environmental variables at each 

station based on Campelen 1800 Shrimp trawls. 
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Table 10: Principal Component Analysis (PCA) of the normalized environmental variables, 
showing the two first principal components that explain >74 % of the variation in the 
environmental variables. 

 

 PC1 PC2 

Eigenvalues 3.3 1.16 

% Variation 54.9 19.3 

Cum. % Variation 54.9 74.3 

   

Eigenvectors   

Latitude 0.028 -0.244 

Depth (m) -0.233 0.779 

Bottom Oxygen 0.516 -0.108 

Bottom temp.  (°C) -0.408 -0.553 

Bottom sal. -0.538 -0.104 

Turbidity 0.472 -0.079 
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4.2 Kitkmeot Sea, Canadian Arctic Archipelago 

4.2.1 Image analysis 

Approximately 20 minutes were used per image at the locations with low current flow regime 

(AP1 and AP2) during the image analysis, whereas approximately 30 minutes was used per 

image at the remaining stations since there were more information in the latter ones. Calculated 

image area varied within the station along the transect (Table 2).  

4.2.2 Station observations and conspicuous taxa 

4.2.2.1 Low flow sites 

Algak Passage 

Both Algak Passage stations were located in Bathurst Inlet (Figure 3) with low current 

velocities compared to the other stations as reflected in the sediment and the drift speed of the 

vessel (Table 2). 

AP1 

Station Algak Passage (AP1) had a relatively homogenous substrate that was entirely composed 

of sand and finer grained sediment (Figure 11A), but consisted mostly of soft bottom. Few 

epifaunal taxa were present at this site, with Ophiuroidea as the most frequent taxon along the 

station transect. Some Anthozoa morphotypes and Polychaeta tubes were recorded, but were 

not nearly as abundant as the brittle stars. No obvious natural light source reached down to the 

seafloor at this station transect, where the start depth was 75 m. This was the second deepest 

station and had the second slowest drift speed of the vessel in the entire study region (Table 2), 

which could also be reflected in the sediment.  

AP2 

Coarser sediment such as pebble and cobble was present along the AP2 station transect, but 

was also composed of sand and/or smaller grain sizes (Figure 11B). However, the station were 

fairly dominated by fine sediment on the images and named as a soft bottom site. Similar to 

AP1, Ophiuroidea were also very highly abundant at this station. In contrast to AP1, 

Patellogastropoda could be observed and was seen when attached to the gravel. An unidentified 

taxon that was given the descriptive name “Muddy Polychaeta morphotype” was only observed 
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at this low flow site. Polychaeta tubes and Anthozoa were also present here and no natural light 

was visible. This station represented the deepest station with a start depth of 93 m. The Drift 

speed of the boat was so low that it was nearly indiscernible.  

4.2.2.2 Transitional sites 

TG 

Station Tinney Gate (TG) located further into Bathurst Inlet  in a narrow passage between and 

island and the mainland, had varied seabed morphology with very heterogeneous sediment 

along the transect (Figure 11C) and were hence given the sediment type description 

intermediate/mixed sediment. The size of the sediment varied along the station transect with 

some images dominated by pebble, cobble and others by soft sediment seafloor. Part of the 

seafloor was covered by grey, carpet-like organic material. This layer made it difficult to see 

what was present on the seafloor underneath and also what kind of organisms were present in 

the images. It was impossible to verify what the carpet-like organic material was and, therefore, 

the percentage cover of this material was not measured at this station. In some images, a type 

of red alga with a distinct shape and color occurred and was measured by percentage cover. 

The taxa that were most present during the transect was Crinoidea and Holothuroidea. The 

station had a start depth of 25 m along the transect and weak natural light penetrated the water 

column to the seafloor. In addition, the drift speed of the boat was recorded to be the highest of 

all sites at this region (1.25 kn). Consequently, half of the photos from this station unfortunately 

had to be excluded due to blurry photos, leaving only 29 images available for image analysis.  

High particle density flowing in the water column was visible by the reflection by the artificial 

light.   

UN4  

Station UN4 were in vicinity of Finlayson Island, but taken during transition. Along the station 

transect UN4 sediment was very heterogeneous, but mostly cobbles and also boulders with  

encrusting coralline red algae were present (Figure 11D) and had the sediment type description 

intermediate/mixed sediment. In some of the images, the seafloor consisted of sand and finer 

sediment combined with pebble. In the middle towards the end of the station transect, the 

sediment was covered with red carpet-like organic material and made it challenging to see 

epibenthos. Station UN4 had a start depth of 47 m, where little natural light source could be 

seen on the images. On many of the images it was too difficult to see the seafloor and to 
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distinguish the different taxa and also some of the images were too blurry. Therefore, only 25 

images for this station were used for the image analysis. Crinoidea, Echinoidea, and other 

Echinodermata, such as Asteroidea were the most prominent taxa present in the beginning of 

the station transect. Additionally, taxa composition changed towards the end of transect, where 

Ophiuroidea were dominating. 

4.2.2.3 High flow sites 

TP 

Seafloor at Turnagain Point (TP) located in Dease Strait, was mostly covered by pebble and 

cobble along transect (Figure 11E), but towards the end some images showed a seafloor that 

consisted of solid bedrock and was given the sediment type as hard bottom. Between the 

different grain sizes, some bivalve shells were present on the images. Natural light was detected 

in all of the images along the station transect, where the start depth was 30 m at this station. 

Crinoidea were present throughout the whole transect, where Holothuroidea occasionally were 

found together with the Crinoidea when seafloor consisted of pebble and cobble. When there 

was a change in sediment features from pebbles and cobbles to solid bedrock, one could then 

see a change in taxa composition and “red algal dots” became abundant. 

Finlayson Island 

UN1 

The UN 1 station transect in the Finlayson Islands had a seafloor that mostly consisted of pebble 

and cobble and had a high cover of coralline red algae (Figure 11F) and was named hard bottom 

due to its sediment type. Some bivalve shells were present between the sediment. Shallow depth 

of 20 m and presence of natural light resulted in a large proportion of kelp that covered a big 

portion on the images. Current velocity was high at this station, which could be seen in the 

images since the kelps laid flat on the seafloor on the images. However, the drift speed of the 

vessel was recorded to be only 1 kn.  A more diverse group of taxa was present at this station 

compared to the other stations, and many of these were attached to hard surfaces with limited 

motility, and where sessile and colonial (e.g. Polyplacophora, Patellogastropoda and 

Nephtheidae and Hydrozoa, respectively). It was possible to see that some of the nephtheid soft 

coral colonies had different colors, but were however, grouped into same taxon due to 
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difficulties with consistent identification only based on the images (Figure 11F). A family of 

benthic fish (Zoarcidae) could be observed in some of the images. 

UN2 

Station UN2 transect, also located in vicinity of Finlayson Island had sediment grain size that 

mostly consisted of pebble and cobble (Figure 11G) and was twice as deep as the previous 

station UN1 with 42 m. The sediment type at this station was determined as hard bottom based 

since the sediment sizes mostly consisted by pebble and cobble. Here, very little and no natural 

light could be seen on the seafloor images. The drift speed of the vessel was recorded to be 0.5 

kn. Coralline red algae could also be observed in some of the pictures where the artificial light 

reached the seafloor. Many of the images did not fill the requirements that were mentioned in 

the method part, leaving 28 images for the image analysis. On these images along the station 

transect, there were found mostly Crinoidea throught the whole transect together with 

Holothuroidea. Holothuroidea were most abundant in the middle of the station transect and 

declined towards the end. Cnidaria (mostly soft corals) could occasionally be seen along the 

station transect. 
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A) B) C) 

D) E) 

F) 

G) 

Figure 11: An overview of the stations that were visited for image taking of the seafloor in the
Kitikmeot Sea in 2016 with example photos from each station. Images with red frame represent the 
stations collected at sites with low current velocity, yellow frame at transitional sites and black frame 
sites with high current velocity. Low flow sites: A) Algak Passage 1 (AP1) where a large Urasterias 
lincki can be seen with many ophiuroids on soft bottom, B) Algak Passage 2 (AP2) many ophiuroids 
together with some pattellids present on pebble and cobble. Transitional sites: 
C) Tinney Gate (TG) Urasterias lincki can be seen at the bottom of the image together with the 
dominating crinoids, D) Finlayson Island (UN4) echinoids present on boulder together with crinoids.
High flow sites: E) Turnagain Point (TP) dominated by crinoids together with red algae (Rhodophyta), 
F) Finlayson Island (UN1) holothuroids were present on the images where brown algae (Ochrophyta) 
dominated with Cnidaria G) Finlayson Island (UN2), present on the images were mostly holothuroids, 
but here crinoids can be seen.  
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4.2.3 Taxa richness distribution 

During image analysis, 33 putative epibenthic species were identified to the lowest possible 

taxonomic level. The most taxa rich phylum was Echinodermata (31 %), followed by Mollusca 

(12 %), Cnidaria (9 %), Macroalgae (9 %), Annelida (6 %), Arthropoda (6 %) and Chordata 

(3%) and Ochrophyta (3%) (Figure 12). Morphotypes and taxa where the phylum level could 

not be identified accounted for 24% of the total taxa recognized on the images. The highest taxa 

richness was found at station UN1 with 22 taxa (Figure 13). In contrast, the stations with the 

lowest taxa richness were AP2 and UN2 with 11 recognized taxa each on the images (Figure 

13). Throughout the study area, the phylum Echinodermata was the most taxon rich group at 

all stations. Taxa that were present at different stations can be seen in Table 3. 

 

 

 

Figure 12: Total invertebrate taxonomic composition from the Kitikmeot Marine Science study 
in 2016 from the images that were analyzed from seven stations. Red algae (Rhodophyta) and 
brown algae (Ochrophyta) were combined as macroalgae. 
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Figure 13: The pie charts in the map represent taxonomic composition of epibenthic 
invertebrates that was recorded from seven station with use of imagery analysis. Images were 
collected in the Kitikmeot Sea in Canadian Arctic Archipelago as part of the Kitikmeot Marine 
Science study in august 2016. Number close to the pie charts indicate the taxa richness at each 
station, where the highest taxa richness was recorded at station UN1. Red algae (Rhodophyta) 
and brown algae (Ochrophyta) were combined as macroalgae.  

 

4.2.4 Epibenthos abundance and variability along station transects 

The estimated mean abundance at stations varied from 4.6 ind. per m2 at the transitional site 

station TG to 208.7 ind. per m2 at the low flow station AP2 (48.8 ± 72.2 ind per m2) (Figure 

14A). The low flow stations (AP1 and AP2) were by far dominated by Ophiuroidea in 

abundance (Figure 14A, Figure 14B). The transitional site stations were dominated by 

Holothuroidea (TG) and Ophiouroidea (UN4) and at the high flow stations Crinoidea and red 

algae (TP), Cnidaria and Ochrophyta (UN1) and Holothuroidea (UN2), dominated (Figure 14A, 

Figure 14B).  

Along each station transect abundance changes from the beginning of the station transect 

towards the end. Estimated abundance for each picture along station transect at the low flow 
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sites varied between 17.7 – 70.2 ind. per m2 for AP1 (Figure 15A) and 97.6 – 330.0 ind. per m2 

for AP2 (Figure 15B). Both stations had no changes in taxa dominance and Ophiuroidea 

dominated throughout both station transects. The taxa that made station AP1 differ from AP2 

were the unidentified morphotypes that regularly occurred at AP1.  

  

Figure 14: Abundance and taxonomic composition of epibenthos that was recorded in images 
that were sampled at seven station in the Kitikmeot Sea in Canadian Arctic Archipelago. The 

phylum Echinodermata in the legend consists of other taxonomical groups which were not that 

abundant (i.e. Echinoidea, Asteroidea). A) Mean abundance (no. of ind. per m2), where the 

stations are sorted after low flow, transitional site and high flow, B) relative composition of 
phyla/class depited in map.  

 

A) 
B) 
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Figure 15: Running sequence of images that were taken at two low flow sites in the Kitikmeot 
Sea in August 2016 and depicts how many organisms within a phylum or class were estimated 
in each photo (m2). The phylum Echinodermata in the legend consists of other taxonomical 
groups which were not that abundant (i.e. Echinoidea, Asteroidea). A) Station Algak Passage 1 
(AP1), which was mostly dominated by ophiuroids and B) station Algak Passage 2 (AP2), also
highly dominated by ophiuroids. 

A) 

B) 
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The two transitional sites were not closely related in terms of geographic distance (Figure 11), 

but were both characterized by mixed sediments with a transition between mostly soft and more 

hard substrate. Taxonomic dominance in abundance varied for both stations along the transect. 

The transition station UN4 had an estimated abundance along the transect that varied between 

1.4 – 62.6 ind. per m2. Echinodermata, Crinoidea and Holothuroidea as well as red algae were 

present in the beginning of transect and became close to absent towards the end of the transect 

when high abundance of Ophiuroidea was to be encountered (Figure 16A). The estimated 

abundance for the images at station TG varied from 1.1 – 11.4 ind. per m2. Here, red 

Holothuroidea was the most abundant taxon throughout the first half of the station transect, 

while the second half had more variable taxonomic composition, and Crinoidea occurred 

throughout the transect (Figure 16B). In general, the number of taxa per image was low at TG 

(13 taxa), which also applied to the abundance of organisms at the site. Also, the Echinodermata 

(consists of Asteroidea and Echinoidea) were present on the images together with Cnidaria and 

Ophiuroidea. 

There was also variation in abundance and taxonomic composition along transects at the high 

flow stations. The estimated abundance along transect for station TP varied between 4.4 – 31.7 

ind. per m2. Mainly Crinoidea and red algae (Rhodophyta) were dominating along transect with 

the red algae being particularly abundant in the second half of the transect (Figure 17A). Other 

taxa were also found (e.g. Anthozoa, Decapoda), but were not main contributors of the 

abundance in the images. Station UN1 had an estimated abundance along the transect that 

varied between 16.0 – 101.0 ind. per m2, where most of the counts represented taxa in the 

phylum Cnidaria (e.g. Gersemia-like soft coral white), with high abundance in particular in the 

latter two thirds of the transect. Holothuroidea was also a taxon that was frequently observed 

in the images along the transect (Figure 17B). Brown macroalgae (Ochrophyta) mainly 

dominated the images in the beginning of the transect at station UN1, but decreased towards 

the end. The third high flow station (UN2) had low estimated abundances along the transect 

which varied between 0.9 – 29.3 ind. per m2. No brown algae (Ochrophyta) were present, but 

instead, Crinoidea dominated the seafloor in the beginning of the transect (Figure 17C) and was 

observed to be horizontally positioned due to the high current velocities at the site. A mix of 

two different Holothuroidea was present at the station, where one Holothuroidea taxa was more 

abundant in some images than the other, and vice versa. Red algae and Asteroidea 

(Echinodermata) were also present at this station. 
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Figure 16: Running sequence of images that were taken along a station transect at two 
transitional sites in the Kitikmeot Sea in August 2016. Panels depict how many organisms 
within listed the taxonomical groups were present on each image which was cropped to m2. The 
phylum Echinodermata in the legend consists of other taxonomical groups which were not that 
abundant (i.e. Echinoidea, Asteroidea).  A) Station Finlayson Island (UN4) and B) station 
Tinney Gate (TG).  

A) 

B) 
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Figure 17: Running sequence of images that were taken along a station transect at three high 
flow sites in the Kitikmeot Sea in August 2016. Panels depict how many organisms within listed 
the taxonomical groups were present on each image which was cropped to m2. The phylum 
Echinodermata in the legend consists of other taxonomical groups which were not that abundant 
(i.e. Echinoidea, Asteroidea).  A) Station Turnagain Point (TP), B) Station Finlayson Island 
(UN1) and C) station Finlayson Island (UN2). 

A) 

B) 

C) 
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4.2.5 Feeding strategies at different sites 

A total of six different feeding categories were assigned to the taxa that were present in the 

images (Figure 18). The overall distribution of feeding strategies in the study region can be 

seen in Figure 18A, Figure 18B. Not defined (n.d) belonged to all the unidentified taxa and 

morphotypes, but still did not account for a large proportion because there were low abundances 

of morphotypes in the study area. Surface deposit feeders mainly dominated at the stations with 

low flow and suspension feeders were more prominent at high flow sites. One of the transitional 

sites (UN4) closely resembled the low flow sites due to similar feeding strategies that were 

highly abundant at these sites (Figure 18A, Figure 18B). Additionally, the other transitional site 

(TG) resembled more the high flow sites because of a dominance of suspension feeders. Grazers 

and primary producers were more common at the shallow sites were light occurred, but were 

also present at the deepest station (e.g. Patellogastropoda). Predators were less prominent and 

did not account for a large amount in abundance.  Some fish and shrimps (i.e. large motile taxa) 

may have escaped from the images, but despite this bias, predators are always lower in number 

(Lindeman 1942).  

 

 

  
  

 

    

 

 

  

A)                                                 B) 

Figure 18: Epibenthic feeding strategies that were represented on the images that were taken 
in the Kitikmeot Sea in August 2016. The abbreviations for the different feeding types are: Pred 
= predator and scavengers, SDF = Surface deposit feeder, Sus = Suspension feeder, PP = 
primary producer, Gr. = grazer and n.d = not defined. A) Mean abundance of feeding strategies 
per m2 and B) relative composition of feeding strategies. 
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4.2.6 Spatial pattern in epibenthic communities 

Based on advices and suggestions how to treat the data set in the most suitable way, both Gower 

similarity coefficient (S15) and the Bray-Curis similarity matrices were attempted to use in the 

statistical analysis to see if it provided any explanatory pattern. Both ANOSIM results are 

depicted in Appendix Table 4. However, the Bray-Curtis similarity with square-root 

abundance-based data were used for ordination of the stations and for a further ANOSIM test 

in this study. The factors habitat type (low flow, transitional site and high flow) were tested and 

did not show a statistically significant difference between the current regimes in the study 

region (ANOSIM, global R = 0.6, p = 0.57), where the global R suggested a separation between 

the sites.  

Only two clusters in the dendrogram for hierarchical cluster analysis were statistically 

significant different (SIMPROF analysis with α = 0.05) (Figure 19A). Ordination of the stations 

with biological abundance-based data were depicted in Figure 19B to try to explain the spatial 

pattern in epibenthic communities. Geographical setting of the clusters can be seen in Figure 

19C. 
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Figure 19: Station similarities where the stations are grouped by habitat type low flow, 
transitional site and high flow. A) Station clusters that were obtained from the hierarchical 
cluster analysis with square-root transformed abundance-based data and Bray-Curtis similarity 
matrix, B) nMDS plot of the abundance-based data and C) ordination of the station that were 
grouped in the different habitat type cluster. 

 

A)           B) 

C) 
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5 Discussion 

5.1 Methods discussion 

5.1.1 Sampling methods used in this study 

Several gear types can be used to study and gather information about epibenthic communities. 

It is difficult to choose the most suitable sampling gear since every tool has their specific 

advantages and limitations (Jørgensen et al., 2011). These advantages and disadvantages lead 

to trade-offs in terms of sampling, and are summarized in Table 11 for the gears that were used 

in this study. The large range of available sampling gears reflects that there are several ways to 

study epibenthic invertebrates, and the choice highly depends on the researcher’s question and 

vessel capabilities. Different sampling gears do not perform equally well in all habitat types, 

with some tools constructed to rather perform well at soft bottom locations and others in rocky 

habitats (Buhl-Mortensen et al., 2012). This variation in gear types used has made it difficult 

to compare results across studies which have used different gear types that exhibit different 

features.  

In this Master’s Thesis, three different gear types were used to study epibenthic invertebrates 

in two regions of the Arctic: A Campelen trawl and an Agassiz trawl were used in Northeast 

Greenland and underwater imagery was used in the Kitikmeot Sea in the Canadian Arctic 

Archipelago. The trawls are destructive, whereas the underwater imagery sampling procedure 

is a non-destructive sampling technique (Eleftheriou and McIntyre 2005). These gear types 

provide either qualitative (Agassiz trawl), semi-quantitative (Campelen trawl) or quantitative 

(underwater imagery, when scaled) information (Eleftheriou and McIntyre 2005).  

The Campelen trawl is considered a semi-quantitative sampling tool when sensors attached to 

the trawl are recording bottom time of the trawl (Eleftheriou and McIntyre 2005) and when ship 

speed is known. It is designed to target shrimps in commercial fisheries (Walsh and McCallum 

1997), but also catches non-target species. Trawling is a common sampling tool used in 

scientific studies for surveying large areas of seabed communities (Jørgensen et al., 2015a; 

Jørgensen et al., 2015b). However, scientific research based on trawling has its drawbacks. 

Several studies have described the negative influence trawling has on epibenthic communities 

and non-target species (Jennings et al., 2001; Puig et al., 2012; Christiansen et al., 2014). 

Trawling causes physical damage to the seabed, with slow growing and sessile organisms (e.g. 

sponges and corals) being the most exposed to destruction (Garcia et al., 2007; Jørgensen et al., 
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2015b). Deep-water corals for example, such as Lophelia pertusa, grow only 0.5 – 2.5 mm yr-

1 and it will take decades to centuries to recover in large areas that have been exposed to trawling 

(Garcia et al., 2007).  

Compared to the Campelen trawl, the Agassiz trawl is a less selective tool. The Campelen’s 

selective construction might be the reason to why the polar shrimp Lebbeus polaris were 

marked as present at all stations where Campelen trawl was deployed. The shrimps 

Sclerocrangon ferox and Sabinea septemcarinata were also highly frequent in the Campelen 

trawl catches. For the Agassiz trawl, it is documented that highly motile species such as shrimps 

and fishes are not caught efficiently and the Agassiz trawl is, hence, not used as a commercial 

sampling tool in fisheries (Eleftheriou and McIntyre 2005). Instead, the Agassiz trawl is used 

in surveys to collect epifaunal invertebrates (Eleftheriou and McIntyre 2005). Because of the 

trawl’s qualitative rather than quantitative attribute due to inconsistent bottom contact related 

to collecting epibenthic invertebrates, its purpose in this study was to collect specimens for 

taxonomic identification and to confirm the species’ presence and relative occurrences in the 

trawled area. 

Underwater imagery is the third method used in the master’s thesis and was applied in the 

Kitikmeot Sea, CAA. The advantages of performing photographic studies is that it is possible 

to perform environmental assessments and in situ observations at the same time as collecting 

epifaunal community data (Flannery and Przeslawski 2015). When trawling is conducted in a 

large area, it is not possible to detect exactly where the species were found, or which type of 

habitat feature it was associated with. Small-scale resolution of epifaunal distribution patterns, 

however, is possible when conducting surveys with underwater imagery. The most obvious 

disadvantage of photographic methods is their inability to collect physical specimens for 

confirmation of species identity. 
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Table 11: Advantages and disadvantages of using a Campelen 1800 shrimp trawl, an Agassiz 
trawl and underwater imagery to study epibenthic invertebrates (Eleftheriou and McIntyre 
2005; Flannery and Przeslawski 2015; pers. obs). 

Sampling gear Advantages Disadvantages 

 

Campelen 1800 

Shrimp trawl 

- Indications on how much/many 

are found per unit area (semi-

quantitative) 

- Destructive to seafloor and can 

damage the organisms caught 

 

Agassiz trawl 

- Confirm species presence 

- Physical taxonomic specimen 

- No quantitative information 

- Destructive and can damage 

the organisms caught 

 

 

Underwater 

imagery 

- No physical damage 

- In situ observations possible 

- Abundance estimates can be 

performed when scale is present 

- Turbidity can make it difficult 

to detect species in the image 

- No physical specimens can be 

collected 

- Confirming species identity in 

image may be difficult 

 

5.1.2 Data acquisition, design and possible biases in study of NEG 

Since few stations were visited during each individual TUNU expedition, it was therefore 

considered appropriate to pool the data sets from the different years into one data set to detect 

an overall pattern in the study area. However, there were some inherent issues regarding the 

sampling techniques, which might have affected the data set for this study and these are 

mentioned in this section. 

Different field teams participated in the two expeditions, and their different levels of taxonomic 

knowledge resulted in inconsistent taxonomic resolution between the years in some cases. This 

problem was in part mitigated through an extensive voucher collection for almost all taxa 

collected including challenging ones such as Amphipoda and Porifera. The vouchers were used 

in the lab the univeristy to improve field identifications and ensure consistency. Not all taxa 
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were, however, vouchered at each station leaving uncertainty. When sponges were caught 

physically, they often get damaged which makes it even more difficult to identify without any 

taxonomic expertise.  

Samples of sediments were taken in the vicinity of the trawl stations, hence, not representing 

the sediment composition at exactly the stations. Additionally, when the trawl covers a large 

geographical area it can trawl over a heterogeneous substrate. In contrast, the box core records 

the sediment grain size over a small area and a single sample within the trawl track does not 

capture potential heterogeneity. For example, the trawl jumped occasionally on the seafloor at 

the bank station 1346-TUNUVII, which indicates a hard bottom with perhaps drop stones, but 

the box core sampled sediment where the proportion was 1.03 % sand and 98.97 % mud (Table 

1). Additionally, sediment grain size percentages were only gathered for the TUNU-VII (2017) 

expedition only since many box cores failed to collect sediment due to rocky bottom. Therefore, 

the sediment grain size percentages were not included in the PCA, but could have changed the 

grouping of the stations since it is known that sediment has shown to be an important 

characteristic that structures epibenthic communities in the Arctic (Mayer and Piepenburg 

1996; Bluhm et al., 2009). 

Another issue with trawling time was observed, where trawling time varied between stations, 

within and between gears (e.g. Agassiz trawling varied from 9 to 40 min). Uneven trawl 

duration likely makes the number of taxa incomparable between stations and locations, at least 

for the rare taxa since the probability of catching more taxa increases with trawling duration. 

Therefore, comparison of taxon richness between locations is somewhat biased. However, 

common taxa that are present in the study area will not be affected.  

The biggest issue with calculating trawled area is knowing the opening of the trawl which is 

one determinant in estimating area fished, and it was challenging to choose the most suitable 

calculation method. Several methods that can be used to calculate the abundance and biomass. 

Two options were considered for this thesis how to calculate the estimated abundance and 

biomass. The first method took into account that there was an affixed strap that gives a known 

maximum opening of the trawl (11.7 m) and hence possible to calculate the area trawled. Also, 

the width of the trawled path is determined by approximating the actual net width during 

fishing. In the absence of sensors on the wings that would measure the variation in the net 

opening, a fixed estimate of the approximate net opening was used in crab assessments by IMR; 

this approach was also applied in this thesis given the focus on invertebrates. The calculation 
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of the trawl area based on an assumed fixed opening is not entirely the proper method to use 

either since there was a strap attached between the trawl doors, which constrain the opening to 

a maximum width, but not the variation during trawling. The strap kept the distance between 

the trawl doors approximately fixed as it is originally described in the manual for scientific 

trawling by IMR (Havforskningsinstituttet 2008). This approach was however, evaluated to be 

the most suitable method for this thesis. The second alternative method was based on the 

distance between trawl doors as is done for fish given they are chased into the net by the doors 

(J.S. Christiansen, UiT – The Arctic University of Norway, Tromsø, pers. comm.). This method 

was not chosen because benthic invertebrates are much less motile and will not be chased into 

the net in the same way as fish, which will overestimate the area trawled. Regardless of which 

calculation method is used, uncertain is inevitable in such estimates was also the case for snow 

crab assessments in the Barents Sea (Hvingel et al., 2017). 

5.1.3 Data acquisition, design and possible biases in study of the Kitikmeot Sea 

All taxa that were present on the images were classified as epibenthic invertebrates even though 

some taxa (e.g. Cerianthus spp.) are partially within the sediment (Jensen 1992). I chose this 

approach to match earlier studies that had made the same choice (e.g. Mayer and Piepenburg 

(1996). Many issues were encountered during image analysis (see section 3.2.2 Image 

collection, processing and analysis) and were tried to be avoided to reduce the biases in this 

part of the study. The distance from the seafloor varied among stations and also within stations. 

The varying distance from the seafloor was most likely an important factor when identifying 

the taxa that were present on the images. When the camera was close to the seafloor, it probably 

scared the larger more motile organisms away, whereas the less motile (compared to fishes and 

crabs) and smaller organisms are present and highly visible. This might be the reason for why 

ophiuroids were detectable on the low flow sites where the camera could safely be deployed 

close to seafloor. In contrast, when the camera was far from seafloor, it was easy to see the 

larger epibenthos, such as crinoids, holothuroids and also crabs, but smaller epibenthos was 

difficult to see, especially with poor image resolution. 

In this part of the master’s thesis, only seven stations were sampled, which might be too few to 

be able to see a clear biological pattern. The issue arose when I realized that the statistical 

results differed based on the choice of the similarity matrix used (Appendix Table 3). I believe 

that more stations are needed to have greater statistical power since I did not detect any 

statistically significant differences between habitat types when Bray-Curtis similarity was used.  
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5.2 Northeast Greenland 

5.2.1 Taxa composition 

The taxa inventory of epibenthos in the study area of Northeast Greenland amounted to 276 

putative species that were caught with Campelen and Agassiz trawls. The taxa inventory list in 

this study is generally comparable to that of other epifauna surveys on Arctic shelves (Table 

12). However, it is important to take into account that these different studies have not used the 

same gear types, a fact that constrains the comparability of taxa gathered across studies. This 

applies of course for abundance and biomass comparisons also. A meta-analysis study by 

Piepenburg et al., (2011) suggests an estimate of between 3,900 – 4,700 macro- megabenthic 

species that are likely to be encountered on Arctic shelves. Predictive techniques in Piepenburg 

et al., (2011) show that a much larger sampling effort than performed in the Arctic so far is 

needed to account for all species that exists on Arctic shelves. The NEG shelf was poorly 

represented in this meta-analysis, and this thesis, therefore, improved the inventory list from 

this region. The taxa accumulation curve presented in this study suggests a more comprehensive 

sampling effort to collect all species in the region when both gears are used. Many of the taxa 

that were caught during this study are widely distributed throughout the Arctic (e.g. Ctenodiscus 

crispatus, Gorgoncephalus spp., Lebbeus polaris, Ophiocten sericeum, Ophiacantha bidentata, 

Sclerocrangon ferox, Strongylocentrotus pallidus) (Sirenko 2001; Vassilenko and Petryashov 

2009). Furthermore, some common taxa were also found in earlier studies from NEG (e.g. 

Ophiocten sericeum, Ophiacantha bidentata (in Starmans et al., 1999; Mayer and Piepenburg 

1996). Noteworthy, few specimens of Ophiura sarsii were caught along the shelf break during 

the TUNU-VI expedition in 2015, but did not occur at all in catches by Piepenburg et al., 

(1997b) which had overlapping regions. 
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The most taxa rich phylum in NEG was Arthropoda, which accounted for 73 taxa identified. 

Many more species of arthropods exist in NEG waters since 200 species that belong to the 

superorder Peracarida alone have been recorded (Brandt 1997). Similarly, another Arctic study 

by Sirenko (2001) has also shown that Arthropoda is the most taxon rich phylum, which is 

highly probable since there more than 1,500 species of only Amphipoda are recorded in 

Eurasian Arctic seas (Sirenko 2001).  

For the phylum Porifera, there are few records on how many species have been found on the 

NEG shelf. In the beginning of the 1900s there were 54 species of sponges in the inventory list 

(Burton 1934), and only 28 species from the taxonomical group Calcarea were described in 

Rapp (2015). The species number is probably much higher today since there have been 

continuously records on new Porifera species in NEG (e.g. Burton 1934; Rapp 2015). In this 

study, Porifera was the second most taxon rich phylum and represented 17 % of the total taxa 

caught in both trawls, while in Starmans et al., (1999) who worked even further north on the 

NEG shelf, the same phylum even contributed to the highest taxa richness. Studies in the Arctic 

have acknowledged that identification of Porifera is very challenging leaving often sponges 

with unidentified names at phylum level (e.g. Jørgensen and Gulliksen 2001). Porifera 

individuals from the same species can exhibit variation in shape, morphology, length and width, 

and different sizes on the pores (even within the same colony) (Klitgaard and Tendal 2004; 

Manconi et al., 2009), making it rather hard to determine to a lower taxon level. There are 

records of large sponge communities along the NEG shelf break and at the slope (Mayer and 

Piepenburg 1996; M. Sejr, Aarhus University, pers. comm.). These are thought to be 

ecologically important in that Porifera communities creates shelter and habitat for other species 

(Barthel and Brandt 1995). 

Interestingly, both trawl types had similar mesh size, but the Agassiz however, caught more 

and smaller taxa than the Campelen trawl. A reasonable explanation for this difference is that 

the Agassiz trawl dug more into the sediment and caught also taxa that sit near the sediment 

surface. Though this study focused on epibenthic invertebrates and excluded known infauna, 

some taxa have part of their bodies on and part in the sediment, and for some their habitat 

preference is unclear or flexible. 
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5.2.2 Abundance and biomass 

Different mesh sizes of gear types used across epibenthos studies in the Arctic limit the 

comparisons with other studies performed in the Arctic. However, previous records on 

abundance and biomass in the (Table 12) suggest that abundance and biomass in this study were 

extremely low. A large part of this marked difference may be explained by the large mesh size 

used in this study compared to the referenced studies. Another part of the reason, however, 

might be related to the high productivity in the water column in the Pacific-influenced Arctic 

(Grebmeier et al., 2006a) that rapidly sinks to the seafloor providing favorable conditions for 

benthos and therefore high abundances and biomass.  

Throughout the study region, Echinodermata was the phylum that contributed most to 

abundances and biomasses at many stations. Similarly, several earlier studies conducted on 

Arctic shelves have found that especially ophiuroids can attain high densities (Mayer and 

Piepenburg 1996; Roy et al., 2014; Ravelo et al., 2015). One of the plausible explanations to 

high densities of echinoderms in the Arctic and polar environments in general is that they are 

highly motile benthos (e.g. Ophiuroida) (Piepenburg 2000; Thistle 2003), which allows them 

to quickly respond to occasional food patches at the seafloor (Iken et al., 2001). In this study, 

ophiuroids (e.g. Ophiacantha bidentata, Ophiopleura borealis) were frequently present 

throughout the NEG region and their abundance and biomass were particularly prominent 

inside the fjords and at Belgica Bank, respectively. Besides ophiuroids, a substantial biomass 

of the holothuroid Molpadia borealis that exhibits a deposit-feeding feeding strategy (Barnes 

1982) was found inside Bessel Fjord. This occurrence may be linked with the high abundance 

of terrestrial and macroalgal debris in the fjord since sinking organic materials provides food 

to epibenthic communities. Holothuroids in particular, have been shown to positively correlate 

with organic carbon flow (Iken et al., 2001). Additionally, high abundance of the deposit-

feeding asteroid Ctenodiscus crispatus (Shick et al., 1981) located in the mouth of Bessel Fjord 

could be related to the large amounts of sinking marine snow that was recorded there (F. 

Norrbin and T. Beroujon, UiT – The Arctic University of Norway, Tromsø, pers. comm.). 

Ctenodiscus crispatus also dominates abundance further north on the NEG shelf (Piepenburg 

et al., 1997b) and has been found in several Arctic Seas, except the White Sea in the Eurasian 

Arctic (Sirenko 2001).  

The station located at Belgica Bank (1365-TUNUVII), had high densities of echinoderm larvae 

in the water column (F. Norrbin and T. Beroujon, UiT – The Arctic University of Norway, 
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Tromsø, pers. comm.) during the TUNU-VII expedition in September 2017, which can indicate 

that there were favorable conditions for mass production of echinoderms during this season. 

The high abundances of echinoderms were also reflected at the seafloor at the same station, 

where there were high abundances of Ophiopleura borealis at the bank. Additionally, other 

taxa within other phyla (Sabinea septemcarinata and some Pycnogonida) were carrying eggs 

at this station, also indicating that conditions were favorable for epibenthic invertebrates to 

reproduce.  

The crinoids Heliometra glacialis and Poliometra polixa contributed largely to the abundance 

inside Dove Bugt (station 1316-TUNUVII) during the study. Especially Heliometra glacialis 

is a species that is widely distributed on Arctic shelves (Sirenko 2001), found in high densities 

and biomasses around Svalbard, and creates nursery areas for fish and shelter for other 

organisms (Jørgensen 2017). Crinoids are heavily damaged in trawls and the biomass of the 

species are hence, often underestimated (Jørgensen 2017), which was the case for this study 

since few organisms had all body parts intact. They could have then contributed a larger amount 

to station biomass. Gorgoncephalus spp. was the taxa that contributed to the largest amount of 

biomass at same station. Even if few specimens of Gorgoncephalus spp. are caught, they often 

contribute to a large proportion to station biomass since a single individual has high body 

weight (Jørgensen 2017).  

Arthropoda was another phylum that was particularly prominent in terms of abundance. Two 

out of five shelf stations had Arthropoda as the major contributor to abundance, where Lebbeus 

polaris and Eusirus spp. dominated at station 1338-TUNUVII and 1354-TUNUVII, 

respectively, but the abundances were not as high compared to the 76º N bank station located 

at the shelf 1346-TUNUVII. Another study conducted on a Pacific-influenced shelf in the 

Arctic in Chukchi Sea has shown that the snow crab (Chionoecetes opilio) (Arthropoda) was 

dominating in both abundance and biomass (Bluhm et al., 2009). Noteworthy, only one small 

single specimen of the crab Hyas sp. in this study, which is a big contrast to what was caught 

in catches of crabs. Further out towards the shelf break stations, two out of seven stations were 

dominated by Arthropoda, the major contributor to the abundance at the stations.  The 

arthropods Sabinea septemcarianta and Lebbeus polaris dominated at station 1375-TUNUVII 

and 1312-TUNUVI, respectively. A similar study conducted with underwater imagery analysis 

at same conditions along the NEG shelf break did not find high abundances of Arthropoda 

(Mayer and Piepenburg 1996) and can be related to that they can be scared by the camera. The 

stations located at the slope were dominated in abundance by Lebbeus polaris and Pasiphaea 
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tarda at stations 1307-TUNUVI and 1345-TUNUVI, respectively. Of all the mentioned 

arthropod taxa caught in the trawls that contributed to high abundances, mostly of them were 

shrimps and might be related to the Campelen’s selectivity, which was discussed previously 

(5.1.1 Sampling methods used in this study).  

The single species Similipecten greenlandicus a filter-feeding (Hobson et al., 1995) bivalve, 

occurred only at location (1346-TUNUVII and 1349-TUNUVII), but were the species that 

contributed most to the station with the highest biomass. This species prefers hard bottom to 

grow and it is known from another study that it can aggregate in high densities (Ravelo et al., 

2015). In contrast to Similipecten greenlandicus that only occurred at one station, Lebbeus 

polaris were present at all Campelen trawl stations. This species is widely distributed 

throughout the Arctic and has been recorded on all Arctic shelves (Sirenko 2001) and has a 

“high boreal Arctic circumpolar” distribution (see Vassilenko and Petryashov 2009). 

5.2.3 Relating environmental parameters to epibenthic communities in NEG 

Four separate epibenthic community types were defined in the study area of NEG based on 

geographical features and exposure to environmental parameters in vicinity. Other community 

structure studies conducted in the Arctic also showed that environmental variables explain part 

of the variability in epibenthic communities from one station or region to another (e.g. Bluhm 

et al., 2009; Ravelo et al., 2015). This study gathered information in the Greenland Sea on 

epibenthic communities during late summer in 2015 and 2017 and the environmental conditions 

measured in the field represent only a snapshot and may fluctuate throughout the year and 

between seasons. The results presented here indicate that there is a significant difference in 

epibenthic communities from inner-fjord in Bessel Fjord towards the shelf break and slope. The 

observations and statistical analyses that have been performed show that epibenthic 

communities differed across habitat types and it will further be discussed if the collected 

environmental parameters from the both TUNU expeditions are the drivers to changes in 

community structure.  

5.2.3.1 Bessel Fjord communities 

The sills and basins located inside Bessel Fjord are maintaining relatively isolated systems. 

Contradictory to this observation, the epibenthic invertebrates that were collected at the 

different stations in the fjord had however, relatively similar biological assemblages (45.4 %). 

The observed similarity within the Bessel Fjord community can be related to the small sampling 
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effort. The three stations in Bessel Fjord were characterized by the influence of particularly 

high turbidity, low bottom salinity and relatively high bottom oxygen concentrations. Fjords in 

the Arctic can be highly exposed to ice scouring, high sedimentation rate and melting glaciers 

that change the environmental conditions and hence, determine epibenthic community 

compositions (Holte and Gulliksen 1998; Conlan and Kvitek 2005), and can be the reason why 

Bessel Fjord had differently environmental variables compared to the other communities. 

Glacial sedimentation, ice scouring and physiological stressors such as low salinity are the main 

attributes that often contribute to a reduction in taxa richness, abundance and biomass in Arctic 

fjords (Görlich et al., 1987; Holte and Gulliksen 1998; Sejr et al., 2000; Włodarska-Kowalczuk 

et al., 2005; Włodarska-Kowalczuk et al., 2012), and it was therefore anticipated to find low 

taxa richness in Bessel Fjord. Instead, results showed rather high taxa richness. Melting glaciers 

enhance the turbidity in the water column and provide inorganic sediment to the seafloor and 

can smother and clog the filter-feeding organs of filter-feeding organisms (Moore 1977; Hall 

1994; Włodarska-Kowalczuk et al., 2005). Yet, suspension feeders, such as Styela spp. and 

some Porifera were found in the two innermost fjord stations which indicates that the 

sedimentation conditions were still inhabitable, while another study in a fjord with high 

sedimentation found a reduction in filter-feeders (e.g. Włodarska-Kowalczuk et al., 2012).  

The station located at the mouth of Bessel Fjord was characterized by warmer (and more saline) 

waters compared to the two innermost stations, but it still had high turbidity. The epibenthic 

fauna at the mouth of the fjord was somewhat similar to the two other stations located further 

in the fjord, where the amphipod Anonyx spp. was not confirmed as present.  This can be related 

to the presence of warm water as this species inhabits rather cold water environments (Sainte-

Marie et al., 1989). A fjord with a sill located at the mouth, which was the case for Bessel Fjord, 

will to a larger degree prevent exchange of water masses (e.g. van Mijenfjord at Svalbard, 

Renaud et al., 2007). The fjord will therefore be will be less susceptible to environmental 

variability, can could be therefore why Anonyx sp. was found in the colder environment of 

Bessel Fjord. 

Insightful in terms of food supply was the occurrence of terrestrial plant leaf materials and 

macroalgal deposits on the seafloor in the innermost parts of Bessel Fjord. The terrestrial plant 

material, also known as willow plant Salix spp. was probably a local source that provided the 

marine environment with organic-rich materials, since it is known to grow in the surrounding 

environment (J.S. Christiansen, UiT – The Arctic University of Norway, Tromsø, pers. comm.). 

Relatively high abundance of the deposit-feeders Molpadia borealis and Ophiopleura borealis 
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may be related to the described variety of organic debris that was found at the fjord stations, 

where deposit feeders will probably take advantage of the material after bacterial degradation. 

This supports the evidence of Renaud et al., (2015) that macroalgal detritus and other carbon 

sources are important components supplied to benthic communities besides deposited 

phytoplankton. Unfortunately, only one food proxy (integrated chl a) was actually measured in 

this study to try to understand if food supply was structuring the epibenthic invertebrates. Since 

this study could only provide a snap shot in time, the chl a data are inconclusive in explaining 

community structure patterns. Similarly, other studies in the Arctic have included several food 

proxies (e.g. chl a in water column, total organic content in sediment) to try to explain the 

community structure but did not accomplish to explain community patterns either (e.g. Bluhm 

et al., 2009; Roy et al., 2014). However, there is a strong evidence that food supply determines 

abundance and biomass levels (e.g. Grebmeier et al., 2015). 

Sediment properties were only evaluated for the TUNU-VII expedition, where the majority of 

the sediment inside the fjords mostly consisted of mud (Table 1). The sediment in Bessel Fjord 

coincided with a dominance of taxa that mostly exhibited a deposit-feeding strategy, but also 

filter-feeding organisms were found.  Bessel Fjord communities in contrast to other Arctic fjord 

communities are probably not as highly exposed to sedimentation and ice scouring as first 

thought.  

5.2.3.2 Shelf communities 

The five stations located at the NEG shelf were distributed over a large geographical area and 

exhibited a station similarity in taxa composition of 40.2 %. Within the study region, there was 

substantial habitat heterogeneity that consisted of troughs and banks with distinctive 

geomorphological features (Laberg et al., 2017), which is an important factor when considering 

variability in epibenthic communities. In addition, hydrographic features along the NEG shelf 

have been shown to structure epibenthic communities in other studies (Piepenburg and Schmid 

1996a; Piepenburg et al., 1997a) and seem to do the same in this study as well. Four out of five 

shelf stations were closely grouped together based on similar water mass properties (Figure 10), 

with the majority of the stations influenced by relatively high temperatures (Table 1). Previous 

studies conducted in the same region suggest that the positive ocean water temperature 

originates from Atlantic water masses and from the WSC (Piepenburg and Schmid 1996a; 

Schneider and Budéus 1997). The occurrence of the deep-water shrimp Pandalus borealis 

caught only at station 1338-TUNUVII with relatively high biomasses supports the findings of 
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warmer oceanic water that originates from the WSC. DNA-sequencing conducted on these 

shrimps confirms that they originate from the west coast of Spitzbergen and that they were 

probably advected by the currents to Greenlandic waters (A. Andrews, UiT – The Arctic 

Unuversity of Norway, Tromsø, pers. comm.).  

The shallowest stations of all sampled in the study region (1346-TUNUVII, 65 m) was located 

at a bank along the 76° N latitude. This station was environmentally distinct compared to the 

others since it was characterized by high bottom oxygen content, temperatures below zero and 

the lowest salinity in the entire study area, as well as high turbidity (Table 1). While this shallow 

bank station was biologically largely similar to the other shelf stations, it had specific faunal 

species that made it noteworthy. Presence of the ice-associated amphipod Gammarus wilkitzkii 

can indicate that this area had recently been covered by sea ice. This amphipod is known to be 

able to cope with hypo-osmotic stress such as changes in salinity, which is often the case 

beneath the sea ice (Aarset and Aunaas 1987). Gammarus wilkitzkii were also found on the 

shelf station 1354-TUNUVII which could also indicate that sea ice could be encountered in the 

vicinity.  

The total abundance and biomass at this shallowest shelf station 1346-TUNUVII were 

exceedingly higher than at all the other stations, with filter-feeding bivalves as the main 

contributor to the high numbers. It is speculated here that vertical mixing of organic material 

produced in the nearby NEW polynya (Ambrose and Renaud 1995; Piepenburg et al., 1997a) 

gets advected southwards with the EGC and passes the bank stations, hence providing favorable 

conditions for Similipecten greenlandicus. Furthermore, the transport provides both oxygen- 

and nutrient rich water to the areas, which may be an additional explanation to high dominance 

of the bivalve. These ideas are supported by the assertion of Grebmeier and Barry (1991) that 

horizontal transport of organic matter can have a larger impact on abundance and biomass than 

vertical flux. Feder et al., (1994) also found high standing stocks of benthos, in the Pacific-

influenced Arctic, which were, related that to advection of food supplies from other productive 

areas. Piepenburg and Schmid (1996a) performed a complementary study in NEG and 

suggested that existing organic carbon at bank locations originates from the NEW polynya 

further north and highlight its importance to the surrounding environments. This may also be 

case for the station located at Belgica Bank (1365-TUNUVII). Not only were abundance and 

biomass higher compared to other stations, the station also had the highest taxa richness 

recorded throughout the entire study region. The high taxa richness at banks can be related to a 

heterogeneous habitat, which provides a higher habitat complexity than pure soft substrates 
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(Buhl-Mortensen et al., 2012). Indeed, it was observed that the trawl was jumping occasionally 

on the seafloor at the bank station 1346-TUNUVII, which confirms that rocky habitats were 

also present in that area.  

5.2.3.3 Shelf break communities 

The shelf break stations had the lowest taxonomical similarity of all communities of 37.0 % 

and the highest amount of stations. A plausible explanation for the low taxonomical similarity 

is that the shelf break stations covered a large geographical range with different sediment 

categories, which was also found in Mayer and Piepenburg (1996). Geophysical records show 

evidence that the Greenland Ice Sheet stretched all the way out towards the continental shelf 

break in NEG during the last glaciated maximum (Laberg et al., 2017) leaving glacial traces on 

the seafloor. The deglaciation that occurred after the last ice age left ice-rafted drop stones at 

seafloor (Schulz et al., 2010) which created small-scale heterogeneity. This process is probably 

still occasionally taking place in today’s Arctic when drifting pieces of glacial ice melt. In fact, 

there has been observed drop stones even at depths deeper than thousand meters in Fram Strait 

and Canada Basin, which increased the taxa richness on a local scale (MacDonald et al., 2010a; 

Taylor et al., 2016).  

In addition to varying seabed features which was mentioned above, the distribution patterns of 

epibenthic communities along the shelf break at 75° N were in part also determined by 

temperature in an earlier study (Mayer and Piepenburg 1996). In agreement with this result, the 

findings from the present study also showed that shelf break stations grouped together (Figure 

10) because of high bottom temperature probably coming from the intruding WSC that merges 

with the EGC at the shelf break (Bourke et al., 1987). Rather than concluding that temperature 

itself is a structuring factor, however, I suggest it is also the circulation-driven higher current 

velocities (Håvik et al., 2017) and resulting coarser sediment compared to the adjacent shelf (in 

addition to the drop stones mentioned earlier), which creates a characteristic distinct 

environment inhabited by sessile filter feeders (Mayer and Piepenburg 1996; this study). 

Indirect evidence is given by the characteristics taxa of the shelf break community that included 

Strongylocentrotus pallidus and Crinoidea both of which typically occur on hard substrate. As 

a result of habitat heterogeneity, taxa richness can be higher at shelf breaks than on adjacent 

shelves (Mayer and Piepenburg 1996; Buhl-Mortensen et al., 2012; Ravelo et al., 2015). 

Similar to the shelf station 1338-TUNUVII, two of the shelf break stations had also presence 

of the deep-water shrimp Pandalus borealis that strengthens the evidence of Atlantic water 
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reaching the Arctic NEG shelf and changing epibenthic taxa composition. The WSC that 

diverges from the west coast of Spitzbergen seems to connect the Atlantic biota with the biota 

found in Greenland Sea.  

The above interpretation is supported by the fact that the geologists on board during TUNU-VI 

in 2015 found it challenging to conduct box core sampling due to rocky substrates at the shelf 

break, which resulted in only a small amount of successful box core samples (JS. Laberg, UiT 

– Arctic University of Norway, Tromsø, pers. comm.). Failing to collect these sediment samples 

during TUNU-VI in 2015 reflects that strong currents coming from north (Håvik et al., 2017) 

are prevailing along the shelf break. Previous studies in the Arctic have documented that 

epibenthic communities are highly related to substrate type (Bluhm et al., 2009; MacDonald et 

al., 2010a; Yesson et al., 2015), since feeding strategies seem to change with differences in 

seabed features (Snelgrove and Butman 1995). 

5.2.3.4 Slope communities 

Changes in bathymetry and sediment features from the shelf break towards the slope can 

indicate drastic changes in community structure (Buhl-Mortensen et al., 2012). At slopes, these 

changes are particularly obvious, because depth can change fast and different communities 

occur (e.g. Mayer and Piepenburg 1996; Buhl-Mortensen et al., 2012). The slope communities 

in the study area had the highest taxonomical similarity of 48.7 %, which coincides with few 

taxa caught at only three stations. In addition to the biological similarity shown in the nMDS, 

the environmental variable depth was also an important factor that was grouping the stations 

together in the PCA (Figure 10). The temperatures at the slope stations decreased with 

increasing depth from shelf break and is often a signature that different water masses are lying 

on top of each other (Bourke et al., 1987). In-between the colder water masses, there is a layer 

that is more saline and warmer and can be traced as water from WSC (Schneider and Budéus 

1997; Håvik et al., 2017), so a change community structure down a depth gradient is logical 

when hydrographical factors are varying with depth. 

Additionally, increasing depth coincides with a decrease in the amount of food particles that 

reaches the seafloor (Riser et al., 2008). The findings in the present study with relatively low 

taxa richness and abundance (in two of three stations) may be related to decreasing food sinking 

down the depth gradient. In accordance to Mayer and Piepenburg (1996), however, there were 

high densities of sponges and corals at the shelf break and slope at 75 º N, which could not be 

confirmed by estimates from this study since biomass of colonial organisms was unfortunately 
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not evaluated systematically in 2015. However, field notes written by scientists that joined the 

TUNU-VI in 2015 confirms that there were large amounts of sponges (approximately 15 kilo) 

at station 1347-TUNUVI. Large coverage of colonial sponges and corals creates shelter for 

other organisms (Barthel and Brandt 1995), which may explain why there was high taxa 

richness of amphipods at that same station 1347-TUNUVI.  

Community slope and community shelf were the most dissimilar groups. The observed 

distinctiveness is related to the explained environmental variables as depth and dissimilarities 

in biological assemblages, leading to changes in epibenthic community structure, from one 

place to another. The ophiuroid Ophiopleura borealis were complete absent on the deep slope 

stations and quite abundant on the shelf. Previous studies in vicinity of NEW polynya also 

observed high densities of Ophiopleura borealis at the shelf (Gallagher et al., 1998). 

Interestingly, the pattern of where Ophiopleura borealis is present seem to vary, since 

Piepenburg et al., (1997b) did not find them at all at Belgica Bank, but caught the species on 

the slope. Pasiphaea tarda was the species that was only found at the slope stations and is 

another biological variable that explains the differences between slope and shelf stations.  

5.3 The Kitikmeot Sea 

5.3.1 Dominant taxa and abundance in the Kitikmeot Sea 

Taxa richness in the Kitikmeot Sea for this study identified 33 putative species where the 

majority (31 %) of the taxa belonged to the phylum Echinodermata (Figure 12). Mollusca was 

the second most speciose phylum that contributed to the taxa richness (12 %), whereas Cnidaria 

the third taxa rich phylum (9 %) in this study. Similarly, other photographic surveys conducted 

in the Arctic recorded also Echinodermata as the most taxon rich group (e.g. Piepenburg and 

Schmid 1997c; MacDonald et al., 2010a), whereas Porifera was found to be the most taxon rich 

group in other studies (e.g. Mayer and Piepenburg 1996; Sswat et al., 2015). Porifera was not 

even recorded on the images in this study, probably due to the low photographic resolution, but 

can regardless have been present on the images since some specimens were caught in the dredge 

at sampling locations. Some of the taxa classified as morphotypes or ‘unknown’ may have been 

Porifera, however, the confidence was not strong enough to identify specimens from the 

images. Even though the taxonomic resolution mostly stopped at order or class level from image 

analysis (Table 3), dredge collections confirm that many of these taxa are Arctic-boreal taxa 

widely distributed throughout the Arctic (Smirnov 1994; Sirenko 2001). 
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The number of taxa for the studies that have been compiled in Table 13, including the present 

one, is low compared to catches caught in trawl-based epifauna studies (Table 12). The likely 

reasons for low taxa richness can be due to methodological constraints related to image analysis, 

which was described in 3.2.2 Image collection, processing and analysis. For this case study in 

the Kitikmeot Sea, the unknown taxa and morphotypes accounted for as much as 24% of the 

taxa inventory list. However, this is not the only study where organisms remained categorized 

as unknown and morphotypes, rather this is typical when it comes to identifying epibenthic 

invertebrates in photographic analyses (e.g. MacDonald et al., 2010a; Bergmann et al., 2011; 

Taylor et al., 2016).  

This study is the first that presents epibenthic abundance estimates from underwater imagery 

analysis in the poorly studied the Kitikmeot Sea in the CAA and comparisons from other studies 

in the same area are not available. Throughout the study area, the highest abundances were 

recorded at the sites with low flow current regimes (stations AP1 and AP2), whereas the 

transitional sites had the lowest abundance. Even if no studies are comparable to this work 

conducted in the Kitikmeot Sea, there was however one trawl-based station located in Dease 

Strait in vicinity of the stations that were taken close to Finlayson Islands in the present study. 

This trawl station had low biomass (0.03 – 3.42 g wet weight m2) and low density (0.08 – 7.64 

ind. per m2) (Roy et al., 2014), much lower than the density in the present study (Table 2). 

Furthermore, the abundance ranges varied a lot within and among other studies in the Arctic 

(Table 13). Despite the large ranges overall, it is possible to see that deeper stations had a lower 

abundance range than the studies that were conducted at the shelves (Table 13). 

On Arctic shelves including the Kitikmeot Sea, ophiuroids were mainly the dominating taxa in 

abundance and biomass (Table 13). Ophiuroids reached maximum abundances of 177.4 ind. 

per m2 at station AP2 (low flow station), located in Bathurst Inlet, where the ophiuroids in the 

images were most likely the species Ophiocten sericeum, based on the trawl catches. The 

reasons for why these organisms attain such high densities are still poorly known, but it is 

suggested that low predation pressure can be an important factor determining the densities 

(Piepenburg 2000; Grebmeier et al., 2006a). Fish and crabs that are known predators of 

ophiuroids (e.g. Divine et al., 2017) were barely recorded on the images for this study and can 

be the possible explanation to the high abundances of brittle stars. High densities of ophiuroids 

is not a rare phenomenon and have also been observed by photographic- and trawl surveys in 

other places in the Arctic as well; including NEG (Mayer and Piepenburg 1996; Piepenburg 

and Schmid 1996a), Laptev Sea (Piepenburg and Schmid 1997c), Chukchi Sea (Ambrose et al., 
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2001) and Barents Sea (Piepenburg and Schmid 1996b). In the Barents Sea, the species was 

shown to have pronounced patchiness with very high abundances at some locations. Piepenburg 

and Schmid (1996b) recorded up to 2,800 individuals of Ophiocten sericeum in one single 

image and the dominance decreased drastically at stations deeper than 150 m. This could not 

be verified in this study since only shallow stations were covered. In addition, the peak 

abundance was lower than in Barents Sea and Laptev Sea in Eurasian Arctic (Piepenburg and 

Schmid 1996b; Piepenburg and Schmid 1997c).  

The low flow sites were the deepest stations in the study region (75 – 93 m) and consisted 

mostly of soft sediment, where 11 and 12 taxa were present at stations AP1 and AP2, 

respectively. In contrast to soft bottoms, the habitat heterogeneity increases the taxa richness 

(Buhl-Mortensen et al. 2012, this study). 

Despite low taxon richness, abundance at these sites was comparatively high as noted above, 

although the Kitikmeot Sea is considered an oligotrophic area (C.J. Mundy, University of 

Manitoba, pers. comm.). The high densities of brittle stars, Ophiocten sericeum, in these slow 

current regime are, therefore, probably related to advection of organic particles. Another study 

conducted further east in the CAA also detected high biomasses in oligotrophic conditions and 

relate their findings to hydrographical features and combination of polynyas that continuously 

sustain the surrounding environments with food supply (Roy et al., 2014).  Similarly, Williams 

et al., (2017) discuss the theory of potential so-called “summer gardens” and “winter holes”, 

small areas in narrow passages where ice opens when tidally driven vertical mixing occurs (see 

Williams et al., 2017 for details),  allowing higher than average primary production. If this is 

the case in the Kitikmeot Sea, it may explain why there were high abundances of brittle stars in 

the soft bottom sites of this study. In detail, how much these regions contribute to high 

biological activity still needs to be assessed. 
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Table 13: A summary of imagery sampling that has been conducted on Arctic shelves and in 
Arctic Basins. Information of how many taxa, sampling depth, range of station means, dominant 
taxa, study area are shown in this table. 

 
No. 
of 

taxa 

 
Depth 

(m) 

 
Range of 

station means 
(No. of ind. per 

m2) 

 
Dominant taxa 

 
Study area 

 
Literature 

33 17 - 93 4.6 – 208.7 

(Mean density) 

Low flow: Ophiuroidea 

(likely Ophiocten sericeum) 

High flow: Crinoidea 

Kitimeot Sea, 
Canadian Arctic 

Archipelago 

 
 

This study 

28 80 – 360 Offshore: 1.6 – 
18.7 

Inshore: 3.2 – 
90.2 

Ophiuroidea, Decapoda 
(shrimps) 

Kongsfjorden 
(Svalbard) 

 
Bergmann et 
al., (2011) 

141 50 – 450 1.4 – 40.0 Ophiura sarsii, Gersemia 
rubiformis 

North of Svalbard Sswat et al., 
(2015) 

6 80 – 360 32 – 524  
(median 

abundance range) 

(Ophiuroidea 
only) 

Ophiocten sericeum, 
Ophiacantha bidentata, 
Ophiopholis aculeata, 

Ophiura sarsii, Ophioscolex 
glacialis, Ophiopleura 

borealis 

Barents Sea 
 

 
Piepenburg 
and Schmid 

(1996b) 

13 14 - 45 0.1 – 579.5 Ophiocten sericeum, 
Ophiura sarsii, Myriotrocus 

rinckii, Similipecten 
greenlandicu) 

Laptev Sea Piepenburg 
and Schmid 

(1997c) 

15 28.9 – 
212.5 

0.2 – 256.6 
(Echinodermata 

only) 

Ophiura sarsii, Ophiura 
maculata,  Ophiopholis 
aculeata, Stegophiura 

nodosa, Echinarachnius 
parma 

Chukchi Sea  
Ambrose et 
al., (2001) 

91 190 – 
2800 

15 – 200 Nothria conchylega, 
(polychaete), 

Polymastia spp. (sponge) 

Northeast 
Greenland 

Mayer and 
Piepenburg 

(1996) 

29 2341 – 
2788 

11.2 – 26.7 Kolga hyalina, Mohnia spp., 
Bathycrinus carpenterii, 

Gersemia, fruticosa, Elpidia 
heckeri 

Fram Strait, 
HAUSGARTEN 

 
Taylor et 

al., (2016) 

67 817 - 
3961 

0.08 – 5.8 Holothuroidea, Cnidaria Canadian Basin MacDonald 
et al., 

(2010a) 
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5.3.2 Relating environmental parameters to epibenthic communities in the Kitikmeot Sea 

This study is the first to describe epibenthic communities and to see if feeding types are related 

to the current velocities in this region. Differences were indeed obvious in both taxonomic and 

functional composition between sites with higher and lower current velocities. Throughout the 

study area, there were low salinities as a result of major river discharges to the region, which 

varied from 27.7 to 29.9. The fresh water coming from surrounding rivers creates a lighter layer 

on top and prevents nutrients from below to pass the strong pycnocline which results in a low 

rate of primary production (C.J. Mundy, Univ. of Manitoba, pers. comm), where small amounts 

reaches the seafloor. The tidal currents in the study area break up the strongly stratified layer 

on top in the water column and create mixing (Hannah et al., 2009), which is thought to mediate 

production via upward transport of nutrients. The high current regime in narrow passages then 

advects the mixed organic particles further from its origin, where they can sink to the seafloor 

when currents slow down.  

Even if there was a small sampling effort in the study area, it was still possible to see a weak 

pattern that epibenthic community communities were different and that the currents could 

explain the feeding strategies. Epibenthic invertebrates can be indicative of long-term average 

conditions in an environment (Pisareva et al., 2015). Though strong tidal currents and tidal 

mixing vary on timescales of the tidal cycle (Hannah et al., 2009), they form recurrent patterns 

on longer time scales. From a biological perspective, low tidal currents can attract surface 

deposit feeders, whereas high tidal currents will attract suspension feeder and hence structure 

the epibenthic community feeding composition in the study area. How epibenthic community 

structure varies over time is not possible to look at in this study since the photographic analysis 

were only conducted only represents a snap shot in time during late summer in Arctic in 2016.  

5.3.2.1 Low flow site communities 

The low flow sites, which were indicated by fine grained sediment, had low taxon richness and 

high dominance of ophiuroids with moderate contributions by tube-forming polychaetes. These 

were the functional dominants of surface deposit feeders at these locations. Several studies in 

the Arctic have suggested that there is a strong link between the current velocities and the 

feeding strategies, where the surface deposit feeders are dominant in low current regimes, 

whereas suspension feeders are highly dominant when high flow current regimes are prevailing 

(e.g. Feder et al., 1994; Grebmeier et al., 2006b; Pisareva et al., 2015). Weak or no currents 

allow sinking organic particles to settle to the seafloor which provides essential conditions to 
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sustain surface deposit feeders (Feder et al., 1994; Grebmeier et al., 2006b; Pisareva et al., 

2015) and it is probably why surface deposit feeders were the major representative group of the 

different feeding strategies in this study area. Environments with low current regime will be 

unfavorable for suspension feeders since water movement is insufficient to sustain taxa that 

obtain particles from the water column. 

Similar observations have been made on a larger geographical scale in the central Chukchi Sea. 

Pacific water passes through the narrow Bering Strait with high current velocity and brings 

organic particles to the region that settles to seafloor when currents slows down in the open area 

further north (e.g. Grebmeier and Barry 1991; Grebmeier et al., 1995). Mainly surface deposit 

feeders were found in this region as well and are linked to the sinking particles that reaches the 

seafloor when currents slows down (Feder et al., 1994; Grebmeier et al., 2006b; Pisareva et al., 

2015), which coincides with the findings from this study.  

Additionally, the low flow sites are the stations that were closest to the delta of the Hood River 

in Bathurst Inlet (Figure 3) compared to the other stations in the study. Terrigenous carbon 

export to marine environments by river discharge can provide a carbon subsidy to oligotrophic 

Arctic nearshore systems (Dunton et al., 2006), hence increase the proportion of deposit feeders 

when particles reach areas of low current regimes. Whether the Hood River provides valuable 

organic material to the epibenthic communities located at the low flow sites in this study 

remains unknown, but could be studied by using trophic markers (e.g. Bell et al., 2016). 

5.3.2.2 Transitional site communities 

The two stations in “transitional site” showed both a shift in dominance of taxa throughout the 

station transects on local scale, which was related to the shift in dominant sediment type, and 

as discussed sediment type can reflect what kind of feeding strategies are found in a habitat 

(Snelgrove and Butman 1995). Otherwise, these two sites were far apart with large differences 

between them, which makes it therefore difficult to see biological similarities between the 

transitional sites in the ordination. One station resembled more a station with to low current 

regimes (station UN4), whereas the other resembled more the stations with high currents 

(station TG), based on the feeding strategies (Figure 18). 

Station Tinney Gate (TG) had one of the lowest salinity values in the study which was probably 

related to river discharge from the Burnside River in vicinity where the station transect was 

taken. Since there was a high sediment heterogeneity along the transect at this site, higher taxon 
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richness was expected, but the low salinity could have limited taxa richness in TG. When 

salinities are very low, echinoderms for example, will struggle with osmoregulation (Hickman 

et al., 2014), which makes such sites uninhabitable for this group. Additionally, the station had 

high turbidity and again, the Burnside River can also be a reason for the high turbidity, which 

continuously provides terrestrial input and freshwater to the environment.  

5.3.2.3 High flow site communities 

Sites with high current regime – as indicated by rocky substratum, had highest taxa richness, 

were characterized by crinoids, anemones, holothurians, and macroalgae, and functionally by 

suspension feeders. The high diversity can be linked to the sediment heterogeneity with 

differently sized rocks found on the high flow sites, where the rocky substratum allows 

settlement of sessile species that requires hard substrate to attach (Tissot et al., 2006).   

In general, suspension feeders require an environment where there is a constant flow of organic 

particles (Gili and Coma 1998; Grebmeier and Barry 1991), which is the case in areas where 

there are strong currents in the water column (Blanchard and Feder 2014). Again, this linkage 

can be seen in Bering Strait and Barrow Canyon in the Chukchi Sea where high currents prevail 

along with suspension feeders (Feder et al., 1994, Grebmeier et al., 2006b, Pisareva et al., 

2015).  

Strong tidal mixing has been mapped in Dease Strait in vicinity of station TP and the stations 

close to Finlayson Island (Hannah et al., 2009). The mixing that occurs in this region distributes 

organic particles throughout the entire water column and creates suitable feeding conditions for 

suspension feeders that require sustained flow of food particles. Additionally, in the presence 

of light at the shallowest stations with high current regime, (e.g. UN1) grazing organisms were 

also found since also primary producers such as macroalgae inhabited this station.  

Interestingly, observations from a study conducted in the eastern CAA revealed that ophiuroids 

also occurred between pebbles and it was suggested that these areas were less exposed to 

currents and food particles were accumulating in-between (Marmen et al., 2017). This case was 

not possible to observe in this study and, in fact, very few representatives from the taxa 

Ophiuroidea were present at the stations where high current regimes were prevailing. 
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6 Conclusions and outlook 

The present investigations of the two outflow shelves in the Arctic can be called a pioneer study. 

This study has created scientific baselines in two poorly studied and uncharted regions of the 

Arctic like the Norwegian historical explorers did in the same regions a century ago. This study 

is the first that quantitatively describes epibenthic communities by underwater imagery analysis 

in the Kitikmeot Sea in the CAA. Furthermore, this study is also one of the first that describes 

epibenthic communities and their relation to environmental parameters by abundance-based 

biological data in Northeast Greenland (NEG) by trawling. Both investigations confirmed 

epibenthic community variability within shelf regions in relationship to environmental 

gradients, but also demonstrated commonalities between shelf areas in terms of common and 

dominant taxa. 

Both investigations provide a snap shot in time and space of the epibenthic invertebrates at the 

spatial scale of habitat types, but more comprehensive research on seasonal and interannual 

temporal and pan-Arctic scales is needed to predict changes in Arctic marine ecosystems before 

human footprints become too visible. A multi-methodological approach for studying Arctic 

epibenthic communities can be beneficial to avoid the obvious inherent methodological issues 

encountered in this study, and also to better understand the epibenthic communities by adding 

in situ observations together with catch of physical specimens. Improvement of taxonomical 

identification on underwater imagery analysis can be implemented if the photo of specimens 

are taken from different angles and even better, if the same specimens can be caught. In light 

of climate change and a great curiosity to the uncharted, it is hence even more important to 

monitor where Arctic and sub-Arctic biota meet as the Arctic Ocean temperature is increasing. 

Observations of possible changes in climate will be where West Spitzbergen current merges 

with cold water along the Greenland shelf break and slope. Furthermore, on the CAA side, a 

closer collaboration between marine geologists may help to interpret epibenthic communities 

better, a collaboration which was established in the NEG study. If future work by the TUNU 

Programme could conduct sampling even closer to the marine-terminating Soranerbræen in 

Bessel Fjord than this study did, it could be resolved if inner Bessel Fjord communities 

resemble other high Arctic fjords where suspension feeders were absent. For future studies in 

NEG with the TUNU Programme, I would suggest also a multivariate biomass-based analysis 

since colonial species were not taken into account in the abundance-based analysis.  
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I have experienced that it is difficult to present the actual reality, but the used depictions for 

these studies are simplifications to understand how the epibenthic communities functions. The 

acquired knowledge from these two studies conducted in the Arctic will help us build scenarios 

on how Arctic marine ecosystems may respond to climate changes and other human pressures. 

Habitat and associated epibenthic community heterogeneity documented on sub-regional to 

smaller scales across both study areas suggests that site specific environmental assessments 

must be conducted prior to human development in Arctic shelf areas. 

  



 

Page 84 of 100 

7 References 
 

 Aarset, A. V.,  Aunaas, T. (1987). Osmotic responses to hyposmotic stress in the amphipods 
Gammarus wilkitzkii, Onisimus glacialis and Parathemisto libellula from Arctic waters. Polar 
Biology, Vol. 7, p. 189 – 193. 
 

 Agassiz, A. (1888). Three cruises of the United States Coast and Geodetic Survey Steamer 
‘Blake’. Vol.1. Bulletin of the Museum of Comparative Zoology at Harvard College, Vol. 14, 
p. 314.  
 

 AMAP. (1998). AMAP Assessment Report: Arctic Pollution Issues. Retrieved from Oslo, 
Norway. 
 

 Ambrose, W. G., Renaud, P. E. (1995). Benthic response to water column productivity 
patterns: Evidence for benthic‐pelagic coupling in the Northeast Water Polynya. Journal of 
Geophysical Research: Oceans, Vol. 100, p. 4411-4421. 
 

 Ambrose, W., Clough, L., Tilney, P.,  Beer, L. (2001). Role of echinoderms in benthic 
remineralization in the Chukchi Sea. Marine Biology, Vol. 139, p. 937 – 949. 
 

 Amundsen, R. (1908). Roald Amundsen's" The North West Passage": Being the Record of a 
Voyage of Exploration of the Ship" Gjöa" 1903-1907 (Vol. 2). Archibald Constable and 
Company, Limited. 
 

 Arndt, J. E., Jokat, W., Dorschel, B., Myklebust, R., Dowdeswell, J. A., Evans, J. (2015). A 
new bathymetry of the Northeast Greenland continental shelf: Constraints on glacial and other 
processes. Geochemistry, Geophysics, Geosystems, Vol. 16, p. 3733 – 3753. 
 

 Arzel, O., Fichefet, T., Goosse, H. (2006). Sea ice evolution over the 20th and 21st centuries as 
simulated by current AOGCMs. Ocean Modelling, Vol. 12, p. 401 – 415.  
 

 Ashley, G. M., Smith, N. D. (2000). Marine sedimentation at a calving glacier 
margin.Geological Society of America Bulletin, Vol. 112, p. 657–667. 
 

 Barrie, L.A., Gregor, D., Hargrave, B., Lake, R., Muir, D., Shearer, R., Tracey, B., Bidleman, 
T. (1992). Arctic contaminants: sources, occurrence and pathyways. Science of the total 
Environment, Vol. 122, p. 1 – 74. 
 

 Barnes, R.D. (1982). Invertebrate zoology. Philadelphia, PA: Holt-Saunders International, p. 
996. 
 

 Barthel, D., Brandt, A. (1995). Caecognathia robusta (GO Sars, 1879) (Crustacea, Isopoda) in 
Geodia mesotriaena (Hentschel, 1929) (Demospongiae, Choristidae) at 75 N off NE 
Greenland. Sarsia, Vol. 80, p. 223 – 228. 
 

 Bell., L.E., Bluhm., B.A., Iken, K. (2016). Influence of terrestrial organic matter in marine 
food webs of the Beaufort Sea shelf and slope. Marine Ecology Progress Series, Vol. 550, p. 1 
– 24.  
 

 Berge, J., Johnsen, G., Nilsen, F., Gulliksen, B., Slagstad, D. (2005). Ocean temperature 
oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year 
absence. Marine Ecology Progress Series, Vol. 303, p. 167 – 175. 
 



 

Page 85 of 100 

 Bergmann, M., Langwald, N., Ontrup, J., Soltwedel, T., Schewe, I., Klages, M.,  Nattkemper, 
T. W. (2011). Megafaunal assemblages from two shelf stations west of Svalbard. Marine 
Biology Research, Vol. 7, p. 525 – 539. 
 

 Beszczynska-Möller, A., Fahrbach, E., Schauer, U., Hansen, E. (2012). Variability in Atlantic 
water temperature and transport at the entrance to the Arctic Ocean, 1997–2010. ICES Journal 
of Marine Science, Vol. 69, p. 852 – 863. 
 

 Beuchel, F., Gulliksen, B., Carroll, M. L. (2006). Long-term patterns of rocky bottom 
macrobenthic community structure in an Arctic fjord (Kongsfjorden, Svalbard) in relation to 
climate variability (1980–2003). Journal of Marine Systems, Vol. 63, p. 35 – 48. 
 

 Boetius, A., Albrecht, S., Bakker, K., Bienhold, C., Felden, J., Fernández-Méndez, 
M.,Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., 
RV Polarstern ARK-27-2-Shipboard Science Party. (2013). Export of algal biomass from the 
melting Arctic sea ice. Science, Vol. 339, p.1430 – 1432. 
 

 Bourke, R. H., Newton, J. L., Paquette, R. G., Tunnicliffe, M. D. (1987). Circulation and 
water masses of the East Greenland Shelf. Journal of Geophysical Research: Oceans, Vol. 92, 
p.6729 – 6740. 
 

 Blanchard, A. L.,  Feder, H. M. (2014). Interactions of habitat complexity and environmental 
characteristics with macrobenthic community structure at multiple spatial scales in the 
northeastern Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 
102, p. 132 – 143. 
 

 Bluhm, B.A., Gradinger, R. (2008). Reginal variability in food availability for Arctic marine 
mammals. Ecological Applications, Vol. 18, p. S77 – S96. 
 

 Bluhm, B. A., Iken, K., Hardy, S. M., Sirenko, B. I., Holladay, B. A. (2009). Community 
structure of epibenthic megafauna in the Chukchi Sea. Aquatic Biology, Vol. 7, p.269 –293. 
 

 Bluhm, B. A., Kosobokova, K. N.,  Carmack, E. C. (2015). A tale of two basins: An integrated 
physical and biological perspective of the deep Arctic Ocean. Progress in Oceanography, Vol. 
139, p. 89 – 121. 
 

 Branch, G. M. (1981). The biology of limpets: physical factors, energy flow, and ecological 
interactions. Oceanography and Marine Biology - An Annual Review, Vol. 19 p. 235 – 380. 
 

 Bray, J.R., Curtis, J.T. (1957). An ordination of the upland forest communities of Southern 
Wisconsin. Ecological Monographs, Vol. 27, p. 325 – 349.  
 

 Brandt, A. (1997). Abundance, diversity and community patterns of epibenthic-and benthic-
boundary layer peracarid crustaceans at 75 N off East Greenland. Polar Biology, Vol. 17, p. 
159 – 174. 
 

 Brown, T.M., Edinger, E.N., Hooper, R.G., Belliveau, K. (2011). Benthic marine fauna and 
flora of two nearshore coastal Locations in the Western and Central Arctic, Arctic Institute of 
North America, 64, p. 281 – 301.  
 

 Burton, M. (1934). Zoological results of the Norwegian Scientific Expedition to East 
Greenland III. Report on the sponges of the Norwegian Expeditions to East Greenland (1930, 
1931 and 1932). Skrifter om Svalbard og Ishavet, Vol. 61, p. 3 – 34. 
 



 

Page 86 of 100 

 Buhl-Mortensen, L., P. Buhl-Mortensen, M. F. J. Dolan, J. Dannheim, V. Bellec, B. Holte. 
(2012). Habitat complexity and bottom fauna composition at different scales on the 
continental shelf and slope of northern Norway. Hydrobiologia, Vol. 685, p. 191 – 219. 
 

 Carmack, E., Wassmann, P. (2006). Food webs and physical-biological coupling on pan-
Arctic shelves: Unifying concepts and comprehensive perspectives. Progress in 
Oceanography, Vol. 71, p. 446 – 477. 
 

 Carmack, E.,  McLaughlin, F. (2011). Towards recognition of physical and geochemical 
change in Subarctic and Arctic Seas. Progress in Oceanography, Vol. 90, p. 90 – 104. 
 

 Christiansen, J. S. (2012). The TUNU-Programme: Euro-Arctic marine fishes—diversity and 
adaptation. In Adaptation and Evolution in Marine Environments, Vol. 1, p . 35 – 50. 
 

 Christiansen, J. S. (2017). No future for Euro-Arctic ocean fishes?. Marine Ecology Progress 
Series, Vol. 575, p. 217 – 227. 
 

 Christiansen, J. S., Mecklenburg, C. W., Karamushko, O. V. (2014). Arctic marine fishes and 
their fisheries in light of global change. Global Change Biology, Vol. 20, p. 352 – 359. 
 

 Clarke, K.R., Warwick, R.M. (2001). Change in marine communities: An approach to 
statistical analysis and interpretation, 2nd ed. PRIMER-E, Plymouth. 
 

 Codispoti, L. A., Owens, T. G. (1975). Nutrient transports through Lancaster Sound in relation 
to the Arctic Ocean's reactive silicate budget and the outflow of Bering Strait 
waters. Limnology and Oceanography, Vol. 20, p. 115-119. 
 

 Comiso, J.C. (2002). A rapidly declining perennial sea ice cover in the Arctic. Geophysical 
Research Letters, Vol. 29, p. 1 – 17.  
 

 Comiso, J.C., Parkinson, C.L., Gersten, R., Stock, L. (2008). Accelerated decline in the Arctic 
sea ice cover. Geophysical Research Letters, Vol. 35, p. 1 – 6. 
 

 Conlan, K.E., Lenihan, H.S., Kvitek, R.G., Oliver, J.S. (1998). Ice scour disturbance to the 
benthic communities in the Canadian High Arctic. Marine Ecology Progress Series, Vol. 166, 
p. 1 – 16. 
 

 Conlan, K.E., Kvitek., R.G. (2005). Recolonization of soft-sediment ice scours on an exposed 
Arctic coast. Marine Ecology Progress Series, Vol. 286, p. 21 – 42.  
 

 Dale, J.E., Aitken A.E., Gilbert, R., Risk, M.J. (1989). Macrofauna of Canadian Arctic fjords. 
Marine Geology, Vol. 85, p. 331 – 358. 
 

 Divine, L. M., Iken, K., Bluhm, B. A. (2015). Regional benthic food web structure on the 
Alaska Beaufort Sea shelf. Marine Ecology Progress Series, Vol. 531, p. 15 – 32. 
 

 Divine, L.M., Bluhm, B.A., Mueter, F.J. and Iken, K., (2017). Diet analysis of Alaska Arctic 
snow crabs (Chionoecetes opilio) using stomach contents and δ 13 C and δ 15 N stable 
isotopes. Deep Sea Research Part II: Topical Studies in Oceanography, Vol. 135, p. 124 –
136. 
 

 Dunton, K. H., Weingartner, T.,  Carmack, E. C. (2006). The nearshore western Beaufort Sea 
ecosystem: circulation and importance of terrestrial carbon in arctic coastal food 
webs. Progress in Oceanography, Vol. 71, p. 362 – 378. 
 



 

Page 87 of 100 

 Eleftheriou, A., McIntyre, A. (2005). Methods for the study of marine benthos, Oxford, 
Blackwell science Ltd. 
 

 Evans, J., Ó Cofaigh, C., Dowdeswell, J. A., Wadhams, P. (2009). Marine geophysical 
evidence for former expansion and flow of the Greenland Ice Sheet across the north‐east 
Greenland continental shelf. Journal of Quaternary Science, Vol. 24, p. 279 – 293. 
 

 Fauchald, K.,  Jumars, P. A. (1979). The diet of worms: a study of polychaete feeding guilds. 
Oceanography and Marine Biology - An Annual Review, Vol. 17, p. 193 – 284.  
 

 Feder, H. M., Naidu, A. S., Jewett, S. C., Hameedi, J. M., Johnson, W. R.,  Whitledge, T. E. 
(1994). The northeastern Chukchi Sea: benthos-environmental interactions. Marine Ecology 
Progress Series, Vol. 111, p. 171 – 190 
 

 Field, J.G., Clarke, K.R., Warwick, R.M. (1982). A practical strategy for analyzing 
multispecies distribution pattern. Marine Ecology Progress Series, Vol. 8 p. 37 – 52. 
 

 Flannery, E., Przeslawski, R. (2015). Comparison of sampling methods to assess benthic 
marine biodiversity. Australian Government, Geoscience, Australia, p. 1 – 51.  
 

 Funder, S., Hjort, C., Landvik J.Y., Nam, S-I., Reeh, N., Stein, R. (1998). History of a stable 
ice margin – East Greenland during the middle and upper Pleistocene. Quarternary Science 
Reviews, Vol. 17, p. 77 – 123. 
 

 Gallagher, M. L., Ambrose Jr, W. G.,  Renaud, P. E. (1998). Comparative studies in 
biochemical composition of benthic invertebrates (bivalves, ophiuroids) from the Northeast 
Water (NEW) Polynya. Polar Biology, Vol. 19, p. 167 – 171. 
 

 Garcia, E. G. (Ed.), Ragnarsson, S.A., Steingrímsson, S.A., Nævestad, D., Haraldsson, Þ, H., 
Fosså, J.H., Tendal O.S., Eikríksson, H. (2007). Bottom trawling and scallop dredging in the 
Arctic: impacts of fishing on non-target species, vulnerable habitats and cultural heritage. 
Nordic Council of Ministers, p. 13 – 15. 
 

 Gaston, G. R. (1987). Benthic polychaeta of the Middle Atlantic Bight: feeding and 
distribution. Marine Ecology Progress Series, Vol. 36, p. 251 – 262. 
 

 Gili, J. M., Coma, R. (1998). Benthic suspension feeders: their paramount role in littoral 
marine food webs. Trends in Ecology & Evolution, Vol. 13, p. 316 – 321. 
 

 Godbold, J. A., Solan, M. (2009). Relative importance of biodiversity and the abiotic 
environment in mediating an ecosystem process, Marine Ecology Progress Series, Vol. 396, 
p. 273 – 282. 
 

 Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 
Vol. 27, p. 857-871. 
 

 Greenacre, M., Primicerio, R. (2013). Chapter 5. Measures of Distance between Samples: 
Non-Euclidean. Multivariate analysis of ecological data. Fundacion BBVA, p. 61 – 73.  
 

 Grebmeier, J. M.,  Barry, J. P. (1991). The influence of oceanographic processes on pelagic-
benthic coupling in polar regions: a benthic perspective. Journal of Marine Systems, Vol. 2, p. 
495 – 518. 
 

 Grebmeier, J.M., Smith Jr., W.O., Conover, R.B. (1995). Biological processes on Arctic 
Continental Shelves: ice–ocean–biotic interactions. In: Smith Jr., W.O., Grebmeier, J.M. 



 

Page 88 of 100 

(Eds.), Arctic Oceanography: Marginal Ice Zones and Continental Shelves. Washington, DC, 
p. 231–261. 
 

 Grebmeier, J. M., Overland, J. E., Moore, S. E., Farley, E. V., Carmack, E. C., Cooper, L. W., 
Frey, K. E., Helle, J. H., McLaughlin, F. A, McNutt, S. L. (2006a). A major ecosystem shift in 
the northern Bering Sea. Science, Vol. 311, p. 1461–1464. 
 

 Grebmeier, J. M., Cooper, L. W., Feder, H. M.,  Sirenko, B. I. (2006b). Ecosystem dynamics 
of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic. Progress 
in Oceanography, Vol. 71, p. 331 – 361. 
 

 Grebmeier, J. M., Bluhm, B. A., Cooper, L. W., Danielson, S. L., Arrigo, K. R., Blanchard, A. 
L., Clarke, J.T., Day, R.H., Frey, K.E., Gradinger, R.R., Kędra, M., Konar, B., Kuletz, K.J., 
Lee, S.H., Lovvorn, J.R., Norcross, B.L., Okkonen, S.R. (2015). Ecosystem characteristics 
and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory 
in the Pacific Arctic. Progress in Oceanography, Vol. 136, p. 92 – 114. 
 

 Gutt, J., Starmans, A., Dieckmann, G. (1996). Impact of iceberg scouring on polar benthic 
habitats. Marine Ecology Progress Series, Vol. 137, 311 – 316. 
 

 Gutt, J., Piepenburg, D. (2003). Scale-dependent impact on diversity of Antarctic benthos 
caused by grounding of icebergs. Marine Ecology Progress Series, Vol. 253, p. 77 – 83. 
 

 Görlich, K., Weslawski, J. M.,  Zajaczkowski, M. (1987). Suspension settling effect on 
macrobenthos biomass distribution in the Hornsund fjord, Spitsbergen. Polar Research, Vol. 
5, p. 175 – 192. 
 

 Hall, S.J. (1994) Physical disturbance and marine benthic communities: life in unconsolidated 
sediments. Oceanography and Marine Biology - An Annual Review, Vol. 32, p. 179 – 239. 
 

 Hannah, C. G., Dupont, F., Dunphy, M. (2009). Polynyas and tidal currents in the Canadian 
Arctic Archipelago. Arctic, Vol. 62, p. 83-95. 
 

 Havforskningsinstituttet. (2008). Håndbok for vitenskaplig tråling, Version 3, 15.12.2008 
 

 Headland, R. K., colleagues, (2018). Transits of the northwest passage to end of the 2017 
navigation season Atlantic ocean↔ Arctic ocean↔ Pacific ocean. Scott Polar Research 
Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER, 5. 
 

 Hickman, Jr, C.P., Roberts, L.S., Keen, S.L., Eisenhour, D.J., Larson, A.I.A. (2014). 
Integrated Principles of zoology, McGraw-Hill education.  
 

 Hobson K.A., Ambrose, W.G Jr.,  Renaud, P.E. (1995). Sources of primary production, 
benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: 
insights from 13C and 15N analysis. Marine Ecology Progress Series, Vol.  p. 1 – 10. 
 

 Holte, B.,  Gulliksen, B. (1998). Common macrofaunal dominant species in the sediments of 
some north Norwegian and Svalbard glacial fjords. Polar Biology, Vol. 19, p. 375 – 382. 
 

 Hopkins, T.S. (1991). The GIN Sea – A synthesis of its physical oceanography and literature 
review 1972 – 1985. Earth – Science Reviews, Vol. 30, p. 175 – 318. 
 

 Howell, K. L., Billett, D. S., Tyler, P. A.,  Pond, D. W. (2003). Feeding ecology of deep-sea 
seastars (Echinodermata: Asteroidea): A fatty-acid biomarker approach. Marine Ecology 
Progress Series, Vol. 255, p. 193-206. 



 

Page 89 of 100 

 
 Hvingel, C., Sundet, J.H., Hjelset, AM. (2017). Snøkrabbe i norsk forvaltningssone. Biologisk 

rådgivning 2017. Havforskningsinstituttet. 
 

 Håvik, L., Pickart, R. S., Våge, K., Torres, D., Thurnherr, A. M., Beszczynska‐Möller, A., 
Walczokski, W., von Appen, W. J. (2017). Evolution of the East Greenland current from Fram 
Strait to Denmark Strait: synoptic measurements from summer 2012. Journal of Geophysical 
Research: Oceans, Vol. 122 , p. 1974 – 1994. 
 

 Iken, K., Brey, T., Wand, U., Voigt, J., Junghans, P. (2001). Food web structure of the benthic 
community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress 
in Oceanography, Vol. 50, p. 383 – 405. 
 

 Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J.A., Forbes, S., Fridman, B., 
Hodnesdal, H., Noorments, R., Pedersen, R., Rebesco, M., Schenke, H.W., Zarayskaya, Y., 
Accettella, D., Armstrong, A., Anderson, R.M., Bienhoff, P., Camerlenghi, A., Church, I., 
Edwards, M., Gardner, J.V., Hall, J.K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., 
Mohammad, R., Mosher, D., Nghiem, S.V., Pedrosa, MT., Travaglini, P.G., Weatherall, P. 
(2012). The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0. 
Geophysical Reasearch Letters, 39, p.  1 – 6.  
 

 Jennings, S., Pinnegar, J.K., Polunin, N.V.C., Warr, K.J. (2001). Impacts of trawling 
disturbance on the trophic structure of benthic invertebrate communities. Marine Ecology 
Progress Series, Vol. 213, p. 127 – 142.  
 

 Jensen, P. (1992). Cerianthus vogti Danielssen, 1890 (Anthozoa: Ceriantharia). A species 
inhabiting an extended tube system deeply buried in deep-sea sediments off 
Norway. Sarsia, Vol. 77, p. 75 – 80. 
 

 Johnson, C., Barmuta, L. (2015). Quantitative methods: Notes on the design and analysis of 
biological experiments. University of Tasmania, Institute for Marine and Antarctic studies. 
 

 Jones, E. P., Swift, J. H., Anderson, L. G., Lipizer, M., Civitarese, G., Falkner, K. K., Kattner, 
G., McLaughlin, F. (2003). Tracing Pacific water in the North Atlantic ocean. Journal of 
Geophysical Research: Oceans, Vol. 108 , p. 1 – 13. 
 

 Jørgensen, L. L., Gulliksen, B. (2001). Rocky bottom fauna in arctic Kongsfjord (Svalbard) 
studied by means of suction sampling and photography. Polar Biology, Vol. 24, p. 113 – 121. 
 

 Jørgensen, L. L., Renaud, P. E., Cochrane., S. K. J.  (2011). Improving benthic monitoring by 
combining trawl and grab surveys. Marine Pollution Bulletin, Vol. 62, p. 1183 – 1190. 
 

 Jørgensen, L.L., Planque, B., Thangstad, T.H., Certain, G. (2015a). Vulnerability of 
megabenthic species to trawling in the Barents Sea. ICES Journal of Marine Science, Vol.73, 
p.84 – 97. 
 

 Jørgensen, L.L., Ljubin, P., Skjoldal, H.R., Ingvaldsen, R.B., Anisimova, N., Manushin, I. 
(2015b). Distribution of benthic megafauna in the Barents Sea: baseline for an ecosystem 
approach to management. ICES Journal of Marine Science: Journal du Conseil, Vol. 72, p. 
595 – 613. 
 

 Jørgensen, L. L. (2017). Vurdering av sårbare bunnhabitater i det nordlige Barentshavet; 
trålfangete bunndyr fra det årlige «øko-toktet». Rapport fra havforskningen. 
 



 

Page 90 of 100 

 Keats, D. W., Steele, D. H.,  South, G. R. (1987). Ocean pout (Macrozoarces americanus 
(Bloch and Schneider) (Pisces: Zoarcidae)) predation on green sea urchins 
(Strongylocentrotus droebachiensis (OF Mull.) (Echinodermata: Echinoidea)) in eastern 
Newfoundland. Canadian Journal of Zoology, Vol. 65, p. 1515 – 1521. 
 

 Kelly, B.C., Ikonomou, M.G., Blair, J.D., Morin, A.E., Gobas, F.A.P.C. (2007). Food web-
specific biomagnification of persistent organic pollutants. Science, 317, p. 236 – 239. 
 

 Khan, S. A., Kjær, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., Bjørk, A. A., 
Korsgaard, N. J., Stearns, L. A., van den Broeke, M. R., Liu, L., Larsen, N. K., Muresan, I. 
S.(2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional 
warming. Nature Climate Change, Vol. 4, p. 292 – 299. 
 

 Kortsch, S., Primicerio, R., Beuchel, F., Renaud, P. E., Rodrigues, J., Lønne, O. J.,  Gulliksen, 
B. (2012). Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National 
Academy of Sciences, Vol. 109, p. 4052-14057. 
 

 Klitgaard, A. B., Tendal, O. S. (2004). Distribution and species composition of mass 
occurrences of large-sized sponges in the northeast Atlantic. Progress in Oceanography, Vol. 
61, p. 57 – 98. 
 

 Kruskal, J.B., Wish, M. (1978). Multidimensional scaling. Sage publications, Beverly Hills. 
 

 Kwok, R. (2008). Outflow of the Arctic Ocean Sea Ice into the Greenland and Barents Sea: 
1979 – 2007. Journal of Climate, Vol. 22, p. 2438 – 2457. 
 

 Laberg, J. S., Forwick, M., Husum, K. (2017). New geophysical evidence for a revised 
maximum position of part of the NE sector of the Greenland ice sheet during the last glacial 
maximum. Arktos, Vol. 3, 1 – 9. 
 

 Legendre, P., Legendre, L. (1998). Numerical ecology, 2nd Engl. Edn. Elsevier, Amsterdam. 
 

 Lindeman, R. L. (1942). The trophic‐dynamic aspect of ecology. Ecology, Vol. 23, p. 399 – 
417. 
 

 MacDonald, I. R., Bluhm, B. A., Iken, K., Gagaev, S., Strong, S. (2010a). Benthic macrofauna 
and megafauna assemblages in the Arctic deep-sea Canada Basin. Deep Sea Research Part II: 
Topical Studies in Oceanography, Vol. 57, p. 136 – 152. 
 

 Macdonald, T. A., Burd, B. J., Macdonald, V. I., Van Roodselaar, A. (2010b). Taxonomic and 
feeding guild classification for the marine benthic macroinvertebrates of the Strait of Georgia, 
British Columbia. Fisheries and Oceans Canada, p. 1 – 63. 
 

 McLaughlin, F., Carmack, E., Macdonald, R., Weaver, A. J., Smith, J. (2002). The Canada 
Basin, 1989–1995: Upstream events and far‐field effects of the Barents Sea. Journal of 
Geophysical Research: Oceans, Vol. 107, p. 1 – 19. 
 

 Manconi, R., Ledda, F. D., Serusi, A., Corso, G., Stocchino, G. A. (2009). Sponges of marine 
caves: Notes on the status of the Mediterranean palaeoendemic Petrobiona massiliana 
(Porifera: Calcarea: Lithonida) with new records from Sardinia. Italian Journal of 
Zoology, Vol. 76, p. 306 – 315. 
 

 Marmen, M. B., Kenchington, E., Ardyna, M.,  Archambault, P. (2017). Influence of seabird 
colonies and other environmental variables on benthic community structure, Lancaster Sound 
Region, Canadian Arctic. Journal of Marine Systems, Vol. 167, p. 105 – 117. 



 

Page 91 of 100 

 
 Mayer, L. M., Schick, L. L., Self, R. F., Jumars, P. A., Findlay, R. H., Chen, Z.,  Sampson, S. 

(1997). Digestive environments of benthic macroinvertebrate guts: enzymes, surfactants and 
dissolved organic matter. Journal of Marine Research, Vol. 55, p. 785 – 812. 
 

 Mayer, M., Piepenburg, D. (1996). Epibenthic community pattern on the continental slope off 
East Greenland at 75 N. Marine Ecological Progress Series, Vol. 143, p.151 – 164. 
 

 Michel, C., Ingram, R. G.,  Harris, L. R. (2006). Variability in oceanographic and ecological 
processes in the Canadian Arctic Archipelago. Progress in Oceanography, Vol. 71, p. 379 – 
401. 
 

 Michel, C., Hamilton, J., Hansen, E., Barber, E., Reigstad, M., Iacozza, Seuthe, L., Niemi, A. 
(2015). Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. 
Progress in Oceanography. Vol. 139, p. 66 – 88. 
 

 Moore, P.G. (1977) Inorganic particulate suspensions in the sea and their effects on marine 
animals. Oceanography and Marine Biology - An Annual Review, Vol. 15, p. 225 – 363 
 

 Nansen, F. (1890). The First Crossing of Greenland: By Fridtjof Nansen. Translated from the 
Norwegian by Hubert Majendie Gepp. With Maps Numerous Illustrations. In 2 Volumes. 
Longmans, Green and Company. 
 

 Piepenburg, D.,  Schmid, M. K. (1996a). Distribution, abundance, biomass, and mineralization 
potential of the epibenthic megafauna of the Northeast Greenland shelf. Marine Biology, Vol. 
125, p. 321 – 332. 
 

 Piepenburg, D.,  Schmid, M. K. (1996b). Brittle star fauna (Echinodermata: Ophiuroidea) of 
the Arctic northwestern Barents Sea: composition, abundance, biomass and spatial 
distribution. Polar Biology, Vol. 16, p. 383 – 392. 
 

 Piepenburg, D., Ambrose, W.G.Jr., Brandt, A., Renaud, P.E., Ahrens, M.J., Jensen, P. 
(1997a). Benthic community pattern reflect water column processes in the Northeast Water 
Polynya (Greenland). Journal of Marine Systems, Vol. 10, p. 467 – 482.  
 

 Piepenburg, D., Voß, J.,  Gutt, J. (1997b). Assemblages of sea stars (Echinodermata: 
Asteroidea) and brittle stars (Echinodermata: Ophiuroidea) in the Weddell Sea (Antarctica) 
and off Northeast Greenland (Arctic): a comparison of diversity and abundance. Polar 
Biology, Vol. 17 , p. 305 – 322. 
 

 Piepenburg, D.,  Schmid, M. K. (1997c). A photographic survey of the epibenthic megafauna 
of the Arctic Laptev Sea shelf: distribution, abundance, and estimates of biomass and organic 
carbon demand. Marine Ecology Progress Series, Vol. 147, p. 63 –75. 
 

 Piepenburg, D. (2000). Arctic brittle stars (Echinodermata: Ophiuroidea). Oceanography and 
Marine Biology – An Annual Review, Vol.38. 
 

 Piepenburg, D., Archambault, P., Ambrose Jr. , W. G., Blanchard, A. L., Bluhm, B. A., 
Carroll, M. L., Conlan, K.E., Cusson, M., Feder, H.M., Grebmeier, J.M., Jewett, S.C., 
Lévesque, M., Petryashew, V.V., Sejr, M.K., Sirenko, B.I., Wlodarska-Kowalczuk. (2011). 
Towards a pan-Arctic inventory of the species diversity of the macro-and megabenthic fauna 
of the Arctic shelf seas. Marine Biodiversity, Vol.41, p. 51 – 70. 
 

 Pisareva, M. N., Pickard, R. S., Iken, K., Ershova E. A., Grebmeier, J. M., Cooper, L.W., 
Bluhm, B. A., Nobre, C., Hopcroft, R. R.,  Hu, H., Wang, J., Ashjian, C. J., Kosobokova, K. 



 

Page 92 of 100 

N., Whitledge, T. E. (2015). The relationship between patterns of benthic fauna and 
zooplankton in the Chukchi Sea and physical forcing. Oceanography, Vol. 28, p. 68 – 83, 
 

 Puig, P., Canals, M., Martín, J., Amblas, D., Lastras, G., Palanques, A., Calafat, A. M. (2012). 
Ploughing the deep sea floor. Nature, Vol. 489, p. 286 – 290.  
 

 Ravelo, A. M., Konar, B., Trefry, J. H.,  Grebmeier, J. M. (2014). Epibenthic community 
variability in the northeastern Chukchi Sea. Deep Sea Research Part II: Topical Studies in 
Oceanography, Vol. 102, p. 119 – 131. 
 

 Ravelo, A. M., Konar, B., Bluhm, B. A., (2015). Spatial variability of epibenthi communities 
on the Alaska Beaufort Shelf, Polar Biology, Vol. 38, p. 1783 – 1804. 
 

 Rapp, H. T. (2015). A monograph of the calcareous sponges (Porifera, Calcarea) of 
Greenland. Journal of the Marine Biological Association of the United Kingdom, Vol. 95, p. 
1395 – 1459. 
 

 Rees, I., Bergmann, M., Galanidi, M., Hinz, H., Shucksmith, R., Kaiser, M.J. (2005). A 
Chaetopterus tube mat biotype in the Eastern English Channel. Journal of the marine 
Biological Association of the UK. Vol. 85, p. 323 – 326. 
 

 Renaud, P. E., Włodarska-Kowalczuk, M., Trannum, H., Holte, B., Węsławski, J. M., 
Cochrane, S., Dahle, S., Gulliksen, B. (2007). Multidecadal stability of benthic community 
structure in a high-Arctic glacial fjord (van Mijenfjord, Spitsbergen). Polar Biology, Vol. 30, 
p. 295 – 305. 
 

 Renaud, P. E., Løkken, T. S., Jørgensen, L. L., Berge, J.,  Johnson, B. J. (2015). Macroalgal 
detritus and food-web subsidies along an Arctic fjord depth-gradient. Frontiers in Marine 
Science, Vol. 2, p. 1 – 15.  
 

 Riser, C. W., Wassmann, P., Reigstad, M., Seuthe, L. (2008). Vertical flux regulation by 
zooplankton in the northern Barents Sea during Arctic spring. Deep Sea Research Part II: 
Topical Studies in Oceanography, Vol. 55, p. 2320 – 2329. 
 

 Roy, V., Iken, K.,  Archambault, P. (2014). Environmental drivers of the Canadian Arctic 
megabenthic communities. PloS one, Vol. 9, p. 1 – 19.  
 

 Sainte-Marie, B., Percy, J. A.,  Shea, J. R. (1989). A comparison of meal size and feeding rate 
of the lysianassid amphipods Anonyx nugax, Onisimus (= Pseudalibrotus) litoralis and 
Orchomenella pinguis. Marine Biology, Vol. 102, p. 361 – 368. 

 Schulz, H. D. (2006). Quantification of Early Diagenesis: Dissolved Constituents in Pore 
Water and Signals in the Solid Phase, in: Marine Geochemistry, edited by: Schulz, H. D. and 
Zabel, M., Springer Berlin Heidelberg, p. 73–124. 
 

 Schulz, M., Bergmann, M., von Juterzenka, K.,  Soltwedel, T. (2010). Colonisation of hard 
substrata along a channel system in the deep Greenland Sea. Polar Biology, Vol. 33, p. 1359 –
1369. 
 

 Schneider, W., Budéus, G. (1997). Summary of the Northeast Water polynya formation and 
development (Greenland Sea). Journal of Marine Systems, Vol. 10, p. 107 – 123.  
 

 Seale, A., Christoffersen, P., Mugfjord, R. I., O’Leary, M. (2011). Ocean forcing of the 
Greenland Ice Sheet: Calving fronts and pattern of ice retreat identified by automatic satellite 
monitoring of eastern outlet glaciers. Journal of Geophysical Research, Vol. 116, p. 1 – 16. 
 



 

Page 93 of 100 

 Sejr, M. K., Jensen, K. T.,  Rysgaard, S. (2000). Macrozoobenthic community structure in a 
high-arctic East Greenland fjord. Polar Biology, Vol. 23(11), p. 792-801. 
 

 Sejr, M. K., Stedmon, C. A., Bendtsen, J., Abermann, J., Juul-Pedersen, T., Mortensen, J., 
Rysgaard, S. (2017). Evidence of local and regional freshening of Northeast Greenland coastal 
waters. Scientific reports, Vol. 7, p. 1 – 5.  
 

 Shick, J. M., Edwards K. C., Dearborn J. H. (1981). Physiological ecology of the deposit-
feeding sea star Ctenodiscus crispatus: ciliated surfaces and animal-sediment interactions. 
Marine Ecology Progress Series, Vol. 5, p. 165–184. 
  

 Sirenko, B.I., (Ed.) (2001) List of species of free-living invertebrates of Eurasian Arctic seas 
and adjacent deep waters. Russian Academy of Sciences, Zoological Institute, St Petersburg, 
Explorations of the Fauna of the Seas, Vol. 51, p. 131 
 

 Snelgrove, P. V. R., Butman, C. A. (1995). Animal-sediment relationships revisited: cause 
versus effect. Oceanographic Literature Review, Vol. 8, p. 668. 
 

 Smirnov, A.V. (1994). Arctic echinoderms: composition, distribution and history of the fauna. 
In: David B, Guille A. Feral JP, Roux M (eds) Echinoderms through time (Echinoderms 
Dijon). Balkema, Rotterdam, p. 135-143 
 

 Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K., Arbizu, P. M. (2008). 
Abyssal food limitation, ecosystem structure and climate change. Trends in Ecology & 
Evolution, Vol. 23, p. 518 – 528. 
 

 Smith, L. C., Stephenson, S. R. (2013). New Trans-Arctic shipping routes navigable by 
midcentury. Proceedings of the National Academy of Sciences, Vol. 110, p. E1191-E1195. 
 

 Starmans, A., Gutt, J., Arntz, W.E. (1999). Mega-epibenthic communities in Arctic and 
Antarctic shelf areas. Marine Biology, Vol. 135, p. 269 – 280.  
 

 Sswat, M., Gulliksen, B., Menn, I., Sweetman, A. K.,  Piepenburg, D. (2015). Distribution and 
composition of the epibenthic megafauna north of Svalbard (Arctic). Polar Biology, Vol. 38, 
p. 861 – 877. 
 

 Straneo, F., Curry, R.G., Sutherland, D.A., Hamilton, G.S., Cenedese, C., Våge, K., Stearns, 
L.A. (2011). Impact of fjord dynamics and glacial runoff on the circulation near Helheim 
Glacier. Nature Geoscience, Vol.4, p. 322 – 327.  
 

 Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., Barrett, A. P. (2012). 
The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change, Vol.110, 
p. 1005-1027. 
 

 Syvitski, J. P., Farrow, G. E., Atkinson, R. J. A., Moore, P. G.,  Andrews, J. T. (1989). Baffin 
Island fjord macrobenthos: bottom communities and environmental significance. Arctic, Vol. 
42, p. 232-247. 
 

 Taylor, J., Krumpen, T., Soltwedel, T., Gutt, J., Bergmann, M. (2016). Regional-and local-
scale variations in benthic megafaunal composition at the Arctic deep-sea observatory 
HAUSGARTEN. Deep Sea Research Part I: Oceanographic Research Papers, Vol. 108, p. 
58 – 72. 
 

 Thistle, D., 2003. The deep-sea floor: an overview. In: Tyler, P.A. (Ed.), Ecosystems of the 
World 28, Ecosystems of the Deep Sea. Elsevier, Amsterdam, p. 5–37 



 

Page 94 of 100 

 
 Tissot, B. N., Yoklavich, M. M., Love, M. S., York, K., Amend, M. (2006). Benthic 

invertebrates that form habitat on deep banks off southern California, with special reference to 
deep sea coral. Fishery Bulletin, Vol. 104, p. 167 – 181. 
 

 Vassilenko, S. V., Petryashov, V. V. (2009). Illustrated keys to free-living invertebrates of 
Eurasian Arctic seas and adjacent deep waters, Vol. 1.Rotifera, Pycnogonida, Cirripedia, 
Leptostraca, Mysidacea, Hyperiidea, Caprellidea, Euphausiasea, Dendrobranchiata, 
Pleocyemata, Anomura, and Brachyura. Alaska Sea Grant, University of Alaska Fairbanks 
 

 Walsh, S. J.,  McCallum, B. R. (1997). Performance of the Campelen 1800 shrimp trawl 
during the 1995 Northwest Atlantic Fisheries Centre autumn groundfish 
survey. Oceanographic Literature Review, Vol. 12, p. 1539 – 1540. 
 

 Wassmann, P., Andreassen, I., Reigstad, M., Slagstad, D. (1996). Pelagic–benthic coupling in 
the Nordic Seas: the role of episodic events. Marine Ecology, Vol. 17, p. 447–471. 
 

 Wassmann, P., Kosobokova, K.N., Slagstad, D., Drinkwater, K.F., Hopcroft, R.R., Moore, 
S.E., Ellingsen, I., Nelson, R.J., Carmack, E., Popova, E., Berge, J. (2016). The contiguous 
domains of Arctic Ocean advection: Trails of life and death. Progress in Oceanography, Vol. 
139, p.42 – 65. 
 

 Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The journal 
of geology, Vol. 30, p. 377 – 392. 
 

 Węsławski, J. M., Kendall, M. A., Włodarska-Kowalczuk, M., Iken, K., Kędra, M., 
Legezynska, J.,  Sejr, M. K. (2011). Climate change effects on Arctic fjord and coastal 
macrobenthic diversity—observations and predictions. Marine Biodiversity, Vol. 41, p. 71 – 
85. 
 

 Williams, B., Bluhm, B.A., Brown, K., Carmack, E., Clarke, C., Danielson, S., Rotermund, L., 
Schimnowski, A., Schimnowski, O (2017). Adventures in a new Arctic frontier: Investigating 
the tidal-driven ‘winter holes1 and (prospective) ‘summer gardens’ of the Kitikmeot Marine 
Region of the Canadian Archipelago. Poster session presented at the Arctic Frontiers in 
Tromsø. 
 

 Wlodarska-Kowalczuk, M., Pearson, T.,  Kendall, M. (2005). Benthic response to chronic 
natural physical disturbance by glacial sedimentation in an Arctic fjord. Marine Ecology 
Progress Series, Vol. 303, p. 31-41. 
 

 Włodarska-Kowalczuk, M., Renaud, P. E., Wȩsławski, J. M., Cochrane, S. K.,  Denisenko, S. 
G. (2012). Species diversity, functional complexity and rarity in Arctic fjordic versus open 
shelf benthic systems. Marine Ecology Progress Series, Vol. 463, p. 73 – 87. 
 

 Yesson, C., Simon, P., Chemshirova, I., Gorham, T., Turner, C. J., Arboe, N. H., Blicher, 
M.E., Kemp, K. M. (2015). Community composition of epibenthic megafauna on the West 
Greenland Shelf. Polar Biology, Vol. 38, p. 2085 – 2096. 

  



 

Page 95 of 100 

Appendix 
 

  

Appendix Table 1: List of field-identified taxa that were present in van Veen Grab samples
(Wilco, 0.1 m2) in the Kitikmeot Sea in August 2016. Specimens were used as support material 
for better identification of epibenthos in underwater imagery analysis. At some stations, the 
grab failed to collect sediment and specimens due to rocky seafloor. 
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Appendix Table 2: List of field-identified taxa caught in dredge in the Kitikmeot Sea in August 
in 2016.  Specimens were used as support material for better identification of epibenthos in 
underwater imagery analysis. At some stations the dredge failed to collect specimens. 
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Appendix Figure 2: The relative composition of epibenthic invertebrate weight caught with
two gear types that were deployed during TUNU-VII (2017) expedition to Northeast Greenland 
(NEG) for collecting epibenthic invertebrates. Two bars were put closely together represent one 
location each where the left represents the Campelen trawl hauls and the right bar represents 
Agassiz trawl hauls. This graph is not showing stations from 1307-TUNUVI, 1321-TUNUVI 
and 1375-TUNUVII since only one gear was deployed at these locations. Colonial taxa are 
excluded. 

Appendix Figure 1: The relative composition of numbers of individuals caught for two gear 
types that were deployed during TUNU-VI (2015) and TUNU-VII (2017) expeditions to 
Northeast Greenland (NEG) for collecting epibenthic invertebrates. Two bars were put closely 
together represent one location each where the left represents the Campelen trawl hauls and the
right bar represents Agassiz trawl hauls. This graph is not showing stations from 1307-
TUNUVI, 1321-TUNUVI and 1375-TUNUVII since only one gear was deployed at these 
locations. Colonial taxa are excluded.  
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Appendix Figure 3: Station similarities of Northeast Greenland (NEG) trawl where the stations 
grouped by habitat type with relative abundance-based data of epibenthic invertebrates from two 
gear types Campelen 1800 shrimp trawl and Agassiz trawl that was deployed during TUNU-VI 
(2015) and TUNU-VII (2017) expeditions to Northeast Greenland (NEG). A) Station clusters 
obtained from the hierarchical cluster analysis (HCA) with fourth-root transformed relative 
abundance. Red dotted lines indicate that the clusters are not statistically significant different 
(SIMPROF test α = 0.05). B) nMDS plot of the relative abundance-based data.  

A) 

B) 
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        R Significance     Possible       Actual Number >=
Statistic      Level % Permutations Permutations  Observed

Slope, Shelf break 0.754 0.8 120 120 1
Sample statistic (R): 0.781 Slope, Fjord 1 10 10 10 1
Significance level of sample statistic: 0.1% Slope, Shelf 1 1.8 56 56 1
Number of permutations: 999 (Random sample from 147026880) Shelf break, Fjord 0.845 0.8 120 120 1
Number of permuted statistics greater than or equal to R: 0 Shelf break, Shelf 0.646 0.4 792 792 3

Fjord, Shelf 0.713 1.8 56 56 1

Global Test Groups (Habitat type)

Appendix Table 3: Differences between epifaunal communities in different habitats shown in  
pairwise tests computed with ANOSIM from a Bray-Curtis resemblance matrix on epifaunal 
abundance data from the TUNU expeditions to Northeast Greenland in 2015 and 2017. Table 
depicts also which habitat types were tested, if there was a strong separation (responding to a R 
value close to 1), the significance level, possible permutations and number observed. 

Global Test         R Significance     Possible       Actual Number >=

Sample statistic (R): 0,2 Groups (sites) Statistic      Level % Permutations Permutations  Observed

Significance level of sample statistic: 16.2% High flow, Transition site 0.083 50 10 10 5
Number of permutations: 105 (All possible permutations) High flow, Low flow 0.333 30 10 10 3
Number of permuted statistics greater than or equal to R: 17 Transition site, Low flow 0.75 33.3 3 3 1

Global Test         R Significance     Possible       Actual Number >=

Sample statistic (R): 0,6 Groups (sites) Statistic      Level % Permutations Permutations  Observed

Significance level of sample statistic: 5.7% High flow, Transition site 0.083 40 10 10 4
Number of permutations: 105 (All possible permutations) High flow, Low flow 1 10 10 10 1
Number of permuted statistics greater than or equal to R: 6 Transition site, Low flow 1 33.3 3 3 1

Gower S15 

Bray-Curtis

Appendix Table 4: Differences between epifaunal communities in different habitats shown in  
pairwise tests computed with ANOSIM from a Bray-Curtis resemblance matrix and Gower 
similarity coefficient (S15) on square-root transformed epifaunal abundance from the 
Kitikmeot Sea in August 2016. Table depicts also which habitat types were tested, if it suggests 
a strong separation, the significance level. possible permutations,  actual permutations and 
number observed. Table depicts also which habitat types were tested, if there was a strong 
separation (responding to a R value close to 1), the significance level, possible permutations 
and number observed. 
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