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ABSTRACT 

Persistent organic pollutants (POPs) reach the Arctic ecosystems from lower latitudes mostly 

via air and ocean currents. They biomagnify through Arctic food webs and reach 

considerably high concentrations in top predators such as polar bears (Ursus maritimus). 

Although many of these compounds have been banned or restricted for decades, 

concentrations of polychlorinated byphenyls (PCBs), organochlorine pesticides (OCPs) and 

polybrominated diphenyl ethers (PBDEs) in Arctic biota still remain high. Temporal trend 

studies in Arctic biota help assess the effectivness of bans and restrictions. However, trends 

of POP concentrations in biota are affected by various factors, including dietary source and 

climate change. Because of retreating sea ice polar bears can be forced to feed at lower 

trophic levels or consider terrestrial food sources, potentially leading to a decreased uptake 

of contaminants.  

We monitored plasma concentrations of 4 PCBs (CB-118, 138, 153, and 180), 4 OCPs (p,p’-

DDE, HCB, β-HCH and oxychlordane), 2 PBDEs (BDE-47 and 153), and 5 OH-PCBs (OH-CB-107, 

138, 146, 156, and 187) in female polar bears from Svalbard, Norway, over a 20 year time 

span (1997-2017). All 306 samples were collected in the spring (April). We examined 

temporal trends in relation to climate – associated changes in feeding habits by using stable 

isotope ratios of nitrogen (δ15N) and carbon (δ13C) from red blood cells as feeding proxies 

representing polar bear winter diet. We found a significant decline of both δ13C and δ15N 

values over our study period, with a steeper trend for δ13C after 2012, indicating an 

increasing intake of more terrestrial and lower trophic level prey. BDE-153 and β-HCH 

concentrations were stable over our study period, ΣPCB, ΣOH-PCB and BDE-47 showed a 

linear declining trend. For p,p’-DDE, HCB and oxychlordane however, trends only declined 

until 2010-12 and stalled thereafter. Interestingly, trends of all compounds changed in shape 

and/or rate when adjusted for changes in winter diet. ΣPCB, HCB, β-HCH and BDE-153 

concentrations increased significantly after 2010-12 when adjusted for changes in winter 

diet. Our findings suggest that a climate – related diet shift leads to lower PCB, HCB, β-HCH, 

and BDE-153  exposure in the Svalbard polar bears, while p,p’-DDE, oxychlordane and BDE-

47 exposure is mainly affected by emissions. 
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1 INTRODUCTION 

Although pristine and secluded, far away from most industries and inhabited by less than 1% 

of the World’s population (research.uarctic.org), the Arctic contains considerably high levels 

of pollutants, in some arctic biota pollutant concentrations are as high as in people living in 

heavily industrialized areas (Bytingsvik et al. 2012; Fu et al. 2015). Persistent organic 

pollutants (POPs) are among the main chemicals present in the Arctic, and have a variety of 

properties that make them problematic for the environment, wildlife, and humans.  

POPs persist in the environment for years or decades and are resistant to many forms of 

degradation (Jones and Voogt 1999; Sinkkonen and Paasivirta 2000). POPs reach the Arctic 

from distant sites of production and use via air and ocean currents, and river outflows 

(Macdonald et al. 2003). The so-called “cold condensation effect” in which compounds 

volatilized in warmer regions condensate in the cold Arctic, plays an important role in the 

long-range transport of POPs, especially the most volatile ones (Wania and Mackay 1996).  

 

Figure 1: The major physical pathways that transport contaminants to the Arctic from lower latitudinal areas. (Macdonald 
et al. 2003) 

From the abiotic environment, POPs are taken up by biota and biomagnify through the food 

web, leading to high concentrations in species at the top of the food web, such as polar 

bears (Hoekstra et al. 2003; Kelly et al. 2007; Muir et al. 1988; Sørmo et al. 2009). In polar 

bears lipophilic POPs such as PCBs, OCPs and PBDEs are quantitatively the most abundant 

compounds in adipose tissue, whereas per- and polyfluoroalkyl substances (PFAS) and 
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metabolized POPs such as hydroxylated PCBs (OH-PCBs) dominate in the blood circulation 

(Letcher et al. 2018; Tartu et al. 2017a; Tartu et al. 2017b). Hydroxylated POPs such as OH-

PCBs accumulate in higher trophic level organisms via hydroxylation of ingested PCBs, 

ingestion of contaminated organisms, and ingestion of OH-PCBs produced by 

microorganisms in water and soil (Letcher et al. 2000; Tehrani and Aken 2014). 

High concentrations of POPs have been associated with a number of adverse health effects 

in polar bears, such as effects on thyroid hormones (Bourgeon et al. 2017; Braathen et al. 

2004; Skaare et al. 2001), vitamin A levels, (Skaare et al. 2001), testosterone levels (Oskam 

et al. 2003), the immune system (Bernhoft and Skaare 2000), bone density of skulls 

(Daugaard-Petersen et al. 2018; Sonne et al. 2004) and penile bones (Sonne et al. 2015). The 

effects of polybrominated diphenyl ethers (PBDEs), widely used as flame retardants, are 

unknown for polar bears, but laboratory animal studies have shown effects on 

neurobehavior (Branchi et al. 2002; Branchi et al. 2003; Eriksson et al. 2002), sex hormone 

levels and sexual development (Lilienthal et al. 2006), and thyroid hormone balance and 

levels (Hallgren et al. 2001; Zhou et al. 2001). OH-PCBs might be more toxic than their parent 

PCBs as they exert toxic effects like the inhibition of mitochondrial respiration, oxidative 

damage to the DNA, disruption of thyroid hormones and estrogenic activity at lower levels 

than PCBs (Navasimhan et al. 1991; Schuur et al. 1998; Srinivasan et al. 2001). Additionally 

the hydroxylation of PCBs increases their solubility and bioavailability (Camara et al. 2004) 

Due to their adverse health effects on wildlife (for a review see (Letcher et al. 2010)) and 

humans (Kim et al. 2017; van den Berg et al. 2017), their persistence, capacity to travel long 

distances, bioaccumulate and biomagnify POPs are globally regulated. Regulations of PCBs 

and OCPs had already started in the 1970s with national bans (Li and Macdonald 2005). The 

United Nations Environment Program’s (UNEP) Stockholm Convention (SC) on restriction or 

elimination of POPs was enacted in 2004. The first twelve compounds listed under the 

convention were PCBs, several OCPs, and a total of 28 compounds are currently listed 

including PBDEs (chm.pops.int). These regulations have led to generally decreasing trends in 

the Arctic since the 1990, both in the air and biota (AMAP 2015; Li and Macdonald 2005). 

However, concentrations of some compounds are only leveling off or even increasing (de 

Wit et al. 2010; Riget et al. 2016).  

A number of chemical and biological factors, in addition to the emission, affect contaminant 

levels in biota, like physico-chemical properties of the compound, and sex, age, feeding 

ecology, migration and biotransformation capacities of the animal (Borgå et al. 2004). For 

instance, female polar bears rid themselves of a considerable amount of the contamination 

burden through lactation (Atkinson and Ramsay 1995). In contrast, contamination levels are 

generally higher (Norstrom et al. 1998), vary less seasonally and accumulate more with age 

in males than in females (Dietz et al. 2004). Seasonal variations in food availability and 

consequently body condition (Stirling and McEwan 1975) also affect contaminant 

concentration in polar bears, as body condition correlates negatively with contaminant 

levels (Tartu et al. 2017b). Contamination levels and patterns are ultimately defined by 
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species-specific biotransformation processes (Norstrom 2002). For example, polar bears are 

able to biotransform several PCBs, whereas DDT is also biotransformed at lower trophic 

levels (Letcher et al. 1998; Letcher et al. 2009). 

Svalbard is particularly exposed to contaminants from both oceanic and atmospheric 

currents from Europe and North America (Hansen et al. 2015; Shindell et al. 2008), and 

shows some of the highest contaminant levels in the Arctic (McKinney et al. 2011; Muir et al. 

2006). Furthermore the decline of Arctic sea ice, which is most pronounced within the 

Barents Sea area (Laidre et al. 2015), may lead to secondary emissions of POPs (Ma et al. 

2011), as well as ecological changes in the marine food web  (Antiqueira et al. 2018). 

In some polar bear populations, climate driven decline in sea ice has already led to a shift 

towards more subarctic or terrestrial prey species, which influenced contaminant burden to 

some extent (McKinney et al. 2013; McKinney et al. 2009; Routti et al. 2017). Another study 

has shown a decline in mercury levels in West Hudson polar bears related to climate-

associated diet changes (McKinney et al. 2017). Feeding habits and body condition, which 

are both related to sea-ice conditions, are strong predictors of lipophilic POPs in the Barents 

Sea polar bears (Tartu et al. 2016; Tartu et al. 2017b). Thus, we hypothesize that temporal 

trends of lipophilic POPs are related to both emission patterns as well as climate – related 

changes in feeding habits and body condition. To explore this hypothesis, we collected 

Svalbard polar bear plasma samples over 20 years and analyzed them for several PCBs, OCPs 

and 2 PBDEs. To determine diet trends we analyzed stable isotope values of carbon and 

nitrogen (δ13C and δ15N) representing carbon source (marine vs. terrestrial) and trophic 

level, respectively. We compared non-diet-adjusted to diet-adjusted contaminant trends in 

order to understand if and how strongly climate-associated diet changes can affect 

contaminant levels in Svalbard polar bears from 2000-2017.  
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2 MATERIAL AND METHODS 

2.1 FIELD SAMPLING 
Adult female polar bears were opportunistically captured each year between 25th March and 

5th May in the Svalbard area during the period 1997-2017 as part of a yearly polar bear 

monitoring program run by the Norwegian Polar Institute, Tromsø. Sampling time and sex of 

the bears were chosen to avoid seasonal and sex variation. The 306 samples represent 185 

individuals, of which 54 were sampled 2 – 8 times. The bears were immobilized from a 

helicopter by remote injection of tiletamine hydrochloride and zolazepam hydrochloride 

(Zoletil Forte Vet®; Virbac, France). Blood samples were collected in heparinized tubes and 

kept cold and dark until centrifuged (3500 rpm, 10 min, within 10 h). Red blood cells and 

plasma were stored at -20 °C until analysis. A vestigial premolar tooth was used for age 

estimation (Christensen-Dalsgaard et al. 2009) for all bears captured for the first time. Body 

condition was determined by body condition index (BCI) based on body mass and length 

(Cattet et al. 2002). For bears not weighed in the field (n=75) body mass was estimated with 

8% accuracy (Derocher and Wiig 2002).  

The National Animal Research Authority (NARA), Norway, approved of all procedures.  

2.2 PROXIES FOR FEEDING HABITS 
Stable isotope values of nitrogen and carbon (δ15N and δ13C, respectively) determined in red 

blood cells were used as proxies for feeding habits. Estimated half-lives of δ13C and δ15N in 

polar bear red blood cells are 1-2 and 3-4 months, respectively (Rode et al. 2016) and thus 

represent mostly the winter diet of the bears captured for this study.  

Analytical procedures are described in supporting information (SI). 

2.3 CHEMICAL ANALYSIS OF POPs 
POP concentrations were monitored in polar bear blood plasma. The matrix was chosen due 

to good accessibility, and because PCBs show less variation in polar bear plasma than other 

matrices (Henriksen et al. 2001). A complete list of all targeted compounds, methods for 

clean-up, separation, quantification and quality assurance are explained in the SI. 

2.4 DATA ANALYSIS 
For the statistical analysis, the program R version 3.4.2 was used. Structurally similar and 

correlated compounds were summed. To analyse the effects of year, feeding habits, and 

additional biological variables on POP concentrations in polar bears, generalised additive 

mixed models (GAMM; R-package mgvc) were used. Nine candidate models were defined, 

with year as non-linear term, and δ15N and δ13C values in red blood cells, body condition, 

breeding status and age as fixed predictor variables (see Table S3 in SI). Highly correlated 

predictor variables (e.g. δ15N and δ13C) were not included in the same models (Burnham et 

al. 2010). The recovery of spiked reference samples for analysis of β-HCH was inconsistent, 

thus β-HCH was additionally corrected for this variation.  
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We used model averaging based on Akaike Information Criterion (AIC; R-package MuMIn 

(Barton 2016)) to make inference from all candidate models and predictor variables. The 

models were ranked according to AIC, which was then used to calculate AIC weight 

(e(0.5(AICmin-AICi)); relative likelihood divided by the sum of all likelihoods). AIC weights were 

used to calculate model averaged estimates for all predictor variables, and 95% confidence 

intervals to determine whether the parameters were significantly different from 0 at the 5% 

confidence level. Diagnostic plots were used to verify whether the distribution of the model 

residuals met the model assumptions. 

Plots from the highest ranked GAMMs were used to illustrate what ecological and biological 

factors can affect temporal trends in concentration of POPs in polar bear blood. These 

models were then visually compared to plots from models using only year as predictor 

variable. Plots from the highest ranked GAMMs illustrate trends adjusted by their respective 

most influential predictor variable and reflect emission changes in the polar bear food web. 

Subsets of POP trends were obtained for each model by cutting at their relevant changing 

points, and estimates for each subset were derived from linear mixed models (LME, and 

LMER from the package lme4). For assessment of their significance, 95 % confidence 

intervals were used. Polar bear ID was included as a random factor in both GAMMs and 

LMEs. Temporal changes in feeding habits (δ15N and δ13C) and BCI were also investigated by 

GAMMs with only year as non-linear term, and their yearly linear changes were obtained by 

using LMEs. 
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3 RESULTS AND DISCUSSION 

3.1 POP CONCENTRATIONS IN FEMALE POLAR BEARS FROM SVALBARD 1997-2017  

Year Lipid % ΣPCB p,p’-DDE HCB β-HCH Oxychld. BDE-47 BDE-153 ΣOH-PCB 

1997 0.9 5661  42  203  42  1087  17  n.a.  n.a.  

 0.7; 1.1 3082; 8240 40; 45 201; 205 35; 49 727; 1447 14; 20   

1998 1.1 3208  24  168  28  740  20  n.a.  n.a.  

 0.9; 1.3 2315; 10188 7; 44 62; 283 18; 45 545; 1589 11; 49   

2000 1.1 3746  24  104  4  977  18  3.82  14576  

 0.6; 1.4 1736; 11199 6; 226 36; 346 2; 61 447; 1775 3.10; 42 0.66; 7.68 3601; 28158 

2001 1 5066  83  258  23  858  21  4.11  15681  

 0.6; 1.6 2700; 14453 5; 119 128; 451 2; 86 503; 3468 8.78; 28 0.74; 10 10556; 20072 

2002 1 5422  79  92  21  1259  17  3.65  13740  

 0.7; 1.5 2274; 22175 8; 143 40; 460 12; 56 716; 3039 8.03; 44 0.71; 12 6238; 21137 

2003 1.3 3333  35  84  n.a.  689  21  2.48  13741  

 1; 1.6 1654; 5930 8; 127 28; 292  345; 1034 14; 33 2.01; 8.65 9286; 25470 

2004 1 4185  58  126  24  1198  16  3.13  12157  

 0.5; 1.6 1500; 14461 6; 287 44; 219 10; 136 458; 3879 6.77; 37 0.59; 9.85 3383; 34437 

2005 1.2 3948  59  114  15  1513  13  3.78  12484  

 0.7; 1.4 2101; 14166 5; 130 35; 301 3; 51 343; 3621 6.25; 26 0.81; 8.58 6350; 18569 

2006 1.1 4564  52  111  30  1307  28  5.30  20345  

 0.8; 1.3 2141; 9267 8; 257 18; 233 11; 53 250; 2726 19; 42 0.88; 10 7156; 40211 

2007 1.5 1778  22  78  21  405  7.41  n.a.  6324  

 0.8; 2.1 914; 21535 4; 130 24; 229 7; 51 207; 1710 3.67; 18  2892; 13109 

2008 1.3 1887  21  73  14  514  11  n.a.  5264  

 0.8; 1.6 743; 9003 4; 228 33; 339 6; 42 172; 2155 1.30; 34  1354; 10720 

2009 1.2 2059  20  37  3  295  13  2.59  5896  

 0.8; 1.7 1060; 6760 5; 134 15; 109 2; 38 1; 956 6.47; 57 0.85; 7.06 3316; 10998 

2010 1.2 1924  7  56  13  432  9.11  1.82  6937  

 0.8; 1.5 777; 2855 4; 74 27; 204 3; 30 245; 794 6.32; 21 0.63; 3.12 2191; 13904 

2011 1.3 3461  20  123  n.a.  385  16  4.20  13401  

 0.9; 1.6 1539; 7978 7; 263 46; 324  282; 1552 6.73; 25 2.05; 11 4450; 21399 

2012 1.2 1426  14  59  18  351  10  2.19  6300  

 0.8; 1.7 513; 3910 0; 103 21; 206 4; 40 21; 953 2.73; 51 0.56; 9.09 1873; 14115 

2013 1.2 2239  25  111  26  467  12  3.91  5477  

 0.8; 2 930; 12068 0; 182 31; 603 11; 95 172; 1859 2.74; 31 0.56; 20 2130; 17270 

2014 1.2 2296  6  90  22  477  8.90  2.37  4454  

 0.5; 1.6 603; 12087 4; 474 21; 219 3; 91 101; 1232 1.25; 29 0.62; 18 927; 15003 

2015 1.3 2410  20  104  15  461  10  3.03  5151  

 0.9; 1.5 871; 9208 5; 80 24; 566 6; 54 173; 960 2.18; 55 0.33; 17 922; 13123 

2016 1.2 1394  17  87  13  313  8.03  3.68  3486  

 0.8; 1.6 558; 12772 1; 153 29; 352 4; 53 90; 1195 2.57; 29 0.74; 21 1962; 23092 

2017 1.3 1508  16  69  14  256  8.23  2.71  3870  

 1.1; 1.3 310; 9512 0; 85 19; 294 4; 75 42; 1394 1.24; 22 0.73; 13 460; 11586 

 

Fifteen compounds were detected in all of the samples and are summarized in Table 1, 

additional concentrations are given in Table S5. PCB-153 showed the highest concentrations 

in polar bear plasma, followed by PCB-180 and oxychlordane (Table 1 and Table S5). This is 

in accordance with earlier studies on polar bears from Svalbard and other areas (Braathen et 

al. 2004; Dietz et al. 2013b; Kucklick et al. 2002). All PCB congeners we summed (PCB-118, 

138, 153, 180) were highly correlated with each other (r > 0.6, p < 0.0001) except PCB-118, 

which correlated only with PCB-138 (r = 0.28, p < 0.0001). Similar correlations have been 

Table 1: Median (bold), min. and max. concentrations of persistent organic pollutants (POPs) in plasma samples from female 
polar bears collected on Svalbard between 1997 and 2017. All compounds are expressed in ng/g lipid weight except for ΣOH-
PCB (ng/g wet weight). No samples were taken in 1999; n.a.: not analysed.  
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reported before (Braathen et al. 2004). ΣPCB showed moderate or weak correlations (p>0.5) 

with the other compounds we detected, except for BDE-153 (r = 0.79, p<0.0001) and 

oxychlordane (r = 0.8, p<0.0001). 

3.2 TRENDS OF BIOLOGICAL VARIABLES 
 

 

Figure 2: Trends of δ13C, δ15N and body condition (BCI) of Svalbard polar bears from 1997 (2000) until 2017. δ13C and δ15N 
represent carbon source (high values: marine diet, low values: terrestrial diet), and trophic level, respectively, in polar bear 
winter diet. BCI shows the “fatness” of the bears (corrected for reproductive status; arbitrary scale without units). Trends are 
shown in ‰ for diet proxies and as scale units for BCI for the given time period, with 95% CI (derived from lme). Trends in 
italics are not significant. The trend estimates indicate change over the whole study period or time periods indicated by the 
red lines.  

We observed a decrease of δ13C and δ15N over the study period, which is in accordance with 

a recently published trend of δ13C and δ15N partly based on the same polar bear individuals 

(Routti et al. 2017). The values for δ13C decreased by 0.85 ‰ from 2000 to 2012 (95 % CIs: -

1.2, -0.5; change per year: 0.077 ‰), and showed a steeper decrease of 1.12 ‰ after 2012 

(95 % CIs: -1.59, -0.64; change per year: 0.279 ‰), whereas δ15N decreased by 1.01 ‰ over 

the study period (95 % CIs: -1.51, -0.5; change per year: 0.063 ‰; Figure 2). As carbon 

isotopes (δ13C) indicate sources of primary productivity (Hobson et al. 1996), e.g. marine vs. 

terrestrial, our results suggest a larger proportion of terrestrial food items in polar bear diet 

over the study period, especially after 2012. The decline in δ15N which fractionates and 

changes predictably between trophic levels (Hobson et al. 1996) and thereby reflects trophic 

position, indicates a shift of polar bear winter diet towards a lower trophic level. This is in 

accordance to the trend for δ13C for polar bears, as terrestrial Arctic food chains are much 

shorter than Arctic marine food chains (Kelly et al. 2007). The shift in polar bear winter diet 

is likely related to the decline in sea ice in the Svalbard area. The number of days per year 

with optimal habitat for polar bears has decreased over time in Svalbard, as has the spatial 

overlap of polar bears and ringed seals (Hamilton et al. 2017; Lone et al. 2018). A shift 

towards a less marine and lower trophic level diet linked to sea ice decline has been 

reported for Svalbard polar bears (Tartu et al. 2018; Tartu et al. 2016). Some studies indicate 

that polar bears might be able to cover energy needs with land based prey (Gormezano et al. 

2016; Gormezano and Rockwell 2015), but not all studies came to this conclusion (Dey et al. 

2017; Rode et al. 2015). The “Suess effect”, e.g. the gradual decrease of δ13C in the 

-0.85 ‰ 
(-1.2; -0.5) 

-1.12 ‰ 
(-1.59; -0.64) 

-1.01 ‰ 
(-1.51; -0.5) 

-0.55  
(-0.9, -0.2) 

0.17   
(-0.12; 0.45) 
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atmosphere due to combustion of fossil fuels leading to depleted δ13C values, has likely very 

little influence on the observed δ13C decrease in polar bears, as the δ13C  decrease in polar 

bears is over four times faster than the changes attributed to the Suess effect (Olsen et al. 

2006; Routti et al. 2017). 

BCI values (corrected for reproductive status) declined slightly until 2011 (-0.55 BCI scale 

units; 95 % CIs: -0.9, -0.2; see Figure 1), which translates to a loss of 2.3 kg/year (95 % CIs:     

-3.5 kg, -1 kg) for a bear with average condition and length in the period from 1997 until 

2011. This is likely related to sea ice decline, as e.g. observed for the southern Beaufort Sea 

polar bear subpopulation (Rode et al. 2010). 

3.3 EFFECTS OF BIOLOGICAL VARIABLES ON POP CONCENTRATIONS 
All the highest ranked GAMMs included diet proxies (δ13C or δ15N) as predictors, which were 

positively related to all POPs (Table 2). Additionally, all the highest ranked models included 

either BCI or breeding status as predictor variables. BCI had a strong negative effect on all 

the compounds except p,p’-DDE (Table 2). Body condition had a slightly higher impact on 

POP concentration than diet, except for HCB and BDE-47, where the influence of δ13C and 

δ15N was higher than BCI (Table 2). These findings are consistent with a previous study on 

Svalbard polar bear females (partly the same females as in this study), which focused on 

seasonal and spatial differences of POPs (Tartu et al. 2017b). POP concentrations were 

positively affected by having cubs of the year (“breeding status C”; for GAMM estimates and 

significance see Table 2) for ΣPCB, BDE-153 and ΣOH-PCBs, while POP concentrations were 

mostly negatively affected when females had older offspring (“breeding status Y”; Table 2). 

Female polar bears nurse their cubs for more than two months (Amstrup 1993) entirely 

relying on their body fat, which transfers a part of the contaminant burden to the cubs with 

the milk, but also releases contaminants into the blood stream from the mobilized fat from 

the adipose tissue (Polischuk et al. 2002). After a year, the nursing females regain their 

previous body condition, which lessens contaminant concentrations (see Table 2) (Polischuk 

et al. 2002). 

Table 2: Model-averaged estimates (bold) with 95 % confidence intervals (in brackets) derived from GAMM explaining the 
ln-transformed concentrations of POPs (ng/g lipid weight, and ln/g wet weight for ΣOH-PCBs) in female polar bears from 
Svalbard, Norway, by feeding habits (δ13C and δ15N), body condition index (BCI), and breeding status (Y: with yearlings, C: 
with cubs of the year). The models also included age (years). Values for diet proxies and BCI have been standardized to 
ensure comparability. ΣPCB: CB-118, 138, 153, 180;  ΣOH-PCB: OH-CB-107, 146, 138, 159, 187 

response (intercept) δ15N red 

blood cells 

δ13C red 

blood cells 
BCI breeding 

status Y 

breeding 

status C 
age 

ln(ΣPCB) 8.21  

(4.57, 

11.84)  

0.10  

(0.02, 0.18) 

0.13   

(0.04, 0.22) 

-0.29  

(-0.37, -

0.22) 

-0.25  

(-0.47, -0.03) 

0.24  

(0.07, 0.41) 

-0.02  

(-0.04, 

-0.003) 

ln(p,p’-DDE) 2.36  

(-2.11, 

6.82) 

0.16   

(-0.01, 0.33) 

0.11  

(-0.08, 0.29) 

0.29  

(0.08, 0.38) 

-0.01  

(-0.44, 0.42) 

-0.56  

(-0.89, -

0.22) 

-0.01  

(-0.04, 

0.03) 

ln(HCB) 6.78  

(4.30, 9.26) 

0.08  

(-0.009, 0.15) 

0.14  

(0.05, 0.24) 

-0.11  

(-0.19, -

0.03) 

-0.15  

(-0.37, 0.07) 

0.07 

(-0.1, 0.24) 

-0.02  

(-0.03, 

-0.002) 

ln(β-HCH) 2.48  

(-1.63, 

6.59) 

0.15  

(0.05, 0.25) 

0.14  

(-0.03, 0.25) 

-0.24  

(-0.34, -

0.15) 

-0.40  

(-0.75, -0.05) 

0.07  

(-0.204, 

0.33) 

-0.04  

(-0.06, 

-0.02) 

ln(Oxychlordane) 4.90  

(1.81, 7.99) 

0.13  

(0.034, 0.23) 

0.12  

(-0.012, 0.23) 

-0.21  

(-0.3, -0.12) 

-0.32  

(-0.58, -0.06) 

0.05  

(-0.15, 

0.25) 

-0.02  

(-0.03, 

0.002) 

ln(BDE-47) 0.36  

(-2.19, 

2.91) 

0.2   

(0.12, 0.27) 

0.19  

(0.11, 0.27) 

-0.09  

(-0.15, 

0.02) 

-0.07  

(-0.26, 0.11) 

0.13  

(-0.01, 

0.27) 

-0.01  

(-0.03, 

0.004) 

ln(BDE-153) -0.00  

(-2.92, 

2.91) 

0.11  

(0.008, 0.208) 

0.1  

(-0.01, 0.21) 

-0.31  

(-0.4, -0.22) 

-0.17  

(-0.5, 0.11) 

0.41  

(0.19, 0.62) 

-0.01  

(-0.03, 

0.007) 

Ln(ΣOH-PCB) 4.29  

(4.20, 4.37) 

0.20  

(0.13, 0.26) 

0.24  

(0.17, 0.31) 

-0.04 

(-0.10, 

0.02) 

-0.01 

(-0.15, 0.17) 

0.31  

(0.19, 0.43) 

0.00 

(-0.02, 

0.01) 
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-4.86 % (-6.34; -3.36) -8.06% (-10.54, -5.51) 

9.12 %  
(3.06; 
15.52) 

0.04 %  
(-0.07; 
0.15) 

-19.1 % 
(-26.0; -11.55) 

15.33 %  
(-5.86;  
41.3) 

8.2 %  
(1.76; 
15.03) 

0.14 % 
(-0.07, 
0.34) 

a) b) 

-18.36 %  
(-25.63; -10.39) 

20.66 % 
(-1.63, 
48.0) 

-6.02 %  
(-9.12; -2.83) 

4.04 %  
(-17.2; 10.13) 

-5.58 %  
(-10.02; -0.92) 

7.96% 
(2.04, 14.22) 

-1.82 % (-3.67; 0.07) -0.14% (-6.5; 6.65) 
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-6.37 %  
(-10.54; -1.99) 

-5.77 % 
(-11.36, 0.18) 

-8.78 %  
(-14.49; -2.66) 

-2.24 %  
(-7.24; 1.98) 

-4.02 % (-5.34; -2.68) 

-3.1 % (-4.45; -1.73) -2.53 % (-4.05; -0.98)  

-0.006 % (-0.02; 0.03) -0.016 % (-0.07; 0.04) 

            6.1 % 

(0.15; 12.44) 

-6.33 % (-7.64; -4.99) 

a) b) 
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3.4 TEMPORAL TRENDS OF POPs WITH AND WITHOUT THE EFFECTS OF BIOLOGICAL 
VARIABLES 

Overall, all compounds declined in polar bear plasma from 1997 to 2017, except BDE-153 

and β-HCH, which were stable over the study period. ΣPCB declined linearly by about 5% per 

year (see Figure 3 for LME trend estimates and 95% CI), p,p’-DDE declined nearly 20 % per 

year between 2004 and 12, and both HCB and oxychlordane 6% per year before 2009 and 

2010, respectively. BDE-47 declined by 3% per year over the entire study period.  

When the trends for each compound were corrected for predictors from their respective 

highest ranked model, the trends changed in shape for ΣPCB and β-HCH. The adjusted ΣPCB 

trend decreased almost twofold compared to the non-adjusted trend, but abruptly ceased to 

decrease in 2011 and thereafter increases significantly by 9% per year from 2011-17 (Table 

2b). The non-adjusted trend for HCB was stable after 2009, but the concentrations increased 

by almost 8 % per year from 2009-17 when adjusted for δ13C and BCI. The adjusted β-HCH 

concentrations were stable before 2012, but subsequently increased by about 8 % per year 

for the period 2012-17. All other compounds were only moderately affected by the 

biological variables we tested. The declining trend of organochlorine POPs we observed 

before 2010 is in accordance to numerous studies of Arctic biota (AMAP 2015; Andersen et 

al. 2015; Braune and Mallory 2017; Dietz et al. 2013b; McKinney et al. 2010). Trends for 

PBDEs in our study, however, are not decreasing comparably to organochlorine 

contaminants; the adjusted BDE-153 concentrations increased after 2010 and did not 

decrease before like PCBs and most OCPs, and BDE-47 is decreasing at a slower rate than 

most organochlorine contaminants. PBDEs have been used since the 1970, when e.g. PCBs 

were already phased out in many countries (Ask and Routti 2017; Li and Macdonald 2005). 

National and voluntary phase outs for PBDEs started in the early 2000 (EPA 2009), and they 

were added to the Stockholm convention in 2009 (pops.int). Overall, the later use and 

regulation of PBDEs compared to organochlorine contaminants could explain why BDE-47 

linearly decreased over the study period, and BDE-153 did not show a significant trend in 

polar bear blood. This is, however, not in accordance to other studies: (Houde et al. 2017) 

described increasing trends of PBDEs in Canadian ringed seals before 2008, and a decline 

thereafter; and trends of PBDEs in East Greenland polar bears did not show a trend 

(McKinney et al. 2010) or increased for BDE-153, and BDE-47 did not show any significant 

trend (Dietz et al. 2013a). 

Both adjusted and non-adjusted trends for OH-PCBs are declining linearly at a similar rate. Σ-

OH-PCBs in our study do not show an increase for the last decade similar to their parent 

PCBs. In polar bears, OH-PCBs stem by a large degree from biotransformation as opposed to 

bioaccumulation (Letcher et al. 2009) and trends could be expected to be similar to PCBs, 

however, the OH-PCBs in this study could have many more parent PCBs than the four that 

were analysed.  

 

0.04%  

(-0.07; 0.15) 

-1.82% (-3.67; 0.07) 

-6.37%  

(-10.54; -1.99) 

-5.77% 

(-11.36, 0.18) 

-19.1% 

(-26.0; -11.55) 

-6.33% (-7.64, -4.99) 

15.33%  

(-5.86;  

41.3) 

-4.86% (-6.34; -3.36) 

0.14% 

(-0.07, 

0.34) 

-6.02%  

(-9.12; -2.83) 

4.04%  

(-17.2; 10.13) 

-3.1% (-4.45, -1.73) 

-0.006% (-0.02; 0.03) 
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A few recent studies are starting to report stalling declines of legacy POPs in the Arctic for 

the last decade (Riget et al. 2016), which is in accordance to our results. We found significant 

increases for diet adjusted trends of ΣPCB, HCB and BDE-153. All other compounds we 

analysed except for BDE-47 show no significant trend after ~ 2010, even though they 

significantly decreased before. These stagnating decreases or increases might be related to 

secondary emissions, i.e. the release of previously stored contaminants in ice, snow, or soil 

due to climate change (Ma et al. 2016; Macdonald et al. 2005). Similar stagnating 

contamination trends have also been reported for other Arctic species (Braune et al. 2015) 

or other contaminants (Routti et al. 2017). However, as discussed before, the climate change 

driven loss of sea ice also affects food web ecology, i.e. polar bears are forced to feed more 

on terrestrial and lower trophic level food items, which counters the effect of increasing 

contaminants in polar bears.  

3.5 CONCLUSION AND FUTURE PERSPECTIVES 
In the current study we present results for an extensive time series for legacy POPs in 

Svalbard polar bears. Our results show significant decreases until ~ 2010 of all POPs 

analysed, except β-HCH and BDE-153. Trends adjusted for diet showed significant increases 

after ~ 2010 for ΣPCB, HCB, β-HCH and BDE-153, while other trends did not significantly 

increase or decrease. The difference between adjusted and non-adjusted trends for most 

compounds in relation to the decline of both δ13C and δ15N indicates a shift in the diet of 

Svalbard polar bears that yields them from a certain amount of the contaminant exposure. 

However, the climate – induced shift in diet poses an additional stressor on Svalbard polar 

bears and needs to be investigated further. Our results and other studies referenced herein 

have shown the utmost importance to carefully account for ecological and biological factors 

in temporal trend studies of POPs. With ongoing climate change contaminant patterns and 

trends will become more difficult to estimate, as changes might be more far-reaching in 

respect to ecology (changes in e.g. food webs or migration patterns), biology (changes in e.g. 

body condition or reproduction), or the distribution in abiotic compartments (contaminant 

pathways, distribution or storage). All these need to be accounted for in future temporal 

trend studies to ensure precise estimations and accurate predictions.  
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5 SUPPLEMENTARY INFORMATION 

5.1 PROXIES FOR FEEDING HABITS 
Stable isotopes were analysed according to previously published methods (Rogers et al. 

2015; Routti et al. 2017; Tartu et al. 2016). Red blood cells were dried at 50 °C for three days 

and then homogenized using a bead-mill homogenizer (TissueLyzer, Qiagen GmbH, Hilden, 

Germany). The samples were weighed on a Sartorius ME5 microbalance (Sartorius AG, 

Göttingen, Germany) and transferred to 3.5 × 5 mm tin cups for further analysis. The 

samples were analysed using a Costech ECS 4010 elemental analyser (Costech, Valencia, CA) 

in line with a ThermoFinnigan DeltaPlus XP continuous-flow isotope ratio mass spectrometer 

(CF-IRMS, Thermo Scientific, Bremen, Germany) for δ13C and δ15N, which was calibrated 

according to international reference standards from the International Atomic Energy Agency 

(IAEA-N1, IAEA-CH7, IAEA-C3, and IAEA-600) and the USGS (USGS-25, USGS-40, and USGS-

41). Internal standards of purified methionine were included (Alfa Aesar, δ13C = -34.58 ± 0.06 

‰, δ15N = -0.94 ± 0.05 ‰; all data error are SD) as well as homogenized Chinook salmon 

muscle (UAA Stable Isotops Lab, δ13C = -19.27 ± 0.05 ‰, δ15N = 15.56 ± 0.13 ‰) with all 

samples as quality controls. SI values are reported in standard δ notation and referenced to 

Vienna Pee Dee Belemnite (VPDB) for δ13C and to air for δ15N. Long term rerecords of 

internal standards yield an analytical precision of 0.12 ‰ for δ15N and 0.11 ‰ for δ13C. 

Replicates were analysed to determine intra-individual variability. The solids analyses were 

conducted at Jeffrey Welker’s stable isotope laboratory at the Environment and Natural 

Resources Institute of University of Alaska, Anchorage 

(http://www.uaa.alaska.edu/enri/labs/sils).   

5.1.1 QUALITY ASSURANCE 
Long-term records of internal standards (BWBII keratin, freeze dried moose (Alces alces) blood, 

peach leaves and purified methionine) yield an analytical precision of 0.10 ‰ for δ15N and 0.11‰ 

for δ13C.Measured values in reference materials are given in Table S1. 

Table S 1: Measured δ13C and δ15N values for commercially available and in-house (University of Alaska, Anchorage, UAA) 

secondary isotopic reference materials analysed with polar bear samples 

  Mean SD 

Difference from expected 
values 

SD for 
difference 

δ15N 
    

BWBII keratin (UAA) 14.38 0.06 -0.06 0.06 

Purified methionine (Alfa Aesar) -0.93 0.02 0.01 0.02 

Freeze dried moose (Alces alces; UAA) 2.32 0.07 0.10 0.07 

Peach Leaves (UAA) 2.11 0.18 0.13 0.13 

     
δ13C 

    
BWBII keratin(UAA) -18.51 0.04 -0.14 0.04 

Purified methionine (Alfa Aesar) -34.56 0.01 0.02 0.01 

Freeze dried moose (Alces alces; UAA) -28.27 0.11 -0.03 0.11 

Peach Leaves (UAA) -26.04 0.10 -0.06 0.07 

http://www.uaa.alaska.edu/enri/labs/sils
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5.2 CHEMICAL ANALYSES 

Data for POP concentrations from 1997-2013 were provided by the accredited Laboratory of 

Environmental Toxicology at the Norwegian University of Life Science (NMBU) in Oslo, while 

the author personally analyzed  samples from 2014-2017 in the same lab. 

The obtained blood plasma was analysed for PCBs, OCPs and PBDEs according to the 

requirements of the NS-EN ISO/IEC 17025 (TEST 137) (Norwegian Standard-European 

Committee for Standardization, 2005). The laboratory is thereby accredited for the 

determination of PCBs, OCPs and PBDEs in biological matrices of animal and human origin.  

The following contaminants were targeted in this study (* - detected in all years and 

discussed in this study): 

PCBs: 

 CB- 28, 52, 101, 118*, 138*, 153*, 180* 

OCPs: 

 dichlorodiphenyldichloroethylene (p,p’-DDE)*  

 heptachlorobenzene (HCB)*  

 hexachlorocyclohexane (HCH; α, β*, γ - isomers) 

 oxychlordane* 

 trans-nonachlor 

 toxaphene1 

PBDEs 

 BDE-47*, 153* 

OH-PCBs1: 

 4’-OH-CB106-108 (107*), 3’-OH-CB118, 4’-OH-CB130, 3’-OH-CB138*, 4’-OH-CB146*, 

4’-OH-CB159*, 4’-OH-CB172, 3’-OH-CB180, 4’-OH-CB187* 

The analytical standards were provided by Cambridge Isotope Laboratories, Inc., Andover, 

MA, USA for PCBs, OCPs, and BDEs; Ultra Scientific, Rhode Island, USA for PCBs; Supelco, 

Bellefonte, PA, USA for OCPs; LGC Promochem, Wesel, Germany for HCB. 

5.2.1 EXTRACTION AND CLEAN UP 

The extraction methods used were as described in (Brevik 1978) and later modified by 

(Polder et al. 2008). The method for the extraction of OH-metabolites is described in 

(Gabrielsen et al. 2011). This method is based on liquid/liquid extraction.  

5.2.1.1 EXTRACTION 

Approximately 2 g of polar bear plasma was weighed in 80 ml centrifuge glasses and internal 

standards were added. For the blind and recoveries 2 g cow blood (2009) was used, 

respectively, and for internal laboratory controls 0.25 g of harp seal blubber (Pagophilus 

                                                      

1 The determination of these compounds is not accredited according to the above mentioned 

requirements, but performed following the accredited methods. 
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groenlandicus), 0.25 g of minke whale blubber (Balaenoptera acutorostrata) and 2.5 g blood 

from a male bearded seal (Erignathus barbatus; Barents sea). To all samples and controls 2 

ml of NaCl solution, 10 ml 1 M sulphuric acid (H2SO4; Sigma Aldrich, St. Louis, Missouri, US; ≥ 

97.5 %), 15 ml acetone, and 20 ml cyclohexane (CHX; VWR chemicals, UN1145) was added to 

solve fat and lipid soluble components in the polar solvents and OH-metabolites in 1 M 

H2SO4. The NaCl solution aids in separating the polar and unpolar phases. The samples were 

homogenized using an ultra sound sonicator (Cole Parmer Ultrasonic Processor CPX 750, 

Vernon Hills IL, USA) for 1 min and centrifuged (Beckmann Coulter Allegra® X-12R) for 10 min 

at 3000 rpm. The supernatant was transferred into Zymark® glasses and evaporated down to 

1 ml at 40 °C and a gentle stream of N2 (purity: 99.6 %; AGA AS, Oslo, Norway, pressure 0.6 

ba) in a Zymark® Evaporator (TurboVap II, Zymark Corporation, Hopkinton, MA, USA). 5 ml 

acetone (VWR chemicals UN1090) and 10 ml CHX were added to the original sample glasses, 

homogenized for 30 sec. in the ultra sound sonicator and centrifuged for 10 min at 3000 

rpm. The supernatant was added to the Zymark® glasses with the 1 ml of previous 

supernatant and evaporated in the same way to a total of approximately 1 ml per sample.  

The internal laboratory controls (whale and seal blubber) were treated in the same way as 

described above, only 10 ml of water (purified Grade 1) were added to dilute the fat instead 

of 10 ml 1 M sulphuric acid. Whale and seal blubber extracts were transferred to volumetric 

flasks and filled with CHX to a total of 5 ml. 

5.2.1.2 DETERMINATION OF FAT CONTENT 

The fat content of the plasma samples and controls were determined gravimetrically. Due to 

the small sample size and the low amount of fat in blood, the whole sample was used for the 

determination of fat content. Glasses used for the determination of fat content were 

weighed when clean, dry and empty and the extracts were transferred completely to their 

respective weighed glasses.  The Zymark® glass walls were rinsed 3 times with CHX. The 

extracts evaporated in a 40 °C sand bath with gentle N2 blowing into the glasses through 

disposable glass Pasteur pipettes until only an inert, fatty residue was left in the glasses. The 

fat residues were weighed until a stable weight was obtained (+/- 0.002 g).  

For the whale and seal blubber, an aliquot of 1 ml was used from the total extract size of 5 

ml. This aliquot was evaporated overnight in a 40 °C sand bath and was weighed the next 

day after cooling down to room temperature. This process was repeated until stable weight.  

The percentage of fat content was calculated by the following formula:  

 

𝐿𝑖𝑝𝑖𝑑% =
𝑔𝑙𝑎𝑠𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑡 [𝑔] − 𝑒𝑚𝑡𝑦 𝑔𝑙𝑎𝑠𝑠 [𝑔]

𝑖𝑛𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑝𝑙𝑎𝑠𝑚𝑎) [𝑔]
∗ 100 
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For the fatty content calculation of whale and seal blubber, the formula had to be modified 

by multiplying the difference between empty and full glass with the total amount of the 

sample solution (5 ml). 

After the determination of fat content, the fat extracts were solved in 1 ml CHX. The fat 

residue from the whale and seal aliquots were not further used.  

5.2.1.3 ACID CLEAN UP 

In order to get rid of fat and protein residues 4 ml concentrated H2SO4 (≥  97.5 %) was added 

to all extracts, mixed (MS2 Minishaker, IKA® Works, INC.) for 10 sec. and then put 1 hour for 

incubation in a dark place to prevent the acid from breaking down in day light. The samples 

were centrifuged for 10 min at 3000 rpm and the supernatant was transferred into new 

clean glass test tubes. To ensure the supernatant was free of acid every pipette taken out 

was tested for acid with pH paper. Any extract residues remaining in the acid phase was 

solved in approximately 1 ml of CHX and taken out as supernatant after centrifugation of 10 

min at 3000 rpm. Extracts and controls were taken further for the partitioning of the 

samples into chlorinated compounds and BFRs, and OH-metabolites. 

The remaining whale and seal blubber solutions of 4 ml were divided into 2 glasses of 2 ml 

respectively and thereafter treated the same as the extracts. 

After the acid clean up 150 µl of the clear seal blubber supernatant was put into a clear gas 

chromatography (GC) vial. From that vial 20 µl was put into another GC vial and filled up 

with 180 µl CHX (dilution 1:10).  

5.2.1.4 SEPARATION OF OH-METABOLITES FROM OCPs, PCBs, AND PBDEs 

5 ml 1 M potassium hydroxide (KOH) (Alfa Aesar, Pellets 85%, in 1:1 ethanol and purified 

Grade 1 water) was added to the clear extracts (cleaned with acid) to solve the polar OH-

metabolites, whereas the other OCPs, PCBs, and PBDEs remained in the CHX. After 

homogenising on a Whirlimixer (VWR International, S/N: 200031637) and 5 min at 3000 rpm 

in the centrifuge the infranatant containing OH-metabolites was put into new test tubes. 

This procedure was repeated, leading to an amount of 10 ml KOH in the new test tubes.  

5.2.1.5 EXTRACTION OF PCBs, OCPs, AND PBDEs 

For OCPs, PCBs and PBDEs the former supernatant (CHX) was further processed. One Pasteur 

pipette of purified Grade 1 water was added to the extracts to collect the residues of KOH 

and the supernatant (CHX) was transferred to new test tubes calibrated with a 200 µl 

“Keeper” solution (2 % decane in CHX). Compounds remaining in the infranatant were 

disolved in 1 ml CHX and transferred to the same calibrated test tubes. The extracts were 

evaporated until the calibration mark in the 40 °C sand bath with a gentle N2 stream blowing 

into the test tubes through Pasteur glass pipettes. The glass walls were rinsed with CHX in 

order to collect any remaining compounds sticking to the glass walls and evaporated down 

to the mark again. The extracts were adjusted with CHX to a final volume of 200 µl. The 

extracts were transferred to brown GC vials for analysis of chlorinated compounds and BRFs, 
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whereas the whale blubber was transferred into a clear GC vial for analysis of toxaphenes. 

The samples in GC vials were stored in the fridge (3.2 °C) until the GC analysis. 

5.2.1.6 EXTRACTION OF OH-METABOLITES 

For the extraction of OH-metabolites, the former infranatant was treated further. To re-

protonate the OH-metabolites solved in the KOH phases about 30 drops of concentrated 

H2SO4 was added to the samples (pH about 1-2). Then 5 ml CHX was added to take up the 

compounds and this CHX supernatant was transferred into Zymark® glasses. This step was 

repeated again and the resulting 10 ml were evaporated down to 1 ml in the Zymark® 

evaporator (40 °C, 0.6 bar). The samples were then transferred from the Zymark® glasses 

into new test tubes calibrated to 1 ml with CHX, the Zymark® glass walls were rinsed twice 

with about 1 ml of CHX, which was also added to the sample in the calibrated test tubes. The 

samples were evaporated to the 1 ml calibration mark in a 40 °C sand bath and a gentle 

stream of N2.  

5.2.1.7 DERIVATIZATION 

Polar compounds can lead to “peak tailing” in gas chromatography, therefore the polar OH-

metabolites needed to be derivatized. In this process the H of the OH-group is substituted by 

an acetyl group, making the compound less polar. To achieve this 50 µl 1:1 solution of acidic 

anhydride and pyridine was added to all extracts, blind, recoveries, blanks and seal blood 

(whale and seal blubber were not analysed for OH-metabolites). The samples were mixed 

and placed into a heating cabinet (Termaks Type B8054, Bergen, Norway) at 60 °C for 30 min 

for incubation. 2 ml purified Grade 1 water was added to dissolve the remaining acid 

residues. The supernatant was transferred to new test tubes calibrated with 200 µl “Keeper” 

solution. The samples were evaporated, the inside of the test tubes rinsed once with CHX 

and evaporated again to the calibration mark and corrected with CHX to the end volume of 

200 µl. Then the samples were transferred to brown GC vials and stored in the fridge until 

GC analysis.  

5.2.2 GAS CHROMATOGRAPHIC ANALYSIS 

The concentration of the chlorinated compounds as well as OH-metabolites was quantified 

with a high resolution GC (Hewlett Packard HP 6890 Series, USA) with NPD and ECD 

detectors (Agilent Technologies, 5975c inert XL EI/CI MSD triple axis detector, USA). PBDEs 

were quantified using a high resolution GC (Agilent 6890 Series GC system, USA) coupled 

with a mass spectrometer (Agilent 5973 Network Mass Selective Detector, USA). Details 

about the method can be found in (Polder et al. 2008) and (Gabrielsen et al. 2011). The 

carrier gas used for all GC methods was helium.  
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Table S 2: Limit of detection (LOD; ng/g) and recovery rate (%; “Recov.”) of lipophilic pollutants and OH-PCBs in spiked 

reference material for polar bear plasma batches analyzed in 2007, 2009, 2011, 2014, 2015 and 2017. OH-PCBs and BDE-47 

(all batches) and PCBs and OCPs (2007, 2009 and 2011) were measured by HRGC (Agilent 6890 Series with Agilent 7683 

Series autosampler) connected to a quadrupole MS detector (Agilent 5973 Series). In 2014, PCBs and OCPs were measured 

using HRGC (Agilent 6890 Series with Agilent 7683 Series autosampler) connected two μ-ECD (Agilent 6890). In 2015 OCPs 

and PCBs were measured using HRGC (Agilent 6890 Series with Agilent 7683 Series autosampler) connected to a quadrupole 

MS detector (Agilent 5975 Series). In 2017 PCBs, OCPs and OH-PCBs were measured by HRGC (Hewlett Packard HP 6890 

Series) with NPD and ECD detectors (Agilent Technologies, 5975c inert XL EI/CI MSD triple axis detector); and PBDEs by 

HRGC Agilent 5973 Network Mass Selective Detector coupled with a mass spectrometer (Agilent 5973). N.a. not analysed 

 2007  2009  2011  2014  2015  2017  

 LOD Recov

. 

LOD Recov

. 

LOD Recov

. 

LOD Recov

. 

LOD Recov

. 

LOD Recov

. HCB 0.01 120 0.01 91 0.02 95 0.01 118 0.007 101 0.008 64 

Oxychlordane 0.015 99 0.015 83 0.05 85 0.14 92 0.041 117 0.009 76 

p,p'-DDE 0.025 107 0.025 100 0.03 97 0.07 105 0.126 123 0.015 106 

PCB-118 0.01 104 0.04 99 0.06 102 0.015 95 0.015 97 0.005 105 

PCB-138 0.02 90 0.03 103 0.06 111 0.02 97 0.011 119 0.005 106 

PCB153 0.025 97 0.025 108 0.07 82 0.015 95 0.009 118 0.005 104 

PCB-180 0.02 91 0.02 104 0.06 108 0.015 99 0.009 95 0.005 103 

4 OH-CB-107 0.025 109 0.025 104 0.07 86 0.055 97 0.051 101 0.01 79 

3'OH-CB-138 0.06 109 0.06 103 0.06 84 0.115 92 0.123 96 0.01 99 

4 OH-CB-146 0.02 108 0.02 109 0.1 84 0.13 90 0.059 97 0.011 99 

4'OH-CB-159 0.12 88 0.025 90 0.02 96 0.053 101 0.017 100 0.005 98 

3'OH-CB 187 0.02 96 0.025 116 0.07 42 0.11 62 0.135 100 0.012 68 

BDE-47 0.025 62 0.025 92 0.005 102 0.01 102 0.012 84 0.007 102 

5.2.3 QUALITY CONTROL 

To ensure quality control throughout the preparation and GC analysis of the samples both 

external and internal controls were included in all steps of all series. Each series of 15 – 17 

samples included one blind, two recoveries, three blanks and the in-house controls seal and 

whale blubber and seal blood. The first two series also included the certified reference 

materials CRM 349 (series one; chlorobiphenyls in cod liver oil) and CRM 350 (series 2; 

chlorobiphenyls in mackerel oil), these are external European standards to ensure 

comparability to other laboratories. The internal controls contain known amounts of 

chemical compounds. Seal blubber was used for different chlorinated compounds and BFRs, 

whale blubber for toxaphenes and seal blood for OH-metabolites. Blind control and 

recoveries consisted of a similar matrix like the sample (cow blood) with an expected low 

concentration of pollutants. The three blanks consisted of only the solvents and added 

standards. Internal standards with known concentrations were added to all samples and 

controls to ensure control over the accuracy and sensitivity of both the extraction process 

and GC analysis. Standards for all chemicals analysed were used. 

To ensure quality control in an international context the Arctic Monitoring and Assessment 

Program (AMAP) Ring Test was included with the last series of samples. AMAP instituted the 

Ring Test in 2001 for 32 compounds (including amongst others β-HCH, HCB, p,p’-DDE, PBDEs, 

PCBs, PFAS, toxaphene, and trans-nonachlor) in human serum and as in 2009, 28 labs 

participate in this quality control (AMAP 2009). 
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5.3 DATA ANALYSIS 

 

 

 

Table S 3: All candidate models used for GAMM analyses. Highly correlated 

predictor variables (e.g. δ15N and δ13C) were not included in the same models 

(Burnham et al. 2010). For GAMM estimates (Table 2), all candidate models were 

averaged based on weight of AIC.  

 

5.4 BIOLOGICAL INFORMATION 
Table S 4: Biological information for polar bears sampled around Svalbard 1997-2017. Body condition index (BCI, arbitrary 

values), δ13C and δ15 in red blood cells, and age (years) are given as mean ± standard deviation. Solitary bears were alone 

or with a male, COY were together with cubs of the year, and YRL were with cubs aged between 1 and 2 years. The 306 

samples collected represent 185 individual females. N.a.: not analysed. No samples were taken in 1999.    

Year  BCI  Breeding status  δ13C  δ15N  Age 

    Solitary COY YRL      Years 

1997  -0.79 ± 0.07  0 1 1  n.a.  n.a.  8 ± 1 

1998  -1.23 ± 0.61  0 13 0  n.a.  n.a.  13 ± 3 

2000  -1.36 ± 0.78  5 3 2  -19.24 ± 0.64  16.82 ± 1.55  14 ± 4 

2001  -1.06 ± 0.72  3 3 5  -19.11 ± 0.26  17.12 ± 0.51  13 ± 7 

2002  -1.18 ± 0.49  3 4 2  -18.93 ± 0.29  17.00 ± 0.48  11 ± 4 

2003  -1.45 ± 0.8  3 5 3  -19.33 ± 0.51  17.15 ± 0.84  10 ± 4 

2004  -1.34 ± 0.92  6 4 0  -19.55 ± 1.47  16.44 ± 1.72  12 ± 6 

2005  -1.37 ± 0.43  5 5 0  -19.29 ± 0.33  17.4 ± 0.48  13 ± 6 

2006  -1.62 ± 0.72  4 6 0  -19.13 ± 0.35  17.19 ± 0.64  13 ± 5 

2007  -1.51 ± 0.74  10 5 4  -19.78 ± 0.93  16.34 ± 1.36  11 ± 6 

2008  -1.51 ± 0.58  17 11 3  -19.76 ± 0.90   16.24 ± 1.40  10 ± 5 

2009  -1.83 ± 0.41  2 4 4  -20.08 ± 0.97  15.76 ± 1.45  13 ± 6 

2010  -1.02 ± 0.81  9 0 1  -20.17 ± 1.24  15.5 ± 1.82  13 ± 6 

2011  -1.79 ± 0.5  6 6 1  -19.59 ± 0.73  16.25 ± 1.32  12 ± 6 

2012  -1.23 ± 0.65  18 9 6  -20.1 ± 0.83  15.7 ± 1.27  13 ± 6 

2013  -1.72 ± 0.72  15 9 5  -19.98 ± 0.68  16.33 ± 0.97  12 ± 5 

2014  -1.35 ± 0.86  13 2 1  -19.91 ± 0.65  16.39 ± 1.22  11 ± 5 

2015  -1.69 ± 0.49  6 9 2  -20.51 ± 0.83  16.13 ± 1.3  14 ± 5 

2016  -1.23 ± 0.69  12 7 4  -20.86 ± 1.15  15.52 ± 1.59  13 ± 4 

2017  -1.23 ± 0.62  11 5 3  -20.92 ± 1.16  15.91 ± 1.91  12 ± 5 

 

 

 

 

1. YEAR 

2. YEAR + δ13C 

3. YEAR + δ15N 

4. YEAR + δ13C + Cub status 

5. YEAR + δ15N + Cub status 

6. YEAR + δ13C + BCI 

7. YEAR + δ15N + BCI 

8. YEAR + δ13C + Age 

9. YEAR + δ15N + Age 
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5.5 CONCENTRATIONS OF SINGLE PCB AND OH-PCB COMPOUNDS 
Table S 5: Median (bold), min. and max. concentrations of PCB and OH-PCB compounds (summed in Table 1)  in plasma 

samples from female polar bear collected on Svalbard 1997-2017. PCBs are given in ng/g lipid weight, and OH-PCBs in ng/g 

wet weight. No samples were taken in 1999; n.a.: not analysed. 

 PCB-118 PCB-138 PCB-153 PCB180 OH-PCB 

107 

OH-PCB 

138 

OH-PCB 

146 

OH-PCB 

156 

OH-PCB 

187 

1997 16 617 3230 1798 n.a.  n.a.  n.a.  n.a.  n.a.  

 12; 21 326; 907 1658; 4803 1077; 

2519 

     

1998 32 365 1858 1107 n.a.  n.a.  n.a.  n.a.  n.a.  

 21; 49 276; 691 1351; 5225 566; 4366      

2000 36 397 2276 701 8.07  1.05  50  0.40  72   

 4.32; 66 119; 1246 895; 7126 219; 3097 1.24, 44 0.06, 2.51 13, 67 0.13, 1.42 18, 200 

2001 26 480 3013 1446 8.29  0.9  52  0.40  87  

 15; 44 340; 1229 1621; 9300 595; 4007 4.02, 27 0.63, 1.54 34, 89 0.22, 0.87 49, 119 

2002 30 549 3446 1433 4.93  0.79  45  0.41  61  

 5.39; 52 176; 1369 1392; 

14875 

685; 5926 1.56, 19 0.25, 1.90 23, 79 0.21, 0.89 39, 131 

2003 26 246 1836 1174 8.24  0.66  32  0.32  115  

 18; 68 137; 534 852; 3132 553; 2241 4.06, 14 0.48, 2.36 18, 64 0.19, 0.63 65, 213 

2004 31 413 2475 1272 7.20  0.91  40  0.32  67  

 12; 40 131; 1505 825; 9166 382; 3766 1.92, 24 0.06, 2.87 15, 81 0.12, 0.98 23, 139 

2005 33 491 2584 940 9.78  0.69  40  0.38  51  

 15; 60 179; 1327 1110; 9621 496; 3244 2.54, 51 0.06, 2.94 23, 73 0.01, 0.96 39, 135 

2006 25 555 2720 1240 9.80  1.07  67  0.4  129  

 14; 70 198; 1160 1166; 6907 413; 2277 2.68, 32 0.54, 1.36 22, 85 0.27, 0.52 40, 426 

2007 23 220 1009 568 8.72  1.18  31  0.28  57  

 11; 44 115; 396 486; 12626 250; 8545 1.83, 33 0.50, 2.57 15, 65 0.05, 0.72 18, 93 

2008 27 207 1164 650 3.71  0.57  27  0.25  38  

 11; 55 50; 757 403; 5057 275; 3179 0.72, 17 0.18, 1.54 6.19, 52 0.07, 3.11 7.98, 84 

2009 14 144 1084 809 4.00  0.54  25  0.28  32   

 0.32; 33 57; 757 580; 4166 388; 2273 2.10, 8.36 0.40, 1.38 9.70, 34 0.19, 1.52 14, 104 

2010 19 136 997 703 4.43  0.49  21  0.20  33  

 13; 34 61; 250 416; 1759 284; 941 2.54, 11 0.06, 0.94 10, 29 0.01, 0.35 13, 105 

2011 24 253 1962 1129 5.65  0.81  33  0.35  111  

 12; 80 74; 578 697; 3772 680; 3616 3.08, 16 0.30, 1.55 12, 56 0.20, 0.71 47, 235 

2012 16 101 793 547 4.29  0.51  18  0.16  48   

 2.25; 31 15; 487 285; 2138 153; 1870 1.33, 15 0.03, 1.18 7.28, 34 0.04, 0.41 18, 112 

2013 14 186 1189 886 4.90  0.72  21  0.15  38   

 0.68; 41 67; 673 423; 5803 335; 5614 2.56, 28 0.19, 2.55 9.32, 61 0.08, 0.57 15, 179 

2014 17 133 1291 818 3.43  0.27  18  0.19  27  

 3.36; 72 44; 490 293; 7256 191; 4400 0.43, 17 0.06, 2.18 2.61, 52 0.01, 0.88 5.62, 102 

2015 19 167 1386 841 4.01  0.5  25  0.19  32   

 6.47; 32 27; 628 484; 5130 297; 3432 1.59, 13 0.00, 4.97 4.75, 53 0.09, 0.76 5.38, 107 

2016 18 108 789 471 3.09  0.54  17  0.14  27  

 4.55; 52 34; 499 270; 6286 209; 5977 1.46, 28 0.24, 1.78 7.92, 74 0.00, 0.54 11, 81 

2017 16 122 829 527 4.01  0.46  20  0.16  23  

 5.91; 39 9; 961 162; 5961 132; 2575 0.63, 8.84 0.00, 0.98 2.08, 80 0.02, 0.63 3.45, 61 

 

 


