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ABSTRACT

Context. Because of high charge-to-mass ratio, the nanodust dynamics near the Sun is determined by interplay between
the gravity and the electromagnetic forces. Depending on the point where it was created, a nanodust particle can either
be trapped in a non-Keplerian orbit, or escape away from the Sun, reaching large velocity. The main source of nanodust
is collisional fragmentation of larger dust grains, moving in approximately circular orbits inside the circumsolar dust
cloud. Nanodust can also be released from cometary bodies, with highly elongated orbits.
Aims. We use numerical simulations and theoretical models to study the dynamics of nanodust particles released from
the parent bodies moving in elongated orbits around the Sun. We attempt to find out whether these particles can
contribute to the trapped nanodust population.
Methods. We use two methods: the motion of nanodust is described either by numerical solutions of full equations of
motion, or by a two-dimensional (heliocentric distance vs. radial velocity) model based on the guiding-center approxi-
mation. Three models of the solar wind are employed, with different velocity profiles. Poynting-Robertson and the ion
drag are included.
Results. We find that the nanodust emitted from highly eccentric orbits with large aphelium distance, like those of
sungrazing comets, is unlikely to be trapped. Some nanodust particles emitted from the inbound branch of such orbits
can approach the Sun to within much shorter distances than the perihelium of the parent body. Unless destroyed by
sublimation or other processes, these particles ultimately escape away from the Sun. Nanodust from highly eccentric
orbits can be trapped if the orbits are contained within the boundary of the trapping region (for orbits close to eclip-
tic plane, within ∼0.16 AU from the Sun). Particles that avoid trapping escape to large distances, gaining velocities
comparable to that of the solar wind.
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1. Introduction

The distribution and dynamics of interplanetary dust in
the vicinity of the Sun is important for understanding the
evolution of the interplanetary dust cloud as a whole and
its interactions with the solar wind (see e.g., Mann, Meyer-
Vernet & Czechowski 2014). Near the Sun, the dust cloud
number densities and collision rates are the highest. The
dust production and destruction rates vary with solar ac-
tivity, for example, the coronal mass ejections (Ragot &
Kahler 2003). Dust destruction by mutual collisions is the
main source of small (sub-micrometer) dust particles. Dust
collisions are probably also the largest dust-related source
of heavy pick-up ions in the solar wind (Mann & Czechowski
2005). The small dust particles are pushed away from the
Sun by radiation pressure and electromagnetic forces and
form an outward-directed flux of dust in the interplanetary
medium. The dust particles of sizes of a few nanometers
can be accelerated to speeds of the order of the solar wind
speed (Mann, Murad & Czechowski 2007, Czechowski &
Mann 2010, 2011, 2012).

Dust particles of micrometer and smaller sizes are ob-
served in-situ by space-based dust instruments. However,

dust impacts can also be observed by other methods. In
particular, the dust can be detected by plasma wave mea-
surements, because the dust impacts generate free charges
and change the electric potential of the spacecraft. Recent
examples of dust studies relying on plasma wave measure-
ments are STEREO, Cassini, and Wind (e.g., Kellogg et
al. 2016, Malaspina et al. 2014, Meyer-Vernet et al. 2009)
observations. NASA’s Parker Solar Probe (Fox et al. 2016)
and ESA’s Solar Orbiter (Mueller et al. 2013) mission will,
in the near future, explore the vicinity of the Sun. They
both carry instruments for field measurements (see Bale,
Goetz & Harvey 2016) and have the potential to detect
dust impacts.

The nanodust particles are of particular interest be-
cause, due to the large value of their charge-to-mass ra-
tio, their dynamics is largely determined by electromag-
netic forces. In our previous work on nanodust dynamics
(Czechowski & Mann 2010, 2012), we considered the nan-
odust created by collisional fragmentation of larger grains
belonging to the circumsolar dust cloud in the vicinity of
the Sun. The initial velocity of nanodust particles was con-
sequently assumed to be close to that of a circular Keplerian
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orbit. We found that the majority of nanodust particles cre-
ated near the ecliptic within a critical radius of ∼0.16 AU
from the Sun would then be trapped in non-Keplerian or-
bits determined by the interplay between gravitation and
electromagnetic forces. Away from the ecliptic, the size of
the trapping region depends on the release point on the or-
bit. The particles created outside the trapping region escape
away from the Sun, reaching a high velocity, comparable to
that of the solar wind.

In the present work, we consider the more general case of
nanodust released from elongated orbits, in particular the
highly eccentric orbits, like those of the cometary bodies
passing close to the Sun.

Comets release gas and dust particles due to illumina-
tion by the Sun. The dust particles are carried and acceler-
ated in the outflowing coma gas. Observations suggest that
dust properties vary within the coma, most likely due to
fragmentation, sublimation of volatiles, and other unknown
effects.

There is little information about the smallest size of
the dust, because astronomical observations are typically
limited to sizes of ∼100 nm and larger. An exception is
provided by X-ray observations, which are capable of iden-
tifying nanodust. Analyzing X-ray observations of comets,
Snios et al. (2014) derived the upper limits on the nanodust
contribution. There is also some positive evidence for the
presence of nanodust near comets. The in-situ detection
of nanodust was reported from space missions to P/Halley
(Utterback & Kissel 1990, 1995).

These observations were in line with the assumption
that the nanodust forms during fragmentation events, but
the formation of nanodust during fragmentation is not well
explored (see e.g., Mann 2017). Szego, Juhasz & Bebesi
(2014) predicted that Rosetta will detect nano dust at
comet 67P/Churyumov-Gerasimenko. There is no instru-
ment onboard that was specifically designed for detecting
nanodust, and, so far, there is only little evidence.

Burch et al. (2015) report that the ion and electron in-
strument RPC/IES detects negative particles at energies
from about 100 eV/q to more than 18 keV/q and interpret
these observations as clusters of molecules with diameters
of less than 100 nm that reach the spacecraft from the di-
rection of the comet and from the direction of the Sun.
Gombosi, Burch & Horanyi (2015) describe the trajecto-
ries in detail and show that the nanodust flux at Rosetta
could be intermittent. Alternatively, one could speculate
that the impacts from the sunward direction that RPC/IES
observes are from minor solar wind constituents, as, for ex-
ample, negative oxygen ions have energies of around 10 keV
(cf. Mann 2017).

In our simulations, we restrict attention to dynamics of
the (hypothetical) nanodust created in eccentric orbits at
zero initial velocity relative to the parent body. We only
consider the behavior of nanodust after it is released; the
production mechanism of nanodust is beyond the scope of
this study. We show that a high value of eccentricity com-
bined with a large aphelium distance, typical for the release
from a comet, eliminates the possibility of trapping. In the
rare case that the dust in the initial orbit does not extend
outside the limits of the trapping region (∼0.16 AU near
the ecliptic, see Czechowski & Mann 2010, 2012), a particle
emitted near the aphelium can be trapped for arbitrarily
high eccentricity.

The nanodust particles emitted from an elongated or-
bit follow trajectories that are very different from those
of larger dust grains with smaller charge-to-mass ratios.
In particular, some of the nanodust particles emitted from
the inbound part of the orbit may approach the Sun to
distances much smaller than the parent body perihelium.

The plan of the paper is as follows. In Section 2, we
briefly present the equations of motion and our solar wind
models. Section 3 describes our recent development of the
”phase space” model based on the guiding center approxi-
mation (see Czechowski & Mann 2010, 2012 for the earlier
version). Section 4 presents our results for dynamics of nan-
odust particles emitted from parent bodies moving in elon-
gated Keplerian orbits; it includes subsections dealing with
trapping conditions, trapping of nanodust emitted from the
perihelium, and dynamics of particles released at an arbi-
trary point on the parent-body orbit. Our conclusions are
given in Section 5.

2. Simulations of nanodust propagation in the solar

wind

Our model of the solar wind and the solar magnetic field
is very simple. The solar wind velocity is radially directed,
and the magnetic field has the form of the Parker spiral.
Distinct from our previous work, the solar wind speed can
depend on the heliocentric distance. The motion of the nan-
odust particles is studied by means of the straightforward
numerical simulation. We also use the two-dimensional (2D)
”phase space” model derived from the leading order of the
guiding center approximation. The 2D model describes the
motion of the nanodust particle in the (r,v) plane, where r
is the heliocentric distance and v the radial component of
the particle velocity, and provides a good approximation to
our numerical results for particles with large enough values
(10−5-10−4 e/mp) of the charge-to-mass ratio. We found
the model helpful for qualitative understanding of the dy-
namics of nanodust.

2.1. Equations of motion

The equation of motion for the nanodust particle has the
form

dv

dt
=

Q

mc
(v − V )×B −

GMS

r2
êr + F γ + F ion, (1)

where F γ is the radiation force,

F γ =
GMS

r2
β
((

1−
vr
c

)

êr −
v

c

)

. (2)

We assume the radiation pressure to gravity ratio β for
nanodust particles to be small (β=0.1; see Czechowski &
Mann 2010, 2012). In some calculations, we replace F γ by
(GMsβ/r

2)êr, that is, we neglect the tangential (Poynting-
Robertson drag) force.

In some of our simulations, we include F ion, the drag
force caused by solar wind proton impacts on a grain:

F ion = −FSW (r)CSW,p
v − V

|v − V |
, (3)
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where FSW (r) = nSW (r)mp|v−V |2 is the solar wind pro-
ton flux at r relative to dust grain, and CSW,p is given by
Minato et al. (2004):

CSW,p = πs2
2

3

2s

l(E)
(2s ≤ l(E)), (4)

CSW,p = πs2

[

1−
1

3

(

l(E)

2s

)2
]

(2s > l(E)). (5)

Here, s is the radius of the grain, and l(E) is the range
of a proton of initial energy E = (1/2)mp|v − V |2 passing
through the material of the grain. Following Minato et al.
(2004), we assume l(E) ∝ E1/2 with l(1keV )=0.092 µm for
silicate grains. Similarly to Minato et al. 2004, we simplify
the proton drag force by neglecting the thermal component
of the proton velocity. In our simulations, the proton drag
force becomes important only in the immediate vicinity of
the Sun, where the proton number density is high.

We assume that the charge to mass ratio Q/m of the
nanodust particle is constant during the motion. In the re-
gion within 1 AU from the Sun, the characteristic time
for charge fluctuations for nanodust is short relative to the
Larmor rotation time (Czechowski & Mann 2010, 2012).
The surface charge on the grain can then be approximated
by the equilibrium charge, which, based on theoretical esti-
mations (Mukai 1981, Kimura & Mann 1998), can be taken
to be approximately constant within our region of calcula-
tions.

2.2. Solar wind models

The solar wind flow velocity V we assume to be radially
directed and independent of time. Distinct from our previ-
ous work (Czechowski & Mann 2010, 2012), we allow the
solar wind speed V to depend on the heliocentric distance
r: V = V (r). The magnetic field B has the form of the
Parker spiral:

B

B
= ±b̂ , b̂ ≡

êr − aêφ
(1 + a2)1/2

, (6)

B =
C

r2
(1 + a2)1/2, (7)

a = a(r) = a(r, θ) =
Ωr

V (r)
sin θ. (8)

Here Ω is the angular rotation speed of the Sun, θ the helio-
graphic colatitude, êr, êφ and êθ denote the unit vectors of
the heliographic inertial coordinate system. The constant
C can be written as C = B̃rr̃

2, where B̃r is the absolute
value of the radial component ofB at the reference distance
r̃. The constant C in Eq. 7 can in general be different for
different field lines. As in our previous work (Czechowski

& Mann 2010, 2012), we use two values for B̃r at r̃=1 AU,
one for the slow (35 µG) and one for the fast (45 µG) solar
wind region. We note that our present definition of a (Eq.
8) differs from that used in Czechowski & Mann (2010) in
that we include the factor of r.

Our model includes the heliospheric current sheet and
the two-component (slow and fast) solar wind structure.
The current sheet is included by assuming that the rotat-
ing solar surface is divided into two hemispheres with oppo-
site field polarity. The boundary between the hemispheres

(the magnetic equator) is approximated by a great circle
at a fixed tilt relative to the solar equator. In most of the
calculations reported here, the tilt was set to 20o.

The magnetic field polarity in our simulations corre-
sponds to outgoing (positive) field in the northern solar
hemisphere. This is known as ”defocusing” or ”qA>0” po-
larity, with the electric field −(1/c)V ×B induced by the
plasma motion pointing away from the current sheet. The
motion of particles with positive charge in our ”defocus-
ing” field model is equivalent to that of negatively charged
particles in the ”focusing” field. To simulate the motion
of Q > 0 particles in the ”focusing” field, we therefore use
Q < 0 particles without changing our magnetic field model.

We consider three different models of the solar wind
(Figure 1). In all of them, the solar wind velocity is radially
directed. The models differ by the assumed solar wind speed
dependence on the heliocentric distance r. Model 1 is the
same as used in our previous work (Czechowski & Mann
2010, 2012), with r-independent speed: V=400 km/s for
the slow and V=800 km/s for the fast solar wind. In some
calculations we use the same (slow) solar wind speed for all
heliographic latitudes.

The other two models (models 2 and 3) are used as
test cases of the r-dependent solar wind speed. We do not
propose these models as realistic descriptions of the so-
lar wind: our aim is to test the influence of the different
V (r) profiles on nanodust dynamics. In model 2, the func-
tion V (r) is given by the analytic formula V (r) = V2 ≡
[2A(r − ra)]

1/2 (A=3.4 m/s2,ra=-0.6RSun), obtained by
Sheeley et al. (1997) as a fit to one of the observed so-
lar plasma velocity profiles. Although these observations
were restricted to the vicinity of the Sun, we use the same
formula also beyond this region. Model 3 is defined by
V (r) = V2(r)/(1 + V2(r)/(800 km/s)): we use it as an ex-
ample of the solar wind with a steep velocity profile near
the solar surface and approximately constant speed near 1
AU. The fast wind velocity is equal to V (r) multiplied by
two. In all our models, the fast solar wind region is limited
to heliographic latitudes higher than the tilt angle.

For calculations including the proton drag force, we
also need the proton density profile np(r) (Figure 1, bot-
tom panel). We assume that this is given by (for the slow
wind component) np(r) = n̄p/(r/AU)2 (model 1) and by
np(r) = npcV (rc)/V (r)(rc/r)

2 (models 2 and 3), where
npc = n̄p/(rc/AU)2. We take n̄p=8 cm−3, rc =0.16 AU
(model 2) and 0.6 AU (model 3). We assume the same ram
pressure for the slow and the fast solar wind: consequently,
the proton density in the fast wind is assumed equal to
one quarter of the slow wind value at the same heliocentric
distance.

3. Phase space model of nanodust dynamics in the

solar wind

In addition to numerical solutions of Eq. 1, we use a new
version of the 2D dynamical model derived in Czechowski &
Mann (2010) from the guiding center approximation. The
model describes the motion of the particle on the (r,vr)
phase plane and has been shown to agree with the projec-
tions of the trajectories obtained from the full equation Eq.
1. The new version of the model permits the use of the r-
dependent solar wind velocity and is not restricted to the
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r ≪ 1 AU region. The additional advantage is a simple
expression for the constant of motion of the model.

The model is derived from the guiding center approx-
imation (Northrop 1958). In the time-stationary case, the
equation for the parallel component vG|| of the velocity of

the guiding center takes the form

dvG||

dt
= g|| − µ∂SB + V T · ((V T · ∇)b̂ + vG|| ∂S b̂), (9)

where g|| is the component of the gravity force (which we
modify by the (1 − β) factor to account for the radiation

force) per unit mass parallel to b̂ ≡ ±B/B, V T is the

perpendicular part of the plasma velocity, ∂S ≡ (b̂ · ∇)
and µ = (v′T )

2/2B is the adiabatic invariant, with v′T =
|vT −V T | being the perpendicular speed of the particle in
the plasma frame.

In the leading order of the guiding center approxima-
tion, assuming zero electric field in the plasma frame, the
perpendicular motion of the guiding center is given by

v
G
T = V T . (10)

Since for a purely radial V andB||b̂, V T has no component
in the êθ direction, the guiding center motion by Eq. 10 is
confined to the θ=const cone. In the following, we use this
fact to simplify the notation: we therefore write a(r), W (r),
and so on, instead of a(r, θ) and W (r, θ), with implicit as-
sumption that the value of θ is the same for all terms in
the equation.

Evaluating the terms in Eq. 9 with use of Eqs. 6, 7, and
8, and expressing vG|| in terms of the radial velocity v of the

guiding center (Czechowski & Mann 2011, 2012),

v =
vG||

(1 + a2)1/2
+

V a2

1 + a2
, (11)

and we obtain the two equations defining a dynamical sys-
tem in the (r,v) phase plane:

dv

dt
= W (r) −

a∂ra

1 + a2
v2, (12)

dr

dt
= v. (13)

The function W(r) is given by

W (r) = −
GMS(1 − β)

(1 + a2)r2
+

2µB̃r r̃
2

(1 + a2)1/2r3

(

1−
1

2

ar∂ra

1 + a2

)

+
a2

r

V 2

1 + a2
. (14)

The three terms in W (r) correspond to the first three
terms on the right-hand side of Eq. 9. The first two rep-
resent the parallel gravity and the magnetic mirror force,
respectively. The third term can be regarded as the cen-
trifugal force related to the rotation of the magnetic field
line along which the guiding center moves (Czechowski &
Mann 2010).

W(r) can also be written as

W (r) =
GMS(1− β)

(1 + a2)r2
×

[

−1 +
r2
r
(1 + a2)1/2

(

1−
1

2

ar∂ra

1 + a2

)

+
r3

r3
1

]

, (15)

where r3
1

= GMS(1 − β)/Ω2 sin2 θ and r2 =

2µB̃rr̃
2/GMS(1− β).

The system Eq. 12, 13 has a constant of motion

E =
1

2
v2(1 + a2) + U(r) = const, (16)

where

U(r) = −
GMS(1− β)

r
+

1

2

2µB̃rr̃
2

r2
(1 + a2)1/2

−
1

2
Ω2r2 sin2 θ. (17)

We note that W (r) = −dU/dr/(1 + a2).
The conservation law Eq. 16 provides a simple analytical

expression for the trajectory v(r). Figures 3 and 4 show
how the results agree with the numerical solutions of the
full equations of motion for nanodust particles.

In the slow solar wind, the parameter a(r) is of the order
of 1 at 1 AU. For r ≪ 1 AU, a2 and, unless V (r) is very
steep as r →0, also ar∂ra, can be taken to be ≪ 1, so that
Eq. 15 simplifies to

W (r) =
GMS(1− β)

r2

[

−1 +
r2
r

+

(

r

r1

)3
]

. (18)

We note that this expression for W (r) is independent of
V (r). The somewhat unexpected consequence is that the
particle dynamics in the (r,v) plane is, at r ≪ 1 AU, largely
independent of the solar wind velocity profile.

If W (r)=0 has real solutions, the roots r = r̄1 and
r = r̄2 (r2 < r̄2 < r̄1 < r1) define the fixed points of the
dynamical system on the r axis. A discussion simplifies for
r ≪ 1 AU, when Eq. 18 can be used. The condition for real
solutions of W (r) = 0 is then r1 > (44/3/3)r2. If r2/r1 → 0,
then r̄1 → r1 and r̄2 → r2. The outer fixed point r̄1 is of the
saddlepoint type, and the inner point r̄2 is the node with
pure imaginary eigenvalues. The phase plane then includes
a trapped region that consists of bounded trajectories en-
circling the inner fixed point. The trapped region boundary
is defined by the separatrix trajectory emerging from the
outer fixed point (see Fig. 2).

The expressions for r1 and r2 illustrate the physical
mechanism of trapping. When r ≈ r2, the (repulsive) mag-
netic mirror force balances the gravity force. When r ≈ r1,
the (repulsive) centrifugal force balances the gravity.

4. Motion of nanodust emitted from elongated

orbits in the vicinity of the Sun

In this section, we present our results concerning the dy-
namics of nanodust particles emitted (at zero relative
speed) from the parent bodies moving in high-eccentricity
Keplerian orbits. We use the phase space model described
in Section 4, as well as numerical solutions of the equation
of motion for charged nanodust particles (Eq. 1), with the
solar wind and magnetic field described in Section 3.

4.1. Trapping conditions

Instead of analyzing the motion in the (r,v) phase plane,
one can use the conservation law (Eq. 16). The character
of the particle motion (trapped or escaping) can be seen
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to depend on the initial conditions, which determine the
coefficients of U(r).

The function U(r), which appears in the constant of mo-
tion (Eqs. 16 and 17), is similar to the effective potential for
the case of a particle interacting with a central force. In the
present case, the force has both the attractive (the gravity)
and the repulsive (the ”centrifugal force”) components. The
∼1/r2 term, which dominates at small distances, is anal-
ogous to the angular momentum term. Depending on the
coefficients of the respective terms, the function U(r) may
have none or two extrema. In the latter case, there is a lo-
cal minimum (a potential well) and a local maximum (the
barrier) at the positions of the inner (r = r̄2) and the outer
(r = r̄1) root of W (r) = 0, respectively. The conditions for
trapping are:

(1) The initial position of the particle (at the heliocen-
tric distance r0) must be inside the potential well:

r0 < r̄1. (19)

(2) The value of E must be smaller than the height of
the barrier U(r̄1) (the value of U(r) at the local maximum):

v2
0

2
(1 + a(r0)

2) + U(r0) < U(r̄1). (20)

In Eq. 20, v0 denotes the initial value of the radial com-
ponent of the guiding center velocity. The coefficient of the
1/r2 term in U(r) can be expressed in terms of the initial
conditions for the nanodust particle at the point of release
from the parent body

2µB̃rr̃
2 =

(v′T )
2

0
r2
0

(1 + a(r0)2)1/2
, (21)

where (v′T )0 is the initial tranverse speed of the particle in
the plasma frame. The 1/r2 term, which is the only one
depending on initial velocity and therefore on the type of
the orbit of the parent body, plays the role of the ”repulsive
core” in U(r). If its coefficient is too large, the potential
well in U(r) becomes too shallow for trapping or vanishes
altogether. This is the reason why trapping is disfavored
for the case of nanodust released from the parent bodies
moving at high transverse velocity, like the comets near
perihelium.

In our model, the magnetic field B has no component
along êθ. The transverse velocity vT of a particle can be
written as vt t̂+vθêθ, where t̂ = (aêr+ êφ)/(1+a2)1/2 is the

vector perpendicular to b̂ in the (êr,êφ) plane. The trans-
verse part of the plasma velocity has only the component
along t̂:

Vt ≡ V · t̂ =
V a

(1 + a2)1/2
=

Ωr sin θ

(1 + a2)1/2
. (22)

The initial transverse velocity squared in the plasma frame
at the point of release is therefore (v′T )

2

0
= v2θ + (vt − Vt)

2.
If r0 is of the order 0.1 AU, then, near the solar equator
(sin θ ≈ 1), Vt is comparable to the velocity for the circular
Keplerian orbit. The initial velocity of the nanodust parti-
cle released from the larger body in the circumsolar cloud
can be of the same order. In (v′T )

2

0
, Vt is subtracted from

the t̂ component of the velocity of the nanodust particle, so
that (v′T )

2

0 may become small compared to GMS/r0, pro-
vided that vθ is small. This partial cancellation can favor
trapping for the particles released from the orbits with low

inclination, or generally from the points on the orbit where
the θ component of the orbital velocity is small.

A general expression for the transverse speed squared
(v′T )

2 along a planar trajectory can be written as

(v′T )
2 = v2χ

sin2 i sin2 χ

1− sin2 i cos2 χ

+
1

1 + a2

[

a(vr − V (r)) + vχ
cos i

(1− sin2 i cos2 χ)1/2

]2

,(23)

where a = (Ω/V (r))r sin θ (Eq. 8), i is the inclination
of the orbital plane in the heliographic coordinate system,
vr = ṙ, vχ = rχ̇ are the radial and azimuthal components
of the velocity, and χ is the azimuthal angle in the plane
of the orbit counted in the direction of motion, starting
from the point where the orbit crosses the plane defined by
the angular momentum vector and the solar rotation axis
(if the point χ = 0 would correspond to the perihelium, χ
would be the true anomaly). The heliographic co-latitude θ
along the orbit can be expressed as cos θ = − sin i cos χ.
In the special case of i = 0,

(v′T )
2 =

1

1 + a2
[a(vr − V (r)) + vχ]

2, (24)

with sin θ = 1, and for i = π/2,

(v′T )
2 = v2χ +

1

1 + a2
[a(vr − V (r))]2, (25)

with sin θ = | sinχ|.

4.2. Trapping of the nanodust emitted near the perihelion or
aphelion

The initial value v0 of the radial component of the guid-
ing center velocity as used in the phase space model is not
identical with the initial radial velocity of the emitted par-
ticle. Instead, v0 is equal to the radial component of the
sum of the initial parallel velocity of the particle v||,0 and
the transverse plasma velocity V T at the point of release
r0:

v0 =
v||0

(1 + a2
0
)1/2

+
V a2

0

1 + a2
0

, (26)

where a0 ≡ a(r0).
For a particle emitted near the perihelium or aphelium

of the parent body orbit, we can nevertheless use v0 = 0 as
a good approximation provided that a0 ≪ 1. The trapping
condition (Eq. 20) simplifies to

U(r0)− U(r̄1) < 0. (27)

In the region of r where a(r1)
2, a(r0)

2 ≪ 1, we can use an
approximate expression for U(r),

U(r) = −
GMS(1− β)

r
+

1

2

(v′T )
2
0r

2
0

r2
−

1

2
Ω2r2 sin2 θ. (28)

After factoring out (1 − r0/r̄1), the trapping condition at
the perihelium or aphelium can be written as

α < 2(1− β)f(r0/r̄1), (29)
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where α ≡ (v′T )
2

0
/v2orb(r0), vorb(r0) = GMS/r0 is the

Keplerian velocity of a circular orbit at r0, and the function
f is defined by

f(x) =
1

1 + x
−

1

2

r̄31
r3
1

x. (30)

We note that r̄1 ≤ r1, and that r0 < r̄1 is required for trap-
ping. At r0/r1 →0, the trapping condition Eq. 29 becomes
α < 2(1 − β). Since df/dx < 0, finite r0/r̄1 imply a still
stricter upper limit.

For an elliptic orbit, the speed at the perihelium vper
and aphelium vaph can be expressed in terms of the orbital
eccentricity ǫ,

vper
vorb(rper)

= (1 + ǫ)1/2
vaph

vorb(raph)
= (1− ǫ)1/2, (31)

where vorb(rper), vorb(raph) are the orbital speeds for the
circular Keplerian orbit at the perihelium and aphelium
distances, respectively. With the help of Eq. 23, and the
relation Ωr0 sin θ/vorb(r0) = (r0/r1)

3/2(1 − β)1/2 following
from the definition of r1, we then obtain the expression for
α at the perihelium and aphelium of an elliptic orbit. If the
argument of the perihelium is equal to 90o,

α =
1

1 + a2

[

−

(

r0
r1

)3/2

(1− β)1/2 + (1± ǫ)1/2
cos i

| cos i|

]2

,(32)

and if it is equal to 0o,

α = (1± ǫ) sin2 i

+
1

1 + a2

[

−

(

r0
r1

)3/2

(1 − β)1/2 + (1± ǫ)1/2 cos i

]2

.(33)

The upper (lower) sign of ǫ applies for the perihelium (aphe-
lium), respectively. We note that cos i/| cos i| is +1 for the
inclination i < 90o (which corresponds to the prograde mo-
tion) and −1 for i > 90o (the retrograde motion).

From Eqs. 32 and 33 it follows that if r0/r1 ≪ 1 (which
also implies a2 ≪ 1), then α ≈ 1±ǫ. The trapping condition
at r0/r1 → 0 becomes 1 + ǫ < 2(1 − β) at the perihelium,
that is, ǫ < 0.8 at β =0.1. This agrees with Figs. 5 and 6.
The eccentricity values of the orbits of sungrazing comets
are higher than 0.8, and therefore not consistent with trap-
ping.

Figures 5 and 6 show the upper limits on the eccentricity
of the parent body orbit consistent with trapping, obtained
using the full expression for W (r), without the simplifying
assumptions v0 = 0, a(r1)

2, a(r0)
2 ≪ 1, r0/r1 ≪ 1. The

nanodust particle is released at the heliocentric distance
r0 at zero velocity relative to the parent body. The initial
radial velocity of the guiding center is given by Eq. 26. The
release occurs at the perihelium of the parent body. The
initial velocity of the guiding center in the (r,v) plane is
obtained as the radial projection of the parallel velocity of
the nanodust and the transverse velocity of the plasma.

Figure 5 illustrates the case where the orbits of the par-
ent bodies have orientations corresponding to vθ=0 at the
perihelium (the argument of perihelium equal to 90o in he-
liographic coordinates). The two curves correspond to two
different inclinations of the parent body orbits: 20o (the
perihelium situated at heliographic co-latitude θ=70o) and
70o (the perihelium at θ=20o). The higher inclination of

the parent body orbit corresponds in this case to a larger
size (larger extension in r0) of the trapping region, with
maximum r0 close to r1 for the appropriate value of θ.
This agrees with the results for circular orbits obtained by
Czechowski & Mann (2010, 2012). The broad peaks near
the outer limits in r0 are due to the reduction of initial |v′T |
of the emitted particle by taking account of the plasma
motion (the −(r0/r1)

3/2(1 − β)1/2 term in Eq. 32). Also
shown are the results from full numerical simulations of
the nanodust motion (asterisks for θ=70o and diamonds
for θ=20o). We note the effect of including the Poynting-
Robertson force in the full simulation (the asterisks linked
by the dotted line). The contraction of the particle orbit
by the Poynting-Robertson force relaxes the upper limit on
the initial velocity of the trapped particle.

Figure 6 presents the results for the case where the ar-
gument of perihelium is equal to 0o in heliographic coor-
dinates (the point of perihelium lies in the solar equator
plane). The curves labelled 1 to 7 correspond to different
values of inclinations of the parent body orbit, from 0o to
180o. At intermediate inclinations, the initial velocity of the
emitted particle is not parallel to the solar equator plane
(the component along êθ direction is not zero). The effect
of orbital inclination on the size of the trapped region is op-
posite to that seen in Fig. 5: higher inclination corresponds
to a trapped region more restricted in r0, again in agree-
ment with the result of Czechowski & Mann (2010, 2012)
for circular orbits. The trapping can be seen to become
more difficult when the initial orbital velocity departs from
the prograde direction, because the two terms in the square
brackets in Eq. 33, corresponding to transverse components
of the plasma and orbital velocity, have the same sign and
so cannot (partly) cancel each other.

Figure 6 also illustrates the effect of drag force on trap-
ping. In particular, for model 2 of the solar wind, the ef-
fect of Poynting-Robertson drag alone (squares) can be
seen to be much weaker than the combination of Poynting-
Robertson and the proton drag (X signs). We also note that
the drag relaxes the upper limit on eccentricity by a large
amount (from ∼0.53 at r0 = 0.11 AU to ∼0.73 at r0 ≈ 0.15
AU), while the outer limit in r of the trapped region is in-
creased only slightly. The effect of the proton drag is strong
because model 2 corresponds to high plasma density in the
vicinity of the Sun.

If the particle is emitted from the aphelium of the orbit,
the initial velocity of the particle is less than the Keplerian
velocity of the circular orbit. If the aphelium distance is
within the trapping region (r < r̄1), trapping may be possi-
ble for any eccentricity. However, when the point of release
r0 approaches the outer limit of the trapping region, the
limits on eccentricity do appear (see the Figure 7).

The cases shown in Figure 7 correspond to hypothet-
ical bodies in high-eccentricity orbits with aphelium dis-
tances well within 1 AU of the Sun. We include this figure
to highlight the difference between the trapping-induced
constraints on eccentricity for prograde and retrograde or-
bits. For prograde orbits with the argument of the perihe-
lium equal to 90o, the trapping region extends to r = r1
thanks to partial cancellation (possible up to some upper
limit in eccentricity) between the orbital speed at aphelium
and the transverse component of the solar wind speed. For
retrograde orbits, this cancellation is not possible, because
both terms have the same sign. In this case, trapping of
nanodust is only possible when a parent body at aphelium
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is travelling at low orbital speeds, which puts a lower limit
on the orbital eccentricity.

For the orbits typical of the comets, the aphelium dis-
tances are beyond the outer limit of the trapping region.
The exception is the case of the orbit with the aphelium
point situated very close to the solar rotation axis. Since r1
behaves as (sin θ)−2/3 with the heliographic co-latitude θ,
the distance to the boundary of the trapping region in our
model increases with decreasing θ. At the same time, the
width in θ of the trapping region contracts, so that at 1.6
AU the region is already restricted to directions less than
2o away from the solar rotation axis.

Trapping of nanodust emitted near the apoapsis of a
comet may be a realistic possibility for the stars with rota-
tion speeds much lower than the solar value.

4.3. Nanodust emitted from an arbitrary point along the orbit

In this subsection, we use three high-eccentricity orbits
as examples, chosen to be representative of fragments of
the comet Ikeya-Seki and of two classes of meteoroids: the
Aquarids and the Geminids, associated with a comet and
an asteroid, respectively. Because the angle between the
solar equator plane and the ecliptic plane is small, for sim-
plicity we use the orbital parameters given in the ecliptic
coordinates without changing our solar inertial system. The
assumed orbital parameters are listed in Table 1.

Although none of the nanodust particles released from
these orbits are trapped, the parameters of the phase space
model are still relevant for their dynamics. We find that the
real zeroes of the function W (r) and therefore the ”poten-
tial well” are typically present only for parts of the orbit.
The existence of the ”potential well” affects the motion of
nanodust particles even in the absence of trapping, and, in
the case of r̄2 ≪ r̄1, opens a ”corridor” permitting charged
nanodust particles to approach very close to the Sun.

Figures 8, 9, and 11 show the values of r̄1 and r̄2 along
the orbits listed in Table 1. We also include the hypotheti-
cal case of the orbit with the inclination and perihelium as
for Aquarids, but with the eccentricity reduced to 0.4. The
orbits are parameterized by the azimuthal angle χ. The dot-
ted ovals show the values of r̄1 (upper line) and r̄2 (lower
line). In the first two cases, there are regions of χ where
r̄1 and r̄2 are not defined. In the third case, r̄1 and r̄2 are
defined over the whole of the orbit. The zeros r̄1 and r̄2 ap-
pear and vanish as a pair. Trapping of the nanodust occurs
only in the case of the orbit with reduced eccentricity, with
the trapped region occupying only a fraction of the region
where r̄1 and r̄2 are defined.

In addition to the orbits listed in Table 1 we have
checked the trapping conditions for a sample of 270 000
orbits. The sample was divided into ten eccentricity classes
with eccentricities 0.0, 0.2, 0.5, 0.6, 0.7, 0.8, 0.87, 0.9
and 0.97. Within each class, the orbital parameters each
spanned 30 values of the perihelium distance rmin (loga-
rithmic distribution between 0.008 and 0.5 AU), the orbital
inclination i (uniform distribution between 0o and 180o)
and the parameter of the perihelium φc (uniform distribu-
tion between 0o and 360o). The right ascension was taken
the same for all orbits. The trapping condition was checked
along each orbit at 100 points with equal separation in the
azimuthal angle.

Figure 12 shows the resulting distributions, over the az-
imuthal angle, of the points for which the trapping condi-

tion is satisfied. We did not attempt to use realistic weight
factors: the distributions were obtained assuming that each
orbit in the sample has the same weight. The results are
shown for four classes of the orbits, defined by the require-
ment that the eccentricity of the orbit must exceed a given
minimum value: 0.4, 0.6, 0.8 and 0.87. For increasing ec-
centricity, the trapped region along the orbit becomes re-
stricted to the vicinity of the aphelium. For the case of
eccentricity above 0.87, Fig. 12 shows that trapping may
occur only for the points more than ±90o away from the
perihelium.

The effective potential can also be used to find the
minimum heliocentric distance which the nanodust particle
reaches after release from the parent body. Figures 13, 14,
and 15 show the results for the nanodust released from the
orbits of Ikeya-Seki, the Aquarids, and the Geminids, re-
spectively. The results obtained from the phase space model
(the solid line) agree with the results of full numerical so-
lution (the diamonds) for the Q/m=10−4 e/mp nanodust,
with one exception caused by the encounter with the cur-
rent sheet.

The nanodust released from the inbound part of the
orbit comes closer to the Sun than the parent body does.
For the orbits of Aquarids (Fig. 14) and of Geminids (Fig.
15) this effect is particularly strong: the nanodust released
within a certain sector of the parent body orbit can, thanks
to electromagnetic forces, approach the Sun to within a
much shorter distance (here by an order of magnitude) than
the orbital perihelium. We call this phenomenon a ”corri-
dor to the Sun”. We also note that the points of minimum
heliocentric distances reached by the nanodust occur near
the points of minimum r̄2 (compare with Fig. 9).

4.4. Propagation to 1 AU

Ultimately, the nanodust particles emitted from high-
eccentricity orbits escape away from the Sun. Figure 16
shows the trajectories of a sample of grains emitted from
the orbit of the comet Ikeya-Seki, projected onto the heli-
ographic longitude-latitude plane. All trajectories end at 1
AU from the Sun. The small particles (Q/m=10−4 e/mp)
stay close to the constant heliolatitude cones (θ=const),
meaning that their motion projected onto the sky is di-
rected along the heliographic parallel. For Q/m=10−5 e/mp

particles, the motion includes a significant amount of drift.
As expected, the drift direction depends on the magnetic
field polarity. Our simulations are restricted to the case
of defocusing magnetic field, so that the drift of positively
charged particles is directed away from the heliospheric cur-
rent sheet. To imitate the focusing polarity, we also include
results of simulations for particles with negative charges.
In particular, the drift of particles with Q/m=-10−6 e/mp

enables them to encounter the current sheet and commence
drifting along its surface (see Fig. 16).

The speed of nanodust particles as a function of distance
is illustrated in Fig. 17. The particles emitted from the in-
bound part of the orbit initially approach the Sun with a
substantial velocity gain, as predicted by the phase space
model. After passing the point of minimum heliocentric dis-
tance, their velocity first decreases and then, for the case
of small particles (Q/m=10−4 and 10−5 e/mp), increases
again, reaching, at 1 AU, the value close to the velocity
of the solar wind. For particles with Q/m=10−6 and 10−7

e/mp, the asymptotic speed is much lower (Fig. 17, bottom
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Table 1. Assumed orbital parameters.

Orbital Ascending Parameter Perihelium Aphelium Orbital
inclination node perihelium distance distance eccentricity

(deg) (deg) (deg) (AU) (AU)
Ikeya-Seki 141.86 346.9 69.04 0.007786 183.19
Aquarids 25.0 310.0 149.0 0.09 0.97
Geminids 24.0 261.0 325.0 0.14 0.89

panel). The asymptotic speeds are similar to those obtained
in Czechowski & Mann (2010, 2012) for particles emitted
from circular orbits (see also Juhasz & Horanyi 2013).

4.5. Effect of the proton drag force

The proton drag force becomes important only for trajec-
tories that pass through a region with a very high proton
density, within a few solar radii from the surface of the Sun.
The effect depends on the assumed model of the solar wind.
A nanodust particle approaching very close to the Sun be-
comes reflected by the magnetic mirror force. In the absence
of drag, the reflection process is approximately symmetric
in time: the particle emerges with the same speed as it had
before the reflection. The drag force causes the particle to
slow down, breaking the symmetry (Fig. 18).

For the case of trapped nanodust studied in Czechowski
& Kleimann (2017) the particles return repeatedly to the
vicinity of the Sun and the effect of drag is cumulative,
leading to contraction of the orbit and ultimate destruc-
tion of the particle. According to present simulations, the
nanodust particles emitted from high-eccentricity orbits do
not approach close to the Sun more than once. As a con-
sequence, the total effect of drag is not strong enough to
prevent the particles from escaping from the Sun into the
region where the drag becomes irrelevant compared to other
forces.

In Fig. 18 we compare the effect of proton drag for dif-
ferent models of the solar wind. As expected, the strongest
effect is obtained for the models with high values of the
proton density in the vicinity of the Sun (models 2 and 3;
see Fig. 1).

4.6. Effects of sublimation

In the vicinity of the Sun, the destruction of nanodust by
sublimation and sputtering becomes an important problem.
This requires a dedicated study, and is beyond the scope of
this work. However, we present here some estimations based
on the results obtained for the case of the dust in slowly
evolving orbits (Krivov et al. 1998). The study we refer
to was based on assuming large (micrometer-sized) carbon
and silicate particles at equilibrium tempereture where ab-
sorbed and emitted radiation are balanced.

For dust in the nm size range, the number of ab-
sorbed photons can be small and absorption rate stochas-
tic. According to Li & Mann 2012, at the distances less
than ∼1 AU from the Sun, the phenomenon of tempera-
ture spikes and general stochastic heating will not occur for
the grain sizes above 1 nm. Our estimation (see Czechowski
and Mann 2010) of the radius of a nanodust particle with
Q/m=10−5 e/mp (Q/m=10−4 e/mp) is 10 nm (3 nm). We,
therefore, shall not consider stochastic heating.

Krivov et al. (1998) have shown that fast sublimation
of the dust commences at the heliocentric distance of ∼3
RSun, with the lifetime of the 0.1 µm grain equal to 0.01 yr.
Following Krivov et al. (1998), we assume that, inside the
fast sublimation region, the sublimation lifetime is propor-
tional to the grain radius. The lifetime of a 10 nm (3 nm)
grain is then 0.001 yr (0.0003 yr), that is, 0.365 (0.109)
days. The time needed to sublimate a 1 nm thick layer is
0.036 days.

We can use the results of our trajectory calculations
to find how much time a particle spends inside the fast-
sublimation region, defined by the condition that the helio-
centric distance is less than 3 RSun. Comparing this time
with the sublimation time taken from Krivov et al. (1998),
we can calculate whether or not the particle is likely to
survive.

We note, however, that the results of Krivov et al. (1998)
were not derived for the case of grains with large radial
velocities, which is a frequent case in our trajectories. Using
their result is approximately equivalent to assuming the
sublimation rate valid at r ∼ 3 RSun. Since the sublimation
rate is likely to increase towards the Sun, we expect that
our results underestimate the effect of sublimation.

We now consider the nanodust trajectories used in Figs.
13, 14, 15, corresponding to nanodust emitted from the or-
bit of the comet Ikeya-Seki, the Aquarids and the Geminids,
respectively. The diamonds show the points of closest ap-
proach to the Sun for these trajectories.

For the case of Aquarids (Fig. 14) and Geminids (Fig.
15), only the trajectories near the tip of the ”corridor” (5
points with χ =-79o to -94o for Fig. 14 and 4 points with
χ =-51o to -73o for Fig. 15) enter the fast sublimation re-
gion. The time tin spent inside the fast-sublimation region
is almost exactly the same for the trajectories of Q/m=10−4

e/mp and Q/m=10−5 e/mp nanodust. tin varies between
0.13 and 0.16 days, the only exception being one point in
Fig. 14 (χ=-94o), where tin =0.08 days. Apart from this
exception, the tin values are high enough for destruction of
particles with radii of 3 nm. The nanodust with the radius
10 nm would be destroyed only if the sublimation rate in-
side 3 RSun were significantly higher than implied by the
results of Krivov et al. (1998).

The perihelion of the comet Ikeya-Seki (Fig. 13) lies in-
side the fast sublimation zone. The trajectories entering the
fast sublimation region correspond to the dust emitted from
the points between χ =-133o and χ =56o along the orbit.
The values of tin vary from 0.034 to 0.089 days for most
of this interval. Only for χ =-128o to -103o is tin between
0.113 and 0.130 days, above the sublimation lifetime of the
3 nm nanodust. We conclude that the 3 nm nanodust may
in some cases avoid destruction, even if emitted inside the
fast sublimation zone.
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5. Discussion and conclusions

The first application of our method of combining the ”phase
space” model (the early version) with the numerical simu-
lations was to the case of nanodust produced by collisional
fragmentation of larger particles in the circumsolar dust
cloud (Czechowski & Mann 2010, 2012). In the present
work, we consider the other possible source of dust, the
cometary bodies, including the sungrazing comets and their
remains. Specifically, we consider a sample of three orbits:
the orbit of Aquarids, of Geminids, and, as an example of
the Kreutz group, the orbit of the comet Ikeya-Seki. The
orbits are in fact approximate, because, for simplicity, we
use the orbital parameters given in ecliptic coordinates in-
stead of transforming to heliographic inertial coordinates
used in the present work.

The purely radial, time-stationary solar wind that
our model describes is obviously only an approximation.
However, in a recent study (Czechowski & Kleimann 2017)
based on a numerical MHD model of the solar corona dur-
ing a coronal mass ejection (CME), it was found that some
predictions of our model remain valid. In particular, the
trapped nanodust population predicted by Czechowski &
Mann (2010, 2012) was found to appear and survive in the
simulated CME. This result gives us hope that the sim-
ple description of a charged particle motion given by our
”phase space” model can also be applied in more realistic
situations.

The new version of our 2D ”phase space” model used
in the present work is applicable to the case of a distance-
dependent solar wind speed. A somewhat unexpected pre-
diction of the model is that the charged scatter-free particle
motion in the vicinity of the Sun is largely independent of
the solar wind speed profile. The applications of the new
version of the model are helped by the fact that it has a
constant of motion, given by a simple formula. As a re-
sult, we can now derive an analytical expression for the
radial velocity component of a particle as a function of the
heliocentric distance. The conservation law also provides
a way to determine the turning points of the particle ra-
dial motion, and a test for whether or not the particle is
trapped. For particles with high-enough charge-to-mass ra-
tio (Q/m=10−5-10−4 e/mp) the results of the model agree
well with the numerical solutions of full equations of mo-
tion.

Our main conclusion is that the mechanism of trapping
the nanodust particles in nonKeplerian orbits in the vicin-
ity of the Sun, which was derived (Czechowski & Mann
2010, 2012) for the nanodust created in the circumso-
lar cloud, is not effective for the case of nanodust parti-
cles emitted from highly eccentric orbits, like those of the
comets. The nanodust coming from the comets would there-
fore not contribute to the (so far hypothetical) trapped dust
population around the Sun.

Trapping becomes ineffective because the nanodust
from the comets is created with high initial transverse ve-
locity in the plasma frame. The trapping condition then
implies an upper limit on the eccentricity of the orbit of
the parent body. The limit depends on the orientation of
the orbit and on the point at which the nanodust is re-
leased. Trapping may take place for eccentricity as high as
0.8 but only in the most favorable circumstances. Results
of our previous works show that the trapping is typically
even less likely when the dust has a nonzero initial velocity

relative to the parent body, due, for example, to the ac-
celeration in the coma. In a recent study, the acceleration
of 1 to 10 nm sized nanodust near a comet was simulated
(Gunell et al. 2015) within the coma. The calculations show
that the nanodust resides in the coma for typically 1000 to
10 000 s. It is accelerated in the direction of the electric
field and the final speed can range from several up to sev-
eral tens of kilometres per second when it leaves the coma
and emerges in the solar wind.

Even if it cannot be trapped, the nanodust released from
the inbound part of a highly eccentric orbit may approach
the Sun to within distances much closer than the perihe-
lium of the parent body. The minimum distance is strongly
dependent on the initial point on the parent body orbit
(a ”corridor” to the Sun). After reaching the minimum dis-
tance, the particle is reflected by the magnetic mirror force.
All nanodust particles emitted from the parent body (ex-
cept those destroyed by sublimation on the way) escape
away from the Sun, reaching velocities of the order of ∼400
km/s at 1 AU.

The drag force due to ion impacts on the grain (Minato
et al. 2004) was found in Czechowski & Kleimann (2017)
to have a significant effect on nanodust (particularly, the
trapped component) in the solar corona. We therefore
included, in part of our simulations, the proton drag
force described by the same approximate expression as in
Czechowski & Kleimann (2017), with the plasma parame-
ters taken from our models (1 to 3). For particles bypass-
ing the Sun by more than ∼0.015 AU, we found drag to be
unimportant. For a particle approaching even closer to the
Sun (0.006 AU), the effect was still negligible for model 1
of the solar wind, but for models 2 and 3 (corresponding to
a higher proton density in the solar corona), the effect of
drag appeared as an approximately three-day delay in the
escape time to 1 AU.

The above estimate may be only of academic interest
because of high probability of destruction of nanodust par-
ticles passing very close to the Sun. The spectral slope of
the F-corona brightness suggests that most of the dust sub-
limates at distances of about 0.02 AU (see Mann 1992).
Based on temperature and sublimation calculations, differ-
ent authors have predicted dust free zones ranging from 1.5
solar radii outward to 40 solar radii, depending on the dust
materiel (summarized in Mann et al. 2004).

A detailed study of nanodust trajectories including the
possibility of destruction is an interesting goal for future
studies. Aside from the dust sublimation, sputtering (see,
e.g., Ragot & Kahler 2003) and dust collisions (Czechowski
& Mann 2010) also need to be taken into account.

In the present work, we restrict ourselves to a simpli-
fied approach.We combine our nanodust trajectory calcula-
tions with the sublimation lifetimes derived by Krivov et al.
(1998) for the case of dust in slowly evolving orbits. Since
we consider the particles sizes above 1 nm in the vicinity of
the Sun, we can neglect the possibility of stochastic heating
(Li & Mann 2012).

For a sample of nanodust trajectories considered in this
work, we find that the 10 nm particles which enter the sub-
limation zone along the ”corridors” to the Sun are likely
to survive, unless the sublimation rates for nanodust are
significantly higher than those obtained by Krivov et al.
(1998). The 3 nm particles in similar trajectories are de-
stroyed. A result of some interest is the survival of particles
(including the 3 nm ones) emitted inside the fast sublima-
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tion region from the outbound part of the orbit of the comet
Ikeya-Seki.

Our simulations include propagation of nanodust to the
maximum distance of 1 AU. Similar to the case of nanodust
released from circular orbits (Czechowski & Mann 2010,
2012, Juhasz & Horanyi 2013), the results are sensitive to
magnetic field polarity.
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Fig. 2. The trajectory of the nanodust particle with Q/m=10−4

e/mp ejected from the comet (with orbital parameters of the
comet Ikeya-Seki) at perihelium. The trajectory is shown in the
(r,vr) plane. Also shown is the approximate trajectory obtained
in the phase space model, and the separatrix trajectory which
defines the boundary of the trapped region (the closed curve).
The crosses show the positions of the fixed points of the phase
space model. The outer fixed point is of the saddle point type,
while the inner is a node, encircled by the trapped trajectories.

Fig. 3. Trajectories of the nanodust particles released from the
orbit of the comet Ikeya-Seki before perihelium, at the heliocen-
tric distances of 25 and 7 RS. The solid lines are the trajecto-
ries (projected onto the (r,vr) plane) obtained solving numer-
ically the equations of motion for the nanodust particles with
Q/m=10−4 e/mp, β = 0.1. The dashed lines are obtained from
Eqs. 12, 13.

Fig. 4. Trajectories in the (r, vr) plane of the nanodust particle
in the models with constant (model 1) and r-dependent (model
2) solar wind speed obtained by numerical solution of the equa-
tion of motion. The particle with Q/m=10−5 e/mp is emitted
from the inbound part of the orbit of the comet Ikeya-Seki at
initial heliocentric distance of 0.02 AU. The r-dependent solar
wind case corresponds to a slight outward shift in the perihelium
distance.

Fig. 5. The upper limit on the eccentricity of the orbit of the
parent body consistent with trapping of the nanodust particle
emitted at zero relative speed at the perihelium (heliocentric
distance r0). The argument of the perihelium of the orbit is
90o in heliographic inertial coordinates, so that the initial veloc-
ity of the particle is parallel to solar equator (vθ=0). The solid
lines are derived from the phase space model (Eqs. 19, 20). The
symbols show the results from numerical simulations (Eq. 1).
The two sets of curves correspond to different heliolatitudes of
the point of release: colatitude θ=70o (asterisks) and 20o (di-
amonds), respectively. The asterisks linked by the dotted line
show the result (for θ=70o) from the simulation including the
Poynting-Robertson force.
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Fig. 6. As in Fig. 5, but the argument of perihelium of the par-
ent body orbit is 0o in heliographic coordinates (the point of
perihelium lies in the solar equator plane). The cases illustrated
correspond to different inclinations of the parent body orbits.
The numbers 1 to 7 mark the inclinations 0o, 20o , 50o, 70o, 85o,
110o and 180o, respectively. Also shown are the results from nu-
merical solutions to the full equations of motion for Q/m=10−4

e/mp grains. The cases shown are: constant speed SW, no PR
drag (diamonds); the same with PR drag included (triangles);
distance-dependent SW speed (model 2) with PR drag included
(squares); model 2 with both PR and the proton drag (x sym-
bols).

Fig. 7. The limits on eccentricity of the parent body orbit im-
posed by trapping of nanodust emitted from the aphelium of
the orbit. The argument of perihelium is 90o. Eight values of
orbital inclinations are considered: four prograde: 0o, 50o, 70o

and 85o (upper panel) and four retrograde: 95o, 110o, 130o and
180o (lower panel). When the nanodust is emitted near to the
(inclination-dependent) outer limit of the trapping region, the
trapping requirement limits the eccentricity of the orbit from
above (the prograde orbit, upper panel, solid lines) or from below
(the retrograde orbit, lower panel, dashed lines). For retrograde
orbits the trapping region is less extended than for prograde
ones. Also shown are results from numerical simulations (slow
wind only) for the grains with Q/m=10−4 e/mp (diamonds) and
Q/m=3 10−4 e/mp (squares). In these cases the PR drag has no
appreciable effect on results. In the prograde case, the value of
Q/m had to be raised to 3 10−4 e/mp to obtain a good agree-
ment with the phase space model.



A. Czechowski and I. Mann: Dynamics of nanodust particles emitted from elongated initial orbits 13

Fig. 8. The extent of the potential well of the effective potential
U(r) for particles emitted at different points along the orbit
of the comet Ikeya-Seki, parametrized by the angle χ counted
from the perihelium. The upper (lower) half of the dotted oval
shows the value of r̄1 (r̄2). The dashed line shows the heliocentric
distance r0 to the point at which the particle was emitted. We
note that the oval does not extend to more distant parts of the
orbit, where the extremum points of U(r) are absent.

Fig. 9. As in Fig. 8 but for the orbit of Aquarids. In this case the
extrema of the potential U(r) exist within two separate regions
(the dotted ovals).

Fig. 10. Orbital speed |v| and the transverse speed relative to
solar wind plasma |v′

T | = |(v − V )T | along the orbits of the
comet Ikeya-Seki (upper panel) and of Aquarids (lower panel).
χ is the true anomaly angle. Near the aphelium of each orbit
|v′

T | ≫ |v|, meaning that the value of |v′

T | there is determined
by the transverse speed of the solar wind rather than by the
orbital velocity.
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Fig. 11. As in Fig. 9 but for the orbit of a hypothetical body
with the same inclination and perihelium as for Aquarids, but
with the eccentricity reduced to a smaller value (0.4). In this
case there exists a trapping region for emitted nanodust, with
the limits in χ shown by the vertical dotted lines.

Fig. 12. Distributions (over the azimuthal angle φ counted from
the perihelium) of the points at which the trapping condition is
satisfied, calculated for a large sample of hypothetical parent
body orbits with different parameters (see the text). The curves
shown correspond to the orbits with the eccentricities ǫ ≥ 0.87,
0.8, 0.6 and 0.4, respectively. The distributions are normalized
so that the integral over φ is equal to 1.

Fig. 13.Minimum heliocentric distance rmin (solid line) reached
by nanodust particles emitted from the comet Ikeya-Seki as a
function of the parameter χ (angle counted from the perihe-
lium) of the release point on the orbit of the comet. The orbit
of the comet is shown by the dashed line, describing also the
initial points of the nanodust trajectories. The diamonds show
the results from full numerical simulations for Q/m=10−4 e/mp.

Fig. 14. As in Fig. 13 but for the orbit of Aquarids. In this
case there is a ”corridor to the Sun”, a range of initial points
inside 0.25 AU on the inbound part of the orbit for which the
dust particles can approach the Sun much closer than the parent
body.
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Fig. 15. As in Fig. 13 but for the orbit of Geminids. In this
case also a ”corridor” forms, for which the dust particles can
approach the Sun much closer than the parent body. We note
the large disagreement between the phase space model (solid
line) and full simulation for one data point. This is caused by
the encounter of the nanodust particle soon after emission with
the heliospheric current sheet (the phase space model does not
include the current sheet).

Fig. 16. The heliographic longitude-latitude projection of the
sample of trajectories of nanodust emitted from the orbit of the
comet Ikeya-Seki. The trajectories end at 1 AU from the Sun.
The points of emission are marked by squares. Separate pan-
els show the results for nanodust with different Q/m ratios. The
cases of positive charge: Q/m=10−4 e/mp and Q/m=10−5 e/mp

show the behavior of nanodust for the ”defocusing” solar mag-
netic field polarity. The results for nanodust with Q/m set to
negative values: Q/m=-10−5 e/mp and Q/m=-10−6 e/mp rep-
resent also the behavior of the positively charged dust for the
”focusing” polarity. For the Q/m=-10−6 e/mp case, the drift
along the heliospheric current sheet occurs for some trajecto-
ries.
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Fig. 17. The velocity as a function of heliocentric distance for
nanodust grains with Q/m=10−4, 10−5, 10−6 and 10−7 e/mp

emitted from the orbit of Aquarids at the perihelium (0.09 AU
from the Sun, the upper panel), and at the distance 0.2 AU on
the inbound (middle panel) and outbound (lower panel) parts
of the orbit.

Fig. 18. Effect of proton drag on nanodust emitted from the
inbound part of the orbit of Aquarids at the distance r =0.17
AU from the Sun. The cases illustrated are (including the pro-
ton drag): (1) V=const solar wind (model 1), (2) Sheeley et al.
1997 profile (model 2), (3) modified V (r) profile (model 3). The
results for the same solar wind models but with the proton drag
neglected are marked (a), (b), and (c), respectively.


