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Abstract 
Purpose: Compare alternative statistical techniques to find the best approach for converting QLQ-

C30 scores onto EQ-5D-5L and SF-6D utilities, and estimate the mapping algorithms that best predict 

these health state utilities. 

Methods: 772 cancer patients described their health along the cancer-specific instrument (QLQ-C30) 

and two generic preference-based instruments (EQ-5D-5L and SF-6D). Seven alternative regression 

models were applied: ordinary least squares (OLS), generalized linear model (GLM), extended 

estimating equations (EEE), fractional regression model (FRM), beta binomial (BB) regression, logistic 

quantile regression (LQR), and censored least absolute deviation (CLAD). Normalized mean absolute 

error (NMAE), normalized root mean square error (NRMSE), r-squared (r2) and concordance 

correlation coefficient (CCC) were used as model performance criteria. Cross-validation was 

conducted by randomly splitting internal dataset into two equally sized groups to test the 

generalizability of each model. 

Results: In predicting EQ-5D-5L utilities, the BB regression performed best. It gave better predictive 

accuracy in terms of all criteria in the full sample, as well as in the validation sample. In predicting SF-

6D, the EEE performed best. It outperformed in all criteria: NRMSE = 0.1004, NMAE = 0.0798, CCC = 

0.842 and r2 =72.7% in the full sample, and NRMSE=0.1037, NMAE=0.0821, CCC = 0.8345 and 

r2=71.4% in cross-validation.   

Conclusions: When only QLQ-C30 data are available, mapping provides an alternative approach to 

obtain health state utility data for use in cost-effectiveness analyses. Among seven alternative 

regression models, the BB and the EEE gave the most accurate predictions for EQ-5D-5L and SF-6D, 

respectively.   

Keywords: Mapping, Regression models, QLQ-C30, EQ-5D-5L, SF-6D, QALYs  
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1. Introduction 
Quality-adjusted life-years (QALYs) are becoming the standard outcome measure for health 

economic evaluations [1; 2]. To obtain the quality adjustment weight in the QALY, generic 

preference-based measures are used.  However, many clinical trials commonly use a disease-specific 

outcome measure. In such circumstances, analysts would need to translate, or “map”, disease 

specific scores onto generic preference-based values in order to express gains along a 

commensurable metric like the QALY. 

 

Cancer is the second leading cause of death behind cardiovascular diseases [3], despite a strong fight 

against it. This fight is evidenced by recent developments in personalized medicine and novel 

treatment approaches such as immunotherapy [4; 5], which involve increasing pressures on 

healthcare budgets. For instance, a quarter of the technology appraisals produced by National 

Institute for Health and Care Excellence (NICE) has focused on cancer interventions [6]. Thus, there is 

a growing need for cost-effectiveness analyses in cancer treatment, not only to compare across the 

many new cancer interventions, but also to compare with resources spent in other diseases areas.  

 

The European Organization for Research and Treatment Quality of Life Questionnaire Core 30 (EORTC 

QLQ–C30, hereafter QLQ-C30) [7] is a disease-specific instrument widely used to measure health 

related quality of life (HRQoL) in cancer patients. However, to enable comparisons of health 

outcomes across disease areas, a generic preference-based instrument is needed. The EQ-5D is the 

most widely used generic preference-based instrument for calculating QALYs [8; 9]. A new five levels 

version of the EQ-5D has recently been developed [10], intended to reduce ceiling effects and 

improve reliability and sensitivity as compared to the earlier three-level version [11]. National 

guidelines on health technology appraisals (HTA) submitted to the NICE in the United Kingdom (UK) 

[12] have recommended the use of the EQ-5D. The SF-6D is the second most widely used generic 

preference-based instrument. Recently, there is a rapid increase in mapping between ‘source’ (e.g., 

disease-specific) instruments and ‘target’ (e.g., generic preference-based) instruments, where the 

majority of mapping functions available have applied the EQ-5D as their target measures [13; 14].   

  

Previous mapping studies between QLQ-C30 and EQ-5D were based on the EQ-5D-3L [15-19], except 

for one based on the EQ-5D-5L interim cross-walk value set [20]. Thus, there is a need to develop 

mapping algorithm with the publication of the new directly elicited EQ-5D-5L utilities. Similarly, 

mapping studies between QLQ-C30 and the SF-6D are sparse [16; 21]. Accordingly, this paper makes 

two important contributions. First, it produces optimal mapping  functions for the EQ-5D-5L based on 

the recently published value set for England [22], as well as the UK value set for SF-6D. Second, we 
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make important methodological contributions, by comparing six regression models previously used in 

mapping studies as well as one model new to mapping research; the extended estimation equations 

(EEE) in the generalized linear model (GLM).  This approach has a desirable property in that it allows 

estimation of flexible mean and variance functions using the data at hand, leading to consistent and 

efficient estimation [23]. This study followed the recently developed checklist of minimum reporting 

requirement for mapping studies [24]: ‘MApping Preference-based Measures reporting Standards 

(MAPS)’.  

 

2. Methods 

  2.1 Data 

Data were obtained from the Multi Instrument Comparison (MIC) study, which was an online survey 

administered by a global panel company, CINT Australia Pty Ltd in six countries: Australia, Canada, 

Germany, Norway, UK , and the US. Considering the difficulty of direct control in the online survey, 

several edit procedures (e.g. exclusion of respondents with inconsistent responses on duplicated 

questions, and removal of respondents whose recorded completion time below 20 minutes) were 

conducted to ensure the quality of the data. For further details on the description of  data, see 

Richardson et al. [25].  Among the seven chronic disease groups included in this comprehensive 

international study, the current paper is based on respondents who had been diagnosed with cancer 

(N=772). They described their health along the QLQ C-30 as well as the EQ-5D-5L and the SF-6D. The 

MIC data is an ideal source for deriving mapping algorithms from disease-specific outcome measures 

onto generic preference-based measures. So far it has been applied to develop several mapping 

algorithms in different chronic diseases, including asthma [26] depression [27; 28], heart diseases 

[29] and diabetes [30]. 

 

2.2 Measures of variables 

EQ-5D-5L 

The EQ-5D-5L is a validated instrument covering five dimensions: mobility, self-care, usual activities, 

pain/discomfort, and anxiety/depression, each with five severity levels (no problems, slight 

problems, some problems, moderate problems, and unable to/extreme problems) [10]. Thus, the EQ-

5D-5L produces 3,125 (55) health states. The described health state values were elicited from a 

sample of the English general public [22]. The utility values ranges from -0.285 for the worst health 

state (the ‘pits’) to 1.000 for full health. It serves as target or dependent variable. 
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SF-6D 

The SF-6D is derived from the short form 36 items (SF-36)[31]. It comprises six dimensions: physical 

functioning, role functioning, social functioning, bodily pain, mental health, and vitality, each with 

four to six levels that define 18,000 unique health states. The preference weights have been elicited 

in the United Kingdom and ranges from 0.301 to 1.000. SF-6D is also a target or dependent variable.  

 

QLQ-C30 

The standard version of the QLQ-C30 recommended by the developers (QLQ-C30 version 3.0) was 

used, which comprises 30 items [7]. Each item has four response levels (i.e. ‘not at all’, ‘a little’, ‘quite 

a bit’ and ‘very much’) except the two items assessing global quality of life and overall health that use 

a seven-point scale. The QLQ-C30 covers 15 subscales: one  global health status scale (GH) (2 items); 

five functioning scales – physical (PF), role (RF), emotional (EF), cognitive (CF), and social (SF) (15 

items), and; nine symptom scales – fatigue (FA), nausea & vomiting (NV), pain (PN), dyspnea (DY), 

insomnia (SL), loss of appetite (AP), constipation (CO), diarrhea (DI), and financial difficulties (FI) (13 

items). The score for each subscale was calculated by summing responses for all items in each 

subscale, and linearly transformed onto a [0 – 1] scale, with 0 indicating the worst, and 1 the best 

possible health state. These 15 subscales of QLQ-C30 are used as source or independent variables. 

 

2.3 Statistical analyses  

Exploratory analyses 

Respondents’ characteristics were described using mean and standard deviation (SD) or count and 

percentage share in the sample. The degree of conceptual overlap between the source and the target 

variables was examined with Spearman’s rank correlation (rho, ρ) and exploratory factor analyses 

(EFA). The EFA was employed using principal axis factoring, which has been recommended as the 

preferred method of factor extraction [32]. An eigenvalue of greater than 1 was used as selection 

criterion to extract underlying factors. To account for potential correlations among factors, rotation 

was performed using an oblique Promax method [33]. 

 

Econometric models 

Both direct and indirect (response) mapping approaches were explored. However, only results from 

the direct mapping were reported here1. The fifteen subscales of the QLQ-C30 together with 

                                                            
1 Response mapping produced the highest error (measured in terms of MAE and RMSE) among other models. In 
response mapping, exact prediction of health state requires correct prediction for each dimension of the target 
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respondents’ age and gender were used as a source to predict health state utility values on the target 

variables (EQ-5D-5L and SF-6D). The final predictors were determined via stepwise backward 

elimination that included only significant variables (p < 0.10). Variables with counter intuitive signs 

were excluded.  

 

Seven econometric models were used: ordinary least square (OLS) regression, generalized linear 

model (GLM), the extended estimation equations (EEE) in the GLM, binomial beta (BB) regression, 

fractional regression model (FRM), logistic quantile regression (LQR), and censored least absolute 

deviation (CLAD). OLS is the most commonly used regression model in mapping studies [13], which 

requires data to be normally distributed with constant variance. If these assumptions are violated, 

the OLS formulation may not be appropriate.  

 

The GLM is a flexible generalization of ordinary linear regression that allows for the outcome 

variables to have a non-normal error distributions [34] by a priori specifying the mean and variance 

functions. However, incorrect specifications of the mean and the variance functions can produce bias 

and inefficiency in estimation. To overcome this problem of misspecification, Basu and Rathouz [35] 

developed the EEE, which is a flexible techniques to estimate the mean and variance functions from 

the data at hand. They recommended power variance structure for continuous outcome variables.2 

This variance family is indexed by two parameters (θ1, and θ2), and defined as:  

2

121 ),,(
 iif  ,    (1) 

where µi is the mean function, E(Y|X = x), with Y a non-negative outcome variable and X a vector of 

predictors.  
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Following Basu and Rathouz [35], the predicted mean value was given as:3 

                                                            
instrument, which rarely achieved in practice. Thus, it can be severely penalized when incorrect prediction is 
made.   
2 Power variance structure is preferred as it includes the variance of several standard distributions (such as 
Poisson, gamma or inverse Gaussian) used for modelling health outcomes. 
3 The EEE is estimated by pglm, a user defined Stata command, which shows better convergence properties 
when the outcome variable is scaled by dividing by its mean [36]. 
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where β is a vector of parameters to be estimated.  

 

In both GLM and EEE, EQ-5D-5L disutility (where disutility = 1 – EQ-5D-5L utility) was used as an 

outcome variable to have non-negative values. 

 

The FRM is a semi-parametric approach that appropriately model bounded dependent variables 

defined on [0, 1] interval [37]. It does not make any distributional assumption about an underlying 

structure used to obtain the outcome variable, but requires the correct specification of the 

conditional mean outcome [37; 38]. The complementary loglog (cloglog) is the best alternative 

functional form in both EQ-5D-5L and SF-6D prediction, and is used as a link function. The FRM model 

has been detailed elsewhere [30]. The BB regression is a fully parametric counterpart, which is  

flexible and capable of modeling dependent variables restricted between 0 and 1 [39]. Since it is not 

defined at 0 or 1, estimation with standard BB regression can be problematic, particularly in the 

presence of piling up of data at 0 or 1. Thus, previous studies have suggested a zero-one inflated BB 

model that can estimate probability masses at both 0 and 1 [40; 41].  As there is no 0 responses in 

the present study, a one-inflated BB (hereafter BB regression) model was applied. The BB regression 

with particular application to EQ-5D mapping study was detailed in Khan and Morris [42].  

   

Like the FRM and BB, the LQR is modelling bounded data but uses quantiles (e.g. median) instead of 

mean. The boundary values need not be 0 and 1 in LQR. For instance, if Y is bounded from below by a 

known constant Ymin and from above by Ymax, then a logistic transformation can be applied to the 

outcome variable, and hence we obtain [43]: 
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where QY(p) is defined as the conditional pth quantile of Y given a set of X independent variables and 

p is the proportion between 0 and 1. In the present study, p = 0.50 (median) has been applied. 

 

The CLAD model is more appropriate for outcome variables censored at lower or upper endpoints 

[44].  It is a semi-parametric estimator that is robust to distributional assumptions and 

heteroscedasticity, because it uses median values rather than means among similar groups, since 

medians are likely to be less affected by censoring. 
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2.4 Performance of mapping algorithms  
Individual predictions were evaluated by examining differences between observed and predicted 

utilities, measured by the normalized root mean square error (NRMSE) and the normalized mean 

absolute error (NMAE), where lower values indicate better fit. We normalized both MAE and RMSE 

to the range of the observed data. Such normalization produce non-dimensional scale, and facilitate 

the comparison between datasets or models with different scales [30]. 

 

Model performance was also examined by the square of the correlation coefficient (r2) between the 

observed and the predicted values. Furthermore, Lin’s concordance correlation coefficient (CCC) [45] 

was considered as measures of model performance. The CCC measures absolute agreement, where a 

value close to unity implies a good concordance between predicted and observed measures (i.e. 

good prediction). The graphical display of the observed vs predicted utilities were visually compared 

for a series of models. Finally, to evaluate the bias and precision of prediction the mean, SD, median 

and other quintiles of predicted utilities were compared against the observed utilities. 

 

2.5 Validation methods 

Due to lack of external data, cross-validation was performed by randomly splitting the existing data 

into two equally sized groups (estimation vs validation) to evaluate the model fit in out-of-sample 

data. The model was fitted on the estimation sample, and the resulting parameters from the fitted 

model were then used to predict utilities on the validation sample. This procedure has been repeated 

by reversing the validation and estimation sample. The average of NRMSE, NMAE, CCC and r2 from 

both iterations were reported for easy comparison of the models’ predictive performance.  

 

The preferred model was identified based on four criteria derived from both the full and the 

validation sample: the lowest combinations of NRMSE and NMAE values and the highest values of r2 

and CCC. The model that performed best in most of these criteria should be selected. Eventually, the 

best fitting model with good predictive accuracy was estimated as the preferred mapping algorithm 

using the full sample. All statistical analyses were conducted using Stata® version 15.1 (StataCorp LP, 

College Station, Texas, USA) except the EFA, which was carried out in SPSS version 24 (IBM Corp., 

Armonk, NY, USA).  
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3 Results  

3.1 Descriptive statistics and conceptual overlap  

Table 1 summarizes the description of variables. For EQ-5D-5L, the mean (SD) value was 0.781 

(0.209). For SF-6D, it was 0.686 (0.133). The frequency distributions of both EQ-5D-5L and SF-6D were 

depicted in Figure 1. Among the QLQ-C30 subscales, the mean (SD) score ranges from 0.573 (0.242) 

for global health status subscale to 0.886 (0.215) for nausea and vomiting. The mean (SD) age was 

58.2 (12.4) years, and there were 54% women in the sample.  

 

Table 1  

Sample characteristics (N=772) 

Variable Mean (SD) Min Max 

Utility measures    

EQ-5D-5L 0.781 (0.209) -0.281 1 

SF-6D 0.686 (0.133) 0.301 1 

QLQ C-30 subscales    

   Global health status 0.573 (0.242) 0 1 

   Physical functioning 0.765 (0.234) 0 1 

   Role functioning 0.712 (0.306) 0 1 

   Emotional functioning 0.696 (0.264) 0 1 

   Cognitive functioning 0.776 (0.252) 0 1 

   Social functioning 0.663 (0.311) 0 1 

   Pain 0.655 (0.315) 0 1 

   Fatigue 0.605 (0.275) 0 1 

   Nausea & vomiting 0.886 (0.215) 0 1 

   Dyspnea 0.761 (0.293) 0 1 

   Insomnia 0.626 (0.330) 0 1 

   Loss of appetite 0.829 (0.283) 0 1 

   Constipation 0.848 (0.256) 0 1 

   Diarrhea 0.859 (0.251) 0 1 

   Financial difficulties 0.678 (0.348) 0 1 
Socio-demographics 
   Age 58.228 (12.358) 19 93 

   Female, n (%)  417 (54.0)   
Country, N (%)    

   Australia 154 (20.0)   

   Canada 138 (17.9)   

   Germany 115 (14.9)   

   Norway 80 (10.4)   
   UK 137 (17.7)   

   USA 148 (19.2)   
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Spearman’s rank correlation was presented in Table 2. Among EQ-5D-5L dimensions, usual activities 
dimension generally provide strong correlation with most QLQ-C30 subscales. The highest correlation 
was found between the pain dimension (for each target instrument) and cancer pain subscale (ρ is 
close to 0.80).  

 
 
 
Table 2  
Spearman's correlation coefficients between the QLQ-C30 the source and the target instruments  

  EQ-5D dimensions SF-6D dimensions 

QLQ-C30 domain scales Mobility Self-care 
Usual  

activities 
Pain/ 

Discomfort 
Anxiety/ 

Depression 
Physical  
function  

Role  
function 

Social  
function 

Bodily 
pain 

Mental  
function 

Vitality 

Global health status scale             

Global health status 0.528 0.332 0.612 0.536 0.453 0.553 0.539 0.594 0.585 0.505 0.615 

Functioning scales             

Physical functioning 0.718 0.458 0.696 0.569 0.285 0.771 0.510 0.537 0.626 0.294 0.566 

Role functioning 0.604 0.425 0.691 0.515 0.264 0.631 0.505 0.573 0.630 0.308 0.488 

Emotional functioning 0.275 0.300 0.387 0.384 0.653 0.347 0.491 0.470 0.433 0.668 0.431 

Cognitive functioning 0.293 0.312 0.403 0.315 0.375 0.379 0.414 0.404 0.367 0.368 0.348 

Social functioning 0.489 0.351 0.576 0.466 0.360 0.562 0.485 0.622 0.554 0.374 0.471 

Symptom scales             

Pain 0.596 0.399 0.600 0.785 0.332 0.564 0.469 0.491 0.803 0.360 0.454 

Fatigue 0.508 0.354 0.597 0.535 0.417 0.593 0.562 0.597 0.607 0.427 0.615 

Nausea & vomiting 0.229 0.260 0.330 0.314 0.296 0.304 0.318 0.397 0.333 0.302 0.289 

Dyspnea 0.395 0.280 0.482 0.320 0.261 0.443 0.333 0.371 0.360 0.282 0.409 

Insomnia 0.365 0.344 0.392 0.413 0.423 0.419 0.416 0.420 0.442 0.431 0.411 

Loss of appetite 0.352 0.304 0.439 0.377 0.327 0.384 0.392 0.473 0.413 0.354 0.366 

Constipation 0.246 0.253 0.257 0.292 0.221 0.277 0.268 0.230 0.326 0.231 0.194 

Diarrhea 0.177 0.258 0.299 0.216 0.219 0.266 0.261 0.264 0.242 0.222 0.218 

Financial difficulties 0.334 0.283 0.417 0.363 0.382 0.426 0.429 0.469 0.409 0.377 0.377 

 All coefficients are statistically significant at less than 1%. 
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The pattern matrices for EFA were reported in Appendix Table A1 and A2. The EFA analysis for the 

QLQ-C30 items and the EQ-5D-5L dimensions produced five underlying factors (‘physical’, 

‘emotional’, ‘symptom’, ‘pain’, and ‘self-care’), explaining 59% of the total variance. Two EQ-5D-5L 

dimensions (mobility, usual activities) were mainly loaded onto the same factor as the QLQ-C30 items 

that describe activities related to ‘physical functioning’. One EQ-5D-5L dimension (self-care) was 

mainly loaded to the last factor, in which only one QLQ-C30 item (i.e., Do you need help with eating, 

dressing, washing yourself or using the toilet?) was mainly loaded onto. In general, the EQ-5D-5L 

dimensions mainly loaded onto all factors except the ‘symptom’ factor, which explains 55.6% of the 

total variance. 

 

EFA results with SF-6D produced six factors; ‘emotional ’, ‘physical ’, ‘symptom’, ‘energy’, ‘limitation’ 

(in financial, family and social activities), and ‘pain’. Surprisingly, the SF-6D ‘role’ and ‘social’ 

functioning dimensions were not mainly loaded onto anyone of the extracted factors. All other 

dimensions of SF-6D had conceptual overlap with the QLQ-C30 items that together extracted 

‘emotional’, ‘physical’, ‘pain’ and ‘energy’ factors, which contribute about 54% to the total variance. 

Like the EQ-5D-5L, none of the SF-6D dimensions were mainly loaded to the ‘symptom’ factor. 

 

3.2 Model performance 

Table 3 summarizes the performance of models based on full sample and cross-validation. For EQ-5D-

5L, the BB regression model performed best in terms of all criteria. The model produced r2, NRMSE, 

NMAE and CCC of 68%, 0.0930, 0.0651 and 0.813, respectively in the full sample. Interestingly, this 

model revealed the best predictive accuracy in terms of all criteria in the cross-validation as well. 

Although the CLAD model performed best in terms of NMAE (0.0649) in the full-sample, it showed 

least predictive performance in all other criteria. 

 

For the SF-6D, the EEE model consistently performed best both in the full sample and in cross-

validation. For example, NRMSE (0.1004) and NMAE (0.0798) were minimal, and CCC (0.842) and r2 

(72.7%) were the highest, indicating low degree of predictive error with high level of accurate 

predictions in the full sample. The corresponding values in the validation sample were: NRMSE = 

0.1037, NMAE = 0.0821, r2 of 71.4%, and CCC = 0.8345.  
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Table 3  

Model performance in the prediction of EQ-5D-5L and SF-6D utilities 

        EQ-5D-5L           SF-6D     

Models RMSE MAE NRMSE NMAE CCC r2 RMSE MAE NRMSE NMAE CCC r2 

Panel A: Full-sample              
OLS 0.1218 0.0848 0.0951 0.0662 0.7960 0.6608 0.0732 0.0603 0.1047 0.0862 0.8250 0.7022 

GLM 0.1207 0.0867 0.0942 0.0677 0.7950 0.6696 0.0709 0.0573 0.1014 0.0820 0.8390 0.7210 

EEE 0.1199 0.0834 0.0936 0.0651 0.8000 0.6737 0.0702 0.0558 0.1004 0.0798 0.8420 0.7269 

BB 0.1191 0.0834 0.0930 0.0651 0.8130 0.6795 0.0759 0.0633 0.1086 0.0906 0.8030 0.6857 

FRM 0.1198 0.0835 0.0935 0.0652 0.8040 0.6724 0.0739 0.0607 0.1057 0.0869 0.8260 0.6974 

LQR 0.1216 0.0835 0.0949 0.0652 0.8020 0.6662 0.0744 0.0603 0.1064 0.0863 0.8230 0.6931 

CLAD 0.1267 0.0833 0.0989 0.0649 0.7170 0.6608 0.0754 0.0605 0.1079 0.0866 0.8260 0.6891 

Panel B: Cross-validation  
 

          
OLS 0.1236 0.0858 0.0965 0.0670 0.7910 0.6494 0.0751 0.0610 0.1074 0.0873 0.8190 0.6967 

GLM 0.1276 0.0894 0.0996 0.0698 0.7835 0.6437 0.0728 0.0584 0.1042 0.0835 0.8330 0.7069 

EEE 0.1225 0.0858 0.0956 0.0670 0.7925 0.6563 0.0725 0.0574 0.1037 0.0821 0.8345 0.7139 

BB 0.1208 0.0835 0.0943 0.0652 0.8050 0.6698 0.0764 0.0625 0.1093 0.0894 0.8010 0.6725 

FRM 0.1217 0.0843 0.0950 0.0658 0.7995 0.6744 0.0747 0.0610 0.1069 0.0872 0.8200 0.6863 

LQR 0.1241 0.0866 0.0969 0.0676 0.7980 0.6598 0.0757 0.0622 0.1083 0.0890 0.8140 0.6848 

CLAD 0.1272 0.0856 0.0993 0.0668 0.7555 0.6402 0.0756 0.0612 0.1082 0.0876 0.8105 0.6856 

Best results are in bold type  

RMSE root mean squared error, MAE mean absolute error, NRMSE normalised RMSE, NMAE normalised MAE, r2 square of correlation coefficient between predicted and 
observed utilities, OLS ordinary least square, GLM generalised linear model, EEE extended estimation equations, BB (one-inflated) beta binomial regression, FRM fractional 
regression model, LQR logistic quantile regression, CLAD censored least absolute deviation, EQ-5D-5L EuroQol five-dimensional five level questionnaire, SF-6D short-form 
six-dimensional questionnaire.  
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The predicted mean (SD) for the EQ-5D-5L ranges from 0.781 (0.170) for the OLS model to 0.801 

(0.142) for the CLAD model, which is quite similar to the observed mean. Surprisingly, all models yield 

quite similar mean SF-6D prediction close to observed mean (0.686). However, over-prediction has 

been observed at severe health states (Figure 2a and 2b; and Appendix Table A3). For instance, the 

1st, and 5th percentiles of the predicted EQ-5D-5L utility were 0.266 and 0.386 against 0.037 and 

0.315 for the observed utility, respectively in the best fitting BB model (Appendix Table A3). The 

corresponding results for SF-6D were 0.467 and 0.497 for predicted against 0.395 and 0.482 for the 

observed values in the preferred EEE model. None of the seven models was able to predict the 

lowest utility score. Only OLS model predicted outside of the observed range (> 1) of the EQ-5D-5L. 

 
 

Figure 2a Scatter plot of 
observed versus predicted 
EQ-5D-5L 
Solid (red) line depicts standard 
deviation (SD) line, which shows 
a measure of the centre of the 
data; broken (blue) line is a line 
along which observed utilities 
equal predicted utilities. Perfect 
prediction occurs when SD line 
and the line of equality overlaps. 
OLS ordinary least square, GLM 
generalized linear model, EEE 

extended estimation equations, 
SBB standard beta binomial 
regression, BB (one-inflated) beta 
binomial regression, FRM fractional 
regression model, LQR logistic 
quantile regression, CLAD censored 
least absolute deviation. 
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3.1 Regression results 

The regression results are summarized in Table 4. The GH, PF, EF, and pain (PN) gave significant (p < 

0.01) predictions of both EQ-5D-5L and SF-6D utilities. Further, six additional variables were 

significant predictors of SF-6D in the best model. The remaining QLQ-C30 sub-scales were either 

insignificant (p > 0.10) or yield logically inconsistent signs, and hence not reported. Neither age nor 

gender predicted EQ-5D-5L and SF-6D in the preferred models.  

  

Figure 2b Scatter plot of 
observed versus predicted 
EQ-5D-5L 
Solid (red) line depicts standard 
deviation (SD) line, which shows 
a measure of the centre of the 
data; broken (blue) line is a line 
along which observed utilities 
equal predicted utilities. Perfect 
prediction occurs when SD line 
and the line of equality overlaps. 
OLS ordinary least square, GLM 
generalized linear model, EEE 

extended estimation equations, 
SBB standard beta binomial 
regression, BB (one-inflated) beta 
binomial regression, FRM fractional 
regression model, LQR logistic 
quantile regression, CLAD censored 
least absolute deviation. 
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Table 4  

Regression results for predicting EQ-5D-5L and SF-6D utilities from QLQ-C30 subscales 
       EQ-5D-5L             SF-6D       
Variables OLS GLM EEE BB FRM QRM CLAD OLS GLM EEE BB FRM QRM CLAD 
GH 0.0993* -0.3965* -0.5384* 0.6062* 0.3694* 0.8445* 0.0513‡ 0.1160* 0.1664* 0.1396* 0.5187* 0.3586* 0.8929* 0.1531* 

 (0.0312) (0.1521) (0.1095) (0.1479) (0.0784) (0.1884) (0.0293) (0.0176) (0.0259) (0.0257) (0.0769) (0.0524) (0.1534) (0.0235) 
PF 0.2763* -0.7997* -1.1290* 1.0456* 0.6574* 1.0271* 0.2058* 0.0925* 0.1610* 0.1951* 0.4389* 0.2593* 0.6522* 0.0893* 

 (0.0354) (0.1275) (0.1186) (0.1285) (0.0820) (0.1998) (0.0365) (0.0204) (0.0311) (0.0327) (0.0884) (0.0583) (0.1667) (0.0262) 
RF    0.2856**   0.0453* 0.0318† 0.0476† 0.0646*  0.0797†   

    (0.1147)   (0.0289) (0.0163) (0.0252) (0.0244)  (0.0482)   
EF 0.1444* -0.4255* -0.5998* 0.6723* 0.3874* 0.8293* 0.1322* 0.0898* 0.1483* 0.1664* 0.3727* 0.2592* 0.5890* 0.0969* 

 (0.0244) (0.1059) (0.0874) (0.1004) (0.0553) (0.1628) (0.0282) (0.0142) (0.0216) (0.0220) (0.0612) (0.0407) (0.1438) (0.0223) 
SF        0.0242† 0.0387†  0.1047† 0.0729†   

        (0.0144) (0.0227)  (0.0622) (0.0423)   
PN 0.2487* -1.0275* -1.0294* 1.0199* 0.6458* 1.3563* 0.2149* 0.0722* 0.1093* 0.1118* 0.3478* 0.1984* 0.4670* 0.0826* 

 (0.0209) (0.0996)) (0.0775) (0.0953) (0.0503) (0.1112) (0.0273) (0.0118) (0.0181) (0.0191) (0.0500) (0.0340) (0.0959) (0.0150) 
SL   -0.1072†    0.0264† 0.0173† 0.0274† 0.0266†  0.0525† 0.1784†  

   (0.0631)    (0.0166) (0.0102) (0.0150) (0.0152)  (0.0289) (0.0939)  
FA        0.0507* 0.0813* 0.0765* 0.2720* 0.1702* 0.4050‡ 0.0735‡ 

        (0.0175) (0.0253) (0.0257) (0.0781) (0.0499) (0.1671) (0.0267) 
AP           0.0377†     
 

          (0.0224)     
FI      0.1830**  0.0242* 0.0371* 0.0461* 0.1123‡ 0.0729* 0.2264* 0.0358* 

      (0.0806)  (0.0090) (0.0134) (0.0130) (0.0438) (0.0258) (0.0779) (0.0137) 
Female        -0.0112‡ -0.0137*  -0.0506** -0.0322‡   

        (0.0054) (0.0076)  (0.0256) (0.0163)   
Constants                
Intercept 0.2492* 0.1081† 2.2707* -0.7736* -0.7683* -0.9379* -0.3280* 0.3597* -0.9149* -0.6233* -0.5513* -0.8011* -2.0031* 0.0343* 

 (0.0262) (0.0655) (0.0859) (0.0926) (0.0573) (0.1578) (0.0283) (0.0143) (0.0230) (0.0239) (0.0679) (0.0436) (0.1214) (0.0155) 
λ   0.7866*       -1.2830*     
   (0.0501)       (0.3004)     
Θ1   0.2611*       0.0103*     
   (0.0164)       (0.0006)     
Θ2   1.1484*       0.5896     
    (0.0923)            (0.3922)         

GH global health status, PF physical functioning, RF role functioning, EF emotional functioning, SF social functioning, PN pain, SL insomnia (trouble sleeping), FA fatigue, AP loss of appetite, FI 

financial difficulties, EQ-5D-5L EuroQol five dimensional five level questionnaire, SF-6D short form six dimensional questionnaire, λ Lambda, and Θ Theta.  

* p < 0.01, ‡ p < 0.05, † p < 0.1.  Standard errors in parentheses.
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4 Discussion 

We have estimated health state utilities for the most widely used cancer-specific (QLQ-C30) instrument 

by mapping it onto each of the two most widely used generic preference-based instruments (EQ-5D-5L 

and SF-6D). The findings revealed the BB and the EEE as the best performing models for predicting EQ-

5D-5L and SF-6D utilities, respectively.  

 

When conducting mapping studies some degree of conceptual overlap between the source and the 

target values is important. In the present study, strong correlations were observed between similar 

dimensions of the QLQ-C30 sub-scales and the two target instruments (EQ-5D-5L and SF-6D), confirming 

the existence of a substantial amount of conceptual overlap between source and target instruments. 

Results from EFA demonstrated similar findings, establishing the foundations for mapping. However, 

none of the EQ-5D-5L and SF-6D dimensions mainly loaded onto the ‘symptom’ factor, which comprises 

lack of appetite, feeling nauseated, vomiting, and diarrhea, and they turned out to be insignificant 

predictors in the regression models as well. Although the QLQ-C30 comprises several items that describe 

limitations in daily activities, leisure activities, financial problems, family and social activities, the SF-6D 

dimensions of ‘role limitation’ and ‘social functioning’ were not mainly loaded onto any constructs 

formed by these QLQ-C30 items. This implies that these items appear to be measuring other aspects of 

role and social functioning than those described in the SF-6D.  

 

The inclusion of socio-demographics may improve the accuracy of mapping algorithms [13]. Previous 

studies found that age was a significant predictor when mapping QLQ-C30 onto the EQ-5D-3L [15; 46], 

but not when predicting SF-6D utilities [21]. Results for gender are mixed.  Gender was significant in 

some studies mapping QLQ-C30 onto EQ-5D utilities [47; 48] and SF-6D utilities [21], but not in others 

[48]. In the present study, neither age nor gender were significant in the preferred models for predicting 

EQ-5D-5L and SF-6D utilities. Such variations across studies could be attributable to the type of cancer in 

relation to gender and the age of the populations included in the studies.  

 

This study also assessed the empirical performance of alternative regression models. In the mapping 

between QLQ-C30 subscales and the EQ-5D-5L, the CLAD model performed well in terms of NMAE as 

compared to other models. However, CLAD gives poor prediction in terms of all other criteria (NRMSE, r2 

and CCC).  The FRM and EEE models performed well after BB regression. As for the mapping between 
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QLQ-C30 subscales and SF-6D, the EEE consistently outperformed other models, followed by the GLM 

model with log link. The CLAD and BB models performed relatively poorly in the prediction of SF-6D. The 

novelty of the BB, FRM and LQR models is that they are more appropriate for data that are bounded, as 

is the case in the EQ-5D-5L and SF-6D. They also accounted for the non-linearity in the relationship 

between the source and the target instruments.  

 

For predicting EQ-5D utilities, the finding that the BB model is the best corroborates with previous 

studies in the field [20; 42]. Studies indicated that the relationship between QLQ-C30 and EQ-5D may be 

better understood with a non-linear model [42; 49]. It is also clear that EQ-5D is characterised by two key 

properties: bounded nature of the data, and piling-up of observations at one (perfect health). 

Consequently, the effect of predictor variables cannot be constant throughout its entire range [50]. Thus, 

the novelty of the BB model is that it is non-linear and more appropriate for naturally bounded data as 

the case in EQ-5D.  

 

For predicting SF-6D, the EEE model is the best. This model has superior statistical properties in terms of 

accuracy and efficiency, which makes it a powerful and flexible mapping algorithm in health economic 

evaluation [41; 42]. The EEE is a more flexible method because it not only identifies an appropriate link 

function from the data and suggests an underlying distribution for a specific application, but also serves 

as a robust estimator when no specific distribution for the outcome measure can be identified [35]. That 

is, the EEE method performs well in terms of bias and efficiency when the distribution of the outcome 

variable is not known, and when there is ambiguity about the appropriate link function. 

 

The current study differs from previous studies in several important aspects [15-21; 47; 49]. First, by 

comparing seven distinct econometric models, we investigated the merits of alternative analytical 

approaches addressing the characteristics of the data, such as censoring, non-linearity, problems of 

normality and heterogeneity of variance. Second, previous studies have either applied the 3L version of 

the EQ-5D [15-17; 19; 42; 49] or the 5L based on an interim cross-walk tariff [20]. In the current study, 

we  applied the new EQ-5D-5L value set [22], which is directly elicited by members of the general public. 

Our goodness of fit measures in the preferred models (r2) were better than or comparable with other 

mapping studies. For instance, in similar studies aiming to develop mapping relationships between QLQ-

C30 and EQ-5D, the explanatory power (r2) ranges between 0.40 to 0.75 [16-18; 20; 42; 47; 49].  For the 

SF-6D , the r2 was 0.63 in Kontodimopoulos [51] and 0.75 in Wong et al. [21].  
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Furthermore, the predictive ability of our preferred model, as measured by RMSE and MAE, were close 

to that reported in other mapping study involving QLQ-C30 and EQ-5D-5L interim cross-walk tariff [20]. 

For the SF-6D, RMSE is 0.080 and MAE is 0.065 in [21], and RMSE is about 0.077 and MAE is close to 

0.060 in [51]. RMSE is 0.0702 and MAE is 0.0558 in the present study, indicating better predictive 

performance of the preferred (EEE) model. These discrepancies could be attributable to the nature and 

size of the sample. Most previous mapping studies have relied on samples with only one cancer type, 

while our sample includes different cancers. Other potential reasons for these discrepancies might be 

differences in methodological approach and predictor variables used as well as variation in the target 

instruments employed.  

 

Our findings are consistent with the claim that the mapping algorithms tended to under-predict the true 

utilities for patients in better health and over-predict utilities for those in poorer health [51-53]. This was 

observed in all mapping algorithms considered and can be seen in Figure 2a and 2b. This effect was small 

and had little influence on the overall mean in SF-6D. The reasons why such non-linearities were more 

pronounced in EQ-5D than SF-6D prediction might be i)  the ceiling effect at the upper limit of the scale 

for the EQ-5D, and ii) the substantial decrements in preference weights that occur at the severe EQ-5D 

health states [54].  

 

This study has several strengths. First, it explored alternative regression models that provide consistent 

and robust estimates under misspecification of errors related to non-normality and heteroscedasticity.  

To our knowledge, this is the first study to explore the predictive performance of the EEE approach in the 

field of mapping studies. Second, we have normalized both RMSE and MAE for differences in scale to 

facilitate comparison between instruments or models with different scales, which is usually ignored in 

other mapping studies.  Third, the use of several model performance criteria demonstrate the 

consistency of our results. Yet, the present study is not without limitations. In all online surveys, self-

selection bias is one potential problem. Although our mapping algorithms were tested on the internal 

dataset and performed well, further validation is warranted using external samples. The data set on 

which the modelling is based include subjects from six Western countries. However, the English EQ-5D-

5L and the UK SF-6D utilities have been applied. If cancer patients from each country would describe 

their problems differently on the source (QLQ-C30) and the target (EQ-5D-5L and SF-6D) instruments, the 

regression coefficients in the mapping functions should be interpreted with some caution. 
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In summary, the QLQ-C30 can be mapped onto the EQ-5D-5L and the SF-6D utilities with good predictive 

accuracies. The BB regression model was preferred for EQ-5D-5L, while the more flexible EEE method in 

the generalized linear model was preferred for SF-6D. Thus, in the absence of generic preference-based 

instruments, these mapping algorithms can predict health state utilities that are required in the 

calculation of QALY gains, thereby enabling comparisons of the relative cost-effectiveness of cancer 

interventions as compared to spending the resources in other disease areas.  
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Appendix Table A1 EFA for the QLQ-C30 items and the SF-6D dimensions 

QLQ-C30 items and EQ-5D-5L dimensions 

Factors 

EF PF SM EG LM PN 

QLQ-C30 items       

1. Do you have any trouble doing strenuous activities, like carrying a 
heavy shopping bag or suitcase? 

 0.652     

2. Do you have any trouble taking a long walk?   0.722     

3. Do you have any trouble taking a short walk outside of the house?   0.770     

4. Do you need to stay in bed or a chair during the day?  0.405     

5. Do you need help with eating, dressing, washing yourself or using the 
toilet? 

 0.655  -0.433   

During the last week       

6. Were you limited in doing either your work or other daily activities?     0.487  

7. Were you limited in pursuing your hobbies or other leisure time 
activities?  

    0.575  

8. Were you short of breath?        

9. Have you had pain?       0.927 

10. Did you need to rest?     0.410   

11. Have you had trouble sleeping?        

12. Have you felt weak?    0.485   

13. Have you lacked appetite?    0.517    

14. Have you felt nauseated?   0.829    

15. Have you vomited?    0.932    

16. Have you been constipated?        

17. Have you had diarrhea?   0.564    

18. Were you tired?    0.546   

19. Did pain interfere with your daily activities?      0.870 

20. Have you had difficulty in concentrating on things, like reading a 
newspaper or watching television? 

      

21. Did you feel tense? 0.785      

22. Did you worry?  0.819      

23. Did you feel irritable?  0.696      

24. Did you feel depressed?  0.800      

25. Have you had difficulty remembering things?        

26. Has your physical condition or medical treatment interfered with your 
family life? 

    0.960  

27. Has your physical condition or medical treatment interfered with your 
social activities? 

    0.898  

28. Has your physical condition or medical treatment caused you financial 
difficulties? 

    0.457  

29. How would you rate your overall health?    -0.747   

30. How would you rate your overall quality of life?    -0.695   

SF-6D dimensions       

1. Physical functioning   0.770     

2. Role limitation  [0.341]   [0.351]   

3. Social functioning      [0.249]  

4. Bodily pain       0.795 

5. Mental health  0.683      

6. Vitality     0.821   
Extraction Method: Principal Axis Factoring. Rotation Method: Promax with Kaiser Normalization. Loadings lower than 0.40 was suppressed, 
except for the ‘role’ and ‘social functioning’ dimensions of SF-6D in which the largest loading was reported in a bracket. EM emotional 
functioning, PF physical functioning, SM symptom, EG energy, LM limitation, PN pain, SF-6D short form six dimensional questionnaire, QLQ-
C30 Quality of Life Questionnaire Core 30, EFA exploratory factor analysis. 
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Appendix Table A2 EFA for the QLQ-C30 items and the SF-6D dimensions 

QLQ-C30 items and EQ-5D-5L dimensions 

Factors 

EF PF SM EG LM PN 

QLQ-C30 items       

1. Do you have any trouble doing strenuous activities, like carrying a heavy 
shopping bag or suitcase? 

 0.652     

2. Do you have any trouble taking a long walk?   0.722     

3. Do you have any trouble taking a short walk outside of the house?   0.770     

4. Do you need to stay in bed or a chair during the day?  0.405     

5. Do you need help with eating, dressing, washing yourself or using the 
toilet? 

 0.655  -0.433   

During the last week       

6. Were you limited in doing either your work or other daily activities?     0.487  

7. Were you limited in pursuing your hobbies or other leisure time 
activities?  

    0.575  

8. Were you short of breath?        

9. Have you had pain?       0.927 

10. Did you need to rest?     0.410   

11. Have you had trouble sleeping?        

12. Have you felt weak?    0.485   

13. Have you lacked appetite?    0.517    

14. Have you felt nauseated?   0.829    

15. Have you vomited?    0.932    

16. Have you been constipated?        

17. Have you had diarrhea?   0.564    

18. Were you tired?    0.546   

19. Did pain interfere with your daily activities?      0.870 

20. Have you had difficulty in concentrating on things, like reading a 
newspaper or watching television? 

      

21. Did you feel tense? 0.785      

22. Did you worry?  0.819      

23. Did you feel irritable?  0.696      

24. Did you feel depressed?  0.800      

25. Have you had difficulty remembering things?        

26. Has your physical condition or medical treatment interfered with your 
family life? 

    0.960  

27. Has your physical condition or medical treatment interfered with your 
social activities? 

    0.898  

28. Has your physical condition or medical treatment caused you financial 
difficulties? 

    0.457  

29. How would you rate your overall health?    -0.747   

30. How would you rate your overall quality of life?    -0.695   

SF-6D dimensions       

1. Physical functioning   0.770     

2. Role limitation  [0.341]   [0.351]   

3. Social functioning      [0.249]  

4. Bodily pain       0.795 

5. Mental health  0.683      

6. Vitality     0.821   
Extraction Method: Principal Axis Factoring. Rotation Method: Promax with Kaiser Normalization. Loadings lower than 0.40 was suppressed, 
except for the ‘role’ and ‘social functioning’ dimensions of SF-6D in which the largest loading was reported in a bracket. EM emotional 
functioning, PF physical functioning, SM symptom, EG energy, LM limitation, PN pain, SF-6D short form six dimensional questionnaire, QLQ-
C30 Quality of Life Questionnaire Core 30, EFA exploratory factor analysis. 
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Appendix Table A3 Distributions of observed vs. predicted EQ-5D-5L and SF-6D utilities at different 

severity levels  

Variable Mean SD iqr p1 p5 p10 p25 p50 p75 p90 p95 p99 

EQ-5D-5L             

  Observed 0.781 0.209 0.230 0.037 0.315 0.512 0.708 0.838 0.937 1.000 1.000 1.000 

  Predicted             

    OLS 0.781 0.170 0.241 0.353 0.448 0.518 0.674 0.823 0.915 0.977 0.999 1.018 

    GLM 0.776 0.164 0.161 0.195 0.415 0.543 0.726 0.839 0.887 0.908 0.915 0.920 

    EEE 0.781 0.166 0.228 0.316 0.438 0.519 0.683 0.830 0.911 0.957 0.971 0.987 

    BB 0.778 0.176 0.204 0.266 0.386 0.509 0.700 0.833 0.904 0.957 0.972 0.982 

    FRM 0.781 0.171 0.226 0.294 0.416 0.502 0.689 0.843 0.915 0.948 0.958 0.966 

    LQR 0.793 0.174 0.186 0.215 0.396 0.511 0.731 0.860 0.917 0.941 0.948 0.955 

   CLAD 0.801 0.142 0.206 0.445 0.525 0.575 0.709 0.835 0.915 0.964 0.981 1.000 

SF-6D             
 Observed 0.686 0.133 0.206 0.395 0.482 0.529 0.593 0.673 0.799 0.852 0.894 0.965 

 Predicted             

   OLS 0.686 0.112 0.155 0.406 0.473 0.514 0.619 0.701 0.774 0.819 0.838 0.859 

   GLM 0.686 0.114 0.167 0.435 0.481 0.517 0.609 0.691 0.777 0.832 0.858 0.883 

   EEE 0.686 0.114 0.170 0.467 0.497 0.527 0.603 0.681 0.773 0.841 0.872 0.916 

   BB 0.684 0.104 0.141 0.406 0.478 0.528 0.624 0.703 0.765 0.796 0.822 0.854 

   FRM 0.686 0.115 0.164 0.402 0.463 0.507 0.616 0.704 0.780 0.822 0.838 0.857 

   LQR 0.689 0.115 0.169 0.419 0.463 0.509 0.614 0.707 0.783 0.827 0.840 0.863 

   CLAD 0.695 0.115 0.161 0.405 0.474 0.525 0.625 0.709 0.786 0.835 0.856 0.884 
p1 1st percentile, p5 5th percentile, …, p99 99th percentile, SD standard deviation, iqr inter-quantile range, EQ-5D-5L 

EuroQol five-dimensional five level questionnaire, SF-6D short form six-dimensional questionnaire, OLS ordinary 

least square, GLM generalized linear model, EEE extended estimating equations, BB (one-inflated) beta binomial 

regression, FRM fractional regression model, LQR logistic quantile regression, CLAD censored least absolute 

deviations. In each model, EQ-5D-5L and SF-6D were target or dependent variables. 

 


