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Abstract. We discuss rank 2 sub-Riemannian structures on low-
dimensional manifolds and prove that some of these structures in
dimension 6, 7 and 8 have a maximal amount of symmetry but no
integrals polynomial in momenta of low degrees, except for those
coming from the Killing vector fields and the Hamiltonian, thus
indicating non-integrability of the corresponding geodesic flows.

Introduction

A sub-Riemannian (SR) structure on a connected smooth manifold
M consists of a completely non-holonomic (or bracket-generating) vec-
tor distribution ∆ ⊂ TM and a Riemannian metric g ∈ Γ(S2

+∆∗) on it.
For points x, y ∈M denote byH(x, y) the space of integral (horizontal)
curves γ : [0, 1]→ M , γ̇ ∈ ∆, joining x to y: γ(0) = x, γ(1) = y. It is
nonempty by the Rashevsky-Chow theorem.

The length functional lg(γ) =
∫ 1

0
‖γ̇‖gdt on the space of horizontal

curves defines the sub-Riemannian distance on M by

dg(x, y) = inf
γ∈H(x,y)

lg(γ).

A curve γ ∈ H is called geodesic if it locally minimizes the length
between any two close points with respect to dg. The description of
most geodesics (normal ones) is given by the Euler-Lagrange variational
principle. There is a Hamiltonian reformulation of this principle, called
the Pontrjagin maximum principle [PMP]. It allows one to consider the
sub-Riemannian geodesic flow as the usual Hamiltonian flow on T ∗M
with the Hamiltonian H(x, p) = 1

2
‖p‖2

g (abnormal extremals play no
role in this respect and will be ignored in this paper). We will recall
this together with the other relevant material in Section 1.
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As in the standard theory of Riemannian geodesics, the metric g is
integrable if this Hamiltonian flow is integrable on T ∗M in the Liou-
ville sense, i.e. there are almost everywhere functionally independent
integrals I1 = H, I2, . . . , In that Poisson-commute {Ik, Il} = 0; see
[A, AKN] and also [BF] for a review of methods and problems.

In this paper we investigate certain aspects of integrability of SR-
structures on vector distributions of rank 2 (the smallest rank in non-
holonomic mechanics). In general, SR-structures need not be inte-
grable. For the first time, this was illustrated with a precise example
in [MSS] by Montgomery, Shapiro and Stolin. More examples can be
found in [Kr]. We will focus on left-invariant SR-structures on Carnot
groups, which serve as tangent cones (nilpotent approximations) for
general SR-structures. In Riemannian geometry, the tangent cone is
the Euclidean space and it is integrable. This integrability does not
carry over to the sub-Riemannian case.

We discuss integrability1 of SR-structures and particularly pose the
specific question whether it is related to the amount of symmetry
present in these structures. On Carnot groups of dimensions up to
5 the geodesic flow of all left-invariant SR-structures are Liouville in-
tegrable (see Section 2), however starting from dimension 6 we show
that the final polynomial integrals, required for Liouville integrability,
cease to exist at least in low degrees (up to 6), even in the maximally
symmetric situations. For precise formulations in dimension 6, 7 and
8, see Theorems 1, 2 and 3 in Sections 5, 6 and 7, respectively.

In Section 8, we reduce the corresponding systems of PDEs to sys-
tems with 2 degrees of freedom in a convenient form that allows us
to consider obstructions for integrability in a uniform setting. The re-
duced systems provide a parametric 3-components first order system of
ODEs. Its dynamics is interesting in its own right, we speculate that
the case corresponding to dimension 6 is similar to a forced pendulum.

In Section 9, we complement our results with the trajectory portraits
that demonstrate irregular dynamics. Our computations show that the
systems exhibit chaotic behavior for various values of parameters in the
reduced formulation, providing more evidence of non-integrability. In
dimension 8 our study agrees with the numerical observations of [Sa].

The combination of established low-degree non-integrability, the re-
duced formulation (the known integrable quadratic Hamiltonians with

1We consider the integrals that are analytic in momenta. For a quadratic Hamil-
tonian H, the existence of such an integral implies by [Dar, Wh] the existence of
an integral that is homogeneous polynomial in momenta. Moreover, in all our cases
we need only one additional integral I commuting with H and the linear integrals,
so this I can always be assumed homogeneous polynomial in momenta.
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2 degrees of freedom have integrals of deg ≤ 4), and the numerical
evidence strongly suggests that generic SR-structures are in general
not Liouville integrable with analytic in momenta integrals. In the
Riemannian setting this was recently proved in [KM2].

The technique we use in sections 5, 6 and 7 is inherited from the work
[KM1], where it was exploited to prove rigorously non-existence of low-
degree integrals for the Zipoy-Voorhees metric from general relativity;
for related work on this topic, see [LG, MPS, V1]. We will explain
the method in detail in Sections 3 and 4. In short, it allows us to
reduce the search of integrals of a fixed degree d to a linear algebra
problem, namely to a computation of the rank of a matrix with the size
polynomially growing with d. The entries of this matrix are integers,
and the computer verification, solely based on evaluation of the rank,
gives a rigorous proof of the result. To the best knowledge of the
authors, it is at present the only method that allows one to make non-
existence statements for the class of integrals under consideration.

Acknowledgment. We thank Vladimir S. Matveev for an encour-
agement throughout our work.

1. SR-structures as Hamiltonian systems

Let us recall some basic facts from sub-Riemannian geometry and
geometry of vector distributions.

(A). Pontrjagin maximum principle. Consider a completely non-holo-
nomic distribution given as an inclusion i : ∆ ↪→ TM and a sub-
Riemannian metric g ∈ Γ(S2

+∆∗) on it, yielding the isomorphism ]g :
∆∗ → ∆. The following composition defines a vector bundle morphism

Ψg : T ∗M
i∗→ ∆∗

]g→ ∆
i→ TM.

We have: Ker(Ψg) = Ann ∆ and CoKer(Ψg) = TM/∆.
Define the Hamiltonian function on T ∗M as the composition

H : T ∗M
i∗→ ∆∗

]g→ ∆
1
2
‖·‖2g→ R.

This function is locally described via an orthonormal frame ξ1, . . . , ξk,
considered as fiber-linear functions on T ∗M : H = 1

2

∑k
1 ξ

2
i .

The Pontrjagin maximum principle [PMP] states that trajectories of
the Hamiltonian vector field XH in the region {H > 0} of the cotan-
gent bundle equipped with the standard symplectic structure, when
projected to M are extremals of the corresponding variational prob-
lem. They are called (normal) geodesics.
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Whenever the SR-geodesic flow XH on T ∗M is Liouville integrable,
the level surfaces of the integrals are cylinders {I = const} ' Tn−r×Rr

with a linear dynamic on them. The possibility r > 0 is due to either
degeneracy k < n or non-compactness of M .

(B). Vector distributions. Given a vector distribution ∆ ⊂ TM we
define its weak derived flag by bracketing the generating vector fields:
∆1 = ∆, ∆i+1 = [∆,∆i]. The distribution is non-holonomic if ∆ ( ∆2

and completely non-holonomic if ∆k = TM for some k. We will assume
that the rank of the distributions ∆i is constant throughout M , then
(dim ∆1, dim ∆2, . . . , dim ∆k) is called the growth vector of ∆.

The family of graded vector spaces {gi = ∆i/∆i−1}, equipped with
the natural bracket induced by the commutators of vector fields, forms
a sheaf of graded nilpotent Lie algebras g = g1⊕· · ·⊕gk over M . In this
paper we consider only the strongly regular case, when it is a bundle
(i.e. the structure constants in the fiber do not depend on x ∈M). The
typical fiber is then called the Carnot algebra of ∆.

For the rank 2 distribution ∆ ⊂ TM the prolongation is defined as
follows [AK, Mon]. Let M̂ = P∆ = {(x, `) : x ∈ M, ` ⊂ ∆x} be the

natural S1-bundle over M with the projection π : M̂ → M . Then the
prolonged distribution ∆̂ ⊂ TM̂ is given by ∆̂x,` = π−1

∗ (`) ⊂ Tx,`M̂ .

Example. The prolongation of the tangent bundle of R2 is the Heisen-
berg SR-structure (Heis3,∆), its prolongation is the Engel structure etc.

Even though the SR-behavior can be quite different, the prolonged
distribution has the geometry readable off the original distribution and,
starting from dimension 5, we will assume that ∆ is not a prolongation
of a rank 2 distribution from lower dimensions.

2. SR-structures on Carnot groups of dimension 3 to 5

In this section we discuss left-invariant SR structures on low-dimen-
sional Carnot groups G, which have appeared before in the literature,
though in other contexts. We claim the following: for dimG ≤ 5
every such SR-structure is Liouville integrable, for distributions ∆ of
all ranks. However, since the concern of the paper is rank(∆) = 2, we
give a proof for this case only.

A Carnot group G is a graded nilpotent Lie group, with its Lie alge-
bra g = g1 ⊕ · · · ⊕ gk being bracket-generated by g1, and distribution
∆ ⊂ TG corresponding to it. Equipped with a left-invariant Riemann-
ian metric on ∆, such a group naturally serves as a tangent cone at a
chosen point of a general SR-structure, see e.g. [BR] for details.
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In what follows we use the following notations. A basis ei of g gen-
erates the basis ωi ∈ (g∗)∗ of linear functions on g∗, given by

ωi(p) = 〈p, ei〉, p ∈ g∗.

We identify ωi with the left-invariant linear functions on T ∗G, and
denote by θi their right-invariant analogs.

The Lie-Poisson structure ∇LP on g∗ induces the Poisson structure
(∇LP ,−∇LP ) on g∗ ⊕ g∗ and this yields the following commutation
relation of the above functions with respect to the canonical symplectic
structure on T ∗G: If [ei, ej] = ckijek, then

{ωi, ωj} = ckijωk, {ωi, θj} = 0, {θi, θj} = −ckijθk.
As is well-known, every left-invariant Hamiltonian system on T ∗G

is reduced to a dynamical system on coadjoint orbits, arising from a
Hamiltonian system on g∗ with respect to the Lie-Poisson structure,
see [A] for the Riemannian and [BKM] for the sub-Riemannian cases.

(A). Dimension 3: the Heisenberg SR-structure. In dimension 3 the
only Carnot group2 is G = Heis3. The Carnot algebra is heis3 = g1⊕g2

with g1 = 〈e1, e2〉, g2 = 〈e3〉 and the only relation [e1, e2] = e3.
The Hamiltonian H = 1

2
(ω2

1 + ω2
2) has two integrals: I2 = θ1 and

the Casimir I3 = θ3 = ω3. These I1 = H, I2, I3 are involutive and
functionally independent, yielding Liouville integrability.

There is also a fourth (noncommuting with I2) integral I4 = θ2 con-
fining the motion to the cylinders S1×R1 ⊂ T ∗G = G×g∗, and making
the system super-integrable (meaning the existence of more integrals).

Actually, for all systems considered in this paper whenever we es-
tablish Liouville integrability, the super-integrability (but not maximal
super-integrability) will follow. Indeed, we will always indicate a right-
invariant linear form (commuting with the left-invariant Hamiltonian)
that is functionally independent of the other integrals.

(B). Dimension 4: the Engel SR-structure. In dimension 4 we also
have only one SR-structure, related to the well-known Engel structure.

The graded nilpotent Lie algebra is g = g1 ⊕ g2 ⊕ g3 = 〈e1, e2〉 ⊕
〈e3〉 ⊕ 〈e4〉 with the (nontrivial) commutators:

[e1, e2] = e3, [e1, e3] = e4.

The Hamiltonian is H = 1
2
(ω2

1 + ω2
2), and I2 = θ2, I3 = θ3, I4 = θ4

together with I1 = H form a complete set of integrals. Adding I5 = θ1

makes the Hamiltonian system super-integrable (notice though that I5

does not commute with I2, I3).

2Left-invariant SR-structures on 3D Lie groups are considered in Appendix A.
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In coordinates on G we have3:

2H = (p1 + x2p3 + x3p4)2 + p2
2,

and the integrals are:

I2 = θ2 = p2 + x1p3 + 1
2
x2

1p4, I4 = θ4 = p4;

I3 = θ3 = p3 + x1p4, (I5 = −θ1 = p1).

Alternatively, to get an involutive set of integrals, we can use the inte-
grals J2 = I5, J3 = I4 and the Casimir function J4 = ω2

3 − 2ω2ω4:

J2 = p1, J3 = p4, J4 = p2
3 − 2p2p4 = I2

3 − 2I2I4.

The obtained integrals establish Liouville integrability of H.

(C). Dimension 5: the Cartan SR-structure. In dimension 5 there are
two SR-structures: one on the prolongation of the Engel structure (a
partial case of the Goursat structure, easily seen to be integrable, so we
skip it) and the other related to Cartan’s famous (2, 3, 5) distribution.
The Carnot algebra is the positive part of the grading, corresponding
to the first parabolic subalgebra of the exceptional Lie algebra Lie(G2):
g = g1 ⊕ g2 ⊕ g3 = 〈e1, e2〉 ⊕ 〈e3〉 ⊕ 〈e4, e5〉 with the commutators

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5. (1)

The Hamiltonian is H = 1
2
(ω2

1 +ω2
2). In terms of right-invariant vector

fields and the corresponding linear functions, we have the following
involutive set of integrals: the Casimir function

I2 = θ1θ5 − θ2θ4 + 1
2
θ2

3 = ω1ω5 − ω2ω4 + 1
2
ω2

3,

together with the linear integrals I3 = θ3, I4 = θ4, I5 = θ5. Again
adding I6 = θ1 makes the Hamiltonian system super-integrable (the
next obvious candidate I ′6 = θ2 is already functionally dependent with
the previous integrals; they do not commute with I2).

In coordinates on G we have:

2H = (p1 − 1
2
x2p3 − x1x2p4)2 + (p2 + 1

2
x1p3 + x1x2p5)2,

and with the notation J± = x1p4 ± x2p5 the integrals are:

I2 = p1p5 − p2p4 + 1
2
p2

3 + 1
2
J2
− + 1

2
p3J+, I4 = p4,

I3 = p3, I5 = p5.

The additional integral is either I6 = p1+ 1
2
x2p3+(x3− 1

2
x1x2)p4+ 1

2
x2

2p5

or I ′6 = p2 − 1
2
x1p3 − 1

2
x2

1p4 + (x3 + 1
2
x1x2)p5.

3This and similar formulae are obtained via realization of the basis ei as left-
invariant vector fields on G. For the Engel structure: e1 = −(∂x1

+x2∂x3
+x3∂x4

),
e2 = ∂x2

, e3 = ∂x3
, e4 = ∂x4

. The right invariant vector fields are such fields on G
that commute with ej and have the same values at the unity of G.
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3. Discussion: on detecting integrability

We want to understand whether integrability of a SR-geodesic flow
is related to the amount of its symmetry. We consider and investigate
two kinds of infinitesimal symmetries:

(i) vector fields preserving the underlying distribution ∆;
(ii) Killing symmetries whose flow also preserves g.

By the Noether theorem, every Killing symmetry field yields an integral
linear in momenta (to be also called a Noether integral). In our main
examples we find D−2 linear integrals in addition to the Hamiltonian,
where D = dim(G), and ask whether these suffice for integrability, i.e.
whether a final polynomial integral exists.

(A). Integrability. In dimensionD = 6, we investigate all left-invariant
SR-structures on Carnot groups and show non-existence of a final low-
degree integral for the maximally symmetric distribution, and at the
same time integrability for the maximally symmetric SR-structure.

In dimensions D = 7, 8 we focus on maximally-symmetric SR-struc-
tures (they have D+ 1 independent non-involutive Noether integrals).
To establish integrability we use the Tanaka theory, reviewed in Ap-
pendix B. The Hamiltonian and Noether integrals are realized in co-
ordinates by exploiting the Baker-Campbell-Hausdorff formula.

(B). Non-integrability. This is more difficult to demonstrate. Few
methods can detect it, and they depend on the integrability setup.
For instance, analytic non-integrability on a compact manifold follows
from positivity of the topological entropy, see [T]. Obstructions for
algebraic integrability can be found by differential Galois theory [MR]
or, for integrals rational in all coordinates, by the Painlevé test.

In contrast, we are interested in first integrals that are smooth in
the base coordinates and polynomial in momenta; they are also known
as Killing tensors. The above tests are not applicable to detect the
existence of such integrals. The method we use to test non-existence
of such integrals was proposed in [KM1]. Before going into detail in
Section 4, let us explain the simple idea behind.

(C). Our approach. The condition governing existence of an integral
of degree d is an overdetermined system of

(
d+D
D−1

)
linear differential

equations on
(
d+D−1
D−1

)
unknown functions of D variables. It is of finite

type, meaning the system is reducible to ODEs.
Checking the explicit compatibility conditions can be cumbersome.

Instead, we compute all differential consequences (cf. [Wo, KM1]). This
reduces the problem to linear algebra: the kernel of the system’s matrix,
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evaluated at a fixed point, corresponds to degree d integrals, some of
which are products of apriori known lower-degree integrals, thus giving
a lower bound on the nullity of the matrix. Whether the final integral
exists can be decided by computing the rank of this matrix. If its
nullity is the minimal possible, no additional integral exists.

Similar to applications of the Galois theory or Painlevé test, our
method can be implemented on a computer. Technical details of the
method are given in the next section. We use the method to prove The-
orems 1, 2 and 3 in a mathematically rigorous, computer-assisted man-
ner (no approximations are involved). For an independent verification,
our Maple code can be found as supplement to arXiv:1507.03082v2.

4. Method to check existence of the final integral

Similarly to [KM1] we prove, for certain systems, non-existence of the
final integral F required for Liouville integrability. In all our cases (with
D = dimG degrees of freedom) we have D− 2 commuting Noether in-
tegrals, which we normalize to p3, . . . , pD. However, reduction will not
be performed until Section 8, so we keep the momenta p = (p1, . . . , pD),
and the Hamiltonian is H = H(x1, x2, p1, . . . , pD). A first integral that
is smooth by the base variables x = (x1, x2) and polynomial (of de-
gree d) in momenta and that commutes with the Noether integrals
p3, . . . , pD, has the form

F =
∑
|τ |=d

aτ (x1, x2) pτ . (2)

(pτ =
∏D

i=1 p
τi
i for a multi-index τ = (τ1, . . . , τD), |τ | =

∑D
i=1 τi). The

Poisson bracket relation {H,F} = 0 encodes the requirement that F is
an integral. It is a homogeneous polynomial in momenta of degree d+1,
and is equivalent to a linear PDE system, called Sd in the following.

(A). The bounds on the number of integrals. Instead of the differential
system Sd we consider the associated system of linear equations, given

by fixing a point o ∈ G. Denote by S
(k)
d the k-th prolongation of

Sd, i.e. the system obtained by differentiating the PDEs from Sd by
x1, x2 up to total order ≤ k. The total number of equations hence is
md,k =

(
d+D
D−1

)
·
(
k+2

2

)
. The unknowns are the derivatives (jets), whose

collection we denote by V = V
(k)
d (represented by a column vector of

height #V ). Their number is nd,k = #V =
(
d+D−1
D−1

)
·
(
k+3

2

)
.

Upper bound. The system S
(k)
d evaluated at o ∈ G has the form

M · V = 0 with some md,k × nd,k matrix M = M
(k)
d . Let Λd be the

number of linearly independent first integrals of degree d. The upper
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bound, in which the right hand side stabilizes for k = d+ 1 (cf. [Wo]),
is

Λd ≤ δ
(k)
d := #V

(k)
d − rankM

(k)
d , (3)

and we denote δd = δ
(d+1)
d , Vd = V

(d+1)
d and Md = M

(d+1)
d .

Lower bound. The system admits the quadratic integral I1 = H
and linear integrals I2 = p3, . . . , ID−1 = pD (let di be the degree of Ii).
The derived integrals

∏
Imi
i of degree

∑
midi = d are called trivial.

Thus,

Λd ≥ Λ0
d :=

[d/2]∑
i=0

(
d− 2i+D − 3

D − 3

)
. (4)

(B). The procedure. If the bounds in (3) and (4) coincide, Λ0
d = δd,

then Λd = Λ0
d and all integrals of degree d are trivial, confirming non-

existence of the final integral in degree d.
There are two important differences to [KM1]: (i) Our model is

homogeneous, so the choice of point o is not essential (in general stable
values of δd,k require choosing a generic point). We choose (x1, x2) =
(0, 0). (ii) The Hamiltonian H (rescaled by an integer) is a polynomial
with integer coefficients (no rational expressions).

Complications arise in the computation of rk(M), since for a large
matrix M the Gaussian elimination is costly. But simplifications are
possible because M contains many zeros, and also:

1. All coefficients of M are integers, after multiplying with the com-
mon denominator of the entries.

2. At the point o, by combining F of (2) with the trivial integrals,
some (superfluent) unknowns Vspfl ⊂ V are removed.

3. Partial solution of the system: iteratively solve the monomial and
bimonomial equations until no more such equations remain. Let Vmon

and Vbimon be the corresponding unknowns.
We obtain from Md a reduced system, Mred · Vred = 0, with matrix

Mred and Vred = Vd \ (Vspfl ∪ Vmon ∪ Vbimon). Then

δd = #Vd − rk(Md) = #Vred + #Vspfl − rk(Mred).

(C). The modular approach. The procedure confirms non-existence of
the final integral of degree d when δd = Λ0

d. The right hand side is (4),
while the left hand side depends on rk(Md) as in (3).

To improve the rank computation, we may work modulo p for a
prime p. Denote by δd[p] the quantity δd computed as above, but with
matrices mod p. In modular computation, the rank can decrease for
specific values of p, but for sufficiently large primes p the modularly
computed rank coincides with the usual one. Thus, if for some prime
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p the equation δd[p] = Λ0
d holds, the final integral of degree d does not

exist. The main complication is to find a suitable p, which appears
to grow fast with D. Our experiments suggest that searching for a
decisive p successively is inefficient, while choosing a random increasing
sequence of p turns out to be useful.

5. Left-invariant SR-structures in dimension 6

In this section we show a certain type of non-integrability for a rank 2
left-invariant distribution on a 6D Carnot group G. Every such 2-
distribution ∆ is encoded as the space g−1 in the corresponding graded
nilpotent Lie algebra g.

In 6D the growth vector is (2, 3, 5, 6) (recall we assumed that ∆ is
not a prolongation of another rank 2 distribution), and every such Lie
algebra g is a central 1D extension of the Cartan algebra from Section
2 (C), the distribution also being an integrable extension [AK].

Thus g = g1 ⊕ g2 ⊕ g3 ⊕ g4 = 〈e1, e2〉 ⊕ 〈e3〉 ⊕ 〈e4, e5〉 ⊕ 〈e6〉 has first
commutators as in (1), which should be accompanied by the brackets
g1 ⊗ g3 → g4. This leads to precisely three algebras, called elliptic,
parabolic and hyperbolic4 in [AK]. We will study them in turn.

(A). Integrability of the maximally symmetric elliptic SR-structure.
The elliptic (2,3,5,6)-distribution has the following structure equations:

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = e6.

Its symmetry algebra has dimension 8 [AK], and it is not maximally
symmetric as a 2-distribution, but it supports the maximally symmet-
ric SR-structure. Namely, defining the SR structure by the orthonor-
mal frame e1, e2, we conclude that its symmetry dimension is 7 (see
Appendix B). The corresponding Hamiltonian is

2H =
(
p1− 1

2
x2p3−x1x2p4− 1

2
x2

1x2p6

)2
+
(
p2+ 1

2
x1p3+x1x2p5+ 1

2
x1x

2
2p6

)2
.

There are two Casimir functions I6 = ω6 and C = 1
2
(ω2

4+ω2
5)−ω3ω6. For

the maximally symmetric Hamiltonian H = 1
2
(ω2

1 +ω2
2), these together

with I1 = H, I2 = ω1ω5 − ω2ω4 + 1
2
ω2

3 and the right-invariant linear
functions I3 = θ3, I4 = θ4, I5 = θ5 and I6 form 6 involutive integrals
(C = 1

2
(I2

4 + I2
5 ) − I3I6), so this system is Liouville integrable. Notice

that I ′2 = θ1θ5 − θ2θ4 + 1
2
θ2

3 is also an integral, and I2 − I ′2 = I6 · K,
where K is the last Killing vector field (neither I ′2 nor K commute with
I1, . . . , I6, but they make the system super-integrable).

4The (2,3,5,6)-distributions are given by a conformal quadric on g1 due to con-
formal identification adg2 : g1 ' g3, whence elliptic, parabolic and hyperbolic.
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In coordinates: I3 = p3, I4 = p4, I5 = p5, I6 = p6 and

I2 = (p1 − 1
2
x2p3 − x1x2p4 − 1

2
x2

1x2p6)(p5 + x2p6)

− (p2 + 1
2
x1p3 + x1x2p5 + 1

2
x1x

2
2p6)(p4 + x1p6)

+ 1
2
(p3 + x1p4 + x2p5 + 1

2
(x2

1 + x2
2)p6)2.

(B). Non-integrability of the parabolic SR-structure. The parabolic
(2,3,5,6)-distribution is given by the structure equations:

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6.

With its 11-dimensional symmetry algebra it is the maximally sym-
metric non-holonomic rank 2 distribution in 6D, see [DZ, AK].

Up to equivalence there is only one left-invariant SR-structure (this
follows from the fact that the Tanaka prolongation ĝ of the Carnot
algebra g has ĝ0 ⊂ gl(g1) equal to the Borel subalgebra, and the cor-
responding group transforms the invariant SR-structures), and it is
given by the orthonormal frame e1, e2 (the symmetry dimension of this
SR-structure is 6, and so it is not maximally symmetric). The corre-
sponding Hamiltonian H = 1

2
(ω2

1 + ω2
2) has the coordinate form

2H =
(
p1− 1

2
x2p3− x1x2p4− 1

2
x2

1x2p6

)2
+
(
p2 + 1

2
x1p3 + x1x2p5

)2
. (5)

There are two Casimir functions ω5 = θ5, ω6 = θ6, and two additional
Noether integrals θ3 = p3, θ4 = p4, that form an involutive family
I2 = p3, I3 = p4, I4 = p5, I5 = p6. However no other Casimirs or
commuting linear integrals exist.

In search of more complicated integrals we perform the computations
for the final (6th) integral of degree d and arrive at the following result.

Theorem 1. The final integral of degree d ≤ 6 for the Hamiltonian (5)
of the left-invariant SR-structure on the parabolic (2,3,5,6)-distribution
does not exist.

Proof. First let us note that it is enough to prove non-existence of a
nontrivial integral I6 of degree 6. Indeed, if a nontrivial integral I of
degree d < 6 exists, then I · p6−d

6 is a non-trivial integral of degree 6.
Therefore we shall apply the procedure described in Section 4 to

our system with d = 6 only5. For sextic integrals, seven prolongations
need to be performed in order to achieve equality for the upper bound

δ6 = δ
(7)
6 . Our computation gives:

# all eqns # V6 # eqns Mred #Vred rk(Mred) δ6

28512 20790 11816 9155 9155 130

5In fact, we run the test for 1 ≤ d ≤ 5 as well, confirming the same result.
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The last number δ6 coincides with the number of trivial integrals
Λ0

6 = 130, and hence by the discussion in §4 there is no integral of
degree 6, which is independent of and commuting with I2, . . . , I5. �

(C). Hyperbolic and other elliptic SR-structures in 6D. The hyper-
bolic rank 2 distribution with growth vector (2, 3, 5, 6) has the following
structure equations:

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e5] = e6, [e2, e4] = e6.

The Hamiltonian corresponding to orthonormal frame e1, e2 is

2H =
(
p1− 1

2
x2p3−x1x2p4− 1

4
x1x

2
2p6

)2
+
(
p2+ 1

2
x1p3+x1x2p5+ 1

4
x2

1x2p6

)2
.

There are two Casimir functions I6 = ω6 and C = ω4ω5−ω3ω6. For the
Hamiltonian H = 1

2
(ω2

1 + ω2
2) these two together with I1 = H and the

integrals I3 = θ3, I4 = θ4, I5 = θ5 (θ6 = ω6) form 6 involutive integrals,
but they are functionally dependent (C = I4I5 − I3I6).

The most general left-invariant SR-structure on both the elliptic
and the hyperbolic (2,3,5,6)-distributions can be brought into the form
2H = ω2

1 + (aω1 + b ω2)2, b 6= 0, with the same 4 Noether integrals.
However no other Casimirs or commuting linear integrals exist.

In all these cases (except the elliptic case with a = 0, b = 1) the
system is neither SR-maximally symmetric (the symmetry algebra has
dim = 6), nor maximally symmetric as a distribution (the symmetry
algebra has dim = 8).

In all these cases the search for the final integral reduces to the same
problem as in (B). We can apply the machinery used in Theorem 1,
and the computations show the same non-existence result (in all cases
except the elliptic a = 0, b = 1). This non-existence of low degree
integrals suggests that these Hamiltonians are not integrable.

6. Maximally symmetric SR-structures in dimension 7

A non-integrability effect established in the previous section happens
also in higher dimensions. We noted that the parabolic distribution
∆ in 6D is maximally symmetric, but for the left-invariant parabolic
SR-structure (∆, g) in 6D the symmetry algebra of (∆, g) is minimal
possible: the algebra of left-translations g.

In general, the symmetry algebra of a left-invariant SR-structure
(∆, g) on a Carnot group G is a graded Lie algebra g̃ and it contains
the Lie algebra of G, namely g = g1 ⊕ . . . gν ⊂ g̃. The additional part
is contained at most in the zero grading6: g̃/g = g̃0 [Mo]. Clearly this
piece is at most 1-dimensional g̃0 ⊂ so(g1, g).

6We provide a simple proof of this fact in Appendix B.
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Thus dim Sym(∆, g) ≤ dim g + 1. The equality is attained if the
rotation endomorphism φ ∈ so(g1, g) extends (uniquely) to a grading
preserving derivation of g. Let us investigate if such a maximally sym-
metric left-invariant SR-structure on a Carnot group is integrable.

In 6D the only maximally symmetric SR-structure is the (unique
up to scale) SR-structure on the elliptic (2,3,5,6)-distribution (with
dim Sym = 7) and it is integrable. Consider the case dimG = 7.

Here the only maximally symmetric SR-structure g on a rank 2 dis-
tribution ∆ on a 7D Carnot group G (that is not a prolongation from
lower dimensions) with dim Sym(∆, g) = 8 has growth vector (2,3,5,7)
and the following structure equations7 of the graded nilpotent Lie al-
gebra g = Lie(G):

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

[e1, e4] = −[e2, e5] = e6, [e1, e5] = [e2, e4] = e7.
(6)

Here H = 1
2
(ω2

1 +ω2
2) and g0 = 〈e2⊗ω1−e1⊗ω2〉. There are 3 Casimir

functions ω6, ω7 and ω3(ω2
6+ω2

7)− 1
2
(ω2

4−ω2
5)ω6−ω4ω5ω7. The involutive

family of integrals θ3, . . . , θ7 generates these Casimirs and together with
the Hamiltonian they lack 1 more integral for Liouville integrability. In
local coordinates, we have

2H =
(
p1 − 1

2
x2p3 − x1x2p4 − 1

2
x2

1x2p6 − 1
4
x1x

2
2p7

)2

+
(
p2 + 1

2
x1p3 + x1x2p5 − 1

2
x1x

2
2p6 + 1

4
x2

1x2p7

)2
, (7)

and the integrals are I2 = p3, . . . , I6 = p7. Looking for the final integral
I7, we again invoke the method of Section 4 to obtain:

Theorem 2. The final integral of degree d ≤ 6 for the Hamiltonian (7)
of the left-invariant SR-structure on the (2,3,5,7)-distribution given by
(6) does not exist.

Proof. We perform the same computations as in the proof of Theo-
rem 1. In this case, our computer capacities allow us to study polyno-
mial integrals up to degree d = 5. We need six prolongations to arrive
at a definite conclusion, which is presented in the table:

# all eqns # V5 # eqns Mred #Vred rk(Mred) δ5

25872 16632 9397 6993 6993 166

Since the number δ5 = δ
(6)
5 coincides with the number of trivial integrals

Λ0
5 = 166, we conclude absence of the final integral of degree d ≤ 5.

7These are obtained from the (2,3,5,6) parabolic distribution by the central ex-
tension technique of [AK].
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To handle the case of degree d = 6, we use the modular approach,
described in Section 4 (C). The computation concludes faster, but to
reach a definite answer we need a suitably large prime. In our case
p = 101 suffices and we obtain the following result:

# all eqns # V6 # eqns Mred #Vred rk(Mred) δ6[101]
61776 41580 19137 15848 15848 296

This computation implies δd[p] = Λ0
d, and we conclude non-existence

of the final integral of degree d ≤ 6. �

Remark. The indicated p for d = 6 is not claimed to be the minimal
possible. But search for the minimal p requires more computer time.
For instance, with d = 5 the computation for d = 5 gives δd[p] > Λ0

d

for the primes p = 2, 3, . . . , 29, and we obtain equality (implying non-
existence of degree 5 integral) for the next primes p = 31, 37 and 41.

7. On integrability of SR-structures in dimension 8

There are two SR-structures g on a rank 2 distribution ∆ on a 8D
Carnot group G (that is not a prolongation from lower dimensions)
with dim Sym(∆, g) = 9: one with the growth vector (2,3,5,6,8) and the
other with the growth vector (2,3,5,8). The distributions are obtained
by central extension from 7D as in [AK], and we take the (unique up
to scale) so(2)-symmetric metric g (in the cases, when g0 ⊃ so(2)).

The second SR-structure (∆, g) has a more symmetric underlying
distribution (with the symmetry dimension 12 vs. 10), but it is the
first one that is integrable.

(A). The (2,3,5,6,8) SR-structure. The structure equations of the al-
gebra g = Lie(G) = g1⊕· · ·⊕g5 = 〈e1, e2〉⊕〈e3〉⊕〈e4, e5〉⊕〈e6〉⊕〈e7, e8〉
are the following:

[e1, e2] = e3, [e1,2, e3] = e4,5, [e1, e4] = [e2, e5] = e6,

[e1,2, e6] = e7,8, [e3, e4,5] = i e7,8,

where we use complex notations ea,b = ea+i eb. In this form it is obvious
that the action of SO(2) on g, composed of the standard action on g1,
g3, g5 and the trivial action on g2, g4, is an automorphism.

The left-invariant Hamiltonian H = 1
2
(ω2

1 + ω2
2) has 5 commuting

right-invariant Killing fields (integrals) I2 = θ4, I3 = θ5, I4 = θ6,
I5 = θ7, I6 = θ8. In addition, there are 2 Casimir functions

I7 = ω1ω8 − ω2ω7 + ω3ω6 −
ω2

4 + ω2
5

2
= θ1θ8 − θ2θ7 + θ3θ6 −

θ2
4 + θ2

5

2
,

C = ω4ω7 + ω5ω8 − 1
2
ω2

6 = θ4θ7 + θ5θ8 − 1
2
θ2

6,
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of which the second is dependent on I2, . . . , I7. Yet we have one more
quadratic integral

I8 = ω1ω5 − ω2ω4 + 1
2
ω2

3,

and it is straightforward to check that the involutive integrals I1 =
H, I2, . . . , I8 are functionally independent almost everywhere on T ∗G.
Consequently, the considered SR-structure is Liouville integrable. No-
tice that I ′8 = θ1θ5−θ2θ4+ 1

2
θ2

3 is different from I8 and is also an integral
of H, which again manifests super-integrability.

In coordinates, denoting σ2 = x2
1 + x2

2, we have

ω1 = p1 − 1
2
x2p3 − x1x2p4 − 1

2
x2

1x2p6 − 1
5
(σ2 + x2

2)x3p7 + 1
5
x1x2x3p8,

ω2 = p2 + 1
2
x1p3 + x1x2p5 + 1

2
x1x

2
2p6 + 1

5
x1x2x3p7 − 1

5
(x2

1 + σ2)x3p8,

ω3 = p3 + x1p4 + x2p5 + σ2

2
p6 + (σ

2

10
x1 + x2x3)p7 + (σ

2

10
x2 − x1x3)p8,

ω4 = p4 + x1p6 + 1
2
x2

1p7 + (1
2
x1x2 − x3)p8,

ω5 = p5 + x2p6 + (1
2
x1x2 + x3)p7 + 1

2
x2

2p8,

ω6 = p6 + x1p7 + x2p8, ω7 = p7, ω8 = p8,

and θi = pi for 4 ≤ i ≤ 8; the formulae for Ii follow.

(B). The (2,3,5,8) SR-structure. The free truncated graded nilpotent
Lie algebra g = g1 ⊕ · · · ⊕ g4 = 〈e1, e2〉 ⊕ 〈e3〉 ⊕ 〈e4, e5〉 ⊕ 〈e6, e7, e8〉
with the structure equations

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

[e1, e4] = e6, [e1, e5] = [e2, e4] = e7, [e2, e5] = e8

was also studied in [Sa]. The left-invariant Hamiltonian H = 1
2
(ω2

1 +
ω2

2) has 6 commuting right-invariant Killing fields, leading to Noether
integrals I2 = θ3, I3 = θ4, I4 = θ5, I5 = θ6, I6 = θ7, I7 = θ8. In addition,
there is 1 cubic Casimir function, but it depends on the linear integrals.

Thus we again lack one final integral for integrability. To set up its
computation we write the Hamiltonian in local coordinates:

2H =
(
p1 − 1

2
x2p3 − 1

2
(x2

1 + x2
2)p5 − 1

4
x1x

2
2p7 − 1

6
x3

2p8

)2

+
(
p2 + 1

2
x1p3 + 1

2
(x2

1 + x2
2)p4 + 1

6
x3

1p6 + 1
4
x2

1x2p7

)2
. (8)

Theorem 3. The final integral of degree d ≤ 5 for the Hamiltonian
(8) of the left-invariant SR-structure on the (2,3,5,8)-distribution does
not exist.

Proof. We use again the procedure from Section 4 to show non-existence
of a non-trivial integral of degree 5. After six prolongations of the PDE
system, we arrive at the following table:
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# all eqns # V5 # eqns Mred #Vred rk(Mred) δ5

48048 28512 4439 3514 3514 314

The upper bound δ5 = 314 = Λ0
5 realizes the number of trivial integrals,

and proves that no final (8th) integral of degree d = 5 exists. �

8. Reduction to the system with 2 degrees of freedom

In this section, we give a uniform description of several of the pre-
viously discussed systems in terms of first order ODE systems in 3D.
In particular, we reformulate in this way the three systems exhibiting
non-integrable behavior, namely the (2,3,5,6) parabolic, (2,3,5,7) ellip-
tic and (2,3,5,8) free truncated SR-structures given by the Hamiltoni-
ans (5), (7) and (8). In addition, the same reduction can be performed
for the general (2,3,5,6) elliptic and hyperbolic SR-structures.

First, note that in all these cases the Hamiltonian is a sum of two
squares and so can be expressed as

2H = ρ2 cos2z + ρ2 sin2z, (9)

and pi = ci for i = 3, . . . , D are the Noether integrals. Symplectic
reduction via these integrals (fixing them and forgetting about xi, 3 ≤
i ≤ D, of which nothing depends) is a classical procedure, see [Wh, A].
Thus, in view of (9), Hamilton’s equations can be rewritten in terms
of x, y, z and ρ (as well as c3, . . . , c8).

For instance, in the case of the parabolic (2,3,5,6)-problem, we ex-
press the coordinates p1, p2 in terms of the coordinate z as follows:

p1 = ρ cos z + 1
2
x2c3 + x1x2c4 + 1

2
x2

1x2c6,

p2 = ρ sin z − 1
2
x1c3 − x1x2c5.

Next, we can confine to an energy shell, that is fix H = 1
2
ρ2 = const,

which reduces the dynamics to the manifold S1T
∗R2 = R2(x, y)×S1(z),

where we let x = x1, y = x2. Without loss of generality we can assume
ρ = 1. After an appropriate change of coordinates, the Hamiltonian
equation η̇ = {η,H} on the energy shell writes as the 3× 3 system:

ẋ = cos z, ẏ = sin z, ż = Q(x, y), (10)

where Q = Q(x, y) is a quadratic polynomial. This polynomial can be
brought to the following normal form (a 6= 0 & b 6= 0)

Q = Q1(x, y) = a x2 + b y for D = 6 parabolic, (11)

Q = Q2(x, y) = a x2 + b y2 + c for D = 7, 8 (12)
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(the latter formula contains also the 6D elliptic and hyperbolic cases).
Take, for instance, the 6D parabolic case, formula (11). In this exam-
ple, we have a = c6/2 and b = c5, and we assume a, b 6= 0.

Notice that the condition a, b 6= 0 is important, as otherwise the
system fibers over a 2D flow, which can never be chaotic.

A similar effect happens for a = b and Q = Q2(x, y), where a change
of variables x = r cosψ, y = r sinψ reduces the system to a 2D flow
with coordinates r and s = z − ψ. This latter case corresponds to the
6D elliptic maximally symmetric SR-structure. The corresponding 3D
system possesses the following integral

F = 1
4
a r4 + c

2
r2 − r sin(s),

which corresponds exactly to the integral I2 identified in Section 5, cf.
also [V2]. However, for the general a, b, it will be shown in the next
section that the system exhibits a chaotic behavior.

Remark. One can check that in the complement to a hypersurface the
following 1-form on R2(x, y)× S1(z) is contact:

α = 1
3
(a x3dy − b y3dx) + c

2
(x dy − y dx) + cos z dx+ sin z dy.

In this domain its Reeb vector field Rα, given by the two conditions
α(Rα) = 1 and dα(Rα, ·) = 0, preserves the volume form α ∧ dα and
so is divergence-free with respect to it (the Reeb field Rα plays a distin-
guished role in contact geometry). Our vector field, given by (10) for
Q = Q2(x, y), is proportional to Rα, and so has the same trajectories.
For Q = Q1(x, y) the situation is similar, if α is properly modified.

We conclude this section with a note on the resemblance of system
(10) to a driven pendulum in the case Q = Q1(x, y). Let us eliminate
x, y from (10). Differentiating ż and replacing ẋ and ẏ via ODE (10),
we get the following 3rd order ODE on z = z(t), where ∆ = d

dt
◦ 1

cos z
:

∆ (z′′ − b sin z) = 2a cos z,

which can be written in non-local form as:

z′′ − b sin z = ∆−1(2a cos z) = 2a cos z D−1
t cos z. (13)

In this form it resembles the driven pendulum z′′ − b sin z = a cos kt
without dissipation. For a = 0 system (13) is the simple pendulum
when b < 0, while for b > 0 the second term on the left hand side de-
scribes a repulsive power8. However, contrary to the driven pendulum,
where the right hand side is an external force, system (13) seems to be
self-driven. The evolution of this system is shown in Fig. 1 for three
different parameter combinations. The orbital dynamics in Fig. 1 is

8For instance, when z � 1 the solutions are hyperbolic.
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quite complex and resembles the dynamics of the damped driven pen-
dulum (see, e.g., Fig. 9, 10 in [H] and references therein), indicating
non-integrability. This resemblance appeals for a more systematic nu-
merical analysis of system (10), which is provided in the next section.

Figure 1. The orbital evolution of variables z, z′ for the
D = 6 parabolic case with the parameters a = 10 and
b = −0.1 (left panel), b = −1 (middle panel), b = 1 (right
panel). The initial conditions for (x, y, z) are (0,−5, 0) in
the left and middle panels and (0, 0, 0) in the right panel.
The red curves show the evolution in the time interval
0 ≤ t ≤ 1, while the black dots continue it to time 1000.

9. Numerical evidence of non-integrability

In this section, we provide numerical evidence showing the non-
integrability of systems (11)-(12) (corresponding to SR-geodesic flows
with D = 6, 7, 8) by evolving the equation of motion of the reduced
system (10). In Section 8 we have already claimed that system (11)
resembles the dynamics of a driven pendulum that is chaotic. However,
this resemblance can be a mere coincidence. In order to put forward a
thorough investigation of whether in the above systems chaos appears
or not, we need a more standardized method.

One of the most classical methods for finding chaos is given by in-
vestigating the dynamics of the return map on the surfaces of section
(Poincaré map). We compute this numerically by evolving the equa-
tions of motion with the Cash-Karp-Runge-Kutta scheme. The accu-
racy of the numerical results is checked by reducing the integration
step size by an order of magnitude and testing whether this reduction
changes the trajectory of the orbit.

Surfaces of section were employed in [Sa] for the D = 8 case as
well9. There the surface z = 0, z′ > 0 has been chosen as the Poincaré

9Equations (80)-(82) of [Sa] with q = 0 correspond to our (10) with Q = Q2(x, y).
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Figure 2. The surface of section on z = 0, z′ > 0 (black
dots) for system (11) with parameters a = 10, b = −0.1
and the orbit starting from x = y = 0. The red curve
Q1(x, y) = 0 shows the limit of this section.

section. However, if we employ the same surface of section for the
D = 6 parabolic case we encounter a problem. Namely, the surface of
section z = 0, z′ > 0 does not meet all the trajectories in the phase
space, because of the parabolic form of Q1(x, y). For example, in Fig. 2
the red curve Q1(x, y) = 0 sets a limit for the section we can plot, and
creates an obstacle to study the whole phase space. In other words,
the surface z = 0, z′ > 0 for system (11) is not a good choice for the
Poincaré section. Moreover, the oscillations across the x-axis indicate
that the system is non-compact. Namely, as an orbit evolves it tends
to reach larger and larger values of |y| and |x|.

Because of the above mentioned oscillations across the x-axis shown
in Fig. 2, we assumed that a good surface of section for system (11)
would be the surface x = 0, x′ > 0. This assumption has proven
to be correct and we show the results on Fig. 3. In both panels of
Fig. 3 we can see a region of concentric closed curves (black curves),
which represent regular orbits. The center of these regular orbits lies
around the point (z, y) = (0, 20) in the left panel, and around the point
(z, y) = (0,−20) in the right panel. The concentric curves indicate that
the central point corresponds to a stable periodic orbit.

In both cases around these concentric orbits lie an irregular orbit
(red dots), which tends to cover all the available phase space in the
complement to the regular orbits. The irregular orbit apparently stems
from a point around (z, y) = (0, 30) in the left panel, and around
(z, y) = (0,−30) in the right panel. Both these points match the
appearance of unstable periodic orbits.

These irregular orbits in Fig. 3 indicate that the D = 6 parabolic
system is non-integrable. Note that the plots of Fig. 3 do not show
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Figure 3. Details of the surface of section on x = 0,
x′ > 0 for system (11) with parameters a = 10 and
b = −0.1 (left panel), b = 0.1 (right panel). The black
closed curves represent regular orbits, while the red dots
correspond to one irregular orbit.

the whole phase space, because the system is non-compact. Instead we
focus our plots on the region around the regular orbits and near the
unstable point, where the irregular features are more prominent.

Figure 4. Dynamics on the surface of section z = 0,
z′ > 0 for system (12) with parameters a = 2, b = 1,
c = 0 (elliptic case).

System (12) can be separated in two categories: the elliptic ones
(ab > 0), and the hyperbolic ones (ab < 0). In the elliptic case the
surface of section in Fig. 4 tells straightforwardly that the system is
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non-integrable. Namely, in Fig. 4 we can discern the characteristic
features of a non-integrable system like chaotic regions and islands of
stability belonging to Birkhoff chains. In the particular case of the
system corresponding to D = 8, the indicated non-integrability is in
agreement with the non-integrability conjecture of [Sa].

Figure 5. The surface of section on z = 0, z′ > 0,
corresponding to the hyperbolic case of system (12) with
parameters a = −1/2, b = 1/2, c = 102.

We can assert non-integrability also for the hyperbolic case on the
ground of analytic dependence on the parameters a, b of our system
(assuming the integrals should share the same property). However,
we can confirm this numerically as well, and we do it in Fig. 5: the
hyperbolic orbit is shown on two different surfaces of section, and both
of these surfaces indicate that the orbit is irregular, and therefore, the
systems (12), corresponding to D = 7, 8, are non-integrable.

Appendix A. SR-structures on 3D Lie groups

Every left-invariant SR structure on a 3-dimensional Lie group G is
determined by a 2-dimensional subspace (not subalgebra) of the Lie
algebra g and a metric on it. The classification of such is due to [VG],
and this reference also contains the integration of the equations of
geodesics in terms of a semi-direct product.

Liouville integrability of left-invariant SR structures on 3D Lie groups
G was proven in the preprint arXiv:math/0105128 of [Kr]. It was later
re-visited in [MS]. We provide a short proof here for completeness.
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Theorem 4. Non-holonomic geodesic flows of left-invariant SR-metrics
on 3-dim Lie groups are Liouville integrable with polynomial integrals.

Proof. The left-invariant Hamiltonian 2H = ω2
1 + ω2

2 commutes with
all right-invariant forms θi. Every 3-dimensional Lie algebra g has a
Casimir function C ∈ C∞(g∗) (because G has odd dimension), so the
involutive set of integrals is: I2 = C, I3 = θi, where the number i is
chosen such that I1 = H, I2, I3 are functionally independent.

Moreover this C is linear for the Heisenberg algebra and quadratic for
simple Lie algebras sl(2), so(3), but it can be non-algebraic (depending
on parameters) in the remaining semi-direct cases g = R1nR2. In these
cases, h = R2 is an Abelian subalgebra. The right-invariant forms I2, I3

associated to a basis in h are integrals in involution. The Hamiltonian
H is algebraically (and functionally) independent of those, because
otherwise it would be bi-invariant. This completes the proof. �

Appendix B. Prolongation of Killing symmetries

Let g = g−ν ⊕ · · · ⊕ g−1 be a (finite-dimensional) graded nilpotent
Lie algebra10, such that g−1 generates g. The Tanaka prolongation is
a graded Lie algebra ĝ such that ĝ− = ⊕i<0ĝi = g and it is the maxi-
mal graded Lie algebra with this property (its construction is outlined
below). In particular, ĝ0 = der0(g) is the algebra of grading preserving
derivations of the Lie algebra g.

Given a subalgebra g0 ⊂ ĝ0, the Tanaka prolongation pr(g, g0) =
g−ν ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ ĝ1 ⊕ . . . is naturally defined if we restrict
the non-positive part to g ⊕ g0. Constructively ĝ1 consists of the
homomorphisms ϕ : g−i → g1−i, i > 0, satisfying the Leibniz rule
ϕ([x, y]) = [ϕ(x), y] + [x, ϕ(y)], then we similarly define ĝ2 etc. If some
ĝr = 0, then also ĝi = 0 for i > r and the algebra ĝ is finite-dimensional.

An example of reduction of g0 is given by a left-invariant SR-structure.

Theorem 5. Let g be a Riemannian metric on g−1 and g0 = der0(g)∩
so(g−1, g). Then pr+(g, g0) = 0, i.e. ĝi = 0 ∀i > 0.

This theorem is due to Morimoto [Mo]. His proof is based on a result
due to Yatsui. In the case of our interest we give a simpler argument.

Proof in the case dim g−1 = 2. Clearly the only possibility for
non-zero g0 is R = so(2) = 〈e0〉 that acts on g−1 = 〈e′−1, e

′′
−1〉 as a

complex structure: [e0, e
′
−1] = e′′−1, [e0, e

′′
−1] = −e′−1.

For 0 6= ϕ ∈ ĝ1 there is a basis of g−1 such that ϕ(e′−1) = e0, ϕ(e′′−1) =
0. Then for e−2 = [e′−1, e

′′
−1] we have ϕ(e−2) = −e′−1. Let ẽ−2 = e−2

10It is customary in Tanaka theory to use negative gradation in the basic part,
so we switch here from the notations used in the main body of the paper.
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and define recursively ẽ−s = [e′′−1, ẽ1−s], s > 2. We have ϕ(ẽ−s) = ẽ1−s
so by induction ẽ−s 6= 0 ∀s > 2, implying that dim g = ∞. This is a
contradiction. �
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Czech Republic, Bočńı II 1401/1a, CZ-141 31 Prague, Czech Republic.


