Serum Platinum retention and long-term effects in Testicular cancer survivors

Line Veronika Hjelle
A dissertation for the degree of Philosophiae Doctor – August 2018
Table of Contents

ACKNOWLEDGEMENTS ....................................................................................................... 4

LIST OF PAPERS ...................................................................................................................... 6

I. Long-term platinum retention after treatment with platinum-based chemotherapy in testicular cancer survivors: A 20-year follow-up study ........................................................ 6
II. Associations between long-term serum platinum and neuro- and ototoxicity, endocrine gonadal function and cardiovascular disease in testicular cancer survivors ......................... 6
III. Long-term serum platinum changes and their association with cisplatin-related late effects in testicular cancer survivors ...................................................................................... 6

ABBREVIATIONS .................................................................................................................... 7

1. INTRODUCTION AND BACKGROUND ....................................................................... 9

1.1 The population of cancer survivors is growing ......................................................... 9
1.2 Epidemiology and risk factors for testicular cancer ................................................... 11
1.4 Malignant germ cell tumors (GCTs) ......................................................................... 14
1.5 Tumor markers .......................................................................................................... 15
1.6 Staging ....................................................................................................................... 17
1.7 Treatment principles for TC ..................................................................................... 18
   1.7.1 How the TC treatment has evolved through the past half century .................... 18

   1.7.2 Treatment principles within our study cohort (1980-1994) ............................... 19

   1.7.3 The most common cytotoxic agents used during 1980-1994 .......................... 19

   1.7.4 Specific treatment of seminoma patients through 1980-1994 ......................... 21

   1.7.5 Specific treatment of non-seminoma patients through 1980-1994 .................. 21

2. LATE EFFECTS .............................................................................................................. 22

2.1 General aspects of cancer survivorship ..................................................................... 22
2.2 Long-term serum Platinum retention after cisplatin treatment .................................. 23
2.3 Neuro- and ototoxicities .......................................................................................... 24
2.4 Endocrine-gonadal function ..................................................................................... 26
2.5 Cardiovascular disease ........................................................................................... 27
2.6 Second cancers ......................................................................................................... 27
3. AIMS OF PRESENT THESIS ........................................................................................................ 29

4. MATERIAL AND METHODS .................................................................................................... 30
   4.1 The study design and study populations ........................................................................... 30
   4.2 The treatment groups ......................................................................................................... 32
   4.3 Serum platinum quantification ....................................................................................... 33
      4.3.1 Inductively coupled plasma mass spectrometry (ICP-MS) ..................................... 34
      4.3.2 Reagents and standards ........................................................................................... 34
      4.3.3 Sample handling ...................................................................................................... 35
      4.3.4 Instrumentation ........................................................................................................ 35
      4.3.5 Method Performance ............................................................................................... 36
   4.4 The questionnaires and neuro-ototoxicity assessment ....................................................... 36
   4.5 Assessments and definitions .............................................................................................. 37
   4.6 Statistical methods ............................................................................................................ 39
   4.7 Approvals ......................................................................................................................... 41

5. RESULTS .................................................................................................................................. 42
   5.1 Paper I ............................................................................................................................ 42
   5.2 Paper II ........................................................................................................................... 43
   5.3 Paper III .......................................................................................................................... 44

6. DISCUSSION .......................................................................................................................... 46
   6.1 Methodological considerations ....................................................................................... 46
      6.1.1 General aspects ........................................................................................................ 46
      6.1.2 Internal and external validity ................................................................................... 46
      6.1.3 Selection bias ........................................................................................................... 48
      6.1.4 Information bias ...................................................................................................... 49
      6.1.5 Confounding ............................................................................................................ 50
   6.2 Discussion of results .......................................................................................................... 51
6.2.1 Long-term platinum levels at SII and platinum level change from SI to SII (paper I and paper III) ........................................................................................................51

6.2.2 Long-term platinum levels and changes, and their associations with cisplatin related late effects (paper II and paper III) ..........................................................................................53

7. CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH .....................59

REFERENCES ..............................................................................................................61

APPENDIX 1 ..................................................................................................................71

APPENDIX 2 ..................................................................................................................85

ERRATA .......................................................................................................................100

PAPERS .........................................................................................................................101
ACKNOWLEDGEMENTS

The present work was carried out at the Norwegian Translational Cancer Research Group, Department of Clinical Medicine at The Arctic University of Tromsø, financed by the University.

Firstly, I want to express my genuine and deepest gratitude to my main supervisor Hege S. Haugnes for introducing me to and guiding me through the medical research field of testicular cancer. Her scientific knowledge, endless enthusiasm and support have inspired and helped me along the way.

Secondly, I am grateful to my supervisors Roy Bremnes and Jan Oldenburg for sharing their skills and in depth understanding of clinical cancer research and for always giving me constructive criticism on my work.

I am very grateful to my other highly appreciated co-authors Per-Ole Gundersen, Mette Sprauten, Torgrim Tandstad, Marianne Brydøy, Sophie Fosså and Ragnhild Hellesnes for sharing generously their expertise with me. A special thanks goes to co-author and statistician Tom Wilsgaard for invaluable advice and support with the statistical procedures.

A warm thank you goes to all testicular cancer survivors for participating and making this research possible.

Most of all I wish to thank my colleagues and roommates Erna-Elise Paulsen and Nora Ness for bringing the best atmosphere and work spirit in our small office, for always sharing their knowledge and for the valuable discussions, laughs, and ups and downs with me. I cannot imagine this work happening without our friendship and your tremendous support!
Finally, thanks to my friends and family for encouragement during these years.

From the deepest of my heart, Steinar, Oda, Siril and Libe thank you for your love and patience. You make all my days adventurous and interesting, and I love you all endlessly.
LIST OF PAPERS


Line V. Hjelle, Per O. M. Gundersen, Jan Oldenburg, Marianne Brydøy, Torgrim Tandstad, Tom Wilsgaard, Sophie D. Fosså, Roy M. Bremnes, Hege S. Haugnes.

*Anticancer Research 35: 1619-1626 (2015)*

II. Associations between long-term serum platinum and neuro- and ototoxicity, endocrine gonadal function and cardiovascular disease in testicular cancer survivors.

Line V. Hjelle, Roy M. Bremnes, Per O. M. Gundersen, Mette Sprauten, Marianne Brydøy, Torgrim Tandstad, Tom Wilsgaard, Sophie D. Fosså, Jan Oldenburg, Hege S. Haugnes.

*Urological oncology 34:487.e13-487 (2016)*

III. Long-term serum platinum changes and their association with cisplatin-related late effects in testicular cancer survivors

Line V. Hjelle, Per O. M. Gundersen, Ragnhild Hellesnes, Mette Sprauten, Marianne Brydøy, Torgrim Tandstad, Tom Wilsgaard, Sophie D. Fosså, Jan Oldenburg, Roy M. Bremnes, Hege S. Haugnes.

*Acta Oncologica, submitted 07.03.2018.*
<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEP</td>
<td>Bleomycin, etoposide and cisplatin</td>
</tr>
<tr>
<td>BIP</td>
<td>Bleomycin-induced pneumonitis</td>
</tr>
<tr>
<td>CBCT</td>
<td>Cisplatin-based chemotherapy</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CIPN</td>
<td>Chemotherapy-induced peripheral neuropathy</td>
</tr>
<tr>
<td>Cps</td>
<td>Counts per second</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>CV</td>
<td>Cardiovascular</td>
</tr>
<tr>
<td>CVB</td>
<td>Cisplatin, vinblastine and bleomycin</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>Endocrine-GF</td>
<td>Endocrine gonadal function</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organization for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>EP</td>
<td>Cisplatin and etoposide</td>
</tr>
<tr>
<td>GCT</td>
<td>Germ cell tumor</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomerular filtration rate</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard ratio</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>Loq</td>
<td>Level of quantification</td>
</tr>
<tr>
<td>LH</td>
<td>Luteinizing hormone</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Cholesterol Education Program</td>
</tr>
<tr>
<td>NRH</td>
<td>Norwegian Radium Hospital</td>
</tr>
<tr>
<td>NTX</td>
<td>Neuro- and ototoxicity</td>
</tr>
<tr>
<td>OLR</td>
<td>Ordinal logistic regression</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>PGE</td>
<td>Platinum group elements</td>
</tr>
<tr>
<td>Pt</td>
<td>Serum platinum</td>
</tr>
<tr>
<td>RR</td>
<td>Relative risk</td>
</tr>
<tr>
<td>RPLND</td>
<td>Retroperitoneal lymph node dissection</td>
</tr>
<tr>
<td>RT</td>
<td>Radiotherapy</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SI</td>
<td>Survey 1</td>
</tr>
<tr>
<td>SII</td>
<td>Survey 2</td>
</tr>
<tr>
<td>SCIN</td>
<td>Scale for Chemotherapy-Induced Neurotoxicity</td>
</tr>
<tr>
<td>SHBG</td>
<td>Sex hormone-binding globulin</td>
</tr>
<tr>
<td>SWENOTECA</td>
<td>The Swedish-Norwegian testicular cancer group</td>
</tr>
<tr>
<td>TC</td>
<td>Testicular cancer</td>
</tr>
<tr>
<td>TCSs</td>
<td>Testicular cancer survivors</td>
</tr>
<tr>
<td>UNN</td>
<td>University Hospital of North Norway</td>
</tr>
<tr>
<td>WHO</td>
<td>The World Health Organization</td>
</tr>
</tbody>
</table>
1. INTRODUCTION AND BACKGROUND

1.1 The population of cancer survivors is growing

In Norway, a country with roughly 5.3 million inhabitants, nearly 33 000 new cancer incidents are reported each year, moreover approximately 262 000 prevalent cancer patients were reported alive at the end of 2016\(^1\). For testicular cancer (TC), the worldwide incidence has doubled during the past four decades, and TC is now the most prevalent solid tumor in men between 15 and 34 years of age\(^2,3\). The improvement in TC survival increased rapidly during the 1970s due to the introduction of cisplatin therapy for advanced germ cell tumors (GCT), leading to a greatly improved prognosis for testicular cancer. Since we today consider TC as a highly curable malignant disease (Figure 1), the prevalence is rising, and in 2016 close to 7500 Norwegian testicular cancer survivors (TCSs) were registered.

Figure 1. Age-adjusted incidence, mortality and survival rates of testicular cancer, from 1965-2014 in Norway\(^1\). Adapted from www.kreftregisteret.no; cancer in Norway 2016.
As most TCSs are young at diagnosis, they may live for another 30-50 years after successful treatment for TC. Consequently, the number of long-term TCSs are growing steadily, which in turn has led to an increasing interest in the long-term side-effects of cancer therapy.

Numerous studies focusing on TCSs have identified increased risks for several long-term and late effects associated with cisplatin-based chemotherapy (CBCT), such as cardiovascular disease (CVD), hypertension (HT), ototoxicity, Raynaud’s phenomenon, peripheral neuropathy, decreased renal function, decreased pulmonary function, sexual dysfunction, reduced endocrine gonadal function, obesity and hypercholesterolemia4-15. High levels of residual serum platinum (Pt) have been measured in several long-term follow-up studies after CBCT, and up to 10% of the retained Pt species has been demonstrated to remain its activity16-18. A relationship between retained Pt and the development of late effects has been hypothesized16,19-21.

Treatment burden and some genetic polymorphisms22 are currently the only identified risk factors associated with particularly high risk for long-term effects in TC patients after CBCT. When this study was initiated, a few reports had demonstrated that Pt was measurable in serum several years after treatment with CBCT17,23. However, only one study had evaluated the association between Pt and long-term effects (neuro- and ototoxicity)16. Further research to clarify associations between long-term Pt and late effects in TCS was recommended24. Thus, increased awareness and knowledge regarding long-term CBCT-related toxicity and its related mechanisms was considered essential to prevent and reduce adverse events in future TC survivors.
1.2 Epidemiology and risk factors for testicular cancer

The TC incidence is highest in the Northern parts of Europe and North-America and lowest in Asia and Africa\textsuperscript{3,25}. In Denmark and Norway, almost 1% of males are diagnosed with a TC during their life-time\textsuperscript{2,3,26}, and these countries have the highest worldwide incidence rates. In total, 285 men were diagnosed with TC in Norway in 2016, corresponding to an age-adjusted incidence rate at 10.7 per 100 000\textsuperscript{1}. This rate is almost tripled compared to the registered rate during the 1960s. But even though the incidence rates are increasing in most European countries (Figure 2), the mortality rates are declining\textsuperscript{3}.

Figure 2. Age adjusted TC a) incidence rates and b) mortality rates\textsuperscript{3}. Permission obtained from Elsevier.
Although TC is not a frequent malignancy overall, it is the most common cancer among 15-49 year old males. TC has the lowest median age at diagnosis of all cancers among adults (36 years)\(^1\). Only 11% of Norwegian males diagnosed with TC in the period 2012-2016 were older than 50 years\(^1\).

The overall cancer specific 10-year survival for non-seminomatous germ cell tumor (NSGCT) in Norway is currently 95%, and roughly 67% among poor-prognosis patients\(^27\). Today, no other malignancies have cure rates which can compete with TC, and TCSs have life expectancies almost similar to healthy age-matched men\(^28,29\).

Since the incidence of TC has increased steadily during the last decades, a possible relationship with increased exposure to carcinogens from the environment has been implied, but the causes and mechanisms of TC development are still not well understood. Yet, the strongest known risk factors for TC are a previously diagnosed TC, a family history of TC and cryptorchidism\(^30-32\).

In a Norwegian study with roughly 2000 TCSs treated during 1953-1990, the cumulative risk of developing a second germ cell cancer after 15 years was 5% and 3.4% for non-seminomas and seminomas, respectively\(^32\). The risk for a second germ cell cancer diagnosis is thus significantly higher than the initial TC risk in the general population, with a cumulative risk of roughly 1%.

Family studies have shown that sons and siblings of TC patients have a 4-6-fold and 8-10-fold increased TC risk, respectively\(^33\). The remarkably high risk within these families might represent the impact of shared genes or similar childhood environment. The combination of several susceptible genes has been hypothesized to contribute to the development of TC. However, the rapid increase in TC incidence and the fact that sons develop TC at younger age than their TC affected fathers, underscores the added effect from environmental factors, as the genetic composition in the population is not believed to change during a few generations only\(^34\).
The fact that siblings have a greater risk of TC development than sons of TC patients, indicates a possible effect of environmental disruptors in addition to genetic factors.

Increasing adult height is associated with testicular cancer\textsuperscript{35}, and the lifetime risk of having TC follows a typical birth cohort pattern\textsuperscript{36}, implying that the causative factors for TC initiate their effect \textit{in utero} or early in life. The TC risk among first-generation immigrants reflects the risk in the country of origin. On the other hand, second-generation immigrants have a risk close to the level observed among natives in their new country\textsuperscript{37}. Taken together, environmental influences early in life are believed to increase the TC risk. Other less significant risk factors include testicular atrophy, infertility, inguinal hernia, hydrocele and other disorders of male sexual differentiation\textsuperscript{38}. The association between TC risk and testicular developmental problems, such as infertility and testicular maldescent, have led to the theory of a “testicular dysgenesis syndrome” (TDS)\textsuperscript{38,39}, where TC is the most serious manifestation of this syndrome (Figure 3).

\textbf{Figure 3. The testicular dysgenesis syndrome\textsuperscript{38}. Adapted from Skakkebaek et al.}
This feature has been hypothesized to originate in utero, and both environmental, genetic and epigenetic factors as well as lifestyle factors are probably involved\textsuperscript{40}. Accumulating evidence suggest that changes in the hormonal ambience, and particularly increasing estrogen exposure, are linked to TDS and a rising incidence of TC\textsuperscript{41}.

1.4 Malignant germ cell tumors (GCTs)

GCTs account for approximately 95% of all malignant tumors in the testes. The remaining tumors are composed of sex-cord tumors, lymphomas or metastases, and will not be further discussed in this thesis. Testicular GCTs are histopathologically classified into two groups, seminomas and non-seminomas\textsuperscript{42}, both derived from a pre-invasive germ cell neoplasia in situ (GCNIS), which originates from transformed fetal gonocytes. Overall, at the time of diagnosis, about 25% of men with GCT have metastases\textsuperscript{43}.

Pure seminomas normally affect men in their thirties and forties. Unlike non-seminomas, the majority of men with seminomas have tumors localized to the testis at presentation (about 85\%\textsuperscript{44}, and rarely have metastasis beyond the retroperitoneal lymph nodes at disease debut\textsuperscript{45}. A shift towards a higher proportion of seminomas has been observed during the last decades, and the seminomas are now slightly more common than non-seminomas\textsuperscript{46}.

Roughly 40-45\% of patients with TC are diagnosed with non-seminomas, and of these 40-45\% will present with metastases in the lymph nodes, the lungs and/or other organs. Non-seminomas normally affect men in the early-adult life, and are a clinically more aggressive GCT\textsuperscript{43}. The histology of non-seminomas are heterogenous, and includes variants of embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma. Non-seminomas can consist of a single histopathologic variant, or a mixed variant where also seminoma elements can be included.
In approximately 5% of GCTs the primary site of disease is extra-testicular, i.e. extra-gonadal germ cell tumors (EGGCTs). These tumors are located in the midline of the body, usually in the mediastinum or in the retroperitoneum. The non-seminomatous EGGCTs have poorer prognosis compared with the other GCTs, and EGGCTs originating in the central nervous system require treatment different from the therapy reported here.

1.5 Tumor markers

The conventional serum protein biomarkers α-fetoprotein (AFP) and human chorionic gonadotropin (hCG) are used to assist in diagnostics, treatment response evaluation and follow-up assessment of GCTs, but their use is generally restricted to tumors containing the relevant biomarker producing malignant subtypes. At diagnosis, roughly 60% of all GCT patients, regardless of stage, test positive for these markers; hCG may be increased in 30-35% and 10-20% of patients with non-seminomas and seminomas respectively, while AFP is increased in 50-60% of non-seminoma patients. In patients with disseminated disease serum hCG and/or AFP are elevated in 85% of cases. Both AFP and hCG are essential in diagnosis, prognosis and treatment of patients with germ-cell TC, and should be determined both before and after orchiectomy, and during and after further treatment. Elevated markers pre orchiectomy should normalize after orchiectomy in the case of stage I disease, and hCG and AFP have half-lives of 1-3 days and about seven days, respectively. Rising or lack of normalization of markers after orchiectomy indicate the presence of metastatic disease. A tumor markers decline slower than their half-life during chemotherapy, may indicate treatment resistance. Consequently, some collaborative groups recommend intensification of treatment in this situation.
Serum lactate dehydrogenase (LDH) levels are also used at diagnosis to assist with treatment decisions in patients with metastatic NSGCTs, but this marker lacks sufficient specificity to be useful in diagnosis or monitoring\textsuperscript{48}. Importantly, only 3\% of the TC patients that relapsed after a diagnosis of stage I seminoma were identified using standard tumor markers, but detection rate was 87\% for CT imaging\textsuperscript{50}.

Current priorities in GCT research include the identification of novel biomarkers for malignant disease, to assist in diagnosis, correct staging and reduce the need for repeated cross-sectional CT imaging in follow-up monitoring, hence reducing the associated radiation burden and risk of second malignancy development\textsuperscript{51}. Micro-RNAs represent novel biomarkers for detecting TC, with a high sensitivity of 86\% and a specificity of 92\% of miR-371a-3p\textsuperscript{52,53}. Importantly, miR-371a-3p is expressed both in seminoma and non-seminoma as opposed to the classical GCT markers.
1.6 Staging

TC treatment is based on the histological diagnosis, tumor marker levels including lactate dehydrogenase, and the site(s) of or absence of metastases. In Scandinavia TCSs are staged according to the Royal Marsden Hospital System (RMHS), after orchiectomy (Table 1).

Table 1. Classification of testicular cancer in clinical stages (Royal Marsden).

<table>
<thead>
<tr>
<th>Stage</th>
<th>Disease extensiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No detected metastases, either clinically, radiologically, or biochemically</td>
</tr>
<tr>
<td>IMk+</td>
<td>Pathological values of the serum markers AFP and/or hCG beta, without other signs of metastases</td>
</tr>
<tr>
<td>II</td>
<td>Lymph node metastases under the diaphragm. The size is measured in horizontal diameter (A&lt;2cm, B 2-5 cm, C&gt;5 cm)</td>
</tr>
<tr>
<td>III</td>
<td>Lymph node metastases above the diaphragm. (A&lt;2cm, B 2-5 cm, C&gt;5 cm)</td>
</tr>
<tr>
<td>IV</td>
<td>Extra lymphatic metastases (most often to the lungs) L1 ≤ 3 metastases to the lungs, none &gt; 2 cm L2 &gt; 3- ≤20 metastases to the lungs, none &gt; 2 cm L3 &lt; 20 metastases to the lungs, one or more &gt; 2 cm L4 &gt; 20 metastases to the lungs</td>
</tr>
</tbody>
</table>

To decide on the therapy for metastatic TC, three additional prognostic groups were established by The international Germ Cell Consensus Classification Group (IGCCCG) (Table 2).

Table 2. Definition of the Germ Cell Consensus Classification.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Nonseminoma</th>
<th>Seminoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good risk</td>
<td>Gonadal or retroperitoneal primary tumor No non-pulmonary visceral metastases Good tumor markers (AFP&lt;1.000 µg/l and hCG&lt;5.000 IU/l and LDH&lt;1.5 x Normal)</td>
<td>Any primary site No pulmonary visceral metastases Normal AFP, any hCG, and any LDH</td>
</tr>
<tr>
<td>Intermediate risk</td>
<td>Gonadal or retroperitoneal primary tumor No non-pulmonary visceral metastases Intermediate tumor markers (AFP 1.000-10.000 µg/l or hCG 5.000-50.000 IU/l and LDH 1.5-10 x Normal)</td>
<td>Any primary site Non-pulmonary visceral metastases Normal AFP, any hCG, and any LDH</td>
</tr>
<tr>
<td>Poor risk</td>
<td>Mediastinal primary tumor or Non-pulmonary visceral metastases or poor tumor markers (AFP&gt;10.000 µg/l or hCG&gt;50.000 IU/l or LDH&gt;10 x Normal)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
1.7 Treatment principles for TC

1.7.1 How the TC treatment has evolved through the past half century

Half a century ago, limited metastatic TC was treated by surgically removing retroperitoneal lymph nodes with bilateral templates [retroperitoneal lymph node dissection (RPLND)]. 5-Year survival rates were poor, reaching about 50% during the 1950s. The surgical techniques evolved gradually during the 1980s, and today modified nerve-sparing and unilateral surgical techniques are used to reduce side effects\textsuperscript{56-58}. Residual vital tumor tissue or teratoma is found in approximately one third of retroperitoneal post-chemotherapy non-seminoma lesions <2 cm in diameter, despite modern CBCT\textsuperscript{59}. According to the Swedish–Norwegian testicular cancer (SWENOTECA) project recommendations, post-chemotherapy RPLND remains important for non-seminoma patients with retroperitoneal lesions of 1cm or more, while those under 1 cm will be observed if tumor markers are normal.

Both seminoma and non-seminoma patients with localized disease or retroperitoneal lymph node metastases have been treated with radiotherapy (RT) since the 1950s\textsuperscript{60}. Since the 1980s the prescribed dose and target volumes have decreased gradually, and the treatment techniques have improved\textsuperscript{61,62}. Seminoma patients with limited retroperitoneal metastases can still benefit from RT today\textsuperscript{42,63}.

In the 1960s, before cisplatin was introduced as TC treatment, several chemotherapeutic drugs were used against metastatic TC, with survival rates of 10-20% for disseminated disease\textsuperscript{64}. The introduction of a combination of vinblastine and bleomycin led to an overall response rate of 75% including partly durable complete remissions in 32% of the patients\textsuperscript{65}. The addition of cisplatin to the regimen of vinblastine plus bleomycin, known as the PVB regimen, was introduced by Einhorn and Donohue in the mid-70s. Intriguingly, 5-year survival rates reached 64% in patients with metastatic TC\textsuperscript{66}. Aiming to reduce toxicity and increase
efficacy, vinblastine was substituted with etoposide during the 80s (known as the BEP regimen)\textsuperscript{64,67}. CBCT is today routinely administered for patients with stage II–IV testicular GCTs according to IGCCCG prognostic criteria\textsuperscript{55}, and the BEP regimen is still considered as the standard treatment option in first line for disseminated TC\textsuperscript{68}. Active surveillance or adjuvant chemotherapy are the typical treatment-options for stage I TC patients in Europe\textsuperscript{61,62}.

1.7.2 Treatment principles within our study cohort (1980-1994)

When a testicular malignant tumor is suspected, scrotal ultrasound and tumor markers are mandatory. Patients are initially treated with orchiectomy, which is both a diagnostic and therapeutic procedure in stage I disease. During the treatment period (1980-1994), which the follow-up studies this thesis is based upon, all patients had X-ray or CT of the thorax, and CT of the abdomen and pelvis performed after histologically confirmed germ cell TC diagnosis. The clinical staging during the treatment time period was performed according to the Royal Marsden Staging System (Table 1).

All men included in both Norwegian follow-up studies [survey I (SI) and survey II (SII)] were treated according to the SWENOTECA collaboration\textsuperscript{69,70} or the European Organization for Research and Treatment of Cancer and Medical Research Council protocols\textsuperscript{71-76}.

1.7.3 The most common cytotoxic agents used during 1980-1994

In SI and SII, most chemotherapy treated TCSs received an initial regimen with either CVB, BEP, or EP (cisplatin in combination with etoposide), with ifosfamid as first line salvage therapy. Cisplatin was usually administered ad modum Einhorn, i.e. a dose of 100 mg/m\textsuperscript{2} over the course of 5 days per cycle (daily dose of 20 mg/m\textsuperscript{2}). Within specific research protocols cisplatin was given at higher dose intensities (dose-intensive), either with cisplatin above 100
mg/m² per cycle or by administering the same cisplatin dose over less days\textsuperscript{72,77-79}. A strict hydration regimen was standard for all CBCT regimen.

Cisplatin forms cross-links with the cell’s DNA and induces apoptosis\textsuperscript{80}. Its major dose-limiting acute toxicity is renal damage, which is ameliorated by prophylaxis in the form of high fluid administration/intake and furosemide administered when needed. Nausea and vomiting represent bothersome side-effects of cisplatin, which are usually avoided by modern antiemetic treatment introduced in the 1990s\textsuperscript{81}. Other typical side-effects are neuro- and ototoxicity (NTX)\textsuperscript{82}.

Bleomycin induces DNA strand scissions by free radical actions eventually inducing cell death. Bleomycin-induced pneumonitis (BIP) represents its major dose-limiting effect\textsuperscript{83}. BIP can ultimately lead to lung fibrosis, by endothelial damage of the lung vasculature due to bleomycin-induced cytokines and free radicals. Several studies suggest that the bleomycin administration route, dose, higher age, smoking, thoracic radiotherapy, oxygen rich air (ventilation during surgery etc.), and growth factors might increase the risk of BIP\textsuperscript{83}.

Etoposide, a topoisomerase inhibitor, induces cell death by preventing DNA strand re-ligation. Its major dose-limiting side-effect is myelosuppression\textsuperscript{84}.

Vinblastine is a vinca-alkaloid which binds to tubulin, thereby inhibiting the assembly of microtubules and DNA repair\textsuperscript{85}. Myelosuppression can occur during treatment, and neurotoxicity is a prevalent side-effect\textsuperscript{82}.

Carboplatin is a second-generation Pt compound, acting similarly to cisplatin by forming reactive Pt complexes that bind to nucleophilic guanine-cytosin-rich sites in DNA, thereby inducing intra- and inter-strand crosslinks. Carboplatin is more chemically stable compared with cisplatin, resulting in a lower reactivity with DNA, therefore the doses needed to receive equivalent clinical effects are four times higher. With regard to toxicity, carboplatin is less nephrotoxic and less emetogenic than cisplatin without relevant neuro- or ototoxicity.
Myelosuppression is considered the major toxic effect of carboplatin, particularly thrombocytopenia with a nadir usually between day 21 and 28\textsuperscript{86}.

1.7.4 Specific treatment of seminoma patients through 1980-1994

Infradiaphragmatic radiotherapy was typically given to all men with early-stage seminomas (stage I and IIA). Most men received an L-field or dogleg field, involving opposing anterior and posterior fields covering the para-aortic and ipsilateral iliac nodes, while a few patients had para-aortic fields only\textsuperscript{87,88}. During the 1980s and 1990s the radiation dose for these stages was gradually reduced from 36–40 Gy to 25.2–27 Gy\textsuperscript{89}. TCSs with stage ≥IIB were treated with CBCT. However, some patients received additional radiation or RPLND.

1.7.5 Specific treatment of non-seminoma patients through 1980-1994

Until 1990, men with stage I or IIA were treated with a modified bi- or ipsilateral template RPLND. Nerve-sparing surgery was introduced in 1989. Adjuvant chemotherapy was given if lymph node metastases were present in the pathology specimen\textsuperscript{69,90}. After 1990, patients with stage I non-seminomas were either followed closely with radiographic imaging, clinical examination and tumor markers (surveillance) or treated with one to three cycles of adjuvant chemotherapy\textsuperscript{70}. Patients with disseminated non-seminomas generally received three or more cycles of CBCT, often followed by RPLND and resection of tumors affecting other organs if possible\textsuperscript{74}.
2. LATE EFFECTS

2.1 General aspects of cancer survivorship

Today, the current 5-year relative survival rate for all cancers taken together approximates 70%. Given the continuously increasing number of cancer survivors, in-depth investigations of treatment-related toxicities affecting health, quality of life and functional status are particularly important.

Most therapeutic modalities for cancer are associated with a wide range of late complications, from minor and treatable to serious or, occasionally, potentially lethal conditions. Thus, there is today a greater recognition of symptoms that persist after the completion of treatment and those that arise years after primary therapy. Long-term side effects generally refer to any side effects or complications of treatment that begin during treatment and continue beyond the end of treatment. Late effects, in contrast, appear months to years after the completion of treatment, and refer specifically to toxicities that are absent or sub-clinical at the end of therapy and become manifest at a later time-point.91

Second cancers and CVD represent the most serious late effects. Furthermore TCSs are at risk of nephrotoxicity, pulmonary toxicity, NTX, hypogonadism, decreased fertility, and psychosocial problems like fatigue and depression4,10,92,93. The debut time and the risk of these numerous and different adverse effects vary according to treatment type (chemotherapy, RT or both) and intensity. Apart from the treatment burden and some genetic polymorphisms, there is still little knowledge about the mechanisms for late effect evolvement, and it is yet not possible to identify TCSs at high risk for late effects after TC treatment.

CBCT is associated with several of the known late effects affecting TCSs, and long-term Pt residuals have been suggested as a possible late effect biomarker of interest. Platinum
retention and typical cisplatin related long-term and late effects studied in this thesis will be discussed in detail below.

2.2 Long-term serum Platinum retention after cisplatin treatment

Platinum is a member of the platinum group elements [PGE, (platinum, palladium and rhodium)] and has six naturally occurring isotopes. It is a very rare metal, occurring mostly in some nickel and copper ores in South-Africa\textsuperscript{94}. Pt is considered a noble metal as it is highly inert, even at high temperatures, and therefore used in catalytic converters, electrical and jewelry industry, laboratory and dentistry equipment. Additionally, platinum is an important compound of the platinating cytotoxic agents, such as cisplatin (Figure 4), oxaliplatin and carboplatin.

Figure 4. The chemical structure of Cisplatin

\[
\begin{align*}
\text{H}_3\text{N} & \quad \text{Cl} \\
\text{H}_3\text{N} & \quad \text{Pt} \\
\text{H}_3\text{N} & \quad \text{Cl}
\end{align*}
\]

Cisplatin

Of the high cisplatin doses used in TC treatment, only approximately 1\% of the cisplatin that enters the cells is hydroxylated and binds to the guanine residue of DNA, leading to interruption of transcription and apoptosis by bending the double helix\textsuperscript{95}. The remaining cisplatin (not associated with DNA) can bind to extra- and intracellular proteins. The first day after cisplatin treatment, 30\% of cisplatin will be eliminated from the body, while after 5 days only 50\% of the cisplatin is eliminated\textsuperscript{96}. The elimination half-life of cisplatin may be described by numerous half-lives which increases with longer follow-up periods\textsuperscript{23}. Between 120 and 240 months after cisplatin administration, the half-live has been calculated to be 54 months\textsuperscript{97}.
Several studies have shown that with cisplatin-containing chemotherapy, plasma and tissue Pt levels are still considerably elevated years after chemotherapy\textsuperscript{17,23,98}. Long-term Pt levels are related to time since cisplatin administration, age, dose and glomerular filtration rate (GFR). Studies revealed that up to 10\% of the retained Pt remains reactive (\textit{ex vivo})\textsuperscript{23}. In 2012 an association between increasing long-term serum Pt levels and increasing severity of neuro- and ototoxicity was described, and the assumption that reactive serum Pt several years after chemotherapy exposition may contribute to vascular and organ damage was then hypothesized for the first time\textsuperscript{16}.

\subsection*{2.3 Neuro- and ototoxicities}

NTX, including peripheral neuropathy (paresthesias), Raynaud's phenomenon, hearing impairment, and tinnitus are well-documented cisplatin-related side effects\textsuperscript{4,16,82,99-101}.

A typical long-term effect after CBCT is chemotherapy-induced peripheral neuropathy (CIPN), developing during or shortly after treatment\textsuperscript{102}. Typically, CIPN presents as a “stocking and glove” distribution in feet and hands, due to the vulnerability of the long nerves\textsuperscript{103}. The prevalence of CIPN varies from 10 to 100\% depending upon the particular anticancer drug, drug combination administered and/or the dosing regimen\textsuperscript{104}. After CBCT the prevalence of peripheral neurotoxicity is 20-30\%\textsuperscript{82}. The exact pathogenesis of long-term CIPN is largely unknown, but relatively high Pt levels have been found in the dorsal roots in a post-mortem and biopsy study\textsuperscript{105}. Also, the retained serum Pt levels have been found to correlate with the administered cisplatin dose\textsuperscript{16}.

Raynaud’s phenomenon is the most frequent NTX symptom reported by up to 39\% of TSCs receiving CBCT\textsuperscript{82,106}. Typically, it is a well-demarcated discoloration of the fingers and
toes upon exposure to cold, for which bleomycin has been considered the primary causative agent\textsuperscript{107,108}. In addition, an association with cisplatin is likely as the incidence of Raynaud-like phenomena following chemotherapy for TC increased after the introduction of cisplatin\textsuperscript{109}. Furthermore, the risk of experiencing Raynaud’s phenomenon was increased four-fold for TCSs in the highest compared with the lowest Pt quartile for hands (OR, 4.15; 95% CI, 1.60 to 10.76) and feet (OR, 4.46; 95% CI, 1.70 to 11.71), median 12 years after receiving chemotherapy\textsuperscript{16}.

Cisplatin is one of the most ototoxic drugs in clinical use causing permanent, bilateral, sensorineural, high frequency hearing loss in a substantial number of patients\textsuperscript{110}. The reported prevalence of hearing impairment in TCSs varies considerably, probably partly due to a lack of standardized measurement tools\textsuperscript{110}. The most comprehensive and recent report on hearing function among TCSs after CBCT reported almost one in five (18\%) patients to experience severe to profound hearing loss\textsuperscript{111}. Additionally, many develop permanent tinnitus (40\%)\textsuperscript{82}, which is demonstrated to be significantly correlated with reduced hearing at each frequency. Moreover, 50\% of patients receiving a cumulative cisplatin dose of >200 mg/m\textsuperscript{2} have a significant reduction in their hearing, with a severe to profound hearing loss in both ears\textsuperscript{111}.

Considerable inter-individual variability in susceptibility to cisplatin ototoxicity has been described. Other known ototoxic risk factors are: Very young or old, renal failure, pre-existing hearing loss, noise exposure\textsuperscript{112,113}, nutritional deficiency states (including anemia and serum hypoalbuminemia)\textsuperscript{114}, polymorphism of the GST-P1 gene\textsuperscript{115}, and radiotherapy affecting the cochlea at doses higher than 48 Gy\textsuperscript{113}.  

25
2.4 Endocrine-gonadal function

TCSs are often concerned about their sexual and reproductive function. However, the majority of men who have one healthy testicle produce sufficient male hormones and sperm to continue sexual relations and father children\textsuperscript{116}. Still, cryopreservation of sperm is recommended prior to treatment and in particular before chemotherapy.

Testicular endocrine dysfunction includes insufficient testosterone production and/or compensatory increased luteinizing hormone (LH) levels, also called hypoandrogenism, while the exocrine dysfunction gives inadequate spermatogenesis with increased levels of follicle-stimulating hormone (FSH)\textsuperscript{26}. Usually, the first sign of primary or testicular hypogonadism is an elevation of LH level, with subsequent testosterone decline if the LH stimulus is not sufficient. A significant rise in LH levels has, in fact, been detected in TCSs treated with orchiectomy only\textsuperscript{117}. Several studies have identified long-term hypogonadism after cancer treatment, and approximately 50% of the TCSs have levels of sex hormones outside the reference range 18 years after treatment\textsuperscript{5,118}. The paternity rate median 11 years after TC treatment varied from 81% in the surveillance group to 38% in the high-dose chemotherapy group. Overall, 62% of men receiving $\leq$ 850 mg cisplatin trying for conception became fathers\textsuperscript{119}. Higher cumulative cisplatin doses are associated with higher LH levels, corresponding to premature hormonal aging\textsuperscript{5}. The degree of both endocrine and exocrine hypogonadism is related to treatment intensity\textsuperscript{120}.

Intriguingly, more Pt has been shown to be retained by testicles after chemotherapy than by other hormone producing organs outside the brain\textsuperscript{121}. However, the high prevalence of hypoandrogenism in TCSs may be explained by several factors: Orchiectomy, testicular dysgenesis syndrome, aging and post-orchiectomy therapy\textsuperscript{26}.
2.5 Cardiovascular disease

Several European studies have reported 1.4- to 7-fold higher CVD risk among CBCT-treated TCSs than in either the general population or in TCSs managed with surgery alone\textsuperscript{122-125}. CVD in TCSs typically appears several years to decades after treatment\textsuperscript{6}. Well-documented CVD related risk factors like hypogonadism, hypertension, obesity and the metabolic syndrome are significantly increased after treatment with CBCT\textsuperscript{125-127}, but the risk is highest for those treated with a combination of both RT and chemotherapy\textsuperscript{125}. Mediastinal RT is especially toxic, but is no longer applied in TCSs\textsuperscript{92,125}. CVD may be caused in TCSs by a direct vascular damage, e.g. an injured endothelium, possibly inducing atherosclerotic processes\textsuperscript{128}. An indirect effect by increasing the levels of cardiovascular risk factors has been hypothesized\textsuperscript{129}. Moreover, exposure to circulating Pt residuals has been suggested to initiate direct endothelial damage\textsuperscript{124,130}, and was for the first time shown to be associated with several of the most prominent risk factors of CVD in 2015\textsuperscript{20}.

Men treated with CBCT have a higher risk of coronary artery disease compared with the general population as they age, and should be particularly aware of risk factors such as hyperlipidemia, hypertension, obesity, and smoking\textsuperscript{4}. Established risk prediction tools for predicting future CVD risk, like the Framingham or SCORE, do not take cisplatin dose into account and probably underestimate the true CVD risk after CBCT in TCSs\textsuperscript{131,132}.

2.6 Second cancers

Second cancer is the leading cause of death among long-term TCSs after treatment with either radiotherapy and/or CBCT\textsuperscript{4}. Second cancers after RT are typically located in the former radiation field, most often in the stomach, pancreas, kidneys and the urinary bladder\textsuperscript{133,134}.  

27
Several publications have demonstrated elevated relative risks for solid second cancers after CBCT in most follow-up periods, but particularly with follow-up beyond 20 years\textsuperscript{135,136}. Overall, TCSs have a 1.7 to 3.5-fold increased risk of second malignant neoplasms, with a significantly increased 40% excess demonstrated for CBCT treated non-seminoma patients\textsuperscript{133,136}.

The rare second myeloid neoplasms occur median 5 years after primary TC treatment, and are associated with etoposide dose, with a possible concomitant effect of cisplatin\textsuperscript{133,137,138}. Additionally, RT as primary treatment for TC is associated with a 3-fold risk of developing leukemia\textsuperscript{139}.

Patients diagnosed with stage I TC often choose postoperative surveillance as the risk for second cancers has not been shown to be increased after orchiectomy alone\textsuperscript{135}. Nevertheless, these patients may be at an increased risk for developing second cancer induced by the radiation from diagnostic imaging\textsuperscript{51,140}. Therefore, low-dose CT scan or even better, magnetic resonance imaging (MRI) has become the standard of surveillance-care in many institutions, and its use is encouraged by most TC specialists.
3. AIMS OF PRESENT THESIS

In 2010 further research to clarify associations between long-term serum Pt and late effects was recommended in an international workshop devoted to TCSs. Longitudinal studies with consecutively assessed data are necessary to understand the associations between CBCT, long-term Pt change and treatment-related side effects as most published studies have had a cross-sectional design, with few exceptions. Therefore, the aims of the present thesis were to evaluate the associations between serum Pt levels and long-term adverse effects in TCSs at two consecutive national surveys with up to 28 years of follow-up.

Aim 1) To describe the long-term serum Pt levels at SII, according to treatment groups (carboplatin, cisplatin>850 mg (cis>850 mg), cisplatin<850 mg (cis<850 mg) and orchiectomy), cumulative Pt-based dose and time since therapy in 458 TCSs treated during 1980-1994 (paper I).

Aim 2) To investigate the possible associations between long-term serum Pt levels at SII with NTX, endocrine-gonadal function and CVD risk factors and events, and the possible impact of smoking, in 292 TCSs treated with CBCT received during 1980-1994 (paper II).

Aim 3) To describe the long-term change in serum Pt levels from SI to SII and to evaluate whether the Pt change is associated with second cancers, renal function and NTX in 77 TCSs treated with CBCT (paper III).
4. MATERIAL AND METHODS

4.1 The study design and study populations

The initiation of an unselected large Norwegian follow-up survey which focused on long-term treatment-related toxicity was motivated by the growing population of TCSs and the need of knowledge regarding their possible side-effects. These two subsequent surveys were conducted as Norwegian Urological Study Group (NUCG) studies, and all five university hospitals in Norway were involved in these studies. All long-term survivors (n=1,814) of unilateral germ-cell TC with the age of 18 to 75 years and treated during 1980-1994 were identified through the Cancer Registry of Norway and invited to participate. Exclusion criteria were bilateral orchiectomy for any reason, extragonadal germ cell cancer, other malignancies except skin cancer, and mental retardation. The patients’ medical records were used to find information about all oncological treatment including relapse treatment, staging and histology.

In the first survey, SI (1998-2002), 1463 (81%) consented to participation and had an outpatient visit and blood samples drawn and analyzed at the responsible university hospital. Deep-frozen serum was stored only for patients at the Norwegian Radium Hospital (NRH) for supplementary analyses, including Pt levels.

Overall 1371 of the men from the first survey were invited to a second follow-up study during 2007-2008, SII, where 1093 (80%) participated. A clinical examination was performed and blood samples were drawn at the participants’ general practitioner. All the blood samples were sent to the Oslo University Hospital for analyses.

Among the TCSs in SII, 458 men treated with either CBCT or surgery had serum available for Pt levels measurements, giving the study population of paper I (Figure 5). A total
of 635 TCSs were excluded because they either had ongoing treatment, received RT treatment only or they lacked serum for the Pt analyses.

From the cohort that constituted paper I, we excluded men treated with surgery only, leaving 292 TCSs treated with CBCT to define the study population of paper II for investigation of Pt relations with late effects. Additionally, we excluded men >60 years at SI because they did not have validated CVD information\(^{125}\), and all men lacking questionnaire information addressing problems regarding NTX. Two hundred and seventy-five men were assessable for hormone analyses in paper II, as 17 men who received testosterone substitution were excluded in the analyses of endocrine hypogonadism.

In paper III we wanted to measure serum Pt in samples from both SI and SII, to elucidate the longitudinal serum Pt change in relation with late effects, thus the study size was limited by the amount of frozen serum available at SI. As previous research within our research group had been performed on the plasma from TCSs, only 77 TCSs previously treated with CBCT and 17 controls had Pt measurements available at both SI and SII, thus constituting our study cohort in paper III. Only samples from NRH patients were frozen at -70°C. Thus, Paper III involves TCSs treated at NRH exclusively.
4.2 The treatment groups

All TCSs with advanced disease within this thesis received chemotherapy. Those treated with RT alone were considered ineligible. Most men had received treatment with CVB, BEP or EP regimens. Overall, two thirds of the 458 men in paper I had RPLND performed, and 41 men experienced a relapse. Twenty-four of the 458 TCSs in the cisplatin treatment groups received dose-intensive therapy. In addition, 19 men investigated in paper I were treated with carboplatin-based chemotherapy within research protocols74-76, of whom five received both carboplatin-based and cisplatin-based chemotherapy during their treatment period. In paper II and III, 16 and five TCSs, respectively, received carboplatin.
An equivalent amount of carboplatin was throughout this study considered 4-fold less potent than cisplatin, conferring to studies based on treatment of ovarian cancer where these doses achieved a relative clinical equivalence\textsuperscript{86,141}. For all men throughout this thesis that received carboplatin alone or in addition to cisplatin, we calculated their corresponding cisplatin dose by dividing their carboplatin dose by four before adding to their cumulative cisplatin dose.

In paper I, the individual treatment including relapse treatment established the categorization of TCSs into treatment groups: Surgery only (n=135, reference group), carboplatin only (n=14), cumulative cisplatin dose \( \leq 850 \) mg (cis \( \leq 850; \) n=252) and cumulative cisplatin dose > 850 mg (cis > 850; n=57). In paper II, only men treated with CBCT were included and no treatment groups were applied. In paper III, we used the following categorization of the TCSs: Controls (surgery only, n=17), and cases (cis\( \leq 850, \) n= 52; cis > 850, n= 17).

The cut-off at 850 mg cisplatin was set to separate 1) the TCSs receiving four courses or less of standard-dose CBCT from 2) TCSs receiving higher cumulative cisplatin doses due to a large number of cycles (progression, relapse or poor prognosis) or treatment with dose-intensive regimens. Men with a body surface area up to 2.1 m\(^2\) with maximum four cycles with cisplatin-containing regimens were then allocated to the lower dose group, and TCSs who received dose-intensive regimens were allocated into the Cis > 850 group, even if they received a maximum of four cycles.

4.3 Serum platinum quantification

From SI and SII, serum samples from 94 and 458 TCSs, respectively, were analyzed for total serum Pt at St. Olav University Hospital in Trondheim, using well-established methods\textsuperscript{23,142}. The samples were shipped on dry ice from the Oslo University Hospital, and then kept at -20\(^\circ\)C until they were equilibrated for three hours at room temperature prior to analyses.
4.3.1 Inductively coupled plasma mass spectrometry (ICP-MS)

In order to determine the Pt levels, instrumentation with high sensitivity is required. ICP-MS is an instrument (Element 2, Thermo Scientific, Bremen, Germany) that consists of two main parts: An ion source (ICP) coupled to a mass analyzer (MS). The ion source is a partially ionized Argon gas, with very high temperature and electron density. When the sample is exposed to this ion source, the chemical bonds are broken and ions are produced. The sample ions are transported to the mass analyzer where they are separated on the basis of mass and charge. Serum is a complex matrix which makes it necessary to prepare the serum sample prior to the analysis with a weak acid. In order to quantify Pt content in the serum sample, the instrument is calibrated with a standard containing a certified platinum concentration. A relatively simple test and rapid instrumental analysis provide high capacity. ICP-MS has good detection properties and is now the preferred technique for determining metal and other trace elements in clinical trials.

4.3.2 Reagents and standards

We used doubly distilled concentrated HNO3 and HCl (Chem Scan AS, Elverum, Norway) and purified water produced from a MilliQ Element unit (Millipore, France) as reagents and a certified standard Pt solution at 1000mg/L (Spectrapure, Oslo, Norway) for preparation of calibrators. For the preparation of quality controls we applied oxaliplatin (St. Olav Hospital pharmacy, Trondheim, Norway). Both calibrators and controls were prepared by spiking Pt-free plasma samples as further described below.
4.3.3 Sample handling

We chose a simple dilution of 1+9 as sample preparation to reduce matrix effects and maintain detection power. This method is partly adopted from Brouwers et al\textsuperscript{142}. Aliquots of 100µL sample were pipetted into clean test tubes (2mL polypropylene, Sarsted, Nümbrecht, Germany) and diluted with 400µL H\textsubscript{2}O and 500 µL dilution reagent [1% (v/v) HNO\textsubscript{3}, 1% (v/v) HCl and 2,000ng Ir/L in H\textsubscript{2}O]. To provide proper mixing, each test tube was inverted five times.

Quality controls and calibrators were prepared by the same method, using Pt-free plasma. For external calibration, three calibrators (25, 250 and 1000 ng/l) were produced by spiking with the certified Pt solution. Quality controls were prepared at two levels by spiking Pt-free plasma with the oxaliplatin solution. A serum sample from a quality management program (QMEQAS, Quebec, Canada) with a known Pt value analyzed in every sequence to determine the accuracy of the method.

4.3.4 Instrumentation

The monitoring of Pt was performed in low resolution. A concentric nebulizer and a cooled (5 °C) cyclonic spray chamber made from PFA-material (ESI, Omaha, USA) and an auto sampler (Omaha, USA) constituted the sample introduction system.

The \textsuperscript{195}Pt-isotope was monitored due to its lack of possible spectral interferences and high abundance. Internal standardization was used to balance for analytical issues. For this, \textsuperscript{193}Ir was chosen, and we applied it at a final solution of 1,000 ng/L to all samples and calibrators.

To ensure optimal daily instrument performance, a solution containing 1,000 ng/L of indium, uranium and barium were used. Instrument settings were tuned to give typically readings like \textsuperscript{115}In: 1.5 x10\textsuperscript{6} cps (counts per second), \textsuperscript{238}U: 2.0 x10\textsuperscript{6} cps, and production of BaO\textsuperscript{+}.
less than 0.3% of Ba\(^+\). Plasma settings like nebulizer gas flow rate and torch alignment were adjusted daily.

**4.3.5 Method Performance**

Limit of quantification (loq) was calculated from 10 times the standard deviation of a series of blanks. Pt was analyzed in batches for SI and SII, with a time interval of approximately four years between the analyses, hence loq was calculated for SI and SII separately. The loq level for this method was 15 ng/l in SII and 13ng/l in SI. Serum Pt below loq was set to zero for both surveys. Linearity was proved for the concentration range from 15 to 10,000 ng/L. Based on quality control samples, inter-sequence precision in low level and high level were estimated to 9.9% and 5.1% in SII and 7.7% and 5.9% in SI, respectively. Intra-sequence precision in low level (100 ng/L) and high level (1,000 ng/L) were estimated to 3.6% and 1.2%, respectively. A serum sample from a quality management program gave mean values corresponding to a consensus value \(^{143}\).

**4.4 The questionnaires and neuro-ototoxicity assessment**

In both surveys the questionnaires (see appendix) addressed several aspects of somatic and psychosocial health in long-term TCSs. It contained questions about social status, physical activity, comorbidities, medication use and smoking habits, and the information of such was based on self-report. If questions where left blank, individuals with missing data were categorized as healthy (comorbidities), without treatment (medication use) or missing (physical activity and smoking), respectively. All CVD information was validated\(^{125}\), and overall eight men had missing NTX information from SI (paper III).
Additionally, the questionnaires included a validated six-item scale for chemotherapy-induced neurotoxicity (SCIN) addressing neuropathy (paresthesias) in hands and feet, Raynaud-like phenomena in hands and feet, tinnitus, and impaired hearing. The symptom scores ranged from zero (not at all), one (a little), two (quite a bit) to three (very much) (Table 3). Adding the six symptoms generated a total SCIN score ranging from zero to 18. The total SCIN score were categorized into four groups of similar size (quartiles), according to increasing symptoms (paper II). In the third paper, change within the six individual SCIN symptoms was categorized into three groups according to if the symptoms were decreasing, stable or increasing during the time-period from SI to SII.

Table 3. Scale for chemotherapy-induced neuro-oto-toxicity (SCIN)

<table>
<thead>
<tr>
<th>Neurotoxicity</th>
<th>Question</th>
<th>Not at all</th>
<th>A little</th>
<th>Quite a bit</th>
<th>Very much</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paresthesias hands/fingers</td>
<td>Have you suffered from pain and/or tingeling in your hands/fingers?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Paresthesias feet/toes</td>
<td>Have you suffered from pain and/or tingeling in your feet/toes?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Raynaud’s hands/fingers</td>
<td>Have you suffered from numb or cold hands/fingers?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Raynaud’s feet/toes</td>
<td>Have you suffered from numb or cold feet/toes?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tinnitus</td>
<td>Have you suffered from ringing in your ears?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Impaired hearing</td>
<td>Have you suffered from reduced hearing?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

4.5 Assessments and definitions

In both SI and SII, resting blood pressure was measured with an automatic device or manually. Blood samples were drawn by venipuncture before 11 AM at the university hospital’s outpatient clinic or at the TCSs general practitioners office, for SI and SII respectively, for assessments of
blood lipids, glucose, LH, testosterone, creatinine and serum Pt. The blood samples were drawn in a fasting state only in SII. In SII, all routine blood samples were analyzed at Oslo University Hospital to reduce the variation coefficient, since poor reproducibility of steroid hormones measurements has been observed\textsuperscript{144}. Total testosterone and LH were determined using a commercial immunoassay.

In paper I, the serum Pt levels were categorized into quartiles to evaluate the risk of being in the highest quartile according to the four different treatment groups mentioned above.

In paper II, the same categorization into quartiles of Pt levels as in paper I was performed, to assess associations with different late effects according to higher Pt levels.

Levels of testosterone and LH from 599 controls were obtained from the Nordic reference interval project, and categorized into one to four with respect to cutoff values for the 25, 50 and 75 percentiles within each decadal age group\textsuperscript{145}. To assess associations between Pt and disturbed endocrine gonadal function (endocrine-GF), testosterone and LH levels in 275 TCSs were assigned to one of these four categories, based on the percentiles derived from the reference group.

Also, in paper II CVD was defined as ischemic heart disease [angina and myocardial infarction (MI)], stroke or artery occlusion. CVD risk factors like hypertension, obesity, and metabolic syndrome were defined by the National cholesterol education program criteria (NCEP)\textsuperscript{146}. Diabetes was defined as previously diagnosed diabetes based on information retrieved from the questionnaires or a serum glucose $\geq$ 11 mmol/l. Smoking status was defined as never, previous or current smoker.

In paper III, Pt change was defined as (Pt at SI minus Pt at SII)/ per year. Since most men had a Pt decline, the Pt change was called a Pt decline throughout paper III. All information
about second cancers after SII was retrieved from the Norwegian Cancer Registry updated December 31st, 2015. Only one man with a second cancer (malignant melanoma, diagnosed 1998) prior to SI was excluded from these analyses, as we wanted to address the relationship with the Pt change observed between SI and SII, considering the late effects.

Furthermore, in paper III, in line with a similar long-term Pt retention and late effect study in TCSs, serum creatinine was dichotomized at ≤ or >90 µmol/l20.

In paper III, the smoking status was defined differently, according to if analyses were in relation with second cancers or NTX. Within the second cancer analyses smoking was defined as never, earlier or current smokers at SII, with never smokers as reference group. For NTX analyses, smoking habits were categorized in four groups; never, earlier, or current smokers (reference group) reported in both surveys (SI and SII), and stopped smoking between SI and SII. Within this paper the physical activity was defined as low, middle or high, with high as reference level, in line with previous publications19,147.

4.6 Statistical methods

All p-values were two-sided and statistical significance was set at P< 0.05. The data were analyzed by using IBM SPSS (SPSS, Chicago, IL) statistics version 21.0 for both paper I and II and version 24.0 for paper III.

Categorical variables were presented as counts and proportions, and continuous variables were presented as median (range). The Mann-Whitney U test was used to compare median values of serum Pt or Pt change across different groups since the Pt levels were not normally distributed. Simple associations between continuous variables were analyzed with either Pearson correlation, Spearman’s rank, or simple linear regression. The χ² test was used
to test associations between categorical distributions. Additionally, Pt levels were visualized with scatter plots.

Ordinal logistic regression (OLR) models were used to evaluate the risk of having serum Pt in the highest quartile according to treatment group, with the surgery group representing the reference group (paper I). Similarly, in paper II, the risk of having serum Pt in the highest quartile according to intensity of the toxicity of interest (separate symptom scores for NTX and the total SCIN score, or endocrine-GF) was assessed with OLR. OLR models assessed associations between both Pt change and cisplatin dose as the explanatory factors and all six SCIN symptoms in SII or with NTX change observed from SI to SII as dependent variables in paper III. Model assumptions in all the ordinal logistic regression models were checked by a test of parallel lines.

Cox proportional hazard regression models were used for analyzing the associations of serum Pt and cumulative cisplatin with respect to CVD incidence, with the observation time registered from the date of TC diagnosis until the date of first CVD event of interest or until the date of SII (paper II). Cox proportional regression models were also applied to analyze the risk of a second cancer diagnosis after SII according to Pt change from SI to SII and Pt levels at SII, with the observation time registered from the date of orchiectomy until the date of diagnosis of a second cancer, or until December 31st 2015 (paper III). In paper III, the analyses only included two variables because of the rule of ten events per variable in Cox regression models. Visual inspection of log minus log of survival curves was used for model assumption in all Cox regression models.

Overall, data were presented as odds ratios (OR) or Hazard ratios (HR) with 95% confidence intervals (CIs), and both ordinal regression and Cox proportional hazard regression
models included administered cumulative cisplatin and age, as they were considered of high importance clinically.

**4.7 Approvals**

The Committee for Medical Research Ethics, the Southern Health Region of Norway, approved both of the surveys (S-98094 and S-07305b, for SI and SII, respectively) and the additional Pt studies presented in this thesis (2015/1630). All participants gave informed written consent for attendance in both studies and concession for obtaining relevant medical record data.
5. RESULTS

In SI (N=1463), the non-responders were not different from responders with respect to age at follow-up, histology, stage or treatment. Because of our exclusion criteria (not allowing men treated with RT only and men >60 years at SI) the 458 men participating in paper I had somewhat lower age at disease debut, longer follow-up time, and higher TC stages compared with the 1093 men participating in SII.

5.1 Paper I


This paper describes the serum Pt levels according to treatment and follow-up time in 458 TCSs. The TCSs were categorized into four treatment groups: Surgery (n=135), carboplatin (n=14), cis≤850 mg (n=252) and cis>850 mg (n=57). The observation time was from 16 to 20 years (range 13-28) for all, and the majority of men had non-seminoma (87%). Overall, 51% had metastatic disease at the diagnosis.

The median Pt level for the cis≤850 group 85 ng/L (0-725), the cis>850 group 106 ng/L (21-247), the surgery group was 50 ng/L (range 0-230) and for the carboplatin group 40 ng/L (0-1140). Pt levels were positively associated with cisplatin-treatment groups (p<0.001) and cisplatin dose (p<0.001), and negatively associated with follow-up time (p<0.001). We did not reveal associations with Pt levels and carboplatin treatment (p=0.18).

The odds for having Pt in the highest quartile was positively associated with cumulative cisplatin dose (OR 1.29, 95% CI 1.20-1.38 per 100 mg increase in cisplatin dose).
Additionally, the cisplatin treatment groups were associated with an increased risk of having serum Pt in the highest quartile with an OR at 9.4 (cis≤850: 95% CI 3.9-22.5) and an OR at 31.2 (cis>850: 95% CI 11.6-84.1), compared with the surgery group.

In conclusion, this paper documented that TCSs previously treated with CBCT have increased Pt levels up to 28 years after receiving treatment, when compared with controls. Pt was also detectable among some men treated with surgery alone.

5.2 Paper II

*Associations between long-term serum platinum and neuro- and ototoxicity, endocrine gonadal function and cardiovascular disease in testicular cancer survivors. (Urologic oncology 2016).*

In this paper, 292 CBCT treated TCSs were included to evaluate the serum Pt measured at SII median 19 years after chemotherapy, and its impact on NTX, endocrine gonadal function, and CVD. Approximately 80% of the TCSs received 3-4 cycles of CBCT.

Herein, we documented that increasing serum Pt quartiles was significantly associated with increasing quartiles of total SCIN score (P for trend=.05), increased hearing impairment (P=.04) and increased tinnitus (P<.001). All associations attenuated when cisplatin were added in the OLR-models.

Importantly, current smokers had significantly increased intensity of paresthesias in hands (OR 2.85, 95% CI; 1.60-5.06), feet (OR 1.76, 95% CI; 0.99-3.14), and Raynaud’s phenomenon in hands (OR 2.50, 95% CI; 1.43-4.39) and feet (OR 2.42, 95% CI; 1.37-4.28) in multivariable OLR models including cisplatin dose, serum Pt and age.
The OR for being in the highest quartiles of LH increased with an increase in quartiles of serum Pt. The OR for being in a higher LH quartile was 2.50 (95% CI 1.28–4.87) for the third serum Pt quartile. The cumulative cisplatin dose was positively associated with higher LH levels (OR 1.17, 95% CI 1.06-1.30 per 100 mg cisplatin). No significant associations between quartiles of testosterone and serum Pt levels were established.

No significant associations between any of the risk factors for CVD and serum Pt levels were discovered.

In conclusion, increasing quartiles of long-term serum Pt are associated with increasing SCIN score, tinnitus, hearing impairment and increasing LH levels. However, these associations were attenuated when adjusted for cumulative administered cisplatin dose, and persisted only for tinnitus and LH.

5.3 Paper III

*Long-term platinum change and its associations with cisplatin-related long-term and late effects in testicular cancer survivors. (Submitted to Acta oncologica, March 2018)*

A total of 77 CBCT treated men (cases) and 17 controls (TCSs treated with surgery) had serum Pt levels evaluated at both SI (median 12 years after CBCT) and SII (median 20 years after CBCT) in order to describe the Pt change over time, and to evaluate the associations between serum Pt change between SI and SII and second cancers, renal function and NTX in cases.

While the median Pt levels of the controls were 0 ng/L at both surveys, the median Pt level for all cases was 75 ng/l (0-377) and 64 ng/l (0-725) at SI and SII, respectively. In this paper most men experienced a decline of Pt levels from SI to SII [4.2 ng/l/year (range – 93 to
However, 11 (14%) of cases experienced increasing Pt from SI to SII. The cumulative cisplatin dose was associated with a Pt decline ($r = 0.30$, $p = 0.01$).

After SII, 12 cases (15%) had a second cancer diagnosis. At SII, a higher Pt level was associated with an increased risk for a second cancer diagnosis (HR 1.22, 95% CI 1.05-1.42 per 50 ng/L increase in Pt), while a larger Pt decline from SI to SII was associated with decreased risk of a second cancer diagnosis (HR 0.78, 95% CI 0.62-0.99 per 10 ng/L/year). Interestingly, the current smokers, when compared with never smokers, had an increased risk of a second cancer (HR 9.14, 95% CI 1.88-45.0).

The serum Pt levels were higher among cases with creatinine >90 µmol/L in SI for the cis>850 treatment group ($p=0.05$), compared with cis>850 with creatinine <90 µmol/L. The creatinine level at SI and SII was positively associated with the cumulative cisplatin dose ($r=0.25$, $p=0.03$ and $r=0.24$, $p=0.04$, respectively. Multivariable analyses with Pt levels, late effects and creatinine did not reveal any significant associations.

All six NTX symptoms had significantly increased severity from SI to SII ($p<0.001$ for all). NTX change analyses showed that men with a larger Pt decline from SI to SII had a significantly higher risk of increasing paresthesias in hands (OR 1.98, CI 1.09-3.59, per 10 ng/L/year) and tinnitus (OR 1.51, CI 1.01-2.27, per 10 ng/L/year). These findings remained significant when adjusting for cisplatin dose. Patients who stopped smoking between SI and SII or never smoked had a lower risk of deteriorating Raynaud’s phenomenon, compared to current smokers.

In conclusion, after adjusting for age and administered cumulative cisplatin dose, an increasing Pt decline from SI to SII was associated with a decreased risk for a second cancer, but with worsening of paresthesias and tinnitus from SI to SII.
6. DISCUSSION

6.1 Methodological considerations

6.1.1 General aspects

This study evolves from two cross-sectional follow-up studies, in which outcomes were evaluated between 1998-2002 (SI) and 2007-2008 (SII), whereas the cytotoxic treatment was administered several years before (1980-1994).

Cross-sectional studies, also called prevalence studies, are observational and can be useful to detect differences between groups\(^{149}\). As we have used data from two cross-sectional studies performed at different time points, we have the possibility to interpret the associations between Pt levels and late effects longitudinally (paper III). Longitudinal studies are considered highly valid for determining long-term changes, and their primary advantage is to detect patterns that occur over long periods. Thus, the present thesis can be seen to some extent as a retrospective cohort study with regard to the late effect outcomes. Retrospective studies often need large sample sizes for evaluating rare outcomes, and there is a risk of selection bias, information bias and confounding\(^{150}\).

6.1.2 Internal and external validity

It is important to consider both external and internal validity when interpreting a clinical study\(^{150}\). External validity refers to whether the study generates a valid hypothesis applicable to a more general clinical population. For this study, all TCSs treated in Norway during 1980-1994 were retrieved from the Norwegian Cancer Registry and cross-checked with the university hospital databases, and the eligible study population was considered complete. Both studies on
which the present thesis is based had approximately 80% response rates. Moreover, all participants were treated according to international guidelines with limited variety, thus the external validity is considered to be acceptable for this study. The TC treatment has changed since 1980-1994. However, the standard treatment for most men with disseminated TC today is still considered to be 3-4 cycles of BEP. The results presented in this thesis are still valid for current TCSs and the doctors/health personnel involved in treatment and follow-up of these patients.

The internal validity, random and systematic errors (bias), refers to how a clinical study can produce valid results. The random errors are due to chance and can be minimized by increasing the sample size or reducing measurement variations. Herein we have critically few TCSs for grouping according to treatment for especially the CVD analysis in paper II. CVD occurs late in life, most incidents after the age of 60. Thus our participants with median age of 49 at survey II, would probably need a larger population to be able to demonstrate any relationship between exposure and outcome. Studies with few participants have higher risks for incorrectly accepting the null hypothesis (type II error). In paper III, only 77 men treated with CBCT had available serum for Pt analyses in both surveys, which hampers the ability to draw reliable conclusions.

Herein we have applied numerous statistical tests, with the possibility of incorrectly rejecting the null hypothesis only due to chance (type I error). In exploratory and epidemiological studies where a final conclusion might not be necessary nor possible, corrections for multiple testing are not considered compulsory. In such studies the Bonferroni test may be inappropriate, as it will be highly conservative and analyses may miss real differences, and we have chosen to not make any corrections.
Any errors influencing the study participation (selection bias) or distortion when collecting information about participants (information bias) are referred to as systematic biases\textsuperscript{150}. Such biases reflect any deviations that leads to conclusions which may systematically over- or under-estimate the associations between exposure and outcome.

6.1.3 Selection bias

Selection bias occur when participation is hampered by the selection of either individuals, groups or data for analysis\textsuperscript{149}. This may lead to various association between outcome and exposure for responders and non-responders. If some groups of the eligible population is less likely to be included than others it is defined a sampling bias\textsuperscript{150}. This type of bias may create a sample which is unrepresentative of the population intended to be analyzed.

In our study, all TCSs treated during 1980-1994 were invited, and participation was voluntarily, with insignificant differences between responders and non-responders according to stage, age, histology or treatment. It can be argued that people participating in medical research are healthier and more motivated compared with those who do not participate\textsuperscript{153}. Since we lack information about the non-responders’ level of late effects, we can only speculate whether the participants in the study are compared to the non-responders\textsuperscript{150}. Nevertheless, the participation rate was high in both surveys, hence minimalizing the risk of selection bias.

In paper II and for late effect analyses in paper III, only TCSs with prior chemotherapy were included. Additionally, the cohorts included in all papers in the current thesis were restricted by available frozen serum, which had been used for several previous studies, thereby introducing a possible selection bias. In paper III, only patients with serum samples frozen at both surveys were eligible, and this was limited to patients treated at only one hospital (the
Norwegian Radium Hospital). During the treatment period, this hospital was main hospital for cancer treatment in Norway, increasing the possibility of including patients with more intensive disease needing more advanced treatment, rendering a possibility of selection bias for more late effects.

6.1.4 Information bias

Information bias (observational bias) occurs when measurement or classification of information about the study participants is incorrect. Non-differential misclassification refers to when an exposure variable has the same probability of being misclassified for all subjects, regardless of outcome. Differential misclassification refers to when the misclassification of exposure differs for study participants according to outcome status\textsuperscript{150}.

In paper II and III, smoking status and physical activity are based on self-reported information retrieved from the questionnaires. In issues where strong personal feelings can be a source of bias, for example with smoking habits and physical activity, data may be incorrectly reported to reduce a person’s feelings of guilt, with a risk of information bias (social desirability bias)\textsuperscript{154}. In paper II, only self-reported information about incident CVD in the questionnaire were validated, with a probability of underestimating both the true incidence of CVD and associations between exposure (cisplatin dose, Pt level) and CVD.

Misclassification of symptoms regarding self-reported NTX may also exist. However, a report comparing audiograms with self-report of hearing impairment has shown high correlation, and the SCIN is recommended as a brief screening instrument for chemotherapy induced neuro-oto-toxicity\textsuperscript{155}. Additionally, the SCIN score represents a clinical relevant measure, addressing to which extent the symptoms affect quality of life.
Most of the patients had blood samples collected before 11.00 a.m., to assure similar conditions regarding hormonal analyses, due to diurnal variations of testosterone. Measurements of testosterone may differ between laboratories, however, in paper II the variability of testosterone is considered to be acceptable since all hormonal analyses was performed at the same laboratory.

To minimize possible measurement errors when assessing Pt levels, only one laboratory performed all analyses with a method partly adopted from Brouwers et al. For evaluation of the Pt measurement accuracy, a standardized serum sample from a quality management program was analyzed in every sequence. To ensure optimal instrument performance, instrument settings were tuned and adjusted daily.

6.1.5 Confounding

Confounding refers to a variable that influences both the independent and the dependent statistical variable causing a distortion or confusion of effects. Confounding can be statistically reduced by stratification or adjustments in multivariate analyses.

The prevalence of most of the late effects which we have studied, increases with age. This includes CVD, neuropathy, tinnitus and hearing impairment as well as cancer and endocrine hypogonadism. Since age was a possible confounder it was necessary to adjust all outcome analyses for age. Additionally, in the multivariate analyses concerning late effects and serum Pt levels we adjusted for the cumulative cisplatin dose, since all late effects studied in this thesis are associated with CBCT.

Another possible confounder was smoking, which is a well-known risk factor for CVD, neuropathy and cancer. Consequently, we included smoking status when we performed
all ordinal and cox regression models involving these outcomes to explore the effect of smoking.

Of note, when addressing Raynaud’s phenomenon, most patients in the study also received bleomycin, which is considered the main cytotoxic causative agent\textsuperscript{82}. Hence, confounding of the associations between cisplatin and Raynaud’s phenomenon by bleomycin is a possibility in our study.

6.2 Discussion of results

6.2.1 Long-term platinum levels at SII and platinum level change from SI to SII (paper I and paper III)

In paper I, we showed that Pt levels are higher in TCSs treated with cisplatin up to 28 years after chemotherapy compared with patients treated with surgery only. In agreement with previous research, we detected significant association between Pt levels and cumulative cisplatin dose as well as time since treatment\textsuperscript{16,17,23}. Besides, as reported in paper III, although most men had a decline of Pt during follow-up, 14\% of the TCSs showed a Pt increase.

For Pt level quantification, we utilized ICP-MS, a highly sensitive technique partially adopted from Brouwers et al\textsuperscript{142}. The susceptibility of the procedure is due to both the instrument performance and the sample preparation. To avoid interference and minimizing the contamination risk, we diluted the serum specimens to reduce the concentration of organic matrix, hence maintaining a high sensitivity and detection power. For measuring total Pt levels, the signal from the\textsuperscript{195}Pt isotope can be a subject to interference of signals from hafnium oxides. In ICP-MS conditions, this metal oxide observation is typically insignificant and within our
study the detected signal of hafnium was low in all samples, which made further improvements redundant.

Surprisingly, our surgery treated controls had higher Pt levels compared with data from both Sprauten et al (personal communication), Gietema et al. and Brouwers et al16,17,23. This may be the result of different analytical methods and specimens, environmental factors, or incomparable genetic susceptibility, which all theoretically may influence the Pt levels in men not exposed to cisplatin.

The observed increase in Pt levels from SI to SII among 14% of cases in paper III may possibly be explained by Pt exchange between compartments with diverse pharmacokinetics, as Pt residuals has been found in most organs after chemotherapy121. This theory is supported by a demonstration of retained Pt pharmacokinetics resembling lead, which stores within bone with the possibility to be released into the circulation21. In addition, the observed increase in Pt levels in some cases may in part also be explained by a higher exposure to PGE pollution.

The serum Pt levels in our Norwegian male controls (blood samples drawn 2007-2008) was high compared with blood levels in Italian healthy adolescents (from 2009), with median values at 50ng/L and 9.87 ng/l, respectively163. Biomonitoring studies have shown that the body burden levels of PGE reflect the exposure to elevated concentrations of these noble metals, with higher exposure and uptake among urban populations and those working in close proximity with traffic164. In a German study, Pt concentrations in airborne particulate matter were found to be six times higher for samples collected in 2008–2010 compared to 2002165, and inhalation of PGE-containing particulate matter are believed to be the most important exposure route for Pt in humans166. Importantly, the worldwide production of PGEs has increased significantly since the 1970s because a more prevalent use of vehicle exhaust catalysts94. High levels of PGE in soil bordering heavy trafficked areas are well
Pt typically occurs as an insoluble metal and is the least soluble PGE, solubility ranging from 1.4-19% for gasoline-powered engines and from 2-7% for both new and aged diesel powered engines\textsuperscript{165}. In Norway, approximately 80\% of the population is living in urban communities, where the soluble Pt of roadside dust is high. An explanation for the lower Pt levels reported in earlier studies\textsuperscript{23,169} may be that the investigated populations were assessed in a period with less PGE pollution and accumulation.

A genetic difference between the Dutch and the Norwegian cohorts might explain the difference in median Pt levels. Various gene expressions have been linked with chemotherapy-induced toxicities\textsuperscript{99,115}, and it remains to estimate if genetic polymorphisms can generate heterogeneous pharmacokinetics and chemotherapy tolerance among patients.

From our data, no relationship between Pt levels and long-term follow-up time for carboplatin treated TCSs could be established, probably due to the limited number of patients. Additionally, levels of Pt is shown to be artificially low in carboplatin treated patients after serum storage temperatures at -20\degree C\textsuperscript{170}, comparable to our study. To the best of our knowledge, long-term reports on Pt levels after carboplatin treatment are limited.

6.2.2 Long-term platinum levels and changes, and their associations with cisplatin related late effects (paper II and paper III)

In paper II we found that cumulative administered cisplatin doses remained associated with NTX, while associations between long-term Pt levels and NTX symptoms diminished over time\textsuperscript{16,19}. Additionally, we found associations with Pt levels at SII and higher LH-levels, but no associations with CVD. In paper III we found that a larger Pt decline from SI to SII was
associated with a decreased risk for second cancer and an increased risk for tinnitus and paresthesias in hands.

Sensory neuropathy, Raynaud’s phenomenon, tinnitus and hearing impairment are well-known neurotoxic side effects of cisplatin with a prevalence of 30% to 40% in TCSs, with a potential negative impact on their quality of life. These side effects are related to both cumulative cisplatin dose and treatment intensity. Our findings in paper II partially corroborated the results demonstrated in 2012 by Sprauten et al. Compared with our study, the Sprauten study, which to some extent was based on the same TCSs cohort as our study, demonstrated a stronger association between all NTX symptoms and retained Pt median 12 years after CBCT. In their study, the cumulative cisplatin dose was not associated with neither total SCIN score nor individual SCIN symptoms in multivariate OLR analyses. Possibly, our seven year longer follow-up with subsequently lower Pt levels, less dose-intensive treatments and differences in ICP-MS methodology can partly explain a diminished association between the Pt levels and NTX when cisplatin dose was included in our statistical models.

The exact pathogenesis of long-term CIPN is largely unknown. Results of several post-mortem studies show that Pt is retained and stored in essentially all organs, such as lungs, kidneys, liver, muscle, bone and skin. Furthermore, Pt levels measured within nerves are typically highest in dorsal root ganglia and lowest in the brain. Whether the cumulative amount of cisplatin correlates with Pt levels in the dorsal roots is, however, not known. It has been hypothesized that continuous exposure to low-level serum Pt on neural tissue contributes to ongoing damage. In paper II, the diminished association between serum Pt levels and SCIN symptoms, when cisplatin was added to our multivariable OLR models, suggests that the treatment burden has a stronger effect on NTX development than the Pt residuals. In paper III, we demonstrated that a larger Pt decline from SI to SII correlated positively with higher
cumulative cisplatin doses, and was additionally associated with a higher intensity of paresthesia (hands). Taken together, since cisplatin-induced peripheral neuropathy (CIPN) typically develops during or shortly after treatment, we hypothesize that it is more likely that CIPN are associated with the administered cisplatin dose rather than the long-term Pt exposure or Pt decline.

In paper II, tinnitus remained significantly associated with long-term Pt when adjusting for cisplatin dose. Additionally, in paper III, we found that a larger Pt decline was associated with an increase in tinnitus from SI to SII. Previous studies have shown that 40–80% of adults and at least 50% of children are left with permanent hearing loss after receiving CBCT, when including frequencies outside normal speaking range. Chemotherapy-induced ototoxicity is mainly ascribed to cisplatin, which is believed to cause inner ear damage through loss of outer hair cells in the organ of Corti, leading to tinnitus and hearing impairment. If Pt stored in nerves is related to ear function and/or the cisplatin-induced initial damage during treatment is responsible for outer hair cell dysfunction, are yet to be investigated. Further knowledge was recently proposed by showing that cisplatin accumulation in mice and human cochlea is consistently high in the stria vascularis, the region of the cochlea that maintains the ionic composition of endolymph. Moreover, the authors demonstrated prominent amounts of cisplatin levels in the long bones. Similar to lead, Pt can be distributed into bone and be exchanged back into the blood, with a half-life of years-to-decades. The major protein component of bone, type I collagen, binds to Pt, from which it slowly dissociates. Hence, the cochlear bone is suggested to function as a reservoir for Pt, leading the long-term destruction of cochlear and bone cells, a possible premise for the ototoxicity caused by cisplatin. Whether the prolonged release of Pt from bone can mediate the late toxicities of cisplatin, needs further
investigation. As far as we know, there is still no documented substance that may relieve the neurotoxicity of platinating agents.\textsuperscript{179,180}

Hypogonadism can cause a diversity of complications for TCSs, such as fertility problems, muscle weakness, reduced sexual functioning and psychological problems.\textsuperscript{116,181-183} It is also associated with conditions like decreased bone mineral density, obesity, CVD development and the metabolic syndrome.\textsuperscript{125,126,129,184} Corresponding with our results, an increased risk of premature hormonal aging with higher LH levels has been significantly associated with administered cumulative cisplatin dose.\textsuperscript{5,120} Additionally, in paper II, increased Pt levels were associated with increasing LH levels after CBCT, supporting previous findings.\textsuperscript{20} In a post-mortem study, testicles retained more Pt after CBCT compared with other endocrine organs outside the brain.\textsuperscript{121} Hypothetically, the endocrine hypogonadism observed in long-term TCSs can be due to ongoing damage of the testicles, possibly due to continuous exposure to residual Pt.

The increased risk of potentially life-threatening CVD in TCSs is a major complication of CBCT, mediastinal radiotherapy and even subdiaphragmatic radiotherapy,\textsuperscript{122-125,185,186} with an increased risk for CVD several years after treatment termination.\textsuperscript{6} Inflammation and endothelial dysfunction are essential components in the development of atherosclerosis, on both short- and long-term. CBCT has been demonstrated to activate the atherosclerotic process.\textsuperscript{128,187,188} Pt residuals have been measured in TCSs up to median 20 years after CBCT,\textsuperscript{17,18} additionally 10% of the serum Pt remain reactive median 41 months after treatment.\textsuperscript{23} Hence, CVD after CBCT is hypothesized to partially be the result of ongoing endothelium damage caused by the raised long-term Pt levels, as well as increased CVD risk factor levels. Recently, Boer et al. demonstrated associations between Pt exposure and both CVD risk factors, paresthesias and hypogonadism. They assessed a pharmacokinetic model for
Pt exposure which included cisplatin dose, age, weight, and height along with Pt levels\textsuperscript{20}, but their subsequent statistical models did not include cisplatin dose. Thus, elucidation of the effect of cisplatin dose is still lacking. In paper II, we demonstrated an association between CVD and cumulative cisplatin dose only, but statistical power was hampered by few CVD events in our cohort.

The most prominent cause of death among long-term TCSs after cytotoxic treatment is second cancers\textsuperscript{4}. Numerous studies have shown an elevated relative risk for solid second cancers, especially with follow-up beyond 20 years\textsuperscript{133,135,136}. The cancer sites registered in our cohort corroborates with a Danish study reporting increased risks for cancers in the lung and bladder among others. However, our cohort is not large enough to calculate relative risks for further comparison\textsuperscript{135}. Nevertheless, in paper III, we are the first to show a relationship between a larger decline in Pt levels and a reduced risk of having a second cancer, whereas the cumulative cisplatin dose was not associated with the risk of second cancer. We hypothesize that Pt storage and pharmacokinetics might be just as important as the cisplatin dose itself for very late effects after cancer treatment, such as second cancers.

Decreased renal function after TC treatment is closely related to an increased number of BEP cycles and the accumulated doses of cisplatin, but the reported changes in GFR are partly reversible and have no impact on CVD risk or associated death\textsuperscript{189-191}. Nevertheless, renal function, both prior to and shortly after CBCT, was found to be associated with long-term exposure to circulating Pt in the study of Boer et al\textsuperscript{20}. In paper III, we demonstrate a significant association between Pt levels at SI and creatinine at SI. However, no association between Pt decline and creatinine levels was demonstrated, probably due to our limited study population.
Smoking has been shown to cause damage in most organs\textsuperscript{192,193}, and is a considerable risk factor for different cancers\textsuperscript{194,195}. In paper II we found a strong association between smoking and neurotoxicity in TCSs, similar to previous studies performed after CBCT\textsuperscript{82}. In paper III we demonstrated that current smokers at SII, when compared with never smokers, had a major increased risk of developing a second solid cancer. Additionally, we saw that men who never smoked and men who quit smoking between SI and SII had a lower risk of Raynaud’s symptoms increasing, confirming earlier studies which report smoking to be an important causative factor for developing Raynaud’s phenomenon\textsuperscript{196}.
7. CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH

In paper I, we were the first to document that TCSs previously treated with CBCT have increased Pt levels up to 28 years after CBCT, compared with those treated with surgery only (control group). Their Pt levels were positively associated with the cisplatin dose and inversely associated with follow-up time. Additionally, we found that our controls had relatively high levels of platinum, when compared with healthy controls in PGE biomonitoring studies. In paper II, we present the longest follow-up time published so far for Pt retention in CBCT treated TCSs and associations with NTX, endocrine–GF and CVD. Tinnitus and increasing LH-levels were positively associated with higher Pt levels after adjusting for cisplatin dose. In paper III, we found that the Pt decline from SI to SII in 77 TCSs previously treated with CBCT, was associated with worsening of NTX and a reduced risk of second cancer. 14% of TCSs had increasing Pt levels from SI to SII.

Further studies with respect to late effects are needed to clarify underlying mechanisms and to explore associations with serum Pt. We suggest larger prospective studies including evaluation of Pt elimination rates, storage and excretion, to elucidate their consequences for long-term effects in TCSs. Of note, the relationship between residual long-term Pt and the more life threatening toxicities, like second cancers and CVD, needs to be prioritized in larger studies with follow-up periods beyond 20 years.

Prophylaxis studies have not been able to document any substances that prevent the neurotoxicity of platinating agents\textsuperscript{179,180}. We hope that future studies with focus on detoxifying agents will be performed, which hypothetically can prevent all possible late effects associated with Pt exposure.
Genes associated with Pt detoxification should be elucidated to further understand the individual differences observed with respect to late toxicity. Knowledge about the inter-individual vulnerability after CBCT may be clinically important in risk-adapted follow-up of TCSs in the future. We suggest a further exploration of the relationship between cisplatin related late effects and genetics.

The high Pt levels in surgery treated TCSs (paper I), along with the observed increasing Pt levels for some of our TCSs (paper III), and possible disease associations, especially second cancers, should be investigated further. Airborne particulate matter, which is associated with PGEs, has been associated with an increased incidence of morbidity and mortality in exposed urban populations\textsuperscript{197,198}. Whether environmental Pt exposure contributes to the associations between Pt levels and the medical problems included in this thesis remains to be evaluated.

Regarding clinical relevance, we interpret the associations between late effects and smoking to be helpful in the follow-up of all TCSs treated with CBCT, with smoking cessation as a high priority. Careful follow-up of TCSs is necessary to quantify and possibly prevent the long-term risks of these survivors. We suggest focusing on improving unfavorable life style factors to possibly prevent late effects.
REFERENCES


39. Xing JS, Bai ZM: Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci 194:120-129, 2018

40. Skakkebaek NE, Rajpert-De Meyts E, Main KM: Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects: Opinion. Hum Reprod 16:972-978, 2001
52. van Agthoven T, Looijenga LHJ: Accurate primary germ cell cancer diagnosis using serum based microRNA detection (ampTSmiR test). Oncotarget 8:58037-58049, 2017
83. Sleijfer S: Bleomycin-Induced Pneumonitis. CHEST 120:617-624


143. Run Report 10-02, Quebec multielement External Quality Assessment Scheme (QMEQAS)


185. Gugic J, Zaletel LZ, Oblak I: Treatment-related Cardiovascular Toxicity in Long-term Survivors of Testicular Cancer. Radiol Oncol 51:221-227, 2017
APPENDIX I

Questionnaire Survey I, 1998-2002
Etterundersøkelse av pasienter behandlet for testikkelkreft

Vi ber deg om å fylle ut dette spørreskjemaet så godt du kan, enten ved å krysse av eller sette ring rundt det svaret som passer, eller ved å skrive ned dine kommentarer. Alle svar behandles konfidensielt.

Dato for utfylling: ____________________________

Navn: ______________________________________

Født: ________________________________________

Høyde: ________ cm Vekt: ________ kg

Blodtrykk (hvis kjent): ________________________

Sosial og økonomisk situasjon

**Sivil status**

1. Hva er din nåværende sivilstatus? (Sett ring rundt det svaret som passer.)
   a. Aldri vært gift
   b. Gift Antall år ________
   c. Samboene Antall år ________
   d. Enkemann Antall år ________
   e. Separert Antall år ________
   f. Skilt Antall år ________

2. Har ditt partnerforhold forandret seg etter at du ble behandlet for testikkelkreft? (Sett kryss ved det svaret som passer. Flere svaralternativer er mulig.)
   Jeg er blitt gift
   Jeg er blitt separatert
   Jeg er blitt skilt
   Jeg er blitt enkemann
   Jeg har startet en nytt fast forhold
   Jeg har avsluttet et fast forhold
   Ingen forandring av partnerforholdet

3. Tror du at diagnosen og behandlingen for testikkelkreft har hatt innflytelse på ditt nåværende forhold til partnern din? □ Ja □ Nei
   Hvis «ja», på hvilken måte? ________________________________________________________

**Boforhold**

4. Hvem bor du sammen med? (Sett et kryss for hver linje, og oppgi hvor mange du bor sammen med.)
   Ektefelle/samboer  □ 1 □ 2 Antall
   Andre personer over 18 år  □ 1 □ 2
   Personer under 18 år □ 1 □ 2

**Arbeid/utdanning**

5. Hvilken utdanning er den høyeste du har fullført?
   □ Grunnskole 7-10 år, framlærselskole, folkehøgskole
   □ Realskole, middelskole, yrkesskole, 1-2 årig videregående skole
   □ Artium, økonomisk gymnasm, allmennfaglig retnings i videregående skole
   □ Høgskole/universitet, mindre enn 4 år
   □ Høgskole/universitet, 4 år eller mer

6. Hva er din nåværende arbeids situasjon? (Sett ring rundt det svaret som passer.)
   1. Arbeidsledig/permittert
   2. Ikke i stand til å arbeide
      a) sykmeldt
      b) atføring
      c) uforuttrygd
   3. Delvis i arbeid
   4. Fullt arbeid
   5. Alterspensjonist
   6. Student/skoleelever

   Hvis du for tiden ikke har inntektsgivende arbeid eller du ikke har heltids husarbeid: Gå til spørsmål nr. 11.

7. Har du i løpet av de siste 12 månedene hatt sykefravær:
   med egenmelding?
   med sykmelding fra lege?

8. Hvis «ja»; hvor lenge til sammen?
   2 uker □ □
   2-8 uker □ □
   Mer enn 8 uker □ □

9. Er arbeidet ditt så fysisk anstrengende at du ofte er sliten i kroppen etter en arbeidsdag?
   □ Ja, nesten alltid
   □ Ganske sjelden
   □ Aldri, eller nesten aldri

10. Krever arbeidet ditt så mye konsentrasjon og oppmerksomhet at du ofte føler deg utsatt etter en arbeidsdag?
    □ Ja, nesten alltid
    □ Ganske sjelden
    □ Aldri, eller nesten aldri

11. Tror du diagnosen og behandlingen av testikkelkreft har hatt negativ innflytelse på din nåværende arbeidssituasjon/utdannings situasjon?
    □ Ja □ Nei
    Hvis «ja», på hvilken måte? ________________________________________________________
12. Har du hatt noen vanskeligheter vedrørende arbeid, forsikring og/eller låne, eller innenfor andre praktiske områder av ditt liv, etter behandlingen for testikkelskekreft?  
- Ja 1  
- Nei 2

Vennligst angi de organisasjoner/institusjoner som har vært involvert i vanskelighetene, og beskriv hva problemene bestod i:

a) Arbeid: ____________________________

b) Forsikring: ____________________________

c) Lån: ____________________________

d) Andre forhold: ____________________________

ØKONOMI
13. Mottar du noen av følgende offentlige ytelser?
- Sykepenger/sykelsnitt  
- Rehabiliteringspenger  
- Ytelser under yrkesrettet atferdsregler  
- Uførepensjon  
- Alderspensjon  
- Sosialstøtte  
- Arbeidsskadestøtte  
- Overgangsstønad  
- Etterlattepensjon  
- Andre ytelser

- Ja 1  
- Nei 2

14. Har det i løpet av det siste året hendt at hus-
holdningen har hatt vansker med å klare de løpende
utgifter til mat, transport, bolig og liknende?
- Ja, ofte 4  
- Ja, av og til 3  
- Nei, aldri 1

VENNER
15. Hvor mange gode venner har du?
(Regn med de du kan snakke fortrølgelig med og som kan gi deg god hjelp når du trenger det. Tell ikke med de du bor sammen med, men regn med andre slektnings.)

Antall: ____________

16. Føler du at du har mange nok gode venner?
- Ja 1  
- Nei 2

17. Hvor ofte tar du vanlignvis del i forenings-
virksomhet, som f.eks. idrettslag, politiske lag, 
religiøse møter eller andre foreninger?
- Aldri, eller noen få ganger i året 4  
- 1-2 ganger i måneden 3  
- Om tre ganger i uken 2  
- Mer enn en gang i uken 1

Generell helsetilstand/livsstil
18. Har du fått en annen kreftdiagnose etter din 
testikkelskekreft-behandling? (Kryss av for det svaret 
som passer og angi mnd./år for diagnose.)
- Ja 1  
- Nei 2

Hvis «ja», angi type og tidspunkt: ____________________________

19. Har du hatt noen andre alvorlige sykdommer/ 
operasjoner?  
- Ja 1  
- Nei 2

Hvis «ja», angi type og tidspunkt: ____________________________

20. Har noen i din familie fått testikkelskekreft eller en 
annen form for kreft?  
- Ja 1  
- Nei 2

Hvis «ja», angi type, slektsforhold, eventuelt navn, 
krefttype og sykehus (f.eks.: Morbror Peder Ås, 
magekreftoperert i 1997 på Aker Sykehus.)

FØR/ETTER BEHANDLING FOR TESTIKKELKREFT
21. Brukte du noen ganger nerve-
medisiner før du fikk behandling for 
testikkelskekreft?  
- Ja 1  
- Nei 2

22. Har du noen gang brukt nerve-
medisiner etter behandlingen for 
testikkelskekreft?  
- Ja 1  
- Nei 2

23. Brukte du noen gang narkotika 
før du fikk behandling for testikkelskekreft?  
- Ja 1  
- Nei 2

24. Har du noen gang brukt narkotika 
etter behandlingen for testikkelskekreft?  
- Ja 1  
- Nei 2

25. Oppsøkte du noen gang en 
psykolog/psykiater før du fikk 
behandling for testikkelskekreft?  
- Ja 1  
- Nei 2

26. Har du noen gang oppsøkt en 
psykolog/psykiater etter 
behandlingen for testikkelskekreft?  
- Ja 1  
- Nei 2

27. Har du noen gang tenkt på/ 
forsøkt selvmord?  
- Ja 1  
- Nei 2

ALKOHOLBRUK
28. Hvor ofte er du beruset flere dager i strek på 
grunn av alkohol? (Sett ring rundt det svaret som passer 
best.)
- Aldri 1  
- Sjeldnere enn månedelig 2  
- Noen ganger i måneden 3  
- Noen ganger i uken 4  
- Daglig eller nesten daglig 5
29. Hvor ofte hopper du over måltider på grunn av alkohol?
- Aldri 1
- Sjeldnere enn månedlig 2
- Noen ganger i måneden 3
- Noen ganger i uken 4
- Daglig eller nesten daglig 5

30. Hvor ofte har du blitt mer vennlig og omgjengelig etter å ha drukket siste år?
- Aldri 1
- Sjeldnere enn månedlig 2
- Noen ganger i måneden 3
- Noen ganger i uken 4
- Daglig eller nesten daglig 5

31. Hvor ofte trenger du en drink om morgenen etter å ha drukket kvelden før?
- Aldri 1
- Sjeldnere enn månedlig 2
- Noen ganger i måneden 3
- Noen ganger i uken 4
- Daglig eller nesten daglig 5

**RØYKING**
32. Røyker du
- Ja 1
- Nei 2

33. Hvis du har røykt daglig tidligere, hvor lenge er det siden du sluttet?
- Antall år: ____________

34. Hvis du røyker daglig nå eller har røykt tidligere; hvor mange sigaretter røyker eller røykte du vanligvis daglig?
- Antall sigaretter: ____________

35. Hvor gammel var du da begynte å røyke daglig?
- Alder: ____________ år

36. Hvor mange år til sammen har du røukt daglig?
- Antall år: ____________

**SYKDOM/PLAGENER**
I noen av de følgende spørsmåler vi deg oppgi alderen din da eventuelt sykdom inntrådte. Hvis du ikke husker nøyaktig hvor gammel du var, skriver du et tall som er nærmest det du antar er korrekt. Kryss av for det svaret som passer, og sett kun ett kryss.

37. Har du, eller har du hatt:
- Ja 1
- Nei 2

| Hjerteinfarkt | 1 2
| Angina pectoris (hjertekrampe) | 1 2
| Hjerneslag/hjerneblødnings | 1 2
| Diabetes (sukkersyke) | 1 2

38. Hva ble resultatet siste gang du målte blodtrykket ditt?
- Begynne med/fortsette med blodtryksmedisin 4
- Komme til kontroll, men ikke ta blodtryksmedisin 3
- Ingen kontroll og ingen medisin nødvendig 2
- Har aldri fått målt blodtrykket 1

39. Har legen din noen gang sagt at du har/har hatt noen av disse sykdommene?
- Ja 1
- Nei 2

| Beinskjørtset (osteoporose) | 1 2
| Fibromyalgi | 1 2
| (fibrositt/kransk smertesyndrom) | 1 2
| Ledlagt (reumatoid artritt) | 1 2
| Slitasjegikt (artrose) | 1 2
| Bechterews sykdom | 1 2
| Andre langvarige skjelett- eller muskelsykkdommer | 1 2

40. Har du eller har du hatt smertor eller kramper i bena som begrenser deg når du går eller som gjør at du våkker om natten?
- Ja 1
- Nei 2

Hvis «ja», angi når smertene/krampene begynte:

41. I hvilken grad har du hatt disse plagene det siste året?
- Ikke plaget 1
- Litt plaget 2
- Mye plaget 3

| Kvalme | 1 2 3
| Bryssbrann/ sure oppstøt | 1 2 3
| Diaré | 1 2 3
| Treg mage | 1 2 3
| Hjertebank | 1 2 3
| Andensød | 1 2 3

42. Har du i løpet av det siste året vært plaget med smertor og/eller stivhet i muskler og ledd som har vært i minst 3 måneder sammenhengende?
- Ja 1
- Nei 2

Hvis «nei», gå videre til spørsmål nr. 45. Hvis «ja», svar på følgende:

43. Hvor har du hatt disse plagene?

**NEI**

| Nakke | 1 2
| Skuldrer (aksler) | 1 2
| Albuer | 1 2
| Håndledde, hender | 1 2
| Brys/mage | 1 2
| Øvre del av rygg | 1 2
| Korsrygg | 1 2
| Hoffer | 1 2
| Knær | 1 2
| Ankler, føtter | 1 2

(Hvis du har hatt plagere i flere områder i minst 3 måneder det siste året, sett ring rundt det ja-krysset hvor plagene har vart lengst.)
44. Har plagene redusert din arbeidsevne det siste året? (Gjelder også hjemmearbeidende.)

- Nei/ubetydelig
- I betydelig grad
- I noen grad
- Vet ikke

45. Har du noen langvarig sykdom, skade eller lidelse av fysisk eller psykisk art som nederter dine funksjoner i ditt daglige liv?

- Ja
- Nei

(Langvarig = Minst ett år)

Hvis «nei», gå til spørsmålet nr. 47.

46. Hvis «ja»; hvor mye vil du si at dine funksjoner er nedsatt?

<table>
<thead>
<tr>
<th></th>
<th>Litt nedsatt</th>
<th>Middels nedsatt</th>
<th>Mye nedsatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er bevegelseshemmet</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Har nedsatt syn</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Har nedsatt hørsel</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hemmet pga. kroppslig sykdom</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hemmet pga. psykiske plager</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Andre plager, beskriv:</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

47. Har du i deler av det siste året brukt noen medisiner daglig eller nesten daglig?

- Ja
- Nei

48. Hvis «ja»; angi hvor mange måneder du brukte følgende medisiner/kosttilskudd. (Sett 0 hvis du ikke har brukt medisinene.)

<table>
<thead>
<tr>
<th></th>
<th>Antall måneder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smertestilling</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Sovemedisin</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Berolingende medisin</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Medisin mot depresjon</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Allergimedisin</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Astmamedisin</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Hjertemedisin</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Blodtrykkmedisin</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Jerntabletter</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Vitamin tilskudd</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Tran/fiskeoljer</td>
<td>__________ mnd.</td>
</tr>
<tr>
<td>Annen medisin, spesifiser navn og antall mnd.:</td>
<td>__________ mnd.</td>
</tr>
</tbody>
</table>

49. Hvor ofte har du brukt avslappende/beroligende medisiner eller sovemedisiner den siste måneden?

- Daglig
- Sjeldnere enn hver uke
- Hver uke
- Aldri

men ikke hver dag

50. Har du i løpet av de siste 12 månedene vært hos:

<table>
<thead>
<tr>
<th></th>
<th>Ja</th>
<th>Nei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allmennpraktiserende lege (kommunelege, privatpraktiserende lege, turmuskandidat)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bedriftslege</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Lege ved sykehus (uten innleggselse)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Annen lege</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fysioterapeut</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Kiropraktor</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Homøopat</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Annen behandler (naturmedisiner, fotosmeterapeut, håndspåleger, «healer», «synsk» e.l.)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

51. Har du vært innlagt på sykehus de siste 5 årene?

- Ja
- Nei

Hvis «ja», vennligst spesifiser hvilke sykehus (utenom RiTø) og hvorfor du var innlagt.

52. Hvordan har din fysiske aktivitet i fritida vært det siste året? (Tenk deg et ukentlig gjennomsnitt for året. Arbeidsvei regnes som fritid.)

<table>
<thead>
<tr>
<th></th>
<th>Ingen</th>
<th>Under 1</th>
<th>1-2</th>
<th>3 og mer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligg aktivitet</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(ikke sverd/andpusten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard fysisk aktivitet</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(sverd/andpusten)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

53. Jeg er nervøs eller ansippet.

- For det mest
- Noen ganger
- Ofte
- Ikke i det hele tatt

54. Jeg glider meg fortsatt over ting slik jeg pleide før.

- Avgjort ikke mye
- Bare lite grann
- Ikke fullt så mye
- Ikke i det hele tatt

55. Jeg har en urofølelse som om noe forberedelig vil skje.

- Ja, og noen ganger
- Ikke i det hele tatt

56. Jeg kan le og se det morsomme i situasjoner.

- Ilike mye nå som før
- Ikke i det hele tatt

57. Jeg kan le og se det morsomme i situasjoner.

- Avgjort ikke som før
- Ikke i det hele tatt

58. Jeg kan le og se det morsomme i situasjoner.

- Avgjort ikke som før
- Ikke i det hele tatt
57. Jeg har hodet fullt av bekymringer.
☐ Veldig ofte 4 ☐ Av og til 2 ☐ Ganske ofte 3 ☐ En gang i blant 1

58. Jeg er i godt humør.
☐ Aldri 4 ☐ Ganske ofte 2 ☐ Noen ganger 3 ☐ For det meste 1

59. Jeg kan sitte i fred og ro og kjenne meg avslappet.
☐ Ja, helt klart 1 ☐ Ikke så ofte 3 ☐ Vanligvis 2 ☐ Ikke i det hele tatt 4

60. Jeg føler meg som om alt går langsommere.
☐ Nesten hele tiden 4 ☐ Fra tid til innen 2 ☐ Svært ofte 3 ☐ Ikke i det hele tatt 1

61. Jeg føler meg urolig som om jeg har sommerfugler i magen.
☐ Ikke i det hele tatt 1 ☐ Ganske ofte 3 ☐ Fra tid til innen 2 ☐ Svært ofte 4

☐ Ja, jeg har sluttet å 4 ☐ Kan hende ikke nok 2 ☐ Ikke som jeg burde 3 ☐ Bryr meg som før 1

63. Jeg er raslöse som om jeg stadig må være aktiv.
☐ Uten tvil svært mye 4 ☐ Ikke så veldig mye 2 ☐ Ganske mye 3 ☐ Ikke i det hele tatt 1

64. Jeg ser med glede fram til hendelser og ting.
☐ Like mye som før 1 ☐ Avgjort mindre enn før 3 ☐ Heller mindre enn før 2 ☐ Nesten ikke i det hele tatt 4

65. Jeg kan plutselig få en følelse av panikk.
☐ Uten tvil svært ofte 4 ☐ Ikke så veldig ofte 2 ☐ Ganske ofte 3 ☐ Ikke i det hele tatt 1

66. Jeg kan glede meg over gode bøker, radio og TV.
☐ Ofte 1 ☐ Ikke så ofte 3 ☐ Fra tid til innen 2 ☐ Sveig sjelden 4

### HVORDAN DU FØLER DEG NÅ

Vennligst krys av for det svaret som best beskriver dine følelser i den siste uken. Sett bare ett krys.

71. Er du vanligvis glad eller nedsynet?
☐ Svært nedsynet 7 ☐ Nedsynet 6 ☐ Noksa nedsynet 5 ☐ Både - og 4 ☐ Noksa glad 3 ☐ Glad 2 ☐ Svært glad 1

72. Føler du deg stort sett stark og opplagt, eller trøst og sliten?
☐ Meget sterk og opplagt 1 ☐ Sterk og opplagt 2 ☐ Ganske sterk og opplagt 3 ☐ Både - og 4 ☐ Ganske trøtt og sliten 5 ☐ Trøtt og sliten 6 ☐ Svært trøtt og sliten 7

73. Når du tenker på hvordan du har det for tiden, er du stort sett fornøyd med tilværelsen eller er du stort sett misfornøyd?
☐ Svært fornøyd 1 ☐ Meget fornøyd 2 ☐ Ganske fornøyd 3 ☐ Både/og 4 ☐ Noksa misfornøyd 5 ☐ Meget misfornøyd 6 ☐ Svært misfornøyd 7

### Fertilitet, sex og samliv

#### FERTILITET (FRUKTBARHET)

74. a. Ble du født med begge testikler i pungen? ☐ Ja 1 ☐ Nei 2

74. b. Hvis «nei», er du blitt operert? ☐ Ja 1 ☐ Nei 2

Årstall for operasjon: ______________

75. Har du hatt kusma med hevelse av en eller begge testiklene?
☐ Ja 1 ☐ Nei 2

#### FØR diagnosen for testikkelskraft:

76. Prøvde du å bli far?
☐ Ja 1 ☐ Nei 2

77. Hadde du egne barn?
☐ Ja 1 ☐ Nei 2

Antall barn: ______________

Barnas fødselsår: ______________

78. Oppsøkte du eller din partner en lege på grunn av problemer med å få barn?
☐ Ja 1 ☐ Nei 2

79. Frosset du ned sød før du ble behandlet for testikkelskraft?
☐ Ja 1 ☐ Nei 2
**ETTER behandling for testikkelkreft:**

80. Har du prøvd å bli far? □ Ja  □ Nei

81. Har du fått egne barn? □ Ja  □ Nei
Antall barn: ________________________
Barnas fødselsår: ________________________

82. Har din partner hatt aborter etter at hun ble gravid med deg? □ Ja  □ Nei

83. Trengte dere hjelp av en medisinsk specialist for å partneren din skulle bli gravid? □ Ja  □ Nei
   a. Hvis «ja», ble din partner gravid med sød som du selv produserte etter behandlingen? □ Ja  □ Nei
   b. Hvis «ja», ble nedfrosset sød fra før behandlingen benyttet? □ Ja  □ Nei

84. Ble noen av dine barn født med alvorlige sykdommer? □ Ja  □ Nei
Hvis «ja», spesifiser hvilke sykdommer:

85. Har du adoptert barn? □ Ja  □ Nei
Hvis «ja», angi årstall for adoptasjon:

86. Eventuelt andre opplysninger angående svangerskap, barn, etc.

**SEKSUALDRIFT**
La oss definere seksualdrift som en følelse som kan omfatte ønske om seksuell aktivitet (onani eller samleie), tanken på å ha sex eller frustrasjon som følge av mangel på sex.

87. Hvor mange dager har du felt seksualdrift de siste 30 dagene? (Sett siste rønt det svaret som passer.)
   Ingen  Bare noen  Noen  De fleste  Nesten
dager    dager    dager    hver dag
   1  2  3  4  5

88. Hvordan vurderer du nivået på seksualdriften din de siste 30 dagene?
   Ingen  Lav drift  Middels drift  Sterk drift  Sterk drift
   1  2  3  4  5

**REISSNING**
89. Hvis du er blitt seksuelt stimulert på noen måte de siste 30 dagene; hvor ofte har du hatt delvis eller full reissning?
   Aldri  Noen få ganger  Ganske ofte  Vanligvis  Alltid
   1  2  3  4  5

90. Hvis du har hatt reissning de siste 30 dagene; hvor ofte var penis stiv nok til at du kunne ha samleie?
   Aldri  Noen få ganger  Ganske ofte  Vanligvis  Alltid
   1  2  3  4  5

91. Hvor store vansker har du hatt med å få reissning de siste 30 dagene?
   Har ingen reissning  Får ingen reissning  Vansker reissning  Vansker reissning  Vansker reissning  Vansker reissning  Vansker reissning  Vansker reissning
   1  2  3  4  5

**SÆDUTTØMMING**
92. Hvor store vansker har du hatt med å få sæduttømming når du er blitt seksuelt stimulert de siste 30 dagene?
   Har ingen sæduttømming  Får ingen sæduttømming  Vansker sæduttømming  Vansker sæduttømming  Vansker sæduttømming  Vansker sæduttømming  Vansker sæduttømming  Vansker sæduttømming
   1  2  3  4  5

93. I hvilken grad har du over de siste 30 dagene sett på mengden sød ved uttømming som et problem for deg?
   1  2  3  4  5

94. Har sæduttømmingen blitt helt borte etter behandlingen for testikkelkreft? □ Ja  □ Nei

**PROBLEMVURDERING**
95. I hvilken grad har du over de siste 30 dagene sett på manglende seksualdrift som et problem?
   1  2  3  4  5

96. I hvilken grad har du over de 30 siste dagene vurdert din evne til å få og beholde reissning som et problem?
   1  2  3  4  5

97. I hvilken grad har du over de 30 siste dagene sett på din sæduttømming som et problem?
   1  2  3  4  5

98. Hvor tilfreds har du samlet sett vært med ditt seksualliv de siste 30 dagene?
   Veldig utilfreds  For det meste utilfreds  Omtrent like tilfreds  For det meste tilfreds  Svært tilfreds
   1  2  3  4  5
### Livshendelser

Vennligst kryss av for det svaralternativet som passer best, og angi med et tall fra 0-100 hvor stor påkjenning/belastning du syntes ulike hendelser eventuelt har medført for deg. 0 betyr ingen belastning, mens 100 betyr stor belastning. Har du krysset av for «Ja» under ett eller flere av spørsmålene, pass på at du også har skrevet ned et tall fra 0-100 som best beskriver hvor stor påkjenning/belastning hendelsen førte til.

<table>
<thead>
<tr>
<th>Har du i løpet av de siste 12 månedene opplevd noe av det følgende:</th>
<th>Angi grad av belastning fra 0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>99. Egen alvorlig sykdom/ulykke/sykehusinnleggelse?</td>
<td>Nei</td>
</tr>
<tr>
<td>100. Skilsmisse/separasjon/brudd med samboer?</td>
<td>Nei</td>
</tr>
<tr>
<td>101. Giftet deg/flyttet sammen med samboer?</td>
<td>Nei</td>
</tr>
<tr>
<td>102. Fått barn?</td>
<td>Nei</td>
</tr>
<tr>
<td>103. Opplevd dødsfall i familie/nære venner?</td>
<td>Nei</td>
</tr>
<tr>
<td>104. Alvorlig sykdom/ulykke/sykehusinnleggelse hos familie eller nær venner?</td>
<td>Nei</td>
</tr>
<tr>
<td>105. Andre vansker hos nære familie (skilsmisse, alkoholproblemer, nerveproblemer osv.)?</td>
<td>Nei</td>
</tr>
<tr>
<td>106. Vært arbeidsløs/permittert?</td>
<td>Nei</td>
</tr>
<tr>
<td>107. Ektefelle/samboer har vært arbeidsløs/permittert?</td>
<td>Nei</td>
</tr>
<tr>
<td>108. Alvorlige økonomiske problemer?</td>
<td>Nei</td>
</tr>
<tr>
<td>109. Alvorlige bosessive problemer?</td>
<td>Nei</td>
</tr>
<tr>
<td>110. Har du selv eller noen i din nære familie vært utsatt for eller inneblandet i alvorlig lovbrudd?</td>
<td>Nei</td>
</tr>
</tbody>
</table>

### Livskvalitet

**HELTE**
Spørsmålene under dreier seg om hvordan du ser på din egen helse. Sett en ring rundt det tallet som best beskriver din tilstand.

<table>
<thead>
<tr>
<th>111. Stort sett, vil du si at din helse er:</th>
<th>Ut</th>
<th>Meget</th>
<th>God</th>
<th>Nokså</th>
<th>Dårlig</th>
<th>Merket</th>
<th>god</th>
<th>god</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

### Aktiviteter

De neste spørsmålene handler om aktiviteter som du kanskje utfører i løpet av en vanlig dag. Er din helse slik at den begrenser deg i utførelsen av disse aktivitetene nå, og eventuelt i hvor stor grad? (Sett ring rundt et tall på hver linje.)

<table>
<thead>
<tr>
<th>113. Anstrengende aktiviteter som å løpe, løfte tunge gjenstander, delta i anstrengende idrett.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>114. Moderate aktiviteter som å flytte et bord, støvsuge, gå en tur eller drive med hagearbeid.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>115. Løfte eller bære en handlekurv.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>116. Gå opp trappen flere etasjer.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>117. Gå opp trappen en etasje.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>118. Bøye deg eller sitte på huk.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>119. Gå mer enn to kilometer.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>120. Gå noen hundre meter.</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
<th>Nei</th>
<th>Ja</th>
<th>begrenser meg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
### FYSISKE PROBLEMER

121. Gå hundre meter.  
<table>
<thead>
<tr>
<th>Ja, begrenser meg mye</th>
<th>Ja, begrenser meg litt</th>
<th>Nei, begrenser meg ikke i det hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

122. Vaske deg eller kle på deg.  
<table>
<thead>
<tr>
<th>Ja, begrenser meg mye</th>
<th>Ja, begrenser meg litt</th>
<th>Nei, begrenser meg ikke i det hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### FØLELSESMÆSSIGE PROBLEMER

<table>
<thead>
<tr>
<th>FØLELSESMÆSSIGE PROBLEMER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ikke i det</td>
<td>Litt</td>
<td>Endel</td>
<td>Mye</td>
<td>Svært mye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 131. Hvor sterke kroppelige smerte har du hatt i løpet av de siste fire ukene?  
(Seitt ring rundt ett tall.)

<table>
<thead>
<tr>
<th>Ingen svake</th>
<th>Svake</th>
<th>Moderate</th>
<th>Sterke</th>
<th>Meget sterke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

### 132. I løpet av de siste fire ukene, hvor mye har smerter påvirket ditt vanlige arbeid (gjelder både arbeid utenfor hjemmet og husarbeid)? (Seitt ring rundt ett tall.)

<table>
<thead>
<tr>
<th>Ikke i det</th>
<th>Litt</th>
<th>Endel</th>
<th>Mye</th>
<th>Svært hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

De neste spørsmålene dreier seg om hvordan du har følt deg og hvordan du har hatt det de siste fire ukene. For hvart spørsmål, vennligst sett ring rundt det tallet som best beskriver hvordan du har hatt det.

### Hvor ofte i løpet av de siste fire ukene har du:

<table>
<thead>
<tr>
<th>133. - følt deg full av tiltakslyst?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>134. - følt deg veldig nervøs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>135. - varmt så langt nede at ingenting har kunnet munter deg opp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>136. - følt deg rolig og harmonisk?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>137. - hatt mye overskudd?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>138. - følt deg nedfør og trist?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
### 139. - falt deg sliten?

<table>
<thead>
<tr>
<th>Hele tiden</th>
<th>Nesten heile av tiden</th>
<th>Mye av tiden</th>
<th>En del av tiden</th>
<th>Litt av tiden</th>
<th>Ikke i det hele</th>
<th>Ikke i det hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

### 140. - falt deg glad?

<table>
<thead>
<tr>
<th>Hele tiden</th>
<th>Nesten heile av tiden</th>
<th>Mye av tiden</th>
<th>En del av tiden</th>
<th>Litt av tiden</th>
<th>Ikke i det hele</th>
<th>Ikke i det hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

### 141. - falt deg trett?

<table>
<thead>
<tr>
<th>Hele tiden</th>
<th>Nesten heile av tiden</th>
<th>Mye av tiden</th>
<th>En del av tiden</th>
<th>Litt av tiden</th>
<th>Ikke i det hele</th>
<th>Ikke i det hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Hvor riktig eller gal er hver av de følgende påstander for deg? (Sett ring rundt det tallet som passer.)

### 142. I løpet av de siste fire ukene: hvor mye av tiden

har din fysiske helse eller følelsesmessige problemer påvirket din sosiale omgang (som det å besøke venner, slektninngar osv.)? (Sett ring rundt ett tall.)

<table>
<thead>
<tr>
<th>Hele tiden</th>
<th>Nesten heile av tiden</th>
<th>En del av tiden</th>
<th>Litt av tiden</th>
<th>Ikke i det hele</th>
<th>Ikke i det hele tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

### 143. Det virker som om jeg blir lettere syk enn andre.

<table>
<thead>
<tr>
<th>Helt</th>
<th>Delvis</th>
<th>Vet</th>
<th>Delvis</th>
<th>Helt riktig</th>
<th>ikke</th>
<th>gal</th>
<th>gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 144. Jeg er like frisk som de fleste jeg kjenner.

<table>
<thead>
<tr>
<th>Helt</th>
<th>Delvis</th>
<th>Vet</th>
<th>Delvis</th>
<th>Helt riktig</th>
<th>ikke</th>
<th>gal</th>
<th>gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 145. Jeg forventer at min helse vil bli dårligere.

<table>
<thead>
<tr>
<th>Helt</th>
<th>Delvis</th>
<th>Vet</th>
<th>Delvis</th>
<th>Helt riktig</th>
<th>ikke</th>
<th>gal</th>
<th>gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 146. Min helse er utmerket.

<table>
<thead>
<tr>
<th>Helt</th>
<th>Delvis</th>
<th>Vet</th>
<th>Delvis</th>
<th>Helt riktig</th>
<th>ikke</th>
<th>gal</th>
<th>gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### ALT I ALT

Som svar på de neste spørsmålene, sett en ring rundt det tallet fra 1 til 7 som best beskriver din tilstand.

### 147. Hvordan har din helse vært i løpet av den siste uken?

<table>
<thead>
<tr>
<th>Svært</th>
<th>Helt dårlig</th>
<th>utmerket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### 148. Hvordan har livskvaliteten din vært i løpet av den siste uken?

<table>
<thead>
<tr>
<th>Svært</th>
<th>Helt dårlig</th>
<th>utmerket</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### SMERTER/PLAGER

Sett ring rundt det tallet som best beskriver din tilstand.

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### 149. Er du plaget av smertar, stikkningar eller nummenhet i hendene/fingrene?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### 150. Er du plaget av smertar, stikkningar eller nummenhet i fettene/terne?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### 151. Er du plaget av hvite/kalde hender/fingre når det er kaldt?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### 152. Er du plaget av hvite/kalde fettar/tær når det er kaldt?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### 153. Er du plaget av åresus?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### 154. Er du plaget av nedsatt hørsel?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

### BEKYMRINGER

### 155. Har du lite hår i forhold til jevnaldrende?

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nei</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Hvis «ja», tror du dette er en følge av din behandling?

<table>
<thead>
<tr>
<th>Ja</th>
<th>Nei</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

### 156. Hvis du mener du har lite hår i forhold til jevnaldrende; har du vært bekyrmet for dette? (Sett ring rundt det tallet som best beskriver din tilstand.)

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

I løpet av den siste uken:

Sett ring rundt det tallet som best beskriver din tilstand.

<table>
<thead>
<tr>
<th>Ikke i Litt</th>
<th>Endel</th>
<th>Svært mye tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

### 157. Har ditt egenbilde som mann vært nedsatt som følge av din sykdom eller behandling?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>Endel</th>
<th>Svært mye tatt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Ikke i det hele tatt</td>
<td>Litt</td>
<td>Endel</td>
<td>Svært mye</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>158. Har du vært plaget av bekymringer for ikke å kunne få barn?</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>159. Har du vært redd for tilbakefall av din sykdom?</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>160. Har du vært fornøyd med måten sykehus(ene) har foretatt undersøkelsene/kontrollene av deg?</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>161. Har du følt at de avgjørelser som er foretatt med henblikk på din behandling har vært riktig for deg?</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

**Mestring av plager/problemer**

Utsagnene nedenfor handler om hvordan du opplever og mester de plagene/problemere du har. Utsagnene er skrevet i jeg-form og du setter kun ett kryss i den ruta som passer best i forhold til hvordan du opplever deg selv.

<table>
<thead>
<tr>
<th>Helt enig</th>
<th>Nokså enig</th>
<th>Både enig og uenig</th>
<th>Nokså uenig</th>
<th>Svært uenig</th>
</tr>
</thead>
<tbody>
<tr>
<td>162. Jeg sier fra når jeg er sint eller trist.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
</tr>
<tr>
<td>163. Jeg snakker gjerne med noen utvalgte mennesker når det røyner på.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
</tr>
<tr>
<td>164. Å gjøre nye ting er ofte vanskelig for meg.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
</tr>
<tr>
<td>165. Jeg går aktivt inn for å finne en løsning på problemene mine.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
</tr>
<tr>
<td>166. Fysisk aktivitet er viktig for meg.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
</tr>
<tr>
<td>167. Jeg prøver å glemske plagene mine.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
</tr>
</tbody>
</table>

**Følelses**

Vennligst beskriv hvordan du har hatt det de siste syv dagene ved å sette en ring rundt det tallet som best beskriver din tilstand.

<table>
<thead>
<tr>
<th>Høy</th>
<th>Ganske</th>
<th>Middels</th>
<th>Noe</th>
<th>Litt</th>
<th>Aldri</th>
</tr>
</thead>
<tbody>
<tr>
<td>grad</td>
<td>mye</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164. Ling jeg har sett og hørt minnet meg plutselig om sykdommen.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
<td>□ 5</td>
</tr>
<tr>
<td>166. Tanker om sykdommen har trengt seg på også når jeg ikke har villet.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
<td>□ 5</td>
</tr>
<tr>
<td>167. Bilder fra sykdommen har plutselig dukket opp i tankene mine.</td>
<td>□ 1</td>
<td>□ 2</td>
<td>□ 3</td>
<td>□ 4</td>
<td>□ 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Høy</th>
<th>Ganske</th>
<th>Middels</th>
<th>Noe</th>
<th>Litt</th>
<th>Aldri</th>
</tr>
</thead>
<tbody>
<tr>
<td>grad</td>
<td>mye</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

169. Jeg tror det kan komme noe positivt ut av plagene/problemen mine. | □ 1 | □ 2 | □ 3 | □ 4 | □ 5 |
| 170. Jeg har godt tro på at plagene mine vil bli bedre. | □ 1 | □ 2 | □ 3 | □ 4 | □ 5 |
| 171. Jeg graver meg ned i arbeid for å holde plagene/problemen på avstand. | □ 1 | □ 2 | □ 3 | □ 4 | □ 5 |
| 172. Jeg føler langt på vei at jeg har gitt opp. | □ 1 | □ 2 | □ 3 | □ 4 | □ 5 |
| 173. Jeg trekker meg tilbake fra andre når jeg har det vanskelig. | □ 1 | □ 2 | □ 3 | □ 4 | □ 5 |
Tretthet


189. Har du problemer med at du føler deg sliten?
☐ Mindre 1 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig

190. Trenger du mye hvile?
☐ Mindre 1 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig

191. Føler du deg svært eller døssig?
☐ Mindre 1 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig

192. Har du problemer med å komme i gang med ting?
☐ Mindre 1 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig

193. Mangler du overskudd?
☐ Ikke i 1/2 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
det hele tatt 1/2 vanlig 1/2 vanlig 1/2 vanlig

194. Har du redusert styrke i musklene dine?
☐ Ikke i 1/2 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
det hele tatt 1/2 vanlig 1/2 vanlig 1/2 vanlig

195. Føler du deg svak?
☐ Mindre 1 ☐ Som 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig vanlig 1/2 vanlig 1/2 vanlig

196. Har du vansker med å konsentrere deg?
☐ Mindre 1 ☐ Som 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig vanlig 1/2 vanlig 1/2 vanlig

197. Forsnakker du deg i samtaler?
☐ Mindre 1 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig

198. Er det vanskelig å finne de rette ordene?
☐ Mindre 1 ☐ Ikke mer 2 ☐ Mer 3 ☐ Mye mer 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig

199. Hvorland er hukommelsen din?
☐ Bedre 1 ☐ Ikke verre 2 ☐ Verre 3 ☐ Mye verre 4
en vanlig 1/2 vanlig 1/2 vanlig 1/2 vanlig
### Personlighet


<table>
<thead>
<tr>
<th>Spørsmål</th>
<th>Ja</th>
<th>Nei</th>
</tr>
</thead>
<tbody>
<tr>
<td>202. Er du forholdsvis livlig?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>203. Ville du bli oppskaket av å se et barn eller et dyr lide?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204. Liker du å treffe nye mennesker?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205. Blir dine følelser lett såret?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206. Hender det ofte at du &quot;går trøtt&quot;?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207. Liker du å spille andre et puss som av og til kan såre dem?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vennligst legg det ferdig utfylte spørreskjemaet i vedlagte svarkonvolutt. Porto er allerede betalt av oss.

### Tusen takk for hjelpen!

**Regionsykehuset I Tromsø**
APPENDIX II

Questionnaire Survey II, 2007-2008
Etterundersøkelse av pasienter behandlet for testikkelkreft

Vi ber deg om å fylle ut dette spørreskjemaet så godt du kan ved å krysse av det svaret som passer. Svar på alle spørsmål, selv om det noen gang kan virke slik at vi spør om det samme i flere spørsmål. Alle svar behandles konfidensielt.

Dato for utfylling:  

Høyde:     cm  
Vekt:     kg

ARBEID OG UTDANNING

1. a) Hva er din nåværende arbeidssituasjon? (sett kun ett kryss X ved det svaret som passer)
   - Inntektsgivende arbeid heltid
   - Inntektsgivende arbeid deltid
   - Selvstendig næringsdrivende
   - Alderspensjonist
   - For tiden arbeidsledig/arbeidstrygd
   - Attføring
   - Utføretrygd
   - Langtidssykemeldt (>8 uker)
   - Elev, student
   - Hjemmeværende/husarbeid i hjemmet
   - Annet

   Hvis arbeidsledig, sykemeldt, eller pensjonist, er kreftsykdommen årsak for at du for tiden ikke er i arbeid?
   - Nei
   - Ja, delvis
   - Ja, hovedsakelig
   - Hvis nei, oppgi alternativ grunn:

2. Sett kryss ved det yrkesområdet som best beskriver arbeidet ditt. Dersom du for tiden ikke er yrkesaktiv, oppgi det yrkesområdet du sist har hatt. (sett kun ett kryss X)
   - Grunnkoleutdanning (10-årlig grunnskole -tidl. 9-årig, 7-årig folkeskole eller lignende)
   - Videregående utdanning (Allmennfag, yrkesskole eller annet)
   - Fagutdanning / yrkesutdanning / fagbrev / videregående yrkesfaglig utdanning
   - Universitets- /høgskoleutdanning med inntil 4 års varighet
   - Universitets- /høgskoleutdanning med mer enn 4 års varighet

Snu arket!
3. Har kreftsykdommen hatt innvirkning på dine muligheter til å få den utdanning som du ønsket eller planla før du fikk kreft?
   - Ja
   - Nei

4. a) Har du noen gang skiftet arbeidsplass?
   - Ja
   - Nei
   - Hvis Ja, antall ganger: [ ]

   b) Hvis Ja: Var kreften noen gang årsak til at du skiftet arbeidsplass?
      - Nei
      - Ja, delvis
      - Ja, i hovedsak

Hvis Ja: Kan du spesifisere hvorfor/hvordan kreften førte til at du skiftet arbeidsplass?

5. a) Har du noen gang skiftet yrke?
   - Ja
   - Nei
   - Hvis Ja, antall ganger: [ ]

   b) Var kreften årsak til at du skiftet yrke/ny yrkesutdannelse?
      - Nei
      - Ja, delvis
      - Ja, i hovedsak

Hvis Ja: Kan du spesifisere hvorfor/hvordan kreften førte til at du skiftet yrke?

6. Har kreftsykdommen virket inn på din mulighet for å delta i opplæring knyttet til yrkesfaglig utvikling som arbeidsplassen har arrangert?
   - Ikke aktuelt
   - Ikke i det hele tatt
   - I noen grad
   - I stor grad

7. Har kreftsykdommen hatt innvirkning på dine muligheter til å oppnå en forbedret situasjon på jobben?
   - Ikke aktuelt
   - Ikke i det hele tatt
   - I noen grad
   - I stor grad
8. Har kreftsykdommen noen gang ført til at du har blitt utsatt for noen av disse hendelsene?

<table>
<thead>
<tr>
<th>Hendelse</th>
<th>Ikke i det hele tatt</th>
<th>I noen grad</th>
<th>I stor grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ufrivillig overflytting til andre oppgaver</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trussel om tvangspermittering</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trussel om oppsigelse</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeidsledighet</td>
<td>□</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uføretrygd</td>
<td>□</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Mener du at din arbeidsevne er blitt nedsatt på grunn av kreftsykdommen?

☐ Ikke i det hele tatt
☐ Nokså lite
☐ I noen grad
☐ Ganske mye
☐ Svært mye


☐ 0   ☐ 1   ☐ 2   ☐ 3   ☐ 4   ☐ 5   ☐ 6   ☐ 7   ☐ 8   ☐ 9   ☐ 10

11. Tror du diagnosen og behandlingen av testikkelkreft har hatt negativ innflytelse på din nåværende arbeidssituasjon/utdannings situasjon?

☐ Ja   ☐ Nei

Hvis Ja, på hvilken måte?

HELSE OG DAGLIGLIV

12. Hvordan er helsen din nå?

☐ Dårlig   ☐ Ikke helt god   ☐ God   ☐ Svært god
13. Har du noen langvarig (minst 1 år) sykdom, skade eller lidelse av fysisk eller psykisk art som nedsetter din funksjon i ditt daglige liv?

☐ Ja  ☐ Nei

Hvis Ja, hvor mye vil du si at dine funksjoner er nedsatt?

<table>
<thead>
<tr>
<th></th>
<th>Litt</th>
<th>Middels</th>
<th>Mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Er bevegelseshemmet</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Har nedsatt syn</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Har nedsatt hørsel</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hemmet pga kroppsly sykdom</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hemmet pga psykisk sykdom</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

14. I hvilken grad har din fysiske helse eller eventuelle følesemessige problemer begrenset deg i din vanlige sosiale omgang med familie eller venner i løpet av de siste 4 uker?

☐ Ikke i det hele tatt  ☐ En del  ☐ Litt  ☐ Mye

**HELSETJENESTER**

15. Har du i løpet av de siste 12 måneder vært hos:

<table>
<thead>
<tr>
<th></th>
<th>Ja</th>
<th>Nei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastlege/allmenneleg</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Annen legespesialist utenfor sykehus</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Konsultasjon uten innleggelse</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>- ved psykiatrisk poliklinikk</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>- ved annen sykehus poliklinikk</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fysioterapeut</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Kiropraktor</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Homeopath, akupunktør, soneterapeut, håndspålegger, eller annen alternativ behandler</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

16. Har du vært innlagt på sykehus i løpet av de siste 12 måneder:

☐ Ja  ☐ Nei

Årsak og hvilket sykehus:
17. Har du i løpet av de siste 5 år vært hos psykolog/psykiater?
   □ Ja  □ Nei

18. Har noen av disse kontakt med helsevesenet hatt relasjon med din testikkelkreft sykdom?
   □ Ja  □ Nei  □ Ikke aktuelt

---

**RØYKING**

Her ønsker vi å kartlegge all din bruk av tobakk. Vi har derfor delt inn i et hovedspørsmål om daglig røyking, og et spørsmål om "røyking av og til".

19. a) Har du noen gang røykt daglig?
   □ Ja  □ Nei  **HVIS NEI - GÅ TIL SPØRSMÅL 20**

   b) Røyker du for tiden daglig?
      □ Ja  □ Nei

   c) Hvis du har røykt daglig tidligere, hvor lenge er det siden du sluttet?
      □□ Antall år

   d) Hvis du røyker daglig nå eller har røykt daglig tidligere: Hvor mange sigaretter røyker eller røykte du vanligvis daglig?
      □□ Antall sigaretter

   e) Hvor mange år til sammen har du røykt daglig?
      □□ Antall år

20. a) Har du noen gang røykt av og til?
    □ Ja  □ Nei  **HVIS NEI - GÅ TIL SPØRSMÅL 21**

    b) Røyker du for tiden av og til?
       □ Ja  □ Nei

    c) Hvis du røyker av og til eller har røykt av og til tidligere: Hvor mange sigaretter røyker eller røykte du vanligvis i løpet av en måned?
       □□ Antall sigaretter

    d) Hvor mange år til sammen har du røykt av og til?
       □□ Antall år

21. Røyker du pipe/sigar?
    □ Ja  □ Nei

    Hvis Ja: Pakker pipetobakk per måned:
    □□

    eller: Antall sigarer per måned:
    □□
AKTIVITET


<table>
<thead>
<tr>
<th>Timer per uke</th>
<th>ingen</th>
<th>under 1</th>
<th>1-2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lett aktivitet (ikke svett/andpusten):</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Hardere fysisk aktivitet (svett/andpusten):</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

SYKDOMMER OG PLAGER

I noen av de følgende spørsmål ber vi deg oppgi alderen din da eventuell sykdom inntrådte. Hvis du ikke husker nøyaktig hvor gammel du var, skriver du et tall som er nærmest det du antar er korrekt. Kryss av for det svaret som passer, og sett kun ett kryss.

DIABETES

23. Har du fått påvist diabetes (sukkersyke)?
   ☐ Ja  ☐ Nei
   a) Hvis Ja: Hvor gammel var du da din diabetes ble oppdaget? ☐ ☐ år
   b) Hvis Ja: Bruker du insulin (sprøyter, penn) mot din diabetes nå? ☐ Ja  ☐ Nei
   c) Hvis Ja: Bruker du tabletter mot din diabetes? ☐ Ja  ☐ Nei

BLODTRYKK

24. Har du brukt eller bruker du blodtryksmedisin?
   ☐ Ja, nå  ☐ Ja, tidligere  ☐ Nei, aldri
   Hvis Ja: Hvor gammel var du første gang du begynte med slik medisin? ☐ ☐ år

HJERTE/KAR-SYKDOMMER

25. Har du hatt hjerteinfarkt?
   ☐ Ja  ☐ Nei
   a) Hvis Ja: Hvor gammel var du første gang du fikk hjerteinfarkt? ☐ ☐ år
   b) Hvis Ja: Hvor mange ganger har du hatt hjerteinfarkt? ☐ Antall ganger
26. Har du eller har du hatt angina pectoris (hjertekrampe)?
   □ Ja   □ Nei
   a) Hvis Ja: Hvor gammel var du da du merket slike hjertekramper første gang?   ___ år
   b) Hvis Ja: Hvor mange ganger per uke har du merket slike smerter i løpet av den siste måneden?   ___ Antall ganger
   c) Ved anstrengelse:   ___ ganger/uke
   d) Når du er i ro om dagen:   ___ ganger/uke
   e) Om natten:   ___ ganger/uke

27. a) Har du fått behandling for angina pectoris med tabletter?
   □ Ja   □ Nei
   Navn på tabletter og hvilken lege / evt. sykehus startet behandlingen?

   b) Har du blitt hjerteoperert med nye blodårer til hjertet (bypass-ACB)?
   □ Ja   □ Nei
   Hvilket sykehus?

   c) Har du blitt blokket/fått innsatt stent i blodårene på hjertet?
   □ Ja   □ Nei
   Hvilket sykehus?

28. Har legen sagt at du har hjerteflimmer (atrieflimmer)?
   □ Ja   □ Nei

29. Har legen sagt at du har hjertesvikt (svakt hjerte, vann på lungene, hovne ben)?
   □ Ja   □ Nei

30. Har du noen gang fått påvist forsnevring på hovedpulsåren i hals eller mage, eller fått påvist trange blodårer i bena?
   □ Ja   □ Nei
   Hvis Ja, spesifiser hvor forsnevringen satt
   Hvilket årstall ble dette påvist?   ___ ___ ___

31. Har du noen gang hatt blodpropp i bein eller lunge?
   □ Ja   □ Nei
   Hvis Ja, vennligst spesifiser hvor
   Hvor gammel var du første gang?   ___ år
**HJERNESLAG / HJERNEBLØDNING**

32. a) Har du hatt TIA ("drypp") eller symptomer på hjerneslag som gikk fullstendig tilbake innen 24 timer?

- [ ] Ja  [ ] Nei
  
  *Hvis Ja*: Hvor gammel var du da du hadde det første gang? [ ] år
  
  *Hvis Ja*: Hvor mange ganger har du hatt det? [ ] Antall ganger

b) Har du noen gang hatt hjerneslag (blodpropp eller blødning i hjernen)?

- [ ] Ja  [ ] Nei
  
  *Hvis Ja*: Hvor gammel var du da du hadde hjerneslag første gang? [ ] år
  
  *Hvis Ja*: Hvor mange ganger har du hatt hjerneslag? [ ] Antall ganger

**NYRESYKDOMMER**

33. Har det noen gang blitt påvist nedsatt nyrefunksjon hos deg?

- [ ] Ja  [ ] Nei
  
  *Hvis Ja*: Hvor gammel var du da dette ble påvist første gang? [ ] år
  
  *Hvis Ja*, spesifiser på hvilken måte den nedsatte nyrefunksjonen ble oppdaget (egghvite eller blod i urinen, blodprøve)

**ANDRE SYKDOMMER**

34. Har du, eller har du hatt:

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Ja</th>
<th>Nei</th>
<th>Hvis JA, alder første gang</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kronisk bronkit, emfysem eller KOLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slitasjegikt (artrose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Løddgikt (reumatoid artritt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bechterews sykdom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ny kreftsykdom ETTER testikkelkreften</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(dvs evnt. ny kreft etter 1994)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarkoidose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beinskjørhet (osteoartritis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilepsi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psoriasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eksem</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TANNHELSE

35. Når var du sist hos tannlegen?

- □ 6 måneder siden eller mindre
- □ 7-12 måneder siden
- □ 13-24 måneder siden
- □ 25-35 måneder siden
- □ 3-4 år siden
- □ 5-6 år siden
- □ Mer enn 6 år siden
- □ Aldri

36. Har du vært hos tannlegen regelmessig (minst 1 gang i året) de siste 5 år?

- □ Ja  □ Nei

37. Hvor mye har du til sammen betalt hos tannlegen i løpet av de siste 12 månedene?

- □ Ingenting (har ikke vært hos tannlegen)
- □ Ingenting (har fått kostnadene dekket)
- □ Mindre enn 500 kroner
- □ 501 - 1000 kroner
- □ 1001 - 3000 kroner
- □ 3001 - 5000 kroner
- □ 5001 - 15000 kroner
- □ Mer enn 15000 kroner

38. Har du fått refundert noen av dine tannlegeutgifter pga munntørrhet etter kreftbehandlingen?

- □ Ja  □ Nei

39. Hva har du fått utført hos tannlegen etter kreftbehandlingen? (sett eventuelt flere kryss X)

- □ Undersøkt tenner (med ellen uten røntgenbilder)
- □ Renset tenner/fjernet tannsten
- □ Plombert/fylt hull i tenner
- □ Satt inn krone eller bro i tennene
- □ Rotfylt tann
- □ Trukket tann
- □ Satt inn protese
- □ Tannregulering
- □ Fått implantat
- □ Fått råd om renhold av tenner
- □ Tannkjøttbehandling

Snu arket!
40. Har du hatt noen av de følgende problemer med munnhulen ETTER kreftbehandlingen?

- Hull i tennene - nedslitte tenner
- Sykdommer i tannkjøtt og slimhinner
- Munntørhet

41. Hvordan vurderer du din munn- og tannhelse?

<table>
<thead>
<tr>
<th>Verk og god eller dårlig</th>
<th>Meget god</th>
<th>Meget dårlig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

42. Er du plaget av smerter, stikninger eller nummenhet i hender/fingre?

<table>
<thead>
<tr>
<th>Ikke i det hele tatt</th>
<th>Litt</th>
<th>En del</th>
<th>Svært mye</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

43. Er du plaget av smerter, stikninger eller nummenhet i føtter/tær?

| ☐ | ☐ | ☐ | ☐ |

44. Er du plaget av hvite/kalde hender/fingre når det er kaldt?

| ☐ | ☐ | ☐ | ☐ |

45. Er du plaget av hvite/kalde føtter/tær når det er kaldt?

| ☐ | ☐ | ☐ | ☐ |

46. Er du plaget av øresus?

| ☐ | ☐ | ☐ | ☐ |

47. Er du plaget av nedsatt hørsel?

| ☐ | ☐ | ☐ | ☐ |

48. Er du plaget med smerter i muskler og ledd?

| ☐ | ☐ | ☐ | ☐ |

49. Har du i løpet av det siste året vært plaget med smerter og/eller stivhet i muskler og ledd som har vart i minst 3 måneder sammenhengende?

| ☐ | ☐ | ☐ | ☐ |

50. Er du plaget av kvalme?

| ☐ | ☐ | ☐ | ☐ |

51. Er du plaget av brystbrann/sure oppstøt?

| ☐ | ☐ | ☐ | ☐ |

52. Er du plaget av diaré/løs mage?

| ☐ | ☐ | ☐ | ☐ |
**MEDISINBRUK**

53. Har du i deler av det siste året brukt noen medisiner/behandlinger daglig eller nesten daglig?

☐ Ja  ☐ Nei  Hvis Ja, angi hvor mange måneder i løpet av det siste året.

**Antall måneder i løpet av det siste året**

(Sett 0 hvis du ikke har brukt medisinene)

- Smertestillende
- Sovemedisin
- Beroligende medisin
- Medisin mot depresjon
- Allergimedisin
- Astnamedisin
- Hjertemedisin
- Kolesterolnedsettende medisin
- Mannlige kjønnshormoner
- Annen medisin, spesifiser antall mnd  
  [Navn: __________________________]
- Behandling for impotens, spesifiser antall mnd  
  [Navn: __________________________]

**SOSIAL OG ØKONOMISK SITUASJON**

54. Hva er din nåværende sivilstatus? (sett et kryss X ved det som passer)

☐ Ugift  ☐ Gift/samboende  ☐ Enkemann  ☐ Separert/skilt

55. Antall barn under 18 år i din husstand:  

Hvorav under 7 år:

56. Hva er for tiden husstandens forventede årsinntekt før skatt (inntekt fra selvstendig og næringsvirksomhet, lønn og pensjon)? (forventet beløp for 2007)

☐ Ingen inntekt  ☐ 500.000-599.900
☐ 100-99.900  ☐ 600.000-699.900
☐ 100.000-199.900  ☐ 700.000-799.900
☐ 200.000-299.900  ☐ 800.000-899.900
☐ 300.000-399.900  ☐ 900.000-999.900
☐ 400.000-499.900  ☐ 1 000.000 eller mer

Snu arket!
Dette spørreskjemaet er utformet for å hjelpe oss til å forstå hvordan du føler deg. Les hvert utsagn og sett kryss x i ruten som best beskriver dine følelser den siste uka. Fundér ikke for lenge på ditt svar; din umiddelbare reaksjon på hvert spørsmål er sannsynligvis riktigere enn et svar som du har tenkt lenge på.

1. Jeg er nervøs eller anspent
   - For det meste
   - Ofte
   - Noen ganger
   - Ikke i det hele tatt

2. Jeg gleder meg fremdeles over ting jeg pleide å glede meg over
   - Avgjort like mye
   - Ikke fullt så mye
   - Bare lite grann
   - Ikke i det hele tatt

3. Jeg har en urofølelse som om noe forferdelig kommer til å skje
   - Helt sikkert og svært ille
   - Ja, men ikke så veldig ille
   - Litt ille, men det bekymrer meg ikke så mye
   - Ikke i det hele tatt

4. Jeg kan le og se det morsomme i situasjoner
   - Like mye som jeg alltid har gjort
   - Ikke like mye nå som før
   - Avgjort ikke så mye nå som før
   - Ikke i det hele tatt

5. Jeg har hodet fullt av bekymringer
   - Veldig ofte
   - Ganske ofte
   - Av og til
   - En gang i blant

6. Jeg er i godt humør
   - Aldri
   - Noen ganger
   - Ganske ofte
   - For det meste

7. Jeg kan sitte i fred og ro og kjenne meg avslappet
   - Ja, helt klart
   - Vanligvis
   - Ikke så ofte
   - Ikke i det hele tatt

8. Jeg føler meg som om alt går langsommere
   - Nesten hele tiden
   - Svært ofte
   - Fra tid til annen
   - Ikke i det hele tatt

9. Jeg føler meg urolig liksom jeg har sommerfugler i magen
   - Ikke i det hele tatt
   - Fra tid til annen
   - Ganske ofte
   - Svært ofte

10. Jeg har sluttet å bry meg om hvordan jeg ser ut
    - Ja, helt klart
    - Jeg bryr meg ikke så mye som jeg burde
    - Det kan nok hende jeg ikke bryr meg nok
    - Jeg bryr meg om utseendet like mye som jeg alltid har gjort

11. Jeg føler meg rastløs som om jeg stadig må være i aktivitet
    - Uten tvil svært mye
    - Ganske mye
    - Ikke så veldig mye
    - Ikke i det hele tatt

12. Jeg ser med glede frem til hendelser og ting
    - Like mye som jeg alltid har gjort
    - Heller mindre enn jeg pleier
    - Avgjort mindre enn jeg pleier
    - Nesten ikke i det hele tatt

13. Jeg kan plutselig få en følelse av panikk
    - Uten tvil svært ofte
    - Svært ofte
    - Ikke så veldig ofte
    - Ikke i det hele tatt

14. Jeg kan glede meg over en god bok eller et radio eller et TV-program
    - Ofte
    - Fra tid til annen
    - Ikke så ofte
    - Svært sjelden

(Ett kryss på hver linje)

<table>
<thead>
<tr>
<th>Spørsmål</th>
<th>Mindre enn vanlig</th>
<th>Ikke mer enn vanlig</th>
<th>Mer enn vanlig</th>
<th>Mye mer enn vanlig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Har du problemer med at du føler deg sliten?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Trenger du mer hvile?</td>
<td>Nei, mindre enn vanlig</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>3. Føler du deg søvnig eller døsig?</td>
<td>Mindre enn vanlig</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>4. Har du problemer med å komme igang med ting?</td>
<td>Mindre enn vanlig</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>5. Mangler du overskudd?</td>
<td>Ikke i det hele tatt</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>6. Har du redusert styrke i musklene dine?</td>
<td>Ikke i det hele tatt</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>7. Føler du deg svak?</td>
<td>Mindre enn vanlig</td>
<td>Som vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>8. Har du vansker med å koncentrere deg?</td>
<td>Mindre enn vanlig</td>
<td>Som vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>9. Forsnakker du deg i samtaler?</td>
<td>Mindre enn vanlig</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>10. Er det vanskeligere å finne det rette ordet?</td>
<td>Mindre enn vanlig</td>
<td>Ikke mer enn vanlig</td>
<td>Mer enn vanlig</td>
<td>Mye mer enn vanlig</td>
</tr>
<tr>
<td>11. Hvordan er hukommelsen din?</td>
<td>Bedre enn vanlig</td>
<td>Ikke verre enn vanlig</td>
<td>Verre enn vanlig</td>
<td>Mye verre enn vanlig</td>
</tr>
</tbody>
</table>

12. Hvis du føler deg sliten for tiden, omtrent hvor lenge har det vart?
- Mindre enn en uke
- Mindre enn tre måneder
- Mellom tre og seks måneder
- Seks måneder eller mer

13. Hvis du føler deg sliten for tiden, omtrent hvor mye av tiden kjenner du det?
- 25% av tiden
- 50% av tiden
- 75% av tiden
- Hele tiden

**TAKK FOR HJELPEN!**
PAPER II
PAPER III