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Abstract 

Antimicrobial peptides (AMPs) are important effector molecules in innate immunity. Here 

we briefly summarize characteristic traits of AMPs and their mechanisms of antimicrobial 

activity. Echinoderms live in a microbe-rich marine environment and are known to express a 

wide range of AMPs. We address two novel AMP families from coelomocytes of sea urchins: 

cysteine-rich AMPs (strongylocins) and heterodimeric AMPs (centrocins). These peptide 

families have conserved preprosequences, are present in both adults and pluteus stage larvae, 

have potent antimicrobial properties, and therefore appear to be important innate immune 

effectors. Strongylocins have a unique cysteine pattern compared to other cysteine-rich 

peptides, which suggests a novel AMP folding pattern. Centrocins and SdStrongylocin 2 

contain brominated tryptophan residues in their native form. This review also includes AMPs 

isolated from other echinoderms, such as holothuroidins, fragments of beta-thymosin, and 

fragments of lectin (CEL-III). Echinoderm AMPs are crucial molecules for the understanding 

of echinoderm immunity, and their potent antimicrobial activity makes them potential 

precursors of novel drug leads. 
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Antimicrobial peptides (AMPs) are widespread molecules found both in prokaryotes and 

eukaryotes and provide important protection to hosts against pathogens and/or environmental 

‘invaders’. To date, approximately 2,400 naturally isolated or synthesized AMPs have been 

listed in the Antimicrobial Peptide Database (APD database, 

http://aps.unmc.edu/AP/main.php). The majority of these AMPs are from amphibians, insects, 

mammals, and plants (Wang et al., 2009). There are comparatively few research activities 

throwing light on AMPs in echinoderms. Here, we present an overview of what is currently 

known about echinoderm AMPs, with a special focus on recently identified AMPs from sea 

urchins. Characteristics such as antimicrobial activity, peptide structure, expression profile, and 

biological function in echinoderms are discussed. 

1. Echinoderm host defense 

 

Echinoderms are deuterostome invertebrates, with a phylogenetic position closely related 

to chordates and hemichordates (Kondo and Akasaka, 2012). They are categorized into five 

classes: Crinoidea (sea lilies and feather stars), Ophiuroidea (brittle stars), Asteroidea (sea 

stars), Echinoidea (sea urchins, sand dollars, and sea biscuits), and Holothuroidea (sea 

cucumbers). These animals have a unique morphology that includes a water vascular system 

and a pentamerously symmetrical body shape in the adults. All living echinoderms are marine 

species and occupy habitats from the intertidal zone to the deep sea. These environments are 

rich in bacteria, fungi, viruses, and parasites, and many are potentially pathogenic to 

echinoderms.  Echinoderms have evolved in complex means to overcome these challenges as 

was first illustrated from the annotation of the purple sea urchin genome (Rast et al., 2006).   

Echinoderms have an innate immune system, but as all other invertebrates they lack a 

vertebrate-type adaptive immune system (Smith and Davidson, 1992). However, their ability 

to reject non-self tissues has been documented for several echinoderm species (reviewed by 

Smith et al. 2010 and Smith et al. 2006).  Many of their immune activities occur in the 

http://aps.unmc.edu/AP/main.php
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coelomic fluid, which is a complex fluid containing minerals, proteins, and suspended cells 

called coelomocytes. These coelomocytes are critical immune mediators and are involved in 

the response against pathogens, injuries, and foreign substances (Smith et al., 2010; Smith et 

al., 2006). In general there are four morphologically different types of coelomocytes in 

echinoderms: phagocytes, vibratile cells, colorless and red spherule cells. However, 

Asteroidea and Ophiuroidea lack red spherule cells, and Crinoidea lack vibratile cells 

(reviewed by Ramirez-Gomez and Garcia-Arraras, 2010). Phagocytes constitute the most 

abundant coelomocyte type in the coelomic fluid (reviewed by Smith et al., 2010). Based on 

morphology, phagocytes can be categorized into three subtype populations. One subset 

consists of large discoidal phagocytes that have radially oriented actin bundles distributed 

throughout the cortex from the perinuclear region to the periphery (Henson et al., 2003; 

Henson et al., 1999). Another subset consists of large polygonal phagocytes that have actin 

bundles that are oriented across the cell creating a polygon cell shape (Henson et al., 1999). 

The third subset are smaller cells called small phagocytes (Gross et al., 2000) that are always 

present in filopodial form (Brockton et al., 2008). It is known that the sea urchins, 

Strongylocentrotus droebachiensis and S. purpuratus, are able to clear injected bacteria 

quickly from their coelomic fluid (Plytycz and Seljelid, 1993; Yui and Bayne, 1983). In 

addition, the different types of coelomocytes differ in their activity against microbial 

intruders. Phagocytic amoebocytes (herein referred to as phagocytes) and red spherule cells 

from Paracentrotus lividus exert a higher antibacterial activity against Gram-negative marine 

bacteria than the other populations of coelomocytes (Gerardi et al., 1990). When erythrocytes 

are opsonized by molecules in the coelomic fluid, this enhances the capacity of phagocytes 

from S. nudus to take up the erythrocytes (Ito et al., 1992). Several humoral factors are 

involved in defense processes such as clotting, opsonization, encapsulation, cell lysis, and 

wound healing (Gross et al., 1999). For example, the coelomic fluid from four sea urchin 
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species, Anthocidaris crassispina, Pseudocentrotus depressus, Hemicentrotus pulcherrimus, 

and Holothuria polii, has hemagglutinating activity against mammalian erythrocytes 

(Canicattì and Parrinello, 1985; Ryoyama, 1974). An agglutinin from the coelomic fluid of 

the sea urchin P. lividus not only agglutinates animal erythrocytes but also promotes adhesion 

of the autologous coelomocytes (Canicatti et al., 1992). Echinoderm lectins, which are 

carbohydrate binding proteins, function to bind erythrocytes (Matsui et al., 1994), agglutinate 

bacteria (Kamiya et al., 1992), and assist in cell adhesion (Ozeki et al., 1991). In addition to 

AMPs, the innate immune system of echinoderms also has a number of antimicrobial 

components such as lysozyme, which play an important role in the echinoderm defense 

system. Generally, lysozymes show antimicrobial functions against Gram-positive bacteria 

and have been detected in asteroids (Bachali et al., 2004; Jollès and Jollès, 1975), echinoids 

(Shimizu et al., 1999), and holothuroids (Cong et al., 2009). A larval lysate of P. lividus has 

lysozyme-like and antibacterial activity against marine bacteria (Stabili et al., 1994). It is 

possible that lysozyme, AMPs and other antimicrobial factors act synergistically to provide an 

effective defense against microbial infections.  

The first echinoderm genome to be completely sequenced was the genome of S. purpuratus 

(Sodergren et al., 2006).  The sequence revealed a complex immune gene repertoire, indicating 

that sea urchins have an astonishingly high diversity of immune molecules (Hibino et al., 2006; 

Rast et al., 2006). Analysis of the S. purpuratus genome has uncovered an extreme expansion 

of several immune recognition receptor families. The genome sequence revealed 253 Toll-like 

receptor (TLR) genes (Buckley and Rast, 2012), more than 200 NACHT domain-LRR (NLR) 

genes and 218 scavenger receptor genes (Rast et al., 2006). Another large putative immune 

response gene family encodes the Sp185/333 protein family, which was initially identified by 

analyzing transcripts from LPS challenged sea urchins (Nair et al., 2005; Terwilliger et al., 

2006). Of 171 genes from the Sp185/333 family that were sequenced, there were 121 unique 
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gene sequences, and 689 cDNA sequences (Terwilliger et al., 2006; 2007) resulted in a total of 

51 different element patterns (Buckley and Smith, 2007); reviewed by Smith (2012). 

Furthermore, the S. purpuratus genome contains homologues of the vertebrate complement 

protein C3 and factor B, called SpC3 and SpBf, respectively (reviewed by Smith et al., 2001). 

They were the first complement components to be identified in an invertebrate. The expression 

of the gene Sp064 that encodes SpC3 is upregulated after LPS challenge (Clow et al., 2000) 

and shows typical C3 function by binding to both methylamine and yeast and functioning as an 

opsonin (Clow et al., 2004). In addition, two transcripts from S. purpuratus encode putative 

complement proteins with domains that are also present in C6 and C7 (Multerer and Smith, 

2004). Their deduced proteins might participate in the terminal complement pathway or act as 

complement regulatory proteins in sea urchins.  

Although the recent acquisition of genetic information of echinoderms, such as the S. 

purpuratus genome sequence, allows us a glance at the complexity of the echinoderm immune 

system, we are far from understanding the immune system of the echinoderms. This is specially 

true for immune effectors such as antimicrobial compounds, which are understudied and very 

poorly understood. Considering the intriguing number and diversity of species in the 

Echinoderm phylum, their microbe-rich habitat, and mostly untapped genetic information, it is 

not surprising that echinoderms are targeted as a source for discovering novel antimicrobial 

peptides. 

2. AMPs 

 

While the amino acid composition which defines the structure of AMPs is diverse, some 

basic features seem to be common. AMPs are relatively short amino acid sequences, usually 

less than 100 amino acids (Ganz, 2003; Maroti et al., 2011), and according to the APD database, 

the average length of all registered peptides is around 32 residues with an average net positive 

charge of 3.18 (Wang et al., 2009).  AMPs commonly contain many positively charged residues 
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such as arginine and lysine, which result in the net positive charge (Hancock and Sahl, 2006; 

Zasloff, 2002). Most antimicrobial peptides fold into amphipathic structures, which reflect the 

relative abundance and polarization of hydrophobic and hydrophilic domains in their structural 

conformation. These fundamental features of AMPs also determine their antimicrobial 

properties such that the hydrophobic regions enable water-soluble AMPs to interact with the 

hydrophobic lipid bilayer of bacterial cell membranes (Brogden, 2005; Matsuzaki, 1999), 

which are known to be predominantly composed of phosphatidylglycerol, cardiolipin, or 

phosphatidylserine, resulting in a negative net charge on their outer leaflet (Yeaman and Yount, 

2003). Studies on both artificial model membranes and bacterial membranes have shown that 

AMP-membrane interaction is initiated by electrostatic attraction (Scott et al., 1999; Silvestro 

et al., 1997; Zhao et al., 2001), followed by attachment (Heller et al., 1999; Huang, 2000; Wu 

et al., 1995), insertion (Lee et al., 2004; Yang et al., 2001), which leads to the loss of membrane 

integrity (Lee et al., 2004) and ion leakage through transmembrane pores or detergent-like 

solubilization of the cell membrane. Several models have been proposed to describe the 

mechanisms of action involved in AMP-dependent membrane damage that occurs when the 

AMP concentration reaches a certain threshold of a peptide/membrane lipid ratio.  The AMPs 

form peptide helices that insert into the membrane either as a toroidal pore, a barrel stave, or a 

carpet model. The ‘toroidal pore’ model suggests that the lipid layer bends continuously and 

associates with the hydrophobic region of peptide forming the pore (Matsuzaki et al., 1996; 

Matsuzaki et al., 1998). According to the ‘barrel-stave model’, peptide helices insert into the 

membrane as parallel staves and form barrel-like pores (Cantor, 2002; He et al., 1995; Lee et 

al., 2004; Yang et al., 2001). In the ‘carpet model’, peptides show ‘detergent-like’ activity and 

disrupt the bilayer by forming micelles (Bolintineanu and Kaznessis, 2011; Ladokhin and White, 

2001; Shai, 1999). In addition, the pores formed by AMPs in supported lipid bilayers can 

expand in size from the nano to micrometer scale resulting in a point of complete membrane 



 8 

disintegration (Rakowska et al., 2013). Some AMPs are able to translocate across the membrane 

and interact with intracellular targets. The mammalian proline-rich AMPs PR-39 and 

indolicidin inhibit protein and/or DNA synthesis in Escherichia coli (Boman et al., 1993; 

Subbalakshmi and Sitaram, 1998). In addition, buforin II and tachyplesin can bind nucleic acids 

(Park et al., 1998; Yonezawa et al., 1992); histatins reduce enzyme activity (Kavanagh and 

Dowd, 2004); and mersacidin inhibits cell wall synthesis (Brotz et al., 1998). Furthermore, 

AMPs are typically active against microbes in a dose-dependent manner, whether they act on 

the membrane or intracellular targets (Jang et al., 2010; Mochon and Liu, 2008; Muñoz et al., 

2012; Romani et al., 2013; Vasudevan et al., 2008). 

As a group of crucial immune-related molecules in multicellular organisms, it is not 

surprising that some AMPs have multiple roles, which not only have a direct antimicrobial 

function but also act indirectly as modulators of innate immunity, such as inducing chemokine 

production and influencing the processes of apoptosis, angiogenesis, and wound healing 

(Guilhelmelli et al., 2013; Hancock and Sahl, 2006). For example, magainin and gomesin 

induce apoptosis by increasing the activity of caspase-3, which is a frequently activated death 

protease (Cruz-Chamorro et al., 2006; Paredes-Gamero et al., 2012). PR-39 is involved in the 

regulation of angiogenesis (Li et al., 2000), promotion of wound repair (Gallo et al., 1994; Shi 

et al., 1996), and modulation of cytokine production (Veldhuizen et al., 2014). Therefore, such 

moonlighting functions should always be considered when AMPs are discovered or used as 

drug leads.  

AMPs play an important role in host defense and might therefore serve as models for 

pharmaceutical drug leads. The pharmaceutical industry has shown a growing interest in AMPs, 

due to their attractive properties, such as high target specificity, high potency, and minimal 

toxicity/side-effects to the patient (Góngora-Benítez et al., 2014; Northfield et al., 2014). 

Examples of AMPs that have entered clinical trials are the lactoferricin derivative LTX-109 
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and the indolicidin variant CP-226 called omiganan (Hancock and Sahl, 2006). Historically, 

AMPs have mainly been isolated from mammals, insects and plants. In recent years, however, 

the focus of bioprospecting activities has been shifting towards marine resources. Echinoderms, 

which have approximately 7,000 extant species and contribute significantly to marine 

biodiversity, are therefore expected to be a valuable source of bioactive and therapeutic peptides.  

What we currently know about some of the AMPs in echinoderms and their activities is the 

focus of the remainder of this review. 

3. AMPs in Echinoderms 

 

The first completely sequenced genes encoding AMPs in echinoderms were the 

strongylocins, which are expressed in the coelomocytes of the green sea urchin, S. 

droebachiensis (Li et al., 2008). This family of peptides includes two native members, named 

SdStrongylocins 1 and 2, and each has putative isoforms (SdStrongylocins1b and 2b). Native 

SdStrongylocin 1 is a peptide of 48 amino acids of 5.6 kDa with an isoelectric point (pI) of 

9.34, while native SdStrongylocin 2 has 51 amino acids, is 5.8 kDa with a pI of 9.65. The 

SdStrongylocins display potent activity against both Gram-positive and Gram-negative 

bacteria at minimal inhibitory concentrations (MIC) of 1.3 – 2.5 μM. Listonella anguillarum, 

a marine fish pathogen, is especially susceptible to SdStrongylocin 2. The peptides are 

cysteine rich, with six cysteines distributed throughout the sequence (Fig. 1A). Cysteine-rich 

AMPs have been discovered in many species from both the animal and plant kingdoms. The 

number of cysteines and their location pattern in the sequence determines the formation of 

disulfide bridges and the conformational structure of the peptides, which influences the 

antimicrobial activity of the AMPs (Selsted and Ouellette, 2005). The human native 

neutrophil α-defensin, which has six cysteines, is active against viral or bacterial targets but 

loses this activity when linearized (Daher et al., 1986; Mandal and Nagaraj, 2002). A 

cysteine-rich AMP from a legume that is correctly folded with regard to the disulfide bonds is 
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not only dramatically more active against bacteria but also more stable than peptides that are 

alternatively folded with incorrect disulfide bonds (Haag et al., 2012). Strongylocins have a 

unique cysteine arrangement pattern compared to cysteine location pattern of other cysteine 

rich AMPs (Table 1). The cysteines form three disulfide bonds, which may influence the 

antimicrobial activity of the peptide and protect the molecule from proteolytic degradation 

during biosynthesis in the coelomocyte and subsequent function upon secretion in the 

presence of microbes (Li et al., 2008; Selsted and Ouellette, 2005). Although the disulfide 

bonds in the stronglocins are important for the peptide activity, the exact orientation of the 

disulfide bonds that function in the native peptides is, however, currently unknown. 

Homologous peptides of SdStrongylocin are also expressed in the purple sea urchin, S. 

purpuratus, and named SpStrongylocins 1 and 2 (Li et al., 2010a). Recombinant 

SpStrongylocins (rSpStrongylocins) are active against both Gram-positive and Gram-negative 

bacteria; however, membrane integrity studies showed that rSpStrongylocins 1 and 2 do not 

enhance the permeability of the bacterial membrane (Li et al., 2010a).  This suggests that 

SpStrongylocins may have intracellular targets or affect microbial killing in other ways. 

Based on the identical cysteine location pattern and high sequence similarity among the 

SdStrongylocins and SpStrongylocins, especially between SdStrongylocin 1 and 

SpStrongylocin 1, it is likely that the strongylocins employ a similar mode of antimicrobial 

action.  

Another set of AMPs identified from the coelomocytes of S. droebachiensis are centrocins 

1 and 2 (Li et al., 2010b). The native forms of two similar peptides isolated from S. 

droebachiensis were named Centrocin 1 (4.5 kDa) and Centrocin 2 (4.4 kDa), respectively. 

Subsequent cDNA analyses revealed an isoform, which is closely related to Centrocin 1, 

therefore named Centrocin 1b. Centrocins 1 and 2 are cationic peptides with pIs of 10.06 and 

9.69, respectively, and are active against both Gram-positive and Gram-negative bacteria at a 
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MIC range of 1.3 – 2.5 μM. The centrocins are heterodimeric peptides which consist of a 

heavy chain (30 aa) and a light chain (12 aa) that are linked by an internal disulfide bond (Fig. 

1B and 1C). The heavy chain of the centrocins contributes to the antimicrobial activity of the 

heterodimer, while the light chain does not have any detectible activity or influence the 

activity of the heavy chain against microbes (Li et al., 2010b). Although the light chain of 

centrocins alone is inactive against microbes, the formation of a heterodimeric structure in the 

native centrocins infers that the light chain may aid in stabilization of the molecules and make 

the peptides more resistant to attack by proteases (Li et al., 2010b). Other dimeric AMPs that 

have been identified from other animals include distinctin from tree frog, Phyllomedusa 

distincta  (Batista et al., 2001), cryptdin-related sequence (CRS) peptides from mouse, Mus 

musculus (Hornef et al., 2004), cathelicidin CAP11 from neutrophils of guinea pig, Cavia 

porcellus (Yomogida et al., 1996), PMAP36 from pig, Sus scrofa (Scocchi et al., 2005), 

dicynthaurin and halocidin from the tunicate, Halocynthia aurantium (Jang et al., 2002; Lee et 

al., 2001). The dimeric structure of these types of AMPs influences antimicrobial activity, 

solubility, and protease resistance (Dempsey et al., 2003; Dewan et al., 2009; Hara et al., 

2001; Lee et al., 2008; Liu et al., 2010; Shin et al., 2010).  

Analysis of the deduced sequences of strongylocins and centrocins (Fig. 1) shows that the 

putative precursor molecules have preprosequences and that the centrocins have an interchain 

region between the heavy chain and the light chain (Li et al., 2010a; Li et al., 2010b; Li et al., 

2008). AMPs are often derived from larger precursor molecules (Zasloff, 2002), and hence, 

the AMPs become biologically active mature molecules after one or more post-translational 

modification steps that include the removal of a presequence (also called a signal sequence) 

and/or prosequences, hydroxylation, halogenation (usually bromination), and glycosylation 

(Wang, 2012). Presequences, functioning as signal sequences, are likely important for 

targeting the ribosome to the rough endoplasmic reticulum (ER) and for guiding protein 
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translocation across the ER membrane (Coleman et al., 1985; Reddy et al., 2004). The 

presequences are highly conserved in SdStrongylocin 1, SpStrongylocins 1 and 2, but have a 

different sequence in SdStrongylocin 2; however, all are hydrophobic (Fig. 1). In addition, the 

centrocins (including the putative form from S. purpuratus) share a conserved presequence 

(Li et al., 2010b), which differs from the strongylocin presequences. Three sorts of 

presequences in sea urchin AMPs are conserved within each family, but divergent among 

them. This indicates that these presequences might have different evolutionary origins and 

exert various pathways for intracellular translocation. Prosequences of strongylocins and 

centrocins contain several negatively charged amino acids, which make these AMP precursors 

less cationic. Many prosequences are known to inhibit the activity of the precursor until they 

are cleaved (Neurath, 1989); however, prosequences may also act as intramolecular 

chaperones, which aid in proper folding of the mature AMP.  Prosequences with a net 

negative charge, such as in strongylocin and centrocin prosequences, likely silence the 

activity of the AMPs in the precursor form and prior to activation in the coelomocyte. 

Therefore, it is not surprising that preprosequences are crucial for translocation and 

inactivation of precursor molecules until AMPs acquire mature functions by post-translational 

modifications.    

Brominated natural products are broadly distributed in marine organisms, but few are 

peptides. The aromatic amino acid tryptophan contains a heterocyclic indole group with 5 

possible carbon positions (carbon number 2, 4, 5, 6, and 7) where a hydrogen can be 

substituted with a bromine atom. Most natural brominated peptides isolated contain either 2-, 

5-, or 6-bromothryptophan residues (Bittner et al., 2007). Protein containing brominated 

tryptophan is resistant to degradation by proteases (Shinnar et al., 2003). One example is 

styelin D, a 32-residue long AMP isolated from the tunicate Styela clavata, which contains a 

6-bromotryptophan residue in its sequence. The native peptide exerts antibacterial activity 



 13 

against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) at a range of pH 

and salinity. However, a synthesized version of styelin D with a non-brominated tryptophan 

shows decreased activity at low pH and/or high salinity (Taylor et al., 2000). This suggests 

that the post-translational modification of styelin D may preserve the antimicrobial activity at 

low pH and/or high salinity. Similarly, the bromotryptophan-containing cathelicidins, isolated 

from the Atlantic hagfish (Myxine glutinosa), are likely to be less susceptible to proteolysis 

(Uzzell et al., 2003). Hedistin is another brominated AMP, isolated from the coelomocytes of 

the marine annelid Nereis diversicolor (Tasiemski et al., 2007), and here the non-halogenated 

synthetic peptide is equally active as the native peptide.  This suggests that bromination is the 

basis for making the peptide more resistant to proteases rather than being required for the 

antimicrobial activity. Protease resistance would extend the activity in vivo and thereby 

sustain the antimicrobial activity. SdStrongylocin 2 also contains a bromotryptophan residue 

and shows potent activity against bacteria (Li et al., 2008); however, the recombinant 

SpStrongylocin 2 also shows antibacterial activity, even though the tryptophan residue is not 

brominated (Li et al., 2010a). Likewise, the centrocins have a bromotryptophan residue in 

their heavy chain, which, if not brominated, does not alter the microbicidal activity of these 

peptides (Bjorn et al., 2012). Although we cannot exclude the possibility that the bromination 

of the native dimeric centrocins and SdStrongylocin 2 may have some influence on their 

antimicrobial activity, this post-translational modification may have effects similar to that 

suggested for hedistin and the hagfish cathelicidins, which is to protect the peptides from 

protease degradation. 

Sea urchins have four major populations of coelomocytes based on morphological 

differences (reviewed in Smith et al., 2010). Phagocytes constitute the majority of 

coelomocytes and are divided into three subtypes; however, cell separation techniques limit 

purification of the subtypes. Recent results of AMP gene expression from S. droebachiensis 
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show that transcripts of SdStrongylocin 1 are present in the phagocyte class of coelomocytes 

and in a fraction that is composed of a mixture of vibratile and colorless spherule cells. 

Furthermore, transcripts of SdStrongylocin 2 are present in both phagocytes and red spherule 

cells, while transcripts of centrocin 1 are only present in phagocytes in cytoplasmic vesicles 

(Li et al., 2014). Phagocytes challenged with co-cultured bacteria in vitro, resulted in 

centrocin 1 attaching to these phagocytosed bacteria inside the phagolysosomes. These studies 

suggest that sea urchin AMPs exert their antibacterial activities inside of coelomocytes and 

not in the coelomic fluid. Therefore, presequences direct the precursors of centrocin to the 

lysosomes. This is in agreement with previous observations where antibacterial activity was 

detected in extracts of coelomocytes and not in extracts of cell-free coelomic fluid (Haug et 

al., 2002).  

Sea urchin eggs are embedded in a jelly coat composed of polysaccharides and 

glycoproteins (Jondeung and Czihak, 1982), which, in combination with maternal molecules, 

provides immune protection to the embryos (Kitazume et al., 1994). During development, sea 

urchin embryos and larvae face pathogenic challenges in the marine environment once they 

emerge from the fertilization envelope as multi-cellular organisms with an ectodermal body 

wall that quickly develop the digestive tract. Transcripts of the gene Sp064, which encodes a 

homologue of complement C3 that functions as an opsonin (Clow et al., 2004), is present in 

unfertilized eggs and throughout embryogenesis (Shah et al., 2003). Phagocytosis of injected 

yeast cells has been observed for the secondary mesenchyme cells at the mid gastrula stage of 

Lytechinus variegatus (Silva, 2000), and pinocytosis occurs in the cells lining the stomach 

and intestine of the pluteus larvae of L. pictus (Huvard and Holland, 1986).  The question is: 

when do AMPs contribute to sea urchin larval innate immunity? In S. droebachiensis, 

transcripts of SdStrongylocins are present in the early pluteus stage whereas transcripts of 

centrocin 1 are detected in the mid pluteus stage (Li et al., 2014). Moreover, centrocin 1 is 
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mainly present in blastocoelar cells at coelomic vesicles and sacs around the stomach and 

esophagus, and also in a few blastocoelar cells that patrol close to the ectodermal walls in 

some arms. Thus, AMPs have a crucial role in immunity, not only in adult sea urchins but 

also in larvae.   

There are several other AMPs that have been identified in echinoderms (Table 2). A 

number of partial peptide sequences that show antimicrobial activity were identified from a 

coelomocyte extract from the sea star Asterias rubens, including fragments of histone H2A, 

actin and filamin A (Maltseva et al., 2007). These peptides, which have a molecular mass of 

1.8 - 2.4 kDa, are highly cationic with a predicted pI ranging from 11.3 to 12.3. Four other 

AMPs were also detected in A. rubens coelomocytes, but the sequences were not identified. A 

coelomic fluid extract of the sea cucumber Cucumaria frondosa was purified by molecular 

sieve chromatography, and an unsequenced AMP of about 6 kDa was detected (Beauregard et 

al., 2001). Two peptide fragments, called holothuroidins 1 and 2, from the sea cucumber H. 

tubulosa have activity against human pathogens, with MICs in the mM range (Schillaci et al., 

2013).  Helical wheel analysis indicated that the holothuroidins probably adapt to an α-helical 

structure with considerable amphipathic character. Synthetic holothuroidins also inhibit 

biofilm formation of three bacterial strains, S aureus, S. epidermidis, and Pseudomonas 

aeruginosa. Another synthetic peptide, corresponding to the α-helical region of CEL-III (a 

fragment of a lectin isolated from the sea cucumber C. echinata) shows strong antibacterial 

activity against S. aureus and Bacillus subtilis through a marked permeabilization of the 

bacterial cell membrane (Hatakeyama et al., 2004; Hisamatsu et al., 2008). Recently, peptides 

of <5 kDa, which might be fragments of beta-thymosin, were detected in coelomocyte 

extracts of the sea urchin P. lividus, and show activity against Gram-positive and Gram-

negative bacteria and inhibited the formation of biofilms (Schillaci et al., 2010; Schillaci et 

al., 2012).  Although these preliminary investigations only cover very few echinoderm 
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species, the exciting findings infer that echinoderms deserve more efforts to discover new 

active compounds.  

4. Summary 

 

In the last few decades, thousands of AMPs have been characterized, and some of their 

killing mechanisms and other functions have been addressed. In order to identify potent 

antimicrobial agents, exploration has shifted from terrestrial species towards marine species 

that inhabit regions from the intertidal zone to the deep sea. Echinoderms, being the second 

largest group of deuterostomes, constitute a huge potential source for new bioactive peptides 

that may lead to new drugs. In this review, we have provided an overview of antimicrobial 

peptides found in echinoderms. A broad range of bioactivities have been attributed to AMPs, 

including bactericidal, fungicidal, anti-inflammatory activity, wound healing, and inhibition 

of biofilm formation. In addition, AMPs from echinoderms have provided insights into the 

functional importance of some post-translational modifications, and unique functional 

domains and conformational structures, which may benefit the design of new peptide drugs, 

such as proteolytic resistant AMPs, AMP mimetics, chimeric AMPs, AMP congeners, AMP 

conjugates, and immobilized AMPs (Brogden and Brogden, 2011).  

AMPs are crucial effector molecules that are essential for effective echinoderm innate 

immunity. Li et al. (2014) demonstrated that AMPs appear and function from the early 

developmental stages throughout the remainder of the sea urchin lifespan. Although AMPs act 

as downstream effector molecules in animal immunity, mammalian AMPs are also considered 

as immunoregulatory molecules (Hancock and Sahl, 2006; Hilchie et al., 2013). However, 

there is currently no evidence to suggest that echinoderm AMPs function to modulate the 

expression of chemokines/cytokines during echinoderm immune defense. The complexity of 

immune receptors in echinoderms has been unveiled by the analysis of the genome of S. 

purpuratus (Rast et al., 2006). This complexity raises many questions such as how immune 
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receptors can recognize and distinguish various pathogens, trigger signaling pathways, and 

activate effector molecules such as AMPs.  Future work will help us to address questions of 

AMP activities and to better understand the role of AMPs in echinoderm immunity. 
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Table 1.  Cysteine location patterns in AMPs containing 6 cysteine residues.  

Peptide family Cysteine location patterns a Animals 

Buthinin, Cycloviolacins, Circulins C – C – C – C – C – C  Insects, plants  

Thionins, Phoratoxin,  CC – C – C – C – C  Plants 

Knottin-type AMPs, PaAMPs C – C – CC – C – C Plants 

Tachystatins C – C – CC – C – C  Horseshoe crab 

Strongylocins C – C – C – CC – C  Echinoderms 

Alpha-defensins C – C – C – C – CC Mammals 

Βeta-defensins C – C – C – C – CC Mammals, birds 
a
 Adjacent double cysteine residues are boxed. Information regarding cysteine arrangements in the different 

peptides was obtained from the Antimicrobial Peptide Database (Wang et al., 2009). 

“–” one or more non-cysteine amino acids. 
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Table 2.  Antimicrobial peptides and proteins characterized in echinoderms.  

 

Class and genus Origin Peptides MW (kDa) Reference 

Asteroidea 

 

    

Asterias rubens Coelomocytes Fragments of Actin, 

Histone H2A, and 

filamin A a 

1.8-2.4 Maltseva et al., 2007 

 Coelomocytes Peptides 2.6-4.7 Maltseva et al., 2007 

Echinoidea 

 

    

Paracentrotus 

lividus 

 

Coelomocytes Fragments of ß-

thymosin a 

1.3-2.3 Schillaci et al., 2010 

Strongylocentrotus 

droebachiensis 

Coelomocytes SdStrongylocins 5.6-5.8 Li et al., 2008 

 

 

Coelomocytes Centrocins 4.4-4.5 Li et al., 2010b 

S. purpuratus Coelomocyte 

cDNA 

SpStrongylocins b 5.6-6.1 Li et al., 2010a 

Holothuroidea 

 

    

Cucumaria 

echinata 

 

Whole body Fragments of CEL-

III protein a, c 

2.0-4.2 Hatakeyama et al., 

2004 

C. frondosa 

 

Coelomic fluid Sequence unknown ~ 6 Beauregard et al., 2001 

Holothuria 

tubulosa 

Coelomocytes Holothuroidins a, c 1.4-1.5 Schillaci et al., 2013 

 
a Putative AMPs, derived from larger precursor molecules. 
b Recombinantly produced peptides. 
c Synthetic peptides. 
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A. 

                                                                                                                                                
SdStrongylocin  1a  MDLRSASLVFLVVVMVLSYSMAAPLDADNDEEMEE 

SdStrongylocin  1b  MDLRSASFVFLVVVMVLSYSMAAPLDADNDEEMEE 

SpStrongylocin   1  MDLRSASLVFLVVVMVLSYSMAAPLDADNDEEMEE 

 

 

SdStrongylocin  1a  IFGSIYHRKCVVKNRCETVSGHKTCKDLTCCRAVIFRHERPEVCRPQT  

SdStrongylocin  1b  IFGSIYHRECVKKNRCETVNGNKTCKELTCCRAVIFRHERPEVCRPQT  

SpStrongylocin   1  IFNSIYHRKCVVKNRCETVSGHKTCKDLTCCRAVIFRHERPEVCRPST  

 

 

 

                                                                                                                                        
SdStrongylocin  2a  MNIRKGSLMLLITMMILSQAVASRFLDEADEDEHLMEA 

SdStrongylocin  2b  MNIRKGSFMLLITIVILSQAVASRFLDEADEDEHLMEA 

SpStrongylocin   2  MDLRSASLVFLVVAMVLSYSMAESFEVDDAVMEEL--- 

 

                                    * 
SdStrongylocin  2a  WNPFKKIANRNCYPKTTCETAGGKKTCKDFSCCQIVLFGK--KTRAKCTVVTS   
SdStrongylocin  2b  WNPFKKIAHRNCYPKQECETAGGKKTCKDFSCCQIVLFGK--KTRAKCTVVTMS  

SpStrongylocin   2  WNPFRKLYRKECNDVTSCDTVSGVKTCTKKNCCHRKFFGKTILKAPECTVIS    

 

 

B. 
                                                                                  
Centrocin 1a   MMIKVALVLCAIVATSMVCAKDFEEQDALDALLNMMLPEEVASPDDAVALQ    

Centrocin 1b   MMIKVALVLCAIVATSMVCAKNFEEQDALDTLLNMMLSEEVASPDDAVALQ    

Centrocin 2    MMIKVALVLCAIVATSMVCAKNFEEQDALDTLLNLMLSEEAASP-DAVALQ    

                

                *                                                                                      
Centrocin 1a   GWFKKTFHKVSHAVKSGIHAGQRGCSALGFSPEEARVKILTAIPEMREEDLSEEDLRGACAAAHALGR   

Centrocin 1b   GWFKKTFHKVSHAVKSDIHAGQRGCSALGFSPEEARVKILTAFPEMKEEDLTEEGVRAVCAGAHALGR   

Centrocin 2    SWFSRTVHNVGNAVRKGIHAGQGVCSGLGLSPEEARVKILSAVPEMREEDLSEEDLRAICAGAHALGR   

 

 

C. 

                             * 
Centrocin 1a   GWFKKTFHKVSHAVKSGIHAGQRGCSALGF 

                                       | 

                                  DLRGACAAAHAL 

 

                             * 
Centrocin 2    SWFSRTVHNVGNAVRKGIHAGQGVCSGLGL 

                                       | 

                                  DLRAICAGAHAL 

 

Figure 1.  Alignment of SdStrongylocins from S. droebachiensis and SpStrongylocins from 

S. purpuratus (A), centrocins from S. droebachiensis (B), and the structure of centrocins (C).  

The preprosequences (or prosequence) are boxed.  The first amino acid in the mature 

SdStrongylocin 2, SpStrongylocin 2 and the second amino acid in the mature centrocins are  

brominated tryptophans (*).  Cysteines are shaded in black. The gray shaded and boxed C-

terminal dipeptides in the precursors of centrocins, are cleaved off in the mature peptides. 

 

  

preprosequence 

mature sequence 

preprosequence 

mature sequence 

preprosequence 

heavy chain light chain prosequence (interchain) 
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