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Abstract—In this paper, we present an unsupervised change
detection method for polarimetric synthetic aperture radar (Pol-
SAR) images based on the relaxed Wishart distribution. Most po-
larimetric change detectors assume the Gaussian-based complex
Wishart model for multilook covariance matrices, which is only
satisfied for homogeneous areas with fully developed speckle and
no texture. Liu et al. recently proposed a new change detection
algorithm under the multilook product model (MPM) to describe
the heterogeneous clutters. The improvement has come at the
expense of higher computational cost since the similarity measure
is based on more advanced models accounting for texture, and
they contain some mathematical special functions that is difficult
to evaluate such similarity measures. In this paper, we will
demonstrate the ability of the relaxed Wishart distribution for
textured change detection analysis. Change results on simulated
and real data demonstrate the effectiveness of the algorithm.

Index Terms—Synthetic aperture radar (SAR); polarimetry;
local ENL estimation; similarity measure; relaxed Wishart distri-
bution; multilook product model; unsupervised change detection.

I. INTRODUCTION

The use of synthetic aperture radar (SAR) sensors is at-
tractive in temporal studies, because SAR sensors do not
suffer from the limitations of cloud cover and solar incidence,
contrary to optical sensors. Many studies have demonstrated
the potential of SAR images in time series analysis, e.g., [1],
[2]. This study is devoted to the multichannel polarimetric
SAR (PolSAR) sensor, which potentially provides increased
detection capability, as compared to single-polarization SAR.

The seminal work on test statistics for change detection in
multilook PolSAR images was done by Conradsen et al., who
proposed a generalized likelihood ratio test (LRT) for equality
of two complex covariance matrices and gave the asymptotic
sampling distribution for the test statistic [3]. Akbari et al. pro-
posed a new change detection statistic for multilook PolSAR
images based on the complex-kind Hotelling-Lawley trace
statistic [4]. Both approaches assume that the covariance matri-
ces follow the Gaussian-based complex Wishart distribution.
Non-Gaussian probability distributions provide better repre-
sentation of the data for areas with pronounced heterogeneity,
or high texture. Such distributions can be obtained using a
matrix version of the product model [5]. Several statistical
models have been proposed in the literature to account for
texture, such as Kd, G0d , or Ud distributions. A change detection
algorithm for non-Wishart PolSAR data described by the

multilook product model (MPM) was recently presented by
Liu et al. [6]. Similarity measures based on more advanced
distributions under the multilook product model allows for
improved change detection capability for areas with high
texture, but this comes at the cost of higher mathematical
complexity. As an alternative to these complex models, we
derive the similarity measure for the relaxed Wishart distribu-
tion proposed in [7], which has a simpler mathematical form.
Here the equivalent number of looks (ENL) of the standard
Wishart model, which is traditionally considered as an image
constant, was allowed to vary between pixels.

The paper is organised as follows: Section II presents the
data models for the PolSAR data. Section III details the
theory of the proposed polarimetric change detection: the local
ENL estimation and the similarity measure under the relaxed
Wishart distribution. Experimental results with with synthetic
and real data are given in Section IV and conclusions in
Section V.

II. DATA MODELS

One-look polarimetric SAR data are generally characterized
by the scattering (or target) vector k ∈ Cd which contains
the complex scattering coefficients measured in d polarimetric
channels. For fully developed speckle in a homogeneous
(constant radar cross section) area, it is commonly assumed
that the scattering vector elements of k jointly follow a
circular complex and multivariate Gaussian distribution [8],
denoted as NC

d (0,Σ), with zero mean vector, covariance
matrix Σ = E{kkH}, and dimension d. The probability
density function (pdf) of k is thus

pk(k) =
1

πd|Σ|
exp

(
−kHΣ−1k

)
, (1)

where (·)H and | · | mean the Hermitian transposition and
determinant operators, respectively. The scattering vectors
might also be transformed into multilooked sample covariance
matrices, and the L-look covariance matrix is characterized by

C =
1

L

L∑
`=1

k` · kH` , (2)

where L is the nominal number of looks used for averaging.
Hence, after multilooking, each pixel in the image is a re-
alization of the d × d stochastic matrix variable denoted C,
and the image is referred to as the multilook complex (MLC)



covariance image. It follows from the Gaussian assumption
that if L ≥ d and the {k`}L`=1 are independent, then the
sample covariance matrix C follows a scaled complex Wishart
distribution [9], denoted sWC

d (L,Σ), whose pdf is

pC(C)=
LLd|C|L−d

Γd(L)|Σ|L
exp

(
−Ltr(Σ−1C)

)
, (3)

where

Γd(L) = π
d(d−1)

2

d∏
i=1

Γ(L− i+ 1) (4)

is the multivariate gamma function of the complex kind [9],
while Γ(·) is the standard Euler gamma function. In reality,
the scattering vectors k` are correlated, and the nominal
number of looks, L, is in practise substituted with an ENL,
L̂ < L. This is estimated for the whole data set as a constant
and global value. The relaxed Wishart distribution, denoted
RWC

d (Lr,Σ) and introduced in [7] is the basis of our change
detection algorithm. It has an identical functional form with
the standard Wishart distribution in (3). The difference is that
Lr is considered as a free parameter, which varies between
multilook pixels and can be assumed to absorb effects of
texture.

III. POLARIMETRIC CHANGE DETECTION

Let A = {A(i, j); 1 ≤ i ≤ I, 1 ≤ j ≤ J} and
B = {B(i, j); 1 ≤ i ≤ I, 1 ≤ j ≤ J} be two equal-sized
and coregistered MLC PolSAR images acquired over the same
geographical area at times ta and tb, where I and J are the
number of rows and columns of the images, respectively. For
simplicity, we shall assume that images A and B have the
same original resolution. Change detection is performed at
the multilook level, i.e., the change map will have the same
resolution as the MLC data. It is assumed that A and B

are geometrically corrected, coregistered and radiometrically
calibrated.

A. Local ENL Estimation

We here present how the ENL can be estimated from single
look complex (SLC) data. The polarimetric whitening filter
(PWF) from [10] is chosen to estimate the ENL from the
scattering vectors within the multilook window. It is defined
as

y = kHC−1k, (5)

where C denotes the sample covariance matrix from (2). The
components of y have distributions:

y ∼ [NC
d (0,Σ)]H ×

[
sWC

d (L,Σ)
]−1× [NC

d (0,Σ)]. (6)

The asymptotic distribution of y is known to be [11], [12]

y ∼ Ld

L− d+ 1
F2d,2(L−d+1), (7)

where Fa,b denotes an F-distribution subscripted with its shape
parameters a and b. The Fisher distribution defined in [13] has

been extended with a location parameter µ and uses shape
parameters α = 2a and β = 2b, to be connected with
intensities of complex variables in the PolSAR data. Therefore,
the Fisher distribution is denoted as F(µ, α, λ), and we can
write

y ∼ Ld

L− d+ 1
F1,d,L−d+1. (8)

The νth-order log-cumulants for the Fisher distribution are
given by [13]

κ1{y} = ψ(0)(d)− ψ(0)(L− d+ 1) + log

(
L− d+ 1

d

)
κν>1{y} = ψ(ν−1)(d) + (−1)νψ(ν−1)(L− d+ 1), (9)

where ψ(ν) is the polygamma functions of order ν, L is the
ENL, and d is the polarimetric dimension. The method of log-
cumulant (MoLC) for SLC data consists of solving a set of
log-cumulant equations defined by (9) for the unknown ENL
value, with sample log-cumulants inserted for the population
log-cumulants of y. The sample log-moments of order ν are
computed from data as

〈µν{y}〉 =
1

L

L∑
`=1

(log y`)
ν
, (10)

where the y` are computed from a sample of L scattering
vectors {k`}L`=1, that are also used to compute the sample
covariance matrix, C, which goes into y`. The sample log-
moments from (10) can be combined into the sample log-
cumulants using the relations between log-moments and log-
cumulants [9]

κ1 = µ1,

κ2 = µ2 − µ2
1,

κ3 = µ3 − 3µ1µ2 + 2µ3
1. (11)

B. Similarity Measure for PolSAR Change Detection

In order to apply change detection to PolSAR data, we need
to define an appropriate matrix distance measure. We want
to measure the similarity between their corresponding MLC
format measurements, i.e., A(i, j) and B(i, j). The sample
covariance matrices are assumed to be statistically independent
with dimension d × d. They are defined on the cone of
Hermitian and positive definite matrices. We further assume
that the sample covariance matrices A and B follow relaxed
Wishart distributions, potentially with different distribution
parameters, which is denoted

A ∼ RWC
d (La,Σa) and B ∼ RWC

d (Lb,Σb). (12)

We propose a similarity measure under the relaxed Wishart
distribution in which the ENL value is allowed to vary between
multilook pixels. Each image is processed by first computing
the sample covariance matrix in a sliding window of size k×k
and then local ENL estimation from the technique in Section
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Fig. 1. General block diagram of the proposed change detection algorithm
for PolSAR data.

III-A. Polarimetric change detection is therefore performed by
choosing between the hypotheses:

H0 : Σa = Σb and La = Lb,
H1 : Σa 6= Σb or/and La 6= Lb.

(13)

The null hypothesis (H0) corresponds to no-change and the
alternative hypothesis (H1) to change. The generalized likeli-
hood ratio test (GLRT) statistic is given by

Q =
maxLH0

(Σ, L|A,B)

maxLH1(Σa,Σb, La, Lb|A,B)
, (14)

The likelihood function under H0 is

LH0
(Σ, L|A,B) = p(A;L,Σ)p(B;L,Σ), (15)

which is maximized by the maximum likelihood (ML) es-
timator Σ̂ = (A + B)/2. The values of La and Lb under
H0 are replaced with an average of the estimated ENLs, i.e.,
L̂ = (L̂a + L̂b)/2. The likelihood function under H1 is

LH1
(Σa,Σb, La, Lb|A,B) = p(A;La,Σa)p(B;Lb,Σb),

(16)
which gains its maximum value for the ML estimators Σ̂a =
A and Σ̂b = B. The ENLs for pixels A and B are estimated
from the estimation technique in Section III-A. The GLRT
statistic thus becomes

Q =
p(A; L̂, Σ̂)p(B; L̂, Σ̂)

p(A; L̂a, Σ̂a)p(B; L̂b, Σ̂b)

=
(L̂a + L̂b)

(L̂a+L̂b)d

L̂L̂a
a L̂L̂b

b

|A|L̂a |B|L̂b

|A + B|L̂a+L̂b

· |AB|
L̂a+L̂b

2 −d

|A|L̂a−d|B|L̂b−d

Γd(L̂a)Γd(L̂b)

(Γd(
L̂a+L̂b

2 ))2
,

(17)

If and if only L̂ = L̂a = L̂b,

lnQ = L̂(2d ln 2 + ln |A|+ ln |B| − 2 ln |A + B|. (18)

This distance measure is called the Bartlett distance in [14].

C. Summary

In summary, the block diagram of the proposed change
detection approach in multipolarizarion SAR data is shown
in Fig. 1 which is made up of three main steps: 1) local
ENL estimation for each image in the pair of multitemporal
PolSAR images; 2) calculation of similarity measure; and 3)
distinguishing change from no-change through the application
of a desired thresholding algorithm such as the Kittler and
Illingworth (K&I) algorithm [15] to the test statistic.

IV. EXPERIMENTAL RESULTS

A. Simulated Data Set

We generated two multiclass multilook polarimetric K-
distributed test images to validate the change detection algo-
rithm. The simulated data was 25-look, quad-pol, with a range
of texture, brightness and polarimetry values taken from real
images [16]. The test images represent times ta and tb. They
are shown in Fig. 2(a) and 2(b) as Pauli images. The second
image is synthesized with three change areas [4]. The images
are simulated with no spatial correlation, such that the locally
estimated ENL values, obtained with the MoLC estimator and
with window size of k = 5, are equal to the nominal number
of looks for about 90% of the pixels.

Fig. 2(c) and 2(d) show the difference maps using the
proposed similarity measure under the relaxed Wishart distri-
bution and the MPM in [6], respectively. The distance measure
based on the MPM provides smooth results and higher contrast
between change and no-change classes, but it is sensitive to the
window size. Some of estimation windows contain a mixture
of pixels with different classes and boundary between change
and no-change classes is blurred due to an effect of mixed
classes, which increases with window size.

B. Real Data Example

Two quad-pol SAR images acquired by RADARSAT-2
captured over an urban area in Suzhou, East China1 on 9 April,
2009 and 15 June, 2010, are used for the experiment with real
SAR data. Fig. 3(a) and 3(b) present the corresponding Pauli
RGB color composite image.

A window size of k = 5 is selected for calculating the sam-
ple covariance matrix and the ENL estimation. Fig. 3(c) and
3(d) show maps of the locally estimated ENL values for each
image. The presence of multiple classes and texture within the
estimation window leads to a lowered shape parameter. After
generating the covariance matrix and ENL, the difference map
can be extracted using the proposed similarity measure in (17),
as shown in Fig. 3(e). We compare this difference map with
the MPM-based, which is presented in 3(f), and the Wishart-
based similarity measures in [3], which is not included in the
paper due to the limited space. The change areas in Fig. 3(e)
and 3(f) are bright on a background of dark no-change pixels.
Both the wishart-based and MPM-based methods may lead to
missed detection in the red box areas in Fig. 3(e).

1The authors would like to thank Meng Liu, and the Chinese Academy of
Sciences for providing the RADARSAT-2 data set. Copyright notice: the data
are copyrighted by the MDA/CSA.



(a) (b) (c) (d) (e)

Fig. 2. Experiment with a pair of simulated 25-look quad-pol K-Wishart distributed images. (a) and (b) Pauli decomposition composite images with class
labels at two different times with changes. (c) Theoretical result of change detection, where white is change and gray is no-change. (d) and (e) Difference
maps of similarity measures under the relaxed Wishart and the MPM.

(a) April 9, 2009 (b) June 15, 2010

(c) (d)

(e) (f)

Fig. 3. Real experimental data set. (a) and (b) RGB Pauli composite images
(R: |HH-VV|; G: 2|HV|; B: |HH+VV|) with RADARSAT-2 data captured on
9 April, 2009 and on 15 June, 2010, multilooked with window size of k = 5.
(c) and (d) Local ENL estimates. (e) and (f) Difference maps from similarity
measures under the relaxed Wishart and the MPM.

V. CONCLUSIONS

In this paper, we propose a novel method for SAR change
detection based on the relaxed Wishart distribution. The local
ENL estimation from the PWF implemented with scattering

vectors and sample covariance matrix is the key input to
the proposed similarity measure. Application of the change
detection algorithm was practically demonstrated on simulated
and real PolSAR data sets.
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