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Chapter 1

Introduction

The space

Acos(t) —Asin(t)
CO(2) = |t e S'=R mod 27, A € R"

Asin(t)  Acos(t)

is the linear conformal Lie group. The Lie algebra of CO(2) is
co(2) = (—y0y + x0y, 0y + y0y) .
Consider the 4—dimensional Lie group
CO(2) x R* = {p € Aff (R*,R?) : p(z)=Az+b| A€ CO(2), beR?*}.
The Lie algebra of CO(2) x R? is
co(2) X R? = (—ydy + 20y, ©0; +y0y, Oz, Oy).
It is known [S, KL2] that the conformal Lie algebra

g ={Vy = g1(2,9)0% + 92(%,9)9y | 912 = g2y, g1y = —g2z} C D(R?)



is the completion of the co—prolongation of co(2) x R2. Hence g is the Lie algebra that

corresponds to the Lie pseudogroup of all conformal transformations of R?

@ : R — R?, o(z,y) = (¢1(2,9), 02(2,9)),

o1 Opy
O 9y | ¢ co(2).
9y Opy
or Oy

The conformal Lie algebra is canonically represented as the Lie algebra of vector

fields in R?. In Chapter 4 we find all possible representations of g via vector fields in

J'R? =R? x R = R3(z, y, u)

which project to the canonical representation. Namely, for any function F(u) € C* (J O]R2)

and constant b = by + iby € C the inclusion map

Iy - g —D(J'R?),

Ire(Vy) = Vg + F(u)(brg1 — bag2)0u,

is an injective Lie algebra homomorphism and these are all representations of the form

Vg = Vg 4+ A0y. Let

grp = Im(Ipy) = {Vy + F(u)(brg1 — b292)0u | 912 = 9245 g1y = —922}

denote the image of the map.

In this thesis we will find the algebra of gp,—differential invariants.

Theorem 1 The algebra GF'? of gpy—differential invariants is generated by Iy, I, V1 and



Va, where for ' =0

Iy = u,
I - U20 + Up2
2T W2l
1o T Upy
1
Vi = ———— (u10Dy +uoD,),
1 u%0+u31( 10Dz + uo1Dy)
1
Vo = ———5 (u01 Dy — u10Dy),
2 u%0+u31( 01Dy — u10Dy)
and for F'#0
du
Ip = [ —— —bz+b
0 /F(u) 1T + 02y,

(—udy — ufo) Fu(u) + F(u)(uo2 + uz)
(blF(u) — u10)2 + (bgF(u) + u01)2
F(u)z Uu10 Uo1

Vo= <(ulo “F) o 1 b2F(u))2) <(F(u) ) bl) Dot (F(u) " bz) Dy) |
V2 = <(u10 - blF(u))}; (f)(um +b2F(u))2> <<1;L(O;) +b2> Pet (_;(12> +b1> Dy) '

Hence, any function f € GF of order m has the form

I, =

f=FfUo, 12,131,132, ... Im 1, s Imm—1) ,
where
Ii; = Vi 2NV (L), 4,k € Zsa, k> J.
The invariants {1y ;} are functionally independent.
We will also show that if f is a gp,—differential invariant and h(z,y) € C°(R?)
is a solution of the PDE £ = {f = 0}, then the function
u(z,y) = hgi(z,y), 92(z,y)), F=0, (L.1)
u(z,y) = G bi(r —gi(z.y) = ba(y — g2(2.9) + G(A(g1(2,9), 92(x,9)))) , (1.2)

F # 0, G(u)—/;l(z),



is a solution of £ for any analytic function g(z) = g¢1(z,y) + ig2(x,y) on domains where
9. # 0. Thus we get a collection of PDFEs £ with sym(€) O g. This provides a large family

of solutions for any differential equation from this collection.

Structure of the thesis.
In Chapter 2 we collect some basic concepts from complex analysis and describe our main
object, the Lie algebra g.
In Chapter 3 we describe the the space of jets, the Cartan distribution, invariant differenti-
ations and the Lie-Tresse theorem. In the last part of this chapter we will use three different
methods to find the differential invariants of the canonical representation of g. The three
descriptions of the algebra turns out to be equivalent.
n Chapter 4 we will find the differential invariants of the deformed representations of g. We
use the best method from Chapter 3 to generate the invariants.
In Chapter 5 we justify the above claim that Formulas (1.1) and (1.2) represent solutions of
the g—invariant equations. In the last part of this chapter we will represent g as a Lie alge-
bra of vector fields in R? = J°R, and find differential invariants of some finite dimensional

Lie subalgebras of g.

Conventions.
Most of the results in this thesis are defined locally, restricted to regular domains where the
g—differential invariants are well defined. We will not specify locations in the text.
In this thesis we will extensively use complexification, which work nicely with real-analytic

objects. Thus we adopt the following convention: depending on the context C'*° can mean



smooth or analytic functor. The coordinate function

z=x+y, Z=2— 1y,

are used when we assume analyticity. The convention is helpful because the main results
concerning g—differential invariants hold in smooth category. Thus we will be using the

freedom of extending and shrinking the space of functions, vector fields etc.



Chapter 2

The Lie Algebra g

2.1 Vector Bundles over a Complex Manifold

In this section we will describe some basic concepts that will be important in the

rest of the text. Most of the material is well known, see [KN].

2.1.1 Algebras of Functions on a Complex Manifold

Let M be a complex smooth manifold of dimension n. Consider the spaces of

functions

C*®(M)={f:M — R | fis smooth},
OM)={f: M — C| f is complex analytic},

C®(M,C)={f: M — C| fis smooth} .



The spaces of functions C*°(M,C) and O(M) are C—algebras, and the space of functions

C>°(M) is an R—algebra. Moreover, C*°(M, C) is equal to the tensor product

C*°(M,C) = C®°(M) ® C.

Let U C M be a chart with local coordinates

(21 = @1 4+ Y1, eveey 2n = T+ 1Yp).

There exist projections (restrictions)

C>®(M) — C>(U),

O(M) — O(U),

C®(M)® C — C®(U) @ C.

The functions f; € C*°(U), fo € O(U) and f3 € C*®°(U) ® C have the forms

fl = fl(xlaylv "-7xn7yn)7

f2 = f?(zla ceey Z’I’L)?

f3 - Fl(xbylu ceey $n7yn) + iFQ(xlvyla ceey fEmyn)‘

The inclusion map

O(M) —=C®(M)® C

is an injective C—algebra homomorphism. Hence O(M) is a C—subalgebra of C*°(M) ® C.

The inclusion R—C induces the inclusion

[:C%®(M) —C®(M)®C,



I(f) = f(z1,Y1s -y T, Yn) + 90.
The projection maps Re,Im : C — R induce the projections
Re: C*(M)® C — C*(M),
Re(f1(z1,Y1, s Ty Yn) + 0f2(21, Y15 ooy Tns Yn)) = f1(21, Y15 0y Ty Yn ),
Im: C*(M)®C — C™®(M),

Im(fl('xlvyla (XY} J:nayn) + /L'fQ(J:layla 7xnayn)) = f2($1a Y1y ooy Ty yn)v
with

Re I = Tm(il) = Idceo(ar)-
The inclusion I is an injective R—algebra homomorphism. Hence C*°(M) is an R—
subalgebra of C*°(M) @ C.
2.1.2 Vector Spaces and Vector Bundles
Let X1 be an R—linear map and X5 and X3 be C—linear maps
X1 :C®(M) — R,
Xo: O(M) — C,
X3:C®(M)®C— C.
The linear map X, for j € {1,2,3}, is a derivation if it satisfies the equation
Xi(fi95) = [iXj95 + 95X f (2.1)

for all functions fi,g1 € C®°(M), fa,92 € O(M) and f3,93 € C*°(M) ® C. The linear map

X is a derivation at the point p € M if it satisfies Equation (2.1) at p.



For any point p € M the spaces of all derivations at p of the algebras O(M) and
C>®(M) ® C are complex vector spaces, and the space of all derivations at p of the algebra
C>°(M) is a real vector space.

Let us use the following notation for the spaces of all derivations at p of the algebras
C*®(M) and O(M) :

TpM = Derg(C*(M))y,

T}°M = Derc(O(M)),.

Lemma 2 Let p be a point of the manifold M. Then the space of all derivations at p of the

algebra C*°(M) @ C is equal to the tensor product
Derc(C*(M) ® C), = Derg(C*(M)), @ C.

Proof. For all functions f € C*®°(M) @ C there exist functions fi, fo € C°(M)

such that

f=f+ifa

Hence we have the C—linear inclusion map
I : Derg(C*(M)), @ C — Derc(C* (M) ® C),,

(1Y) (f) =Y (f1) +iY (f2).

The algebra C*°(M) is an R—subalgebra of C*°(M) ® C. Hence if we restrict

Y € Dere(C®(M) ® C), to C*°(M), then Y is an R—linear map

Y‘COO(M) . COO(M) — C



10

such that for all functions f,g € C*°(M)

Y(f9)(p) = f()Y 9(p) + 9(p)Y f(p)-

Hence we have the C—linear map
R : Derc(C*(M) ® C), — Derg(C*(M)), ® C,

R(Y) = Voo (an).

The map R is surjective since

RI = Idperg (0o (a)),0C -
Suppose that for an element Y € Derc(C®(M) ® C), Y(f;) = 0 for all functions f; €
C*®(M). Then

Y(/)=Y(fi) +iY(f2) =0, Vf = fi+ifo € C°(M)®C.

Hence Ker(R) = {0}. It follows that the map R is bijective. m

The inclusion map
T)°M — T,M ® C = Derc(C*®(M) ® C),

is an injective C—linear map. Hence Tp1 OM is a C—subspace of T,M @ C.
The inclusion map

I:T,M —T,M®C

where

Rel = Im(z[) = IdTpM
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is an injective R—linear map. Hence T),M is an R—subspace of T,M & C.

Consider the C—subspace of T,M @ C
TO'M = Ty °M.
Lemma 3 [KN] T,M & C is equal to the direct sum
T,M & C=T,"M & T3 M.

Let

(U, (z1 =21+ Y1, ...2n = T, + 1Yn))

be any smooth chart containing p. T}, M is a real vector space of dimension 2n
TpM = (8901 |p= 8y1 ‘p-maxn |p= 8yn ‘p>R .
T; M and ng ! M are complex vector spaces of dimension n
Ty "M = (02 [ps -y Oz lp)e = (3(Dy — 10y |ps oes 5 (O, — 10y, ) |p) e
TP M = {0z, [ps -y Oz, p) e = (3(0ay + 10y |ps s 3 (D, + 10y, |p) e -
T,M ® C is a complex vector space of dimension 2n

T,M®C = Tp'M & TP M = (0, |p, Oy |p---Or, s Oy Ip) o

= <8Z1 ’pv ) 8Zn ’pv 821 |p’ ) 82n|p>(c .

Consider the spaces

T™ = U T,M,
peEM

TYYM = U T,°M,
peEM
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790 = U T M
peEM p ’

TM®C= U T,M®C.
peEM

By standard topological arguments TM, T1OM, T M and TM ® C are vector bundles
over M. The bundle TM is a real subbundle of TM ®@C, and TH°M and T%' M are complex

subbundles of TM & C.

Remark 4 [KN| The above constructions work as well for the case when M is an almost
complex manifold, i.e. M s a real manifold with a tensor field J which is, at every point p
of M, an endomorphism of the tangent space T,M such that J% = —1, where 1 denotes the

identity transformation of T, M.

2.1.3 Vector Fields on a Complex Manifold

Consider the spaces of smooth sections of the vector bundles TM, T1OM, T M
and TM ® C

D(M) = C*(T'M) = Derg(C>(M)),
DHO(M) = C(THO M),
DO (M) = C(T™ M),
D(M) ® C = Derg(C®(M))  C.

The space D(M) is a module over the algebra C°°(M), and the spaces D0(M), DO (M)
and D(M) ® C are modules over the algebra C*°(M) @ C.

Consider the space of C—analytic sections

CY(TYOM) = Derc(O(M)).
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The space C¥(TYM) is a module over O(M).
Let us write these vector fields in local coordinates. There exist projections (re-

strictions) for ¢ € {(), (1,0),(0,1)}
D?(M) — D?(U),
DM)®C—DU)®C,
C(THOM) — C@(THOU).
For the vector fields X; € D(U), Xs € D(U) ® C, X3 € DMOU), X4 € D"(U) and
X5 € C¥(TYOU) there exist functions fij, f25 € C®(U), hij, haj, q1j, q2j € C°(U) ® C

and g; € O(U) such that

X1= > f150z; + f20y,,
=1

J

Xo = Z hlj(?xj + hgjayj,
j=1

n

X3 =) q150:,
i=1
n

X4 =) @0z,
j=1

n
j=1

The spaces C¥(TYOM), D¥(M) and D(M)®C are infinite dimensional Lie algebras
with the Lie bracket being the commutator.

For g € {(1,0),(0,1)} the inclusion maps
C¥(THOM) — DY),

DP(M) — D(M) ®C,
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are Lie algebra homomorphisms. Hence C¥ (T 0M) is an infinite dimensional Lie subalgebra
of DYO(M), and DP(M) is an infinite dimensional Lie subalgebra of D(M) ® C.

The inclusion map

[:D(M) — D(M)®C,

where

Rel =1Im (iI) = Idp(arp),

is a Lie algebra homomorphism. Hence D(M) is an infinite dimensional Lie subalgebra of

D(M) @ C.

2.2 The Lie Algebra g

Consider the subspace g C D(R?)

g =1{910: + 920y|912 = 92y 91y = —G2x}-

Any element of g has the form

Vg = 910z + 920y,

where g = g1 + ig2 € O.

Proposition 5 The space g is a Lie algebra.

Proof. For any numbers a,b € R and any functions v, w € O

aVy, + bV, = (av1 + bw1)0, + (avs + bw2)0y = Vaytbw € 8-



Hence g is a linear subspace of D(R?).

[‘/vy Vw] = ﬂlam + a2ay

= (Viwiy — VaWay — W1V1g + WoV24) 0y + (V1W2g + V2Wiy — W1V, — WoV1,)0y.
It is left to show that the Cauchy-Riemann equations hold for the function % + its.
0~ _
9z U1 = VNWigy — V2W2zy — W1Vigy + WoV2zy + V1zWig — V2 W2 — WigVlg + W2 V2,

O ~
Fz U2 = V1Wogy + V2Wige — W1V2gx — W2V1gz T VigW2e + V2pWig — WigV2e — W2V,
O ~
oyl = TU1W2rg — V2Wigy + W1V2zp + W2Vlze — V2uWiz — V1aW2e + W2V + WizV2a,

a ~
Py 2 = V1Wigy — V2W2gy — W1V1gy + W2V — V20W2z + V1zWip + W2rV2z — WizVla-

Thus we see that

Uy = ﬂ?ya {Lly = _ﬂ2z7

and [V, V] € g. Hence g is closed under the commutator bracket. m

2.2.1 Lie Algebra Structure on O

Consider the map

L:g—0,

L(Vg) = Vy(2) = Vy(@) +iVy(y) = 9.

15

L is an isomorphism of vector spaces over R. Since g is a Lie algebra we are able to introduce

a Lie algebra structure on the space of analytic functions. Namely, define the bracket on O

by the following rule

def

[V:U? Vw} ‘/[U,’LU]'
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In coordinates
Vo, Vul = Vo(Va) = V(W)

= (VWie — V2W2 — W11y + WoV2, )0y + (V1W2e + V2Wiz — W1V2e — W2V14)0y.

Hence the bracket on O is
[v,w] = Vi, Vu|(2) = Vi (w) — Vi (v)

= (VWig — V2W2 — W1VIL + Wav2y) + H(VIW2y + V2WIE — W1V2E — W2V1L).

Note that the formula for the bracket on O in complex coordinates is
{f(2),9(2)} = f(2)d'(2) = f'(2)g(2). (2.2)

This leads to an isomorphism of the space O equipped with the bracket defined in Equation
(2.2) with the space of linear in momenta holomorphic functions on 7*C equipped with the
standard Poisson structure.

The Lie algebra (O, {}) is simple, i.e. it contains no ideals, but it does contain

subalgebras. For instance, consider the subspace
sly = <1,z,22> c 0.
The space sly is a linear subspace of O. Moreover, for j, k € {0, 1,2}
{zj,zk} = (k-5 esly.
Hence sly is a Lie subalgebra of O isomorphic to sla(C). It follows that the subspace
(V1,Vi, V, Vie, Via, Vise) C g

is a Lie subalgebra of g isomorphic to sly(C)g.
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2.2.2 The Manifold C

In this subsection we will use the theory of Section 2.1 for the manifold C. Note
that C is a complex manifold of dimension 1, and R? ~ C is a real manifold of dimension 2.
The space C®(R?) ® C is an algebra with subalgebras C*°(R?) and O.

For any point zg € C we have the following vector spaces
TZ0R2 = <aw|20’ ay‘ZO>R )

TYOC = (0.]z0)c, T9'C = (0:]2)c
TZURQ ®C= <a$’207 8y‘20>(c = <az’zo: 85‘Z0>(C-

The spaces of smooth sections of the vector bundles TR?, T19C, T%'C and TR?>®C

are

D (R?) =C*°(TR?) = { {10, + f20, | f1, 2 € C™ (R?)},
DY (C) = C*(TC) = {f0. | f € C*(R*) @ C},
DY (C) = C®(T™'C) = {f0: | f € C®(R*)® C},
D(R*) @ C=C®(TR*) @ C = { {10, + f20y | f1,f2 € C*(R*) @ C}.

Let b denote the space of all derivations of the space O

h={g90.|gecO}.

The space b is a free 1-dimensional module over O.
The spaces D (R?), D0 (C), D™ (C) and b are infinite dimensional Lie subalge-

bras of D (R2) ® C.
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Consider the space of anti-holomorphic functions
O={h=hy +ihy € C® (R*) @ C | h1y = —hay, hoy = h1y} ={g | g € O}.
The space O is a subalgebra of C*°(R?) @ C.
Let b denote the space of all derivations of O
h={g0: | g € O}.

The space h is a free 1-dimensional module over @ and an infinite dimensional

Lie subalgebra of D (R2) ® C.

2.2.3 Almost Complex Structure on TR?
The tensor
J=0y,®dx — 0, ®dy

is an almost complex structure on TR?

If the vector field

V = g10; + 20, € D(R?)
is a symmetry of the tensor J, then
Ly(J) = —[V,0,]®dy—0; ®d(g2) +[V,0,] ® dx + 0y @ d (1)
= — (920 + 91y) Or @ dx + (—g2y + g12) Oy @ dzx
+ (912 — 92y) Ox @ dy + (922 + g1y) Oy ® dy = 0.

Hence g is the Lie algebra of symmetries of the tensor J. This shows that there must exist

a Lie algebra isomorphism between g and h. In the next subsection we will find it.



19
2.2.4 A Relation Between the Lie Algebras g and

Consider the R—linear map
2Re: D (R*) ® C — D (R?).

We have that

2Re[ix0y,10;] = 20, # [2Re (i20;) ,2Re (i0;)] = 0.

Hence 2 Re is not a Lie algebra homomorphism between the Lie algebras D (RQ) ® C and

D (]Rz) . We have that
90 = 3(0102 + 920y + i(—10y + g20x)).-
Thus the map 2 Re restricted to b is
2Re (g0.) = V.
Proposition 6 The R—Ilinear map
2Re:h—9g
1s a Lie algebra isomorphism.
Proof. Using the Poisson bracket defined on O in Subsection 2.2.1 we get
2Re(90:),2Re(f0:)] = [Vy, Vil = Vg 5y = 2Re((9:f — f29)0:) = 2Re g0, f0.].

Hence 2 Re preserves the bracket.

By definition V, € g if and only if g € O, i.e. g0. € h. Hence 2 Re is bijective. m
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Example 7 It was shown in Subsection 2.2.1 that
<V17 Vvia Vz; WZ? Vz27 ‘/zz2> cg

1s a Lie algebra. Hence
s = (0,20,,2°0.) C b
is a Lie algebra. Moreover, s is isomorphic to sla(C).
The R—linear map
2Im: h — g,
2Im (90,) = —Vig,

is an isomorphism of vector spaces over R. It follows from Proposition 6 that for any

functions g, h € O
[2Im(g0,),2Im(h0,)] = [2Re(igd,),2Re(ihd,)] = —2Re[g0., h0,]| = —21m (i [g0,, hO.]) .

Hence the map is not a Lie algebra isomorphism.
The complexification of the Lie algebra g and the direct sum of the Lie algebras h

and b

g®0C = {Vy+iVi|g,heO},

hobh = {90.+hd:|g,heO},
are Lie subalgebras of D(R*)®QC.

Theorem 8 The map

Y:hdh— goC,



is a C—linear Lie algebra isomorphism.
Proof. For any functions g,h € O
w(i (Qaz + 7182)) = ¢<i98z - %35) = % (‘/igfih + Z‘Vi(figfih))
= 5 (Voun +Vign—g)) = ito(g0: + h5).

Hence the map 1 is C—linear.

For any function g € O

7!1(93,2 + ?]&2) = ‘/g
Hence 1 is bijective.
We see that
Q;Z)( [gaz + Ba%y faz + qai]) = ¢([gaza faz] + [Eaia qai])

= 3 Vgt + Vil 1+ ) »

[ (90 +102) ;4 (f0. +305)] =[5 (Voun +Ving)) » 3 Vit +Vig—p)]
= % (V[g+h,f+q]+[h—qu—f] + Z'V;([g-ﬂ-h,q—f}Jr[h—gﬂ-Ff]))

= 3 Vg1t + Vil 1+ )

Hence 1 preserves the bracket. m

21
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Chapter 3

Invariant Functions of the Lie

Algebra gk

3.1 The Space of Jets

3.1.1 Quotient Algebras

For any point zg = ¢ + iyg € C the space

fey = {f € C® (R?) | f(0,50) = 0}

is a maximal ideal of the algebra C*° (RZ) .

The space

(MZO)kH _ {f e C™® (R2) | f= Zfl...fkﬂ, fi € ,LLZO} (3.1)

is an ideal of C*° (]RQ) for any integer k € Z>¢. It follows from Equation (3.1) that

k

AR (7 L

(IJ/ZO - (/‘1’20)2 C lu‘z()‘
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k+1

Hence for k£ > 0 the ideal (Mzo) is not maximal.

The quotient space

0 () / (1)

20
is an R—algebra.

For any smooth function f(z,y) € C™ (Rz) the corresponding equivalence class
[f(z,y)]k, € C= (R?)/ (,LLZO)k+1 has the following representative

mln! M f

m+ n)! dx™oy"

(w0, yo) (@ — z0)™ (¥ — vo)"-

115 = flzo,wo) + > (

m+4+n<k

3.1.2 Algebra of Functions on the Space of Jets

For any pair of integers m,n € Z>¢ such that m + n < k there exists an R—linear
map

U = C™° (R2) /ulgo — R,

8m+n
umn([f]l,go) = W(ZEO’ yO)'

The space

TR = 0% (B) / (1)

20

is a real vector space of dimension (k + 1) (k +2) /2
J§0R2 ~ (U | M+n < E)g.
Consider the space

J'R? = U JERZ
20€C
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By standard topological arguments J*R? is a vector bundle over C. Its total space is dif-
feomorphic to

TFR? m RFDKF/242(5 0y 4y < g
Consider the following spaces
o (J’ﬂR?) - { FoJR2 SR | fis smooth} ,
Cc° (JkRz,(C) = {f cJFR2 - C | fis smooth}.

The space C*° (J k']RQ) is an algebra over R and C'*° (J FR2?, C) is an algebra over C.

The algebra C*> (J*R?,C) is equal to the tensor product
c <J’“R2,(C) — ™ (JkRZ) ® C.
The inclusion map
[:C0% (JkRz) < O (JkRQ) ®C,

where
Rel = Im(zl) = Idcoo(JkR2>’
is an injective R—algebra homomorphism. Hence C*° (J kRQ) is an R—subalgebra of

C> (J*R?) ® C.

3.1.3 The Tangent- and the Complexified Tangent Bundle of J*R?

For any point p € J*R? the space

T, (Jk]R2> — Derp (cm (JkRQ))p



25

is a real vector space. It follows from Lemma 2 that

T, (JkRQ) ® C = Derg (000 (JkR2> ® c)p.

The real dimension of T}, (J*R?) is (k4 1)(k +2)/2 + 2

T, (JR2) = sl Oyl Dby | 4+ < K

nm

The complex dimension of 7, (J*R?) @ C is (k + 1)(k +2)/2 + 2

T, (Jk]R2) ® C = (Dxlp: Oylps unlp | M+ 1 < k).

The inclusion map
1:7, (J'R?) - 1, (J'R?) 2 C,
where

is an injective R—linear map. Hence T}, (J*R?) is an R—linear subspace of T}, (J*R?) @ C.

Consider the spaces

T (JkRz) = U T (JkR2) ,
P

T (/'R?) @ C = T (/'R?) s C.

The space T (J kRQ) is an R—vector bundle and T (J k]RQ) ® C is a C—vector bundle over

JFRZ. The bundle T (JkRQ) is an R—subbundle of T (JkRQ) ® C.
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3.1.4 Vector Fields on J*R?

Consider the spaces of all smooth sections of the vector bundles T’ (J kR2) and

T (JFR2) © C

D (J’W) — (T (J’“RQ)) — Derg (C°° (J’“R2>> ,
D (Jk]R2> ®C = (T (Jk]R2) ,C) = Derg (COO (J’“RQ» ®C.

The space D (JkRz) is a module over the algebra C'*° (JkRz), and the space

D (Jk]Rz) ® C is a module over the algebra C* (Jk]Rz) ®C

D(JkRQ) = {flax +f~2ay + Z fmnaumn ‘ flvf%fmn e C™ (JkR2>}a

m+n<k

D(Jk]R2) ®(C == {flax + fzay + Z fmnaumn | flaf?vfmn € COO(JRR2) ®C} N

m+4+n<k

The spaces D(J*R?) ® C and D(J*R?) are infinite dimensional Lie algebras with

the Lie bracket being the commutator. The inclusion map
I:D(J*R?) — D(J*R?) @ C,

where

Rel = Im(ZI) = Id'D(JkRQ),

is an injective Lie algebra homomorphism. Hence D(J*R?) is an infinite dimensional Lie

subalgebra of D(J*R?) @ C.
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3.2 The Contact Distribution and the Cartan Distribution
3.2.1 The Contact Distribution on J'R?
The 4—dimensional distribution on J'R?
Co = Ker(wg), wo = du — ujodz — ug1dy
is called the contact distribution. The distribution is spanned by the four vector fields
Co = (X1 = 0y + 11004, X2 = Oy + u010u, Y1 = Ouyy, Y2 = Ougy ) - (3.2)
There exists no integral manifold of dimension four, since
Y, X;] = 0. ¢ Co, j€{1,2}.

Every smooth function f € C*°(R?) determines a 2—dimensional submanifold of
J1R2
Lf = {u = f(xvy)a U0 = gi(xay)y Uo1 = gi(x7y)} ) (33)

which is an integral manifold of the contact distribution since
w0| Ly = 0.

3.2.2 Contact Transformations and Contact Vector Fields

A diffeomorphism

F:J'R? — J'R?
is called a contact transformation if it preserves the contact distribution, i.e.

F*(wo) = AFwpg, Ar € Coo(JlRZ).
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A vector field X € D(JIR?) is called a contact vector field if its flow consists of

contact transformations. If X is a contact vector field, then
Lx(wo) = Axwo, Ax € C®(J'R?).
It is known that all contact vector fields on J'R? have the form
Xy = f0u+ X1 (f)Y1 + Xo(f)Y2 — Y1(f) X1 — Ya(f) Xo,
where X; and Y; are given in Equation (3.2) and the function f € C*°(J'R?) is equal to
f = wo(Xy).

The space of all contact vector fields is an infinite dimensional Lie algebra denoted Cont(.J'R?).
Consider the subspace of D(J'R?)®C that consists of all the complexified vector

fields that preserve the contact distribution
{ Y € D(J'R*)QC | Ly (wo) = Aywo, Ay € C®(J'R*)®C} C D(J'R?)&C. (3.4)

For any vector field Y € D(J'R?)®C there exist vector fields Y7, Yy € D(J'R?) such that

Y = Y7 +14Y5. Hence if Y preserve the contact distribution, then
Ly(wg) = Lyl (wo) + Z‘Ly2 (wo) = )\yw().

It follows that Y; and Y, are contact vector fields. Hence there exist functions fi, fo €

C®(J'R?) and f = f1 +ify € C°(J'R?)®C, such that
Y:m+iY2:Xfl+in2 :Xf.

So the subspace described in Equation (3.4) is the complexification of the Lie algebra of

contact vector fields

Cont(J'R*)®C = { Y € D(J'R)®C | Y = Xy, f € C(J'R*)&C}.
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The inclusion map

I : Cont(J'R?)— Cont(.J'R?)®C,

where
Rel = Im(il) = Idcont(.1R2),
is an injective Lie algebra homomorphism. Hence Cont(J!R?) is a Lie subalgebra of
Cont(J'R?)®C.
3.2.3 Prolongation of D(J°R?) and Cont(J'R?)

Consider the vector field Wi = a10, + b10y + 10, € D(J°R?) and the complex
vector field Wo = a20, + b20y + 20, € D(J'R?)®C. The first prolongation of W7y is

Xy, € Cont(J'R?) and the first prolongation of Wy is Xy, € Cont(J'R?)®C, where

fi = ¢j —ajuio — bjupr, j € {1,2}.

It is known [KL1] that the k' prolongation of the vector fields X, € Cont(J'R?)

and Xy, € Cont(J'R?)®C is

k k—m
X = S S DD ()0 — Our (£) Dl gt — By () Dyl 5 € {1,2},
m=0n=0

where

D, = 0, + Z U(m+1)nOumn> Dy = 0y + Z Umn(n41) Ot

m,n>0 m,n>0

k k—m k k—m

Dx|J7€ = 835 + Z Zu(m+1)n8umn’ DI|J’“ = ay + Z Zum(TH’l)aum"'

m=0n=0 m=0n=0
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3.2.4 The Cartan Distribution on J*R?2

The distribution on J*R2

Cr = Ker(wmn | m+n < k), wmn = dumn — Um1)ndT — Upny1)dY

is called the Cartan distribution. Note that when & = 1 the Cartan distribution is the

contact distribution.

It is known [KLV] that if L ¢ J*R? is an integral manifold of the Cartan distrib-

ution such that the map
7 L — R?

is a diffeomorphism, then there exists a unique function h € C*°(R?) such that L is equal

to the k" prolongation of the integral manifold Lj defined in Equation (3.3)

L=r®

3.2.5 Lie Transformations and Lie Vector Fields
A diffeomorphism
F: JFR? — J*R?
is called a Lie transformation of J*R2 if for any pair of integers i,j € Z>o with i 4+ j < k
F*(w;j) = 0 (mod (wpm | m+n < k)).

A vector field X € D(J*R?) is called a Lie vector field on J*R? if its flow consists

of Lie transformations. Let Lie(J*R?) denote the space of all Lie vector fields on J¥R2. If
Y € Lie(J*R?), then

Ly(@ij) = Y ApuWmns Ay, € C*(J'R?).
m+n<k
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It follows from the Lie-Bicklund theorem that all Lie transformations are prolon-
gations of contact transformations, see [KLV]. Hence the space of Lie vector fields on J*R?

is the k'™ prolongation of the space of contact vector fields on J'R?
Lie(J¥R2) = Cont(J'R2)F = { X fe coo(JlR?)} .

Consider the subspace of D(J*R?)®C that consists of all vector fields that preserve

the Cartan distribution

{ Y € DUJMR?)&C | Ly (Wij) = Y ApuWnms Ay, € COO(JkR2)®<c} c D(J*R?)®C.
m+4n<k

(3.5)

For any vector field Y € D(J*R?)®C there exist vector fields Y7, Ys € D(J¥R?) such that

Y = Y7 +14Y5. Hence if Y preserve the Cartan distribution, then

Ly (wij) = Ly, (wij) + 1Ly, (i) = Apup@rn-
m4n<k

It follows that Y7,Ys € Lie(J*R2). Hence the subspace described in Equation (3.5) is the

complexification of Lie(J*R?)
Lie(J*R?)@C = Cont(J'R?)*®C = (Cont(J'R*)&C)" = { XM fe C°°(J1R2)®(C} .
The inclusion map
I : Lie(J*R?)— Lie(J*R?)®C,

where

Rel = Im(z]) = IdLie(JkR2)7

is an injective Lie algebra homomorphism. Hence Lie(.J¥R?) is a Lie subalgebra of

Lie(J*R?)®C.
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3.2.6 Invariant Functions and Differential Invariants
Let f be a Lie subalgebra of Cont (J 1]RQ) . The space of functions
Fr = {h € CRo (TR | X (h) = 0, VX[ € f}

is the algebra of invariant functions under the action of f on C*(J*R?).

Let j be a Lie subalgebra of Cont (J 1]RQ) ® C. The space of functions
T = {h € CR (TR @ C | XW(h) = 0, WX/ € j}

is the algebra of invariant functions under the action of j on C*°(J*R?) @ C.

(3.6)

Proposition 9 Let q be any Lie subalgebra of Cont (JIRQ), and let Qy, be the algebra

of invariant functions under the action of q on C®°(J*R?). Then the algebra of invariant

functions under the action of ¢ @ C on C®°(J*R?) @ C is Q @ C.

Proof. —For all functions h € 9 ® C there exist functions hq, he € 9} such

that

h =h1 + ths.

Hence for all contact vector fields Xy € q
XP(n) = XM () + X (he) = 0.
«—=Suppose that the function h € C*®(J*R?) ® C is a q—differential invariant
XP(n) =0, ¥X; €.

There exist functions ki, hy € C*®°(J¥R?) such that

h = h1 +ths.
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Hence

XP(h) = XP(h) +iX P (ha) = 0, ¥X; € q.

It follows that hi, he € Q) and

he 9,xC.

The projection map for any integer k € Z
T k—1° JFRZ - JF-1R2
induces the following exact maps for any point p € J¥R?

0 — Coo(Jk—IRQ) Trk,_k;l Coo(JkRQ),
k2 (Thk-1), k—1mp2
T,(J*R?) T T (TR IR?) — o,
0 — C®(JF1R2) @ C 25 0= (J*R?) © C,

T,(J*R*) @ C (riir). T,(J*'R*) @ C — 0.

For any vector fields X7 € D(J°R?) and X5 € D(J°R?) ® C, the k™ prolongation
of X is a Lie vector field X fk) € Lie(J*R?) and the £ prolongation of X3 is the complex-
ification of a Lie vector field X2(k) € Lie(J*R?) ® C. Hence the vector fields X; and Xy are
(7Tk k71> —projectable. So for j € {1,2}

k k—
(mppr), X = x50,

It follows that for any smooth functions f; € C®(J*¥~!1R?) and f, € C®°(J*"1R?) ® C

X8 = (i), X0 = XD (a1 ),
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for j € {1,2}. Hence the map 7, ;—1 induces the canonical inclusions

(Thp—1), = Fr-1—= F,

(Thp—1), + Th—1 = Tk,

where Fj, and Jj are the algebras defined in Equation (3.6) and (3.7).

Definition 10 The algebra of f—differential invariants is the following injective limit

F=lmF,= U Fp.
k—o0 k€Z>o

Definition 11 The algebra of j—differential invariants is the following injective limit

J=lmJ,= U J.
k—o0 kEZZO

3.3 The Lie Algebra g*

The inclusion maps

I : D(R?) — D(J'R?),

I, : DR?)®C— DJ'R*) ®C,

Ij(flax + f28y) = flaas + f2ay + Oaua j € {172}7

are injective Lie algebra homomorphisms. Hence any Lie subalgebra of D(R?) is a Lie
subalgebra of D(J°R?) and any Lie subalgebra of D(R?) ® C is a Lie subalgebra of

D(J'R?) ® C.
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Consider the following spaces for k € Z

o* = {(99.)® | g0},
b° = {9 |gc0},
gt = {Vg(k) |g€(9}.
The spaces h*, h* and g¥ ® C are infinite dimensional Lie subalgebras of Lie(.J*R?) ® C, and

g" is an infinite dimensional Lie subalgebra of Lie(J*R?). If we consider g¥ C Lie(J*R?)®C,

then
k olg [/ k k=m /m,
609 =0~ £ 5 (5 (7 a0 ). (3.
1=10% m=ln=0
Vi = (90:)® + (50:) ™. (3.9)

Definition 12 Let Hy, denote the algebra of invariant functions under the action of h on

C°(J*R?) @ C
My, = {h € O2(JFR) @ C | (98,) P (h) =0, Vg € o} .

Definition 13 Let G denote the algebra of invariant functions under the action of g on
C>=(JFR?)

G = {h e Ci(J'RY) | VP(h) =0, vg € O}
Proposition 14 The algebra of invariant functions under the action of g ® C on

C2 (JFR?) @ C is

loc

Gr ® C = Hy, N Hy,.
Proof. = For any function f € H;, NH;,

V() = (90:) P (f) + (30:) ) (f) = 0, Vg € O.
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Hence
Gr ® C D Hy N Hy.
<=For any function f € G ® C
(Ve —iVig ™ (f) = 2(99.)W(f) =0, Vg € O,
(Vo +iVi) P (f) = 2(g0-)P(f) =0, Vg € O.

Hence

gk@CgﬂkﬂHk.

3.3.1 The Distribution II*
It is known [KLR] that if M is a real (n 4+ m)—dimensional smooth manifold and
T:TM®C—M

is the complexification of the tangent bundle, then a complex distribution P on M is a
smooth field

P:ae Mw— P,=Pla)CT,M®C

of complex subspaces of dim¢ P, = m.
A complex distribution P of rank m on a (n + m) —dimensional real manifold M
is called completely integrable if it has locally n functionally independent first integrals, i.e.

complex-valued functions I; € C*°(M) ® C such that
Ann(P) = (dI4,..,dIy)¢ .

A complex distribution P is involutive if [X,Y] € D(P) for any X,Y € D(P).
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Theorem 15 [KLR] Let P be a complex involutive distribution such that P+ P is an invo-

lutive distribution and dimc(PNP) = const. Then P is a completely integrable distribution.

Prolongations of the holomorphic vector fields define the following complex distri-

bution on J*R2

I = <(g(9z)(k) lge (9>C

It follows from Equation (3.8) that

1= (0. 3 ()0 1€ (1 }>C.

m=ln=0
Hence II* has complex dimension k + 1.
The conjugate of the complex distribution II* is

m

=Iin=0

= <(gaz)<k> g€ o> <az, 55 ( ) Uy = Ounms | 1 € {1, ....,k}>c.

Since

I n1* = o,

it follows that the complex distribution

ko TTk = *) 4 (50,)®) _(y®
" o II <((haz) +(992) !g,hEO>(C <Vg \g€O>R®C

has complex dimension 2 (k +1).
Corollary 16 The distribution IIF is completely integrable.

Proof. For any functions g,h € O

(99.)®), (hd,)® | = ((gh. — hg.)d,) ™ e TI*,

(3.10)

(3.11)

(3.12)

(3.13)
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] = vy e

Hence the distributions II* and II¥ @ II* are involutive. So by Theorem 15 the distribution
1% is completely integrable. m

It follows from Equation (3.13) that the first integrals of the complex distribution
¥ @II* are invariant functions under the action of g ® C on C*(J*R?)® C. By Proposition
9 the algebra of invariant functions under the action of g ® C on C*®(J*R?)® C is G, ® C,
where Gy, is the algebra of invariant functions under the action of g on C*°(.J*R?). Therefore
for K = (k + 1)(k 4+ 2)/2 + 2, the complex distribution IT* @ TI* has locally K — 2(k + 1)

functionally independent real first integrals
(" e o),
Consider the inclusion defined in Subsection 3.2.6
Or — Ghy1-
By the argument above the distribution II¥ @ II* has one first integral of order 0
Iy € Ci2(J"R?)
and [ — 1 first integrals of order [
{hY'h € O (TR

for 1 <1 <k, such that locally the K — 2(k + 1) functions

-1
{IO} QSLZJSIC {IlJ}j:l

are functionally independent.
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It follows from Equation (3.10) that the first integrals of the distribution IT* are

invariant functions under the action of h on C*°(J*R?) ® C. By Equation (3.11) and (3.12)
Zugg € C°(JFR) @ C, 1<j <k

are first integrals of the distribution IT¥ and not first integrals of ITI¥. Hence locally the

K — (k + 1) functionally independent functions

_ k -1
{ZhUdugst oy Ulo}, Y st m

are first integrals of the distribution II*.

The following table shows the number of locally functionally independent first

integrals of pure order from 0 to k for the distributions IT*, II* and II* @ IT*.

Order I1* I I* & 1%
k k k k—1
l l l -1
1 1 1 0
2 1

The algebras of invariant functions under the action of § and b on C*®°(J*R?)® C

and g on C*®(J*R?) are

He = {f € CZ%OC(JICRQ) ® C | f= f(Z, UpT, ""UOE’I()v -~-aIk,k—1)} ,
Hi = {f €CR" R @C | £ = f(z,u10, s trs Tos oo Teio1) |

g, = {f ECR(J'RY) | f = f(IO,IQ,]&l;I?),Za--wIk,k—l)}.
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3.3.2 Invariant Functions of Order 0, 1, 2 and 3

For any function g € O the first, second and third prolongations of the vector
fields V, € g and g0, € b are

VY = 910, + 920y — (912u10 — g1yuo01) Duso — (g12%01 + G1y210) Dy

(gaz)(l) = gaz - gzulf)aulﬁ,

Vg(2) = 910z + 920y — (g12u10 — g1yUO1) Ouyo — (g1201 + glyulo) Aupn
+(—2u20912 + 2u1191y — U10G122 + L01912y) Ouso
+(—u2091y — 2912011 + g1yUo2 — U10912y — U01912x)Oury

+(—2u1191y — 202912 + U109120 — U01912y) Ougs >

(982)(2) = g0, — gzul()aul@ + (=gz2u1p — 29zu26)6u25 - gzuliaulia

V) = VI 4 (=3g150u20 + 3g1ayu11 — 391050 + 3g15U21 — Jlawat10 + Gizayto1)Dus
+(—2912yU20 — G1223U11 — G1yU30 + 291yU12 — 3G12U21 + J1ryU02 — JleayU10
—G1azzU01) Ousy
+(G122U20 — G1ay3u11 — 3912U12 — 201yU21 + G1y%03 — 29122U02
+ 91222110 — J1zoyUo1)Ouy,

+(39122U11 — 3912y U02 — 3912103 — 391yU12 + Glzayt10 + J1zzzt01)Ougs s

<gaz>(3) = (gaz)(2) - (gzzzulﬁ + 3922u95 + 3gzu3())aus() - (gzzuli + 29zu21)8u21 - gzuliaulgu

The algebras of invariant functions under the action of h and h on C*°(J3R?) @ C
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and g on C°°(J3R?) are

Ui
Hy = {f EC (IR QC| f=f (ZU;UoLululauoiauo§,7—73,1713,2>},
01U1

U
Hs = {f € Ol?c(‘]gRQ) ®C | f = f (Z>u)u10a H7u207u3071371'l372> }7
Up1U1D

~ + up2
- e 2 (JPR? (,“20,1 1 >}
Gs {f e ) flu LR

where

2, 2 2 2
—(%1“21“10 — UgyU1TUpT — UpaU 5U1T + U12U15U01)
3
Uyg

—2
3 3 2 2 2 2 .92 2 9
= 5 (ufouso + ujgui2 — uiguzg + uTgU21Uo1 + UigUps + U U
(u20 + uo2)

2 2 2 3 3 2,2
FU10UH U30 + UTeUO3UO1 T UL0UYTUI2 + U U3 + Up U221 — Uy Uga
—4dugouorugoutl — 4u10Uo1Uo2U11),

VI R S 2 2
i(—ugguaiuip + UGl TUp — UozUipla + Ui3UipUol)

3
Uy

I3 =
1
2

2 2 2 2 2
= 73(1410“30%1 — U10UYU21 T+ UTGUI2UOT — UL0UHT U3 + 2UToU0U11
(u20 + u02)

2 2 2 2 2
—|—2u10u01u02 — 2u10u01u20 + 2u10u02u11 — 2u01u02u11 — 2u01u20u11

3 3 3 3
—U19U03 + U1 U12 + Upg1U30 — U10u21).

Remark 17 It is not possible to find g—differential invariants of pure order 3 by standard

methods with Maple 11. However, it is possible to find Hh—differential invariants of pure

2 2
—UaU a1 + U3 UTFUET =
order 3. The function h = 02710 113 L2900 o it conjugate h are h—differential
u —
11
invariants. Hence I31 = h + h and I3o = i(h — h) are g—differential invariants. The

h—differential invariants of pure order 3 are computed in Maple Worksheet "h_ diff inv_3",

see Appendiz 6.
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3.4 Invariant Differentiations and Differential Invariants

Let q be a Lie subalgebra of Cont(J'R?), and let Qy, be the algebra of invariant

functions under the action of q on C°°(J*R?). Consider the derivation operator
V=MD, + )\QDy,

where A1, Ay € C*®°(JPR?) and p is the maximum order of the functions A\; and Ao. The
derivation operator V is an invariant derivative of q if the following diagram commutes for

all contact vector fields Xy € q and all integers k& > max{p — 1,1}

x (k)
IRY IRY
(k+1)

Co(JHIR?) Lo C=(JRHIR?)

If V is an invariant derivative of g, then

[XJEO"),V} =0, VX, €q, (3.14)
where
X% = 3" (D)™ (DY) ()Oupy — Ous (F)D — 00y (£)D,
m—+n>0
For any function g € Qj
XV (@) =V (57 (@) =0, vX; € q
Hence

V:Qr — Qptr.

Let f be a Lie subalgebra of Cont (J 1R2) ®C, and let Fy, be the algebra of invariant

functions under the action of f on C*°(J*R?)®C. Consider the complex derivation operator

V=MD, + )\QDy
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where A, Ay € C’OO(JPRZ) ® C and p is the maximum order of the functions A\; and Ao.
The derivation operator V is a complex invariant derivative of § if the following diagram

commutes for all vector fields X; € f and all integers k > max{p — 1,1}

x (k)
Co(JFRYYeC L C®(JFRY) @ C
v |V
X(k+1)

C®(JHHRY o C Ls  C®JFR2) @ C

Moreover,
[X}“’,v] =0, VX, €f, (3.15)
Vi Fr — Frr.

It follows from Subsection 3.2.2 that if q is a Lie subalgebra of Cont (J 1R2) , then

q is a Lie subalgebra of Cont (J1R2) ® C.

Proposition 18 Let q be a Lie subalgebra of Cont (JlRQ) f
V = (A1 + iA12) Dy + (A21 + iA22) Dy

18 a complex invariant derivative of q, then

RG(V) = )\11'Dw—|—)\21’Dy,

Im(V) = XDy + A2Dy,
are real invariant derivatives of q.

Proof. It follows from Equation(3.15) that

[Xj(roo)7 (A1 +9X12) Dy + (A21 +i)a2) Dy}

= [X](coo), 1Dy + )\21731,] +1 [X](coo), A2D, + )\22773,} =0
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for all contact vector fields X; € q. Hence
XJ(COO)v /\HD:U + )\QIIDy:| = [Xj(coo), )\12'D$ + )\szy =0.

So by Equation (3.14) Re(V) and Im(V) are invariant derivatives of q. m

3.4.1 Tresse Derivation

The total differential of a function h € C*®°(J*R?) is
dh = Dy(h)dz + Dy (h)dy.

It is known [KL1] that if the total differentials of two functions hq, hg €

C>*(J¥R?) ® C are independent, i.e.
dhl A (ihg #0

on a domain U€J*R?, then <c§h1, a?h2>(c is a cobasis of (7;)*TR?|y;. Hence for any function

h € C*®(J'R?) the total differential of h is

A Dh \ - Dh \ -

where
Dh -
Dhy _ D, (hl) D, (h2) D, (h)
Dh
ThQ Dy (hl) Dy (h2) Dy (h)

are the Tresse derivations of the function h.
Let g be a Lie subalgebra of Cont (Jl]Rz), and let Q@ be the algebra of the q—

differential invariants. If the total differentials of two functions ¢q1, go € Q are independent,
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it is known [KL1] that for any function ¢ € Q the Tresse derivations of ¢ are q—differential

invariants
Dg D
761’ 7(] c Q
Dq2” Dqx
Hence the two derivation operators
D -1
Diql _ Dy (q1) Di(ge) Dy
D
Dy Dy (q1) Dy (q2) Dy

are invariant derivatives of the Lie algebra q. Moreover, these invariant derivatives commute

[D D]—O
Dq:’ Dgo

Let f be a Lie subalgebra of Cont (JI]RQ) ® C, and let F be the algebra of the
complex valued f—differential invariants. If the total differentials of two functions f1, fo € F

are independent, then the derivation operators

D
or| |2t Dair)
D
Difg Dy (fl) Dy (f2) Dy
are complex invariant derivatives of {. Moreover,
[D D] —0
Df1’ Dfy '

3.4.2 Lie-Tresse Theorem

Let q be a Lie subalgebra of Cont (JlRQ). It is known [L, T, KL1] that there
exist gq—differential invariants, Iy,, Ig,, Ji;s Jky, ..., Jg, such that if J is an g—differential

invariant, then

D\™( D\" D \™ ([ D\™
=J Iy Iy, | o .
1= (et og,) (o) 0 (o) (o) 9)
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3.5 Invariant Derivatives of the Lie Algebra g

In this section we will find invariant derivatives of the Lie algebra g by using three

different methods. The first two methods require g—differential invariants of order three,

while in the third method we only need two h—differential invariants of order zero.

3.5.1 Invariant Derivatives of g, Method 1

In this subsection we will use the theory of Subsection 3.4.1 to find two invariant

derivatives of g.

So far, we have found four invariant functions o, I, 131,132 € G that are inde-

pendent on some regular domains in J3R?

Iy
I

I3,

I3

u,

U20 + U2
p 7
Uiy + Upy
-2
(u20 + u02)3

3 3 2 2 2 2 2 2 9
(ufouso + ujgu12 — UTgUsg + UTgU1 UL + UTgUpe + Up Usg

2 2 2 3 3 2 2
Fu10UgU30 + UTeUO3UO1 T U10UYT U2 + Uy U3 + Up U221 — Uy Uga

—4dujouorugourr — 4uroUolUo2uil),

2

2 2 2 2 2
= (ujpU30U01 — U10UHI U21 + UTgUI2UOL — U10UG1 U03 T 2UTU20U11
(u20 + u02)

2 2 2 2 2
+2u10Up1Upe — 2U10U01 Uy + 2UTgUO2UIT — 2UHT U02UT1 — 2UH] U0U11

3 3 3 3
—U19U03 + U1 U12 + Upg1U30 — u10u21).

The functions I3 1 and I3 have independent symbols

-1
(au307 8’u21 ) aulza auog) (I3,1) =2 (IQ (UQO + U02)2) (Ul(), Up1, U10, uOl) ) (316)

-1
(811,307 8uz1 ) aulga auog) (13,2) = -2 (IQ(UQ() + U02)2) (UOl, —U10, U01, _ulo) . (317)
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It follows from Subsection 3.4.1 that the two derivation operators

D

DIy
D

DI,

-1

D,(ly) Di(12) D, A1 A2 | Dy

Dy(Io) Dy(l2) D, Aa1 Aaa| | Dy

are invariant derivatives of g. The maximum order of \;;, for ¢,5 € {1,2}, is 3. These

invariant derivatives are computed in Maple Worksheet "tresse _inv__der", see Appendix 6.

It follows from Equation (3.16) and (3.17) that

D

I
DIO( 3,1)

— ([
ZDIO( 3,2)

I
DIQ( 3,1)

(I
DIQ( 32)

Jo1 + 2 (I2(ug0 + u02)2)_1

(A11 (u10u40 + uo1us1 + urou22 + uo1u13)
+A12 (u10u31 + uoruze + u10u13 + Uo1to4)) 5
Jo2 — 2 (Iz(ugo + U02)2)_1

(A11 (uo1u40 — u10u31 + uprtz2 — U10U13)
+A12 (Uo1u31 — u10U22 + Uo1UI3 — U10UO4)) 5
fa1 + 2 (Ia(ugo + u02)2)_1

(A21 (u10u40 + uo1u31 + ur0u22 + Up1U13)

+ 22 (u10u31 + uo1u22 + U10U13 + Uo1U04)) 5
faz — (I2(u20 + 1102)2)_1

(A21 (uo1u40 — u10u31 + UprU22 — ULOU13)

+A22 (uprus1 — uroU22 + Uo1UI3 — Ul0U04)) ,

where f;; are smooth functions of order less than 4, for 7 € {0,2}, j € {1,2}. Hence

91(1o, Iz, I31, I32)

D D
———(I3,4,) + g2(o, 12, I31, I32) ———(I3,4,) = 0
Dl
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if and only if g1 = g2 = 0, for mq, mg € {0,2} and j1, jo € {1,2}.
It follows from computations in Maple Worksheet "dep inv" that

D

D D
—— (I39) = L2((I5115 4+ 2) ——(I35) — Ipl39— (T
DIO( 32) = 515 ((I3,112 + )DI2( 32) — I2 3’27)[2( 3,1))

D D D
Iy, I, 131, I390) ——(1I. Iy, 1o, I31, I30) —— (1. Iy, I, 131, I39) —— (1. =0
91(1o, Iz, I3, 32)2)[2( 3,1) + 92(lo, I2, I31, 32)DI2( 3.2) + g2(lo, I2, I31, 32)17[0( 32) =0,

if and only if g; = 0, for j € {1,2,3}. Hence

D D D
Gy = {f eC (R?)|f=f <I07127I3,17I3,27 ﬁ(13’1)’ ﬁ(ﬂﬂ); 2)]2(13’2>) } :

Theorem 19 For any integer m € Zy the m + 2 functions

Imt3my2 = <DIQ> (I32) s Imi3j+1 = (DIO) (DIQ> (I31), n€{0,1,....;m},

are g—differential invariants of order m + 3. Moreover, these g—differential invariants are

independent, i.e.

m—+2
> Gilnis; =0, gj € Gmiz = g; =0, j €{1,..,m+2}.
7j=1

For any integer k € Z. the algebra of invariant functions under the action of g on JF(R?)
18
Gr = {f cC(J'R?) | f = f(—707—72,f3,1,-73,2,---,Ik,k—1)}.

Theorem 19 will be proved in Subsection 3.5.3.

3.5.2 Invariant Derivatives of g, Method 2

In this subsection we are seeking invariant derivatives of order less than 3. The

first step is to find derivation operators Vi and Vg such that
Vi(l2) = hi(lo,I2,131),

Va(lz) = ha(lo, 2, I32),
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where 75 0, for i € {1,2}, and the g—differential invariants I3 ; and I3 are as defined

813 i
in Subsection 3.5.1.

The second step is to compute the commutator for j € {1,2}
)

If the commutator is zero for any function g € O, then V1 and Vs are invariant derivatives.
Let us start at the first step and find a derivation operator V; such that Vi (I3) =

hi(lo, I2,13,1).

Vi(ls) = (AD, + BD,)(I)

- A(%eru 88]2 +u20(;91120 +unaaulozl) +
B<aaj2+ 018012+u1108[ + 02885021) +
u30 <A§I20> + ug21 (Agjjo + B;Z)) +
u12 (Aaaj; + B;jfl> + up3 <Baaj(]22> .

The function I3 is linear in the coordinate functions of third order. Hence the functions

A and B must satisfy the four equations

oL, Ol )
Aﬁjo = au:z; f(IO,IQ) =2 (IQ('LL20 + U02)2) ! UlOf(107I2),
8]2 812 8_[31 9 _1
A B = = _—=f(Ip,I) =2 (I Io. I
dury | dum 8u21f( 0,I2) = 2 (I2(u20 +u02)*)  uorf(lo, I2),
A = 22 f(Ig, I2) = 2 (1 Io. I
8u02 6“11 aumf( 0 2) ( 2(U20 +u02) ) ulof( 0, 2)’
oL _ Ok,

ugz  Ougs f(lo, I2) = 2 (Iz(u20 + U02)2)_1 uorf (1o, I2),

for some smooth function f.



50

The four equations hold for the functions

uo1 U1 3
B= 55—, A= 5——, f(lo,]2) = -15/2.
udy + ug, uiy + ufy

Hence we get the derivation operator

u10 U1
2 2 Ha 2 2
Uiy + Upy Uiy + Upy

V= D,.

Now, let us find Vy such that Vy(I2) = ha(lo, I2, I32). By following the procedure
above, we get the derivation operator

U1 u10
2 2 YT 9 2
Uiy + Upy Uiy + Uy

Vs = D,.

Note that if V1 and V3 are invariant derivatives of g, then V;(Iy) € G for j € {0,1}.

Let us check that this is true before we do the last step

—uo1 u10
Vi(lo) = (D L U ) (W) =0€eg,
o+ ud T udpud,

U10 uo1
Vollp) = | ———D,; + ———-=7D u)=1€4g.
2(lo) <U%o +udy " udy+udy y> (u)

Let us compute the commutator

[(Vg)°, V] = (91D( A1) + 92Dy (A1j) — A1jg1e — A2jgy

1>m+n>0

+(91D2(A25) + 92Dy (A25) + A1g1y — N2jg1e

— > (D)™ (D" (w1091 + 0192)Du,, (N2j) | Dy

1>m+n>0

for V; = XDy + Ao Dy. It follows from that Appendix 77 that

{V"(OO)’VJ} =0, je{l,2}, Vge O.
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Hence the derivation operators

1 1

Vi = 10Dz + ug1Dy), Vo = ——5-
1 (u10D5 01Dy) 2 2,

T2 1l (—u01Dy + u10Dy) ,
10 01
are invariant derivatives of g.

The commutator of V1 and Vs is
V1, V3] = —12Vs.
Theorem 20 For any integer m € Zy the m + 1 functions
Imt2,j+1 = (V1) (Va) (1), j €{0,1,...k}

are g—differential invariants of order m + 2. Moreover, these g—differential invariants are

independent, i.e.

m+1

ZngerZ,j =0, g5 € gm+1 = g; = 0,7€ {1a ey M+ 1}
j=1

For any integer k € 7 the algebra of invariant functions under the action of g on C>(J*R?)
18
Gy = {1 € Cin(J"R?) | f = fllo Io. Iy, Ty o k1)

Theorem 20 will be proved in Subsection 3.5.3.

Remark 21 For k > 3, the g—differential invariant Iy ; defined in Theorem 20 is not
equal to the g—differential invariant Iy, ; defined in Theorem 19. In the following sections
Iy, ; will denote the g—differential invariant defined in Theorem 20. The two g—differential
invariants of pure order three used in Subsection 3.5.1 are

I3
I3

I31+ I3

IOld — _9
3,1 3 ’
IZ

old __
1372 - 2

The computation is done in Maple Worksheet "dep _inv_n_o".
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3.5.3 Invariant Derivatives of g, Method 3

The methods used in Subsection 3.5.1 and 3.5.2 required g—differential invariants
of order three to generate the algebra G. In this subsection we will use two h— differential

invariants of order zero

u,z € H,
to generate the algebra G.
The derivation operators
1 i
% P9 Daw]| || —Z—fé 1] |p,
> [P D) |p ulw o| |

are invariant derivatives of §.
The derivation operator D; is an invariant derivative of . Hence Dz(u) = uopj is
an h—differential invariant.

Note that for any integers k, j € Z>o where k > j

(32) " (5) o

10/ 5% 10

where f is a smooth functions of order less than k + 1.

Theorem 22 For any integer m € Zx>o the m + 1 functions

D\ (DY ,
Qm+1j+1 = (Dz) (Du) (uo1), 7 €10,1,...;m}

are h—differential invariants of of order m + 1. Moreover, these h—differential invariants
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are independent, i.e.

m—+1
Zngm-i-l,j = 07 gj € Hm - gj = 07 .7 € {17"7m+ 1}
7=1

For any integer k € Z, the algebra of invariant functions under the action of b on

C>® (J*R?) @ C is
Hy = {1 € CR(T"R) | f = J(2,0, 008, Q1 e Qi) |-

Proof. The theorem follows from Subsection 3.3.1 and Equation (3.18). =
Since the derivation operator Dz is an invariant derivative of h and D, is an

invariant derivative of b, it follows that

D 1
2 _ - p = _—__ D
Du u;p ~ Du ugp

are invariant derivatives of both h and h and hence also invariant derivatives of the Lie

algebra

gC=hah.
Moreover,
D P|__, (D D
Du' Du| *\Du Du)’

It follows from Proposition 18 that the derivation operators

D D 1
1
= (=0 = )=— D D
Vi 3 <’Du + Du> 2, (u10Dg + u01Dy) ,
D D 1
= i |l=—=-— )= —F D, — uigD
Va2 2 <Du Du> w2y + U2, (u01 Dy = u10Dy)

are invariant derivatives of g.
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Lemma 23 For any integer m € Z>q the m + 1 functions
Intoj+1 = (V)" (Va) (I), j €{0,1,...,m}

are g—differential invariants of order m + 2. Moreover, these g—differential invariants are

independent, i.e.

k
> gilmi2j1 =0, gj € Gmi1 => g; =0, j €{0,.,m}.
j=0
For any integer k € Z the algebra of invariant functions under the action of g on C>®(JFR?)
18

Gr = {f € CRo(JFR?) | f = f(107I27I3,17[3,27-'-7Ik,k71)}-

Proof. The lemma follows from Theorem 22 . m
The invariant derivatives of g that we found in Subsection 3.5.2 are equal to Vi

and V5. Hence Theorem 20 follows from Lemma 23.

Theorem 24 Suppose that the invariant derivatives V1 and Vs are equal to

Vi fir fiz| |Va
Vs far fa2| | V2

where the maximum order of the functions fi; € G is k42 for k € Z>q and

fiifoe — fiafor #0, faa #0.

Then the k+n+ 1 functions

A n—iy -~

i .
Kniki2i+1 = Vi Vy(Ikp21), i1 € {0,..,n},

Kn+k+2,i2+n+1 = @;(IkJr?,inrl)’ i2 € {17 ) k}a
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are g—differential invariants of order n + k + 2. Moreover, these g—differential invariants
are independent

n zlAzl

ZguVQ Ik?+2 Z2+1 + ng VQ Ik+2 1) = O Giss Giy € gk—i—n—l—l = Gi, = Gi; = 0.
io=1 11=0

For any integer m € Zy the algebra of invariant functions under the action of g on

O (J™R?) is
gm - {f € Cl%oc(']mR2) ‘ f = f([(), m?Ik,kflvKk+1,1....Km,m—1)}

Proof. For iy € {1,....k}

Volii2i,11) = (faVi+ f21V2)" (Tnsipt1)
n
= hig + (f22)" Uksnt 2z 414n) + D i (F22)" 7 (fo1)? Tkt ms2,iz-4nji1)
=1
where h;,, hji, € Gryny1. Hence
k
An
> 90 Vo (Tis2,ip1) =0, giy € Grpna1 = gi = 0.
i2=1
We will prove that
n .
n—i1 o 81
> 9Vi VY (Tkp21) =0, giy € Gransr = giy, =0 (3.19)
i1=0
by induction.
Forn=1
Villgso1) = firlkest + fialirse,
Vollri21) = fialkisa + foalniza

Since fi1fa2 — fi2f21 # 0, it follows that Equation (3.19) holds for n = 1.
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Suppose that Equation (3.19) holds for n = m. Then

m

m—i 7
> 9uViVy Vo (Trs21) = 0, gj € Gepmez => gi, =0,
11=0

m—1i %
D 9uVeVi Vo (lks2n) = 0, 5 € Grmra = giy = 0.
11=0

Since

~ m+1 ~m+1
giVi (Tey21) +92Vo  (I21) =0, 91,92 € Gimia = g1 = g2 =0,

it follows that Equation (3.19) holds for n = m + 1. Hence Equation (3.19) holds for any
integer n € Zx>q.

It follows that

n 7
ZgZIVQ Ik+2 22+1 + Zglz 1v2 Ik+2 1) - 0 g] S gk+n+1 — Gis = Giy = 0

i9=1 11=0

We have that the invariant derivatives defined in Subsection 3.5.1 are equal to

D
| _ 1 Iso —I31| | V1
D I39
— ’ 1 \V4
DI, 2

Hence Theorem 19 follows from Theorem 24.
3.5.4 Invariant Functions of the Lie Algebras sly(C)z and co(2)
It follows from Subsection 2.2.1 and 2.2.4 that
3 == <‘/17 ‘/’ia VZ: %Z? V227 ‘/'Lz2> C 97

5= <azazazaz2az> C b,
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are Lie algebras. Moreover,

3®C=sd5. (3.20)

Let S denote the algebra of s—differential invariants and let Z denote the algebra

of 3—differential invariants. It follows from Equation (3.20) that
ZeC=8nS. (3.21)
For an integer k € {0,1,2} the distribution defined in Subsection 3.3.1 is equal to

I — <(az)<k>, (20,)®), (z2az)<k>>c .

Hence

Sk=Hy, Zx=Gr, k €{0,1,2}.

For any integer k£ > 3 there exist locally £ + 1 functionally independent s— and
3—differential invariants of pure order k. Theorem 22 and Lemma 23 give us k s— differential
invariants and k — 1 3—differential invariants of pure order k. Hence we are seeking two real

functions I k1 and jk,g of pure order k£ such that
Iii, Iy € 2y, I, Iy o ¢ G,

glfk,l +92f1g,2 =0, 91,92 € Zp—1 = g1 =92=0,

for all integers k > 3. It follows from Equation (3.21) that
jk@,fkg eSnS.

Since there exist locally k£ functionally independent h— differential invariants of pure order
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k, it follows that

91(fk,1,fk,2) = 92(U167--7uk6)€7'_f7
93(fk717jk,2) = 94(Uoi,--,uok)€ﬂa

for some nonzero functions g1, g3 € Ci2(R?), g2.g4 € C22(RF).
For k = 3 it is well known [KL2| that the Schwarz derivative is a differential

invariant of the Lie algebra s

2upUsp — SuZ-
SD — fZO.
Y16

Note that
SD e H,SDeH, SD¢H,SD ¢ H.
Hence
Is1, I3 € 2y, I3y, I3 ¢ G,
for
Iy = —1(SD+5D)

1
4 2 5 5 4 2 4 2 3
(ufo + ugy)
3 2,2 2 4 2 2 2 .3
—48u10uo1unu02 + 72u10u01u11 — 6U01u20u02 + 36U10U01U20u02 — 12u10u01u21
dufgug 6u10ug 18urougy urz — 48utguf A8ugug
+4uigug o3 + Ouloug uzo — 13uioug U2 U0UHT U20UT1 + 45U UG UT1U02

4 2,2 2 4 2 4 2 4 4

3,2 3,2 2 .2 2 5 5 4 2
+4U10u01u30 — 12U10U01U12 — 18u10U/01U20 — 2”10“30 + 6”10U12 + 3U10U02),
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Iy = —i(SD-5SD)
_ 1 2uud 2 .3 3 02 _ 94y 2 3.2
= 2 V4 (—2uiguguso + 6uigug uiz — 6urouy uge — 24ufguorui; — 6uioup usg
(uip + upy)
5 5 3.2 4 4 3.2
+upruso — 3U01U12 + 2u10u01u03 + 3U10’LL01UO3 — 9’LL10U01U21 + 24u10u01u11
+6ug Juf 3uf 6us 6u] 6ug
U1 U11U02 + U gUOIUI2 — SUTUE1 U0 — OUgU0ULL + OUGUII U2 — OUG; U20U11

2 2 2,2 3 3 2 3 2

3 3,2 5 5
—12u10u01uQ0u02 — 6u10u01uQ1 — UjgUo3 + 3U10UQ1).

It follows from Subsection 3.5.3 that the derivation operators

1 - D 1
=—D,, V=—-—=—Ds,

D
V=_—
Du  ugg Du  wupg

are invariant derivatives of the Lie algebras b, b, s and 5. Hence

Hence the two functions

Iy = VH(SD)+ V" (SD),

Iyipp = i (Vk (SD) - V* (ST)) ;

are 3—differential invariant of pure order £ + 3.

Therefore the algebra of invariant functions under the action of s and § on C*®°(J*R?)®



60
C and 3 on C®(J*R?) are

S = {f€CRUIRYDC| [ = [z ugr, g s, Fas o Tip 1, SD, ., V2 (SD)) },
Sy = {f € CfOOC(JkR2) QC| f=flz,usg, - ug, u, Io, ..,Ik7k_1,SiD,..,@k73 (ST))},
Z = {f € CR(JFR?) | f = f(u7I2,--7Ik,kflaf3,17j3,2;--ajk,lafk,2)}7

where the functions I;; are as defined in Lemma 23.
The subspaces

¢ = <V17 V;:a‘/z’ ‘/ZZ> C 3s
w =(d,,20,) C s,

are Lie algebras. There exist locally three functionally independent ¢— and to—differential

invariants of pure order two. The function

is a tv—differential invariant. Hence the two functions

1 Y20 | Up2 (u20 — uo2) (U%O — ugl) + 4duijugiulg

2l2 T2 T y g2 :
Yo Yo1 (u3o + ug;)

i (um  wes |  2(u20 — uo2)uoruio — 2uir (ufp — uf)

T\t (o +15,)° |

are c—differential invariants.

2
Ugp ) 1 Ugp | Usp Ugp
Vg, ) T e\ ) Ty gy
10 10 10 10 10

is an c¢—differential invariant of order three. Note that

2
SD =2V (“30) - (“30> .
1o 1o

The function
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Chapter 4

Differential Invariants of the

Deformed Representations of g

This chapter is a generalization of Chapter 3.

4.1 The Lie Algebra gg

4.1.1 The Lie Algebra Homomorphism K : h —D (J°'R?*) @ C
In this subsection we are seeking a Lie algebra homomorphism
Ky:h—D(J'R?*) & C,
K(90:) = 90 + Mg, u)0u,

where \(z,u) € C*°(J'R?) ® C. Hence the map K, must be linear and preserve the com-

mutator bracket, i.e.

A{g, b}, u) = ghzAn(h, u) = hgzAg(g,uw) + Mg, w)Au(h, u) = Au(g, wA(h,w),  (4.1)



62

where {g, h} is the bracket defined on O in Subsection 2.2.1.

It follows from Equation (4.1) that for any constants ¢, cy € C

A{e1, e}, u) = Aer, w)Ay(e2,u) — Ay(er, u)A(c2,u) = 0.

Hence the function A(z,u) is separable, i.e.

AMz,u) = Z(2)U(u).

It follows from Equation (4.1) that

Z({1,2}) = Z(1) = Z'().

Hence

Z(z) = zc, ceC.

Thus the map

Ky :h —D (J'R?) & C,

K(90:) = g0: + Mg, u)0u,
is a Lie algebra homomorphism if and only if
Mz, u) = zU(u), U(u) € C (J0R2) ® C.
Let hy = Im(K)) denote the image of the Lie algebra homomorphism

bo ={9(0:+U(u)dy) | g € O}.
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4.1.2 A Lie Algebra Isomorphism

In this subsection we are seeking functions G(u) = G (u)+iG2(u) € C (J'R?)@C
such that the R—linear map

2Re : hg — D (J°R?)
is an injective Lie algebra homomorphism.
Since
g (0 + G(u)dy)

= 1 (910: + 920)) + (1G1(u) — g2G2(u)) By + i (5 (920: — 910y) + (92G1(u) + g1G2(u))dy)

we have

2Re (g (0: + G(u)0)) = Vg + 2(91G1(u) — g2G2(u))Oy.

If the map 2 Re is a Lie algebra homomorphism when restricted to hr, then

2Re (9 (9: + G(u)du)) ,2Re (h (9 + G(u)du))]
= [V +2(91G1(u) — 92G2(u))0u, Vi, + 2(h1G1(u) — haGa(u))0y]
= Vg +2(Vg(mGi(u) — haGa(u)) — Va(91G1(u) — g2G2(u))) Ou

—4 (g1ha — higa) (G1(u)Gy(u) — G (u)Ga(u)) By
is equal to

2Re g (9. + G(u)dy) , h (9; + G(u)dy)]

= Vign +2(Vg(hGi(u) = haGa(u)) = Vi(91G1(u) = 92G2(u))) Ou.

Hence

G1(u)Gh(u) — G (u)Ga(u) = 0.
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So it follows that the linear map 2Re : hg — D (JORQ) is an injective Lie algebra homo-

morphism if and only if

where F(u) € C* (J°R?) and b = by + iby € C.

Hence the three spaces
bre = { gWr =g(2) (0: + 3F(w)bdy) | g € O},

bre = { gWm =3(2) (0: + 3F (w)bdy) | g € O},

gy = {Vrog = Vg + F(u)(g1b1 — g2b2)0y | g € O},

are infinite dimensional Lie algebras.

If we consider ggp as a Lie subalgebra of D (J O]RQ) ® C, then
Vg = 9(2) (0 + 5F(u)bdy) + § (0= + 5F(w)bd,) , Vg € O.
Moreover, the complexification of ggp is equal to the direct sum
grb © C = bpy @ by,
Consider the linear subspace of hpy
spp = (27 (0. + §F(w)bdy) | j € {0,1,2}). C bre.
Since
(27 (0 + §F()bd,) 2" (0: + FF()bd,) | = (1= )2/~ (0. + §F (w)bdy) € sy

for j,1 € {0,1,2}, it follows that s, is a 3—dimensional Lie subalgebra of s isomorphic

to sla(C). Hence the space

370 = (VEvs VEvi, VEbz, VEbizs Vibe2, Vipiz2) C 8Fb,
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is a Lie algebra isomorphic to sla(C)g.

4.2 The Lie Algebra g%,

In this section we will use the results from Chapter 3.

Consider the spaces
gy = { Vi) = Vi + (F()(brg1 — b2g2))0) ™ | g € O},

k k
by = { 9Wiy = (9(2) (9 + 3Fpa) Y g € 0}
Fork > 1 f)’}b is a Lie subalgebra of Lie (JkRz) ®C and g’}b is a Lie subalgebra of Lie (JkRz) .
Let H? denote the algebra of the bz, —differential invariants, and let GF® denote the algebra

of the gprp—differential invariants.
Proposition 25 We have that
G @ C = HFb A HF
Proof. = For any integer k € Z>¢ and any function f € H,I:b N ﬂka

VI () = (9(2) (0: + F(@bda)) ™ (f) + (3(2) (05 + §F(w)bd.)) "™ () = 0, Vg € O.

ng ®CD HFb m/}__(Fb

<=VFor any integer k € Z<¢ and any function f € g,fb ®C

(9(2) (0= + s F@pa.)) ™ (1) = V() — Vi (1) =0,Yge O

(3(2) (0= + 3F@)B0)) ) (f) = VI () +iVi(f) =0, ¥g € O.
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4.2.1 The Distribution Q%,

In this subsection we will use the results from Subsection 3.3.1.
For every function F(u) € C* (J°R?) and constant b = by + ibs € C the complex

distribution
O = ((9(=) (0: + §F (b)Y g€ 0)

has complex dimension k + 1 and
Q%@Q%z<%%\g€@>®@

has complex dimension 2(k + 1).

For any functions g,h € O

[(9(=) (8 + 5F@p0.) ™, (h(2) (0 + 3P ()bd,)) ™| € O,

k) <ok ~
[V}gb;’ VI«(“bH € Oy, ® Q.-

Moreover
ok, nQk, =o0.
Hence the distribution Q'}b is completely integrable.

The first integrals of the complex distribution Q'}b &) Q]}b are invariant functions
under the action of ggy, on C'* (J k]R2) ® C. Hence the distribution Q?b @ Q’;b has one first
integral of order zero

Jo € C2 (J’“RQ)

and [ — 1 first integrals of order [ for 1 <1 <k

Uhatizh € Cis (J'R?), 2 <1<k



67
such that locally the K — 2(k + 1) functions
Jo U {J
2<i<k I =1
are functionally independent, where
K=((k+1)(k+2)/2+2.

The first integrals of the distribution Q]}b are invariant functions under the action

of hpy on C* (J kRz) ® C. Hence the distribution Q’;;b has one first integral of pure order [
Q. €C2 (JkRQ) ®C, 1<1<Fk,
such that locally the K — (k + 1) functions

Jo U {J M1y
02§l§k{ 17]}3:1 1<m<k @m

are functionally independent.
The algebras of invariant functions under the action of bz, and hpp on
ce° (JkRQ) ® C and ggp on C (Jk]R2) are
Hlfb = {fecl%oc <JkR2) ®C ‘ f:f(J07J27']3,17J3,27"7‘”6,]9*17@17"'7@/6)}7
,’:(k};?b = {fe Cfooc (‘]kR2) ®(C ‘ f:f(JO’J27J3,laJ3727“'7Jk,k—17Q1)"7Qk)}7

grt = {f € Che (JkR2> | f=f(Jo,Jz,Js,hJ:«;,z,---,Jk:Jc—l)}-

4.2.2 Invariant Derivatives of gp,

For any function F(u) # 0 € C* (JkRQ) and constant b = by + iby # 0 € C, the

following functions are hpp—differential invariants of order zero

_ 1 7 Fb
z,Jo—/F(u)du—ézb—ézbeH .
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The derivation operators

D Ul 17 U1p

1
= 1y - 1
pil_ 1 | Fw 2 TFw 2P
D 10 1y
ij{) F(u) 2 -1 0 Dz

are invariant derivatives of hpy.
The derivation operator Dz is an invariant derivative of hg,. Hence the following

function is a hpp—differential invariant of order one

_ UNT

Note that for any integers k, j € Z>o such that k& > j

B ) ()

kk—j k—j—n n
1 —F(u) Uo1 1 ’ U10 1
= -5 — =b
I F(u) (ul(_) - %F(U)b> nz <F(u) 2 Flu) 2°) “e-n)Ty
where f is a smooth function of order less than k£ + 1.

f=all

0

Theorem 26 For any integer k € Z>q the k + 1 functions

DN [ D\ [ ug
k41,541 <D2> <DJ0> <F(u)> , J€10,..,k}

are hpp—differential invariants of order k + 1. Moreover,

k hi ,
DN\ (DY (o Fb
jz::ogj <Dz) (DJ0> (F(U)> 95 € Hii” = 95 = 0, €{0.... k}

For any integer m € Zy the algebra of invariant functions under the action of hpp on

C> (J"R?) @ C is

HEY = {fecCp. (JmRz) ®C| f=f(zJo,Ki1,Ko1,Ka2,.... Kpum) }
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Proof. The theorem follows from Equation (4.2) and Subsection 4.2.1. m
Since D; is an invariant derivative of bz, and D, is an invariant derivative of by,

it follows that the derivation operators

D 1 D 1
DJO - U1p DZ7 - DZ;

F(u)

1
2

are invariant derivatives for g, ®C. Since

D D] _  D.D:(Jo) D D
DJo' DJo| D.(Jo)D.(Jo) \DJy DJo)’

it follows that the function

Jp = D.Dz(Jo) _ (—upy — ufp)Fu(u) + F(u)(uo2 + us)
Dz(JO)Dz(JU) (blF(u) — U10)2 + (bgF(u) + UO1)2

is an gpp—differential invariant of order two. Moreover,
A e ) (i) e (7t ) )
V1:< —b1 | D+ | =—+b2|Dy |,
(w10 = b1 F(w)® + (uoy + b2F (u))? ) \\ F(u) F(u) ’

Va= <(u1o — blF(u);;(j-L)(Qum + bgF(u))Q) <<fg(0;) i bQ) et (_ ;(12) ! bl) Dy> ’

are invariant derivatives of ggp.

Theorem 27 For any integer k € Z>q the k + 1 functions

Jet2,41 = (V1>k_j (W)j (J2), 7 €10,..,k}

are grp— differential invariants of order k + 2. Moreover, these gpy— differential invariants

are independent, i.e.

S g, (?l)k_j (%)%&) =0, g; €GP, = g;=0,5€{0,..k}.
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For any integer m € Zy the algebra of invariant functions under the action of gpp on

co (JmR?) s
Gl ={feC2 (J™"R*) @C | f= f(Jo, T2, J3.15 J3.2, eces Jnym—1) } -
Proof. The theorem follows from Theorem 26 . =

Remark 28 Note that for any nonzero function F(u) € C* (JO]R2) and b =0b; +iby € C,
we have that

lim (Vg + F () (b1g1 + bag2)) = Vs,

sy — [ [
-0 ) Fw) | Fy)’

. U0 + U2
limJ, = —F' F — 2 =—F/(] F(Iy) I
bl—>r% 5 (u) + F(u) (U%O +u%1> (Io) + F(Io)I2,
. e F(u)
limV; = —25 D D,) = F(I))V
bgr(l) 1 “%0 ¥ Ugl (u10Dz + uo1Dy) (Io)V1,
. F(u)
li = ——_ D, — u10Dy) = F(I .
bgr(l)VQ U%o n U%1 (u01Dz — u10Dy) (Io)V2

Hence the results of Chapter 8 can be obtained from the results of this chapter.

4.2.3 Invariant Functions of the Lie Algebra ;z, and cp,

For any function F(u) # 0 € C* (J*R?) and constant b = by + iby # 0 € C

consider the Lie algebras
¢k = (VEvt, Vivis Viez, Vibiz) C 30 = (Vi VEbi, VEbz, VEvizVEes2, Vipiz2) C 9Fbs

wpy= (2 (0: + 5F(w)du) | €{0,1}) Cspp = (2 (9: + 3F(w)du) | j €{0,1,2}) C b

For any integer k£ > 2 there exist locally k + 1 functionally independent ¢pp— and

1o p —differential invariants of pure order k. The function
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_ uggF'(u) — F'(u)u
(—2uy5 + OF (u)

2
;06H5W2¢H7

is an v pp—differential invariant.
For any integer k > 3 there exist locally k + 1 functionally independent 3gp— and

spp—differential invariants of pure order k. The function

V(W2)

2
2w+ oF (@)

2F, (u)ugguls + 3uygFu(u)uggbF (u) — 2Fy, (u)ulg+

bF(u) F(u)uly — 2bF, (u)?uls — 4ulgF(u) + 2F (w)ugguyg — F(u)2u3()b)

D
is an top,—differential invariant, where V = DI is the invariant derivative of h from
0

Subsection 4.2.2. Since twgy, is a Lie subalgebra of spp, it follows that there must exist a

function W3 (Wy, V(W3)) that is an spp—differential invariant. Indeed, the function
W3 = 2W3 + V(Wa)

is an spp—differential invariant.
Since

3 @C =5sp, ©5pp, ¢rp @ C = topy © 1opy,

it follows that the functions
j2,1 = Wa + W, j2,2 =i (Wy—Wa),
are ¢pp—differential invariants and

Jyin1 = VEWs + VFWs, Jyipo = VW3 — VFWs, ke Zy
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are 3pp—differential invariants.

The algebras of invariant functions under the action of ¢pp and 37 on C'™ (J kRQ)
are

Ci’ = {f € Cp. (JkR2) | f= f(JlL~-,Jk,k—laj2,17j2,2,~--,jk,17jk,2)},

zit = {f c Cp. (JkR2) | f= f(JUa--»Jk,k—laj3,17j3,27---,jk,1vjk,2)},

where the functions J; ; are as defined in Subsection 4.2.2.
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Chapter 5

Applications and Examples

5.1 Applications

For any function Q € C* (Jk]RQ) the surface &€ ={Q =0} is a PDE. A vector
field Xy € Cont (Jl]RQ) is a symmetry of & if
k [e%S)
XP(F) = Ax, s Ax, € € (JR?).
Let 0; be the flow of a symmetry vector field. If h € C* (Rz) is a solution of £, then
et(xv Y, h(.%’, y)) = ($t7 Yt ht($ta yt))7

where hy € C® (]RQ) is a family of solutions of the PDFE &.
The Lie group corresponding to the Lie algebra g consists of all conformal trans-

formations of R2. Therefore we have the following theorem:

Theorem 29 Let F' be a g—differential invariant. If the function h(z,y) € C* (]R2) s a

solution of the PDE & ={F = 0}, then the function

u(:):, y) = h(gl(xa y)v .92(-%'7 y))
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is a solution of £ for every function g(z) = gi(z,y) + iga(z,y) € O on domains where

9. # 0.

Ug0 + Up2

2 T e C* (Jk]R2) 18 a g—differential invariant.
10 T Up1

Example 30 The function 1o =

Therefore the PDE

E :{'UQO + ug2 = 0}

is g—invariant. Moreover, g acts transitively on the space sol(€) of harmonic functions.

ugo +uz 1 . ‘ - ‘
——— — — 15 a g—differential invariant.

Example 31 The function — 3
ujp tupy U

h(z,y) = 2+ y2.

s a solution of the PDE

We will verify that the function

F(z,y) = h(g1(z,y), 92(2,9)) = g1(2,9)* + g2 (2, y)?

is a solution of € for any function g = g1 +ig2 € O on domains where g, # 0 :

Fro+ Fyy 1
F2+F2 F
291910 + 9T, — 92910y + 97) + 20191y + 970 + 92910y +93,) 1
B 4(g1910 — 92919)2 + 4(9191y — 92912)> 93 + 93
A(gi, + 9i,) 1

A3+ 9393 +93) Gi+a5
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Let as compute the flow of Vi, € gry

dzx

E - gl(x7y))

dy

E - QQ(x,y),

du dx dy
= F _ - F e Se-4
7 (u) (brg1(z,y) — baga(w,y)) () <b1 7 by dt)

For F # 0 we have

G(u):/Fd(Z) = (b1 — bay +¢).

Hence

u= G (b1 — by + G(ug) — (b1wo — bayo)) -
Substituting
2o = g1(2,9), yo = g2(x,y), uo = h(zo,y0) = h(g1,92)
we get the following theorem:

Theorem 32 Let J be a gpp—differential invariant for F # 0. If the function h(z,y) €

C> (R?) is a solution of the PDE & ={J =0}, then the function

w(z,y) = Gl (z — g1(z,y)) — ba(y — g2(2,9)) + G(h(91(, y), 92(, y)))-
is a solution of € for every function g = g1 +ig2 € O on domains where g, # 0.

(u20 + uo2)

(Cb1 — U10)2 + (Cbz + u01)2 wa

Example 33 Let F' = c € R\0. The function

grp— differential invariant. The function

h =In(zy) + c(biz — bay)
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is a solution of the PDE

(u20 + u02) }
{ (Cbl — U10)2 + (Cbg + u01)2 +

We will verify that the function

H(z,y) = c(biz — bay) + In(g1(z, y)g2(x, y))

is a solution of € for any function g(z) = g1(x,y) +ig(z,y)2 € O on domains where g, # 0.

We have that

91292 — J1y9g1

H, = JeRZIn
9192
B, = SRt
9192
— 91295 — 931,91 + 91229195 — G1ey9192
Hzm = 2 9 ;
91932
—91,95 — 91.91 — 91229195 + G2y 9792
Hyy = 2 2 :
9192
So it follows that
(Haxm + Hyy) (—29%939% - 29%3/9%)

+1-= +1=0.
(eb1 — u10)? + (cba + up1)? (91292 — 91y91)? + (91992 + G1291)

5.2 The Action of g on J*R
Consider the Lie algebra
9 ={910: + 920u | 912 = g2u> G1u = g2.} C D(R?) = D(J'R).

This canonical action on JOR lifts to the action of g on J*R.
All scalar g—differential invariants are constants. However there exist g—invariant

differential equations & CJ*R, see [G].
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Consider the 3—dimensional Lie algebras
t = (0, Oy, 0y — x0y) , @ = {0y, Oy, 0y + udy) C g.

For k > 2 there exists k — 1 functions that are invariant under the action of t and a on J*R.

Y2
(1+ u3)3/?

t—differential invariant of order two. The latter invariant is the well known curvature of a

The function u; is an a—differential invariant of order one and is a
curve.

The spaces t and a are Lie subalgebras of the Lie algebra

¢ =(0y, Oy, x0y + U0y, udy — x0y) C g.

For k > 3 there exists one c—differential invariant of pure order k.

The functions

o— uzu? — 3uduy + ug
3 = P} ’
U2

I - uqu — 10u3ugus + (2ug + 15u3)u? — 10usugus + uy
g 3 )
U3

are c—differential invariants. Hence for any integer k& € Z the following function

Tis = (%Dx)k (1)

is a c—differential invariant of pure order 4 + k.

Consider the Lie algebra

f= <8x, Oy, L0z + U0y, U0y — X0y, (3:2 — y2)6x + 22y0y, (1‘2 — y2)8y + 2wyax> Cg.
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For k > 5 there exists one f—differential invariant of pure order k, denoted Ji. Since ¢ is a

Lie subalgebra of § it follows that

Jk = fk(I3a ceey Ik)

Indeed, the functions

1
Js = i (45 + 413145 — 121314 + 4015 — 3014 + 517 — 121315 — 8I513),
1
Jo = —575(1/4(—405 — 108151415 — 24161214 + 1513 + 40514 + 18151213 — 8015 + 241514
41,

—A2I313 4 241515 + 161615 — ASI3 1,05 — SIZT5 + AIZI, 13 — 16161514 + 361613

+A4I6I3 T3 — 13513 — 39012 + 481615 + 1441515 — 121213 + 2561214 + 1621315),

are f—differential invariants of pure order five and six. Hence for any integer k € Z, the

following function

k6 = <ngf5)pm> k (J5)

is an f—differential invariant of pure order 6 + k.
The algebra of invariant functions under the action of t, a, ¢ and f on J*R are,

respectively

7;6 = f e ClOC JkR ’ f f (M’I3’I47J57J67"'7J )}7

Ck: = f € Cloc JkR | f f(I3aI47J5aJ67 7J )}7

A, = {fe(]loc TR | f = f(u1,13,14,J5,J6,...,J)},
{
A=

FeCX(JR) | f = f(J5,J6,...,J)}.

All the computations of this section are done in Maple Worksheet "Lie sa_fin"
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Example 34 The ordinary differential equation
3/2
' = K (1 n (y')2> , K €R, (5.1)

determines a 1—dimensional distribution on the manifold of 1—jets J'R. The distribution

is generated by the vector field
D=0y +uidu + K(1+u})*?0,,,
or by the Cartan differential 1—forms
w1 = du —uydz, wy =du; — K(1+ u%)?’/Qda:.

The function 1s a t—differential invariant, where

U2
(1+uf)3/?
t = (Dy, O, us — 00) -

Hence the following vector fields

Sl = au,

Sy = 8,—D=— (ulau LK1+ uf)?’/?aul) ,

are commutative shuffling symmetries of the distribution.

Following the method of [KLR], we introduce the differential 1-forms for K # 0

.
ol 1T TR+ @
1
09 0O —————+ w9

K(1+u?)3/2
The differential 1-forms (dx,01,02) are the dual basis for (D, S1, S2). In addition the

differential 1-forms 61 and 02 are closed, i.e.

01 = dH, 05 = dG,
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where

(A1 1
H = /d“—/wdulzwrwvwl, a1 €R,
— _ —_ — ul _
G = /dw /K 3/2d 1= K(1+u)1/2+cl7 c1 € R.

Since the functions H and G are first integrals of the distribution, we can express the solution

as the curve

(x—c1)? + (u—c)> =1/K?, ¢1,¢c0 €R.

This proves that the only curves of constant curvature K # 0 are circles of radius 1/K.
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Chapter 6

Appendix

In this thesis we used DifferentialGeometry Package of Maple 11 to compute dif-
ferential invariants and invariant derivatives. The program used are:
-Maple Worksheet "h _diff inv_ 3",
-Maple Worksheet "tresse inv_der",
-Maple Worksheet "dep inv",
-Maple Worksheet "dep inv_n_ o",
-Maple Worksheet "Lie sa fin".

They are available from the author on request.
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