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ABSTRACT. Increasing ship traffic and human activity in the Arctic has led to a growing demand for
accurate Arctic weather forecast. High-quality forecasts obtained by models are dependent on accurate
initial states achieved by assimilation of observations. In this study, a multi-variate nudging (MVN)
method for assimilation of sea-ice variables is introduced. The MVN assimilation method includes pro-
cedures for multivariate update of sea-ice volume and concentration, and for extrapolation of observa-
tional information spatially. The MVN assimilation scheme is compared with the Ensemble Kalman Filter
(EnKF) using the Los Alamos Sea Ice Model. Two multi-variate experiments are conducted: in the first
experiment, sea-ice thickness from the European Space Agency’s Soil Moisture and Ocean Salinity
mission is assimilated, and in the second experiment, sea-ice concentration from the ocean and Sea
Ice Satellite Application Facility is assimilated. The multivariate effects are cross-validated by comparing
the model with non-assimilated observations. It is found that the simple and computationally cheap MVN
method shows comparable skills to the more complicated and expensive EnKF method for multivariate
update. In addition, we show that when few observations are available, the MVN method is a significant
model improvement compared to the version based on one-dimensional sea-ice concentration
assimilation.
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the 3D-variational methods (3D-Var; Sasaki, 1970) and the

In recent years there has been a decrease in the Arctic sea-ice
cover (e.g. Stroeve and others, 2007) which has lead to
increased ship traffic and other operations in the Arctic. In
order to travel and operate safely in the Arctic, there is a
need for high-quality Arctic sea-ice forecasts.

There are several advanced sea-ice models currently in
use for modelling sea-ice, for example the Louvain-la-Neuve
sea-ice model (LIM3; Vancoppenolle and others, 2009)
and the Los Alamos sea-ice model (CICE; Hunke and
Dukowicz, 2002). Also, several fully coupled models with
integrated sea-ice components have been developed,
for example the Massachusetts Institute of Technology
General Circulation Model (MITgecm; Marshall and others,
1997; Losch and others, 2010), towards an Operational
Prediction system for the North Atlantic European coastal
Zones (TOPAZ; Sakov and others, 2012) and the Community
Ice-Ocean Model (CIOM; Yao and others, 2000). These
models are the most commonly used for sea-ice modelling,
and they all use the elastic-plastic-viscous rheology (Hunke
and Dukowicz, 1997, 2002) based on former schemes
using the viscous-plastic rheology (Hibler, 1979).

Since the late 1970s, the amount of observable meteoro-
logical variables has increased significantly due to the devel-
opment of satellite technology. This has led to new and
improved techniques for assimilation of observations in
numerical models. The first approaches used in numerical
meteorology were simple interpolation methods (Panofsky,
1949; Barnes, 1964; Hoke and Anthes, 1976). Later more
advanced mathematical methods were introduced, such as

4D-Var (Dimet and Talagrand, 1986; Bouttier and others,
1997), where 4D-Var is a further development of 3D-Var,
taking the variation of observations with time into account
by assimilating at the time of observation. The 4D-Var assimi-
lation requires a tangent linear and adjoint model that is run
several times both backward and forward in time. The
tangent linear and adjoint models can be difficult to
develop, and the assimilation is computationally expensive
since it requires several backwards and forwards operations.
Later Evensen (1994) introduced the ensemble Kalman filter
(EnKF; Evensen, 1994, 2003, 2009; Burgers and others,
1998) as an alternative to the variational methods, where
cross-covariances are continuously updated based on the
statistics of an ensemble of model states. These assimilation
methods have been extensively used in a wide range of appli-
cations, especially for NWPs (e.g. Evensen, 2003; Gauthier
and others, 2007; Houtekamer and Zhang, 2016).

In the last 30 years, there has been an increase in Arctic
observations due to an increased number of polar-orbiting
satellites. This has lead to several attempts at assimilating
sea-ice concentration (SIC) observations. SIC is defined as
the fraction of the geographical area covered by sea ice.
Lisaeter and others (2003) were pioneers within SIC assimila-
tion. In their study, the EnKF was used to assimilate SIC from
passive microwave-sensor data into a coupled sea-ice ocean
model. The assimilation was found to improve the modelled
SIC compared with observations, especially along the ice
edge. The effect of assimilation was found to be stronger in
summer compared with winter, partly due to lower ensemble
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spread in winter causing excessive confidence in the model,
and partly due to larger differences between the modelled
SIC and observed SIC in summer. The result also showed
an improved model estimate of sea-ice thickness (SIT)
caused by multivariate update during the assimilation.

Caya and others (2010) used CIOM (Yao and others, 2000)
and the 3D-Var assimilation method to assimilate daily
gridded ice charts covering the Canadian east coast. In this
study, 3D-Var assimilation was compared with a direct inser-
tion method and a nudging method using short-term fore-
casts. The three methods showed similar skilful short-term
forecasts when the daily ice charts were assimilated. When
SIC observations from Radarsat were included in the assimi-
lation, the 3D-Var method was found to give significantly
improved results compared to ignoring the observations,
demonstrating the advantage of 3D-Var to simultaneously
assimilate multiple types of observations.

The TOPAZ4 system is a coupled sea-ice ocean data
assimilation system for the North Atlantic and the Arctic. In
TOPAZ4 both ocean and ice observations are assimilated
using the EnKF. Previous experiments with the TOPAZ4
system have shown good multivariate impact of SIC assimila-
tion (Sakov and others, 2012). Similar experiments showing
multivariate update of sea-ice parameters for SIC assimilation
were done with the NEMO-LIM3 model (Massonnet and
others, 2015). Both studies showed model improvements of
SIT as a consequence of SIC assimilation.

Lindsay and Zhang (2006) and Wang and others (2013)
used nudging methods to assimilate SIC into coupled sea-ice
ocean models. Wang and others (2013) used the Combined
Optimal Interpolation and Nudging (COIN) method to assimi-
late SIC based on SSM/I observations (OSISAF, www.osi-saf.
org) into the ROMS model (Shchepetkin and McWilliams,
2005). The results were validated against the AMSR-E SIC
maps acquired from microwave scanning radiometer
(Spreen and others, 2008), and it was found that the assimila-
tion induced a significant improvement of the background
model. Lindsay and Zhang (2006) assimilated the Gice SIC
dataset (Rayner and others, 1996) into a coupled sea-ice
ocean model. Significant multivariate improvements were
found by validation against upward-looking sonar observa-
tions of ice draft.

Recent developments in satellite technology and measure-
ment techniques have led to the possibility of observing SIT
from satellites. The first experiment with SIT observations
was done by Lisaeter and others (2007). They assimilated syn-
thetic SIT observations and found multivariate effects on
ocean salinity, surface temperature and SIC. Today SIT obser-
vations are available from the European Spaces Agency’s
(ESA) Cryosat and Soil Moisture and Ocean Salinity (SMOS)
missions. The SMOS dataset includes observations of SIT reli-
able for thicknesses smaller than 0.4 m (Xie and others,
2016). These data have recently been introduced in the
TOPAZ4 assimilation system, and it was found that assimila-
tion of the SMOS thickness provides significant improve-
ments on the thin SIT and slight improvements to the SIC
(Xie and others, 2016).

There are several challenges regarding sea-ice assimila-
tion, such as the lack of routinely observed parameters
other than SIC. Thickness can be observed, yet the reliability
is limited. The SIC forecast is strongly dependent on both SIT
and sea-surface temperature (SST), thus assimilation with a
multivariate approach is essential. However, SIC is a
bounded variable between zero and one. Therefore, a SIC

of one may be related to any thickness, and a SIC of O can,
in principle, mean an SST of anything from — 1.8K and
warmer. The EnKF has large technical advantages compared
with the nudging methods, for example by spreading the
information in space and across variables. Still, when
the EnKF is applied to bounded parameters such as SIC,
the EnKF may fail to show improved skills relative to the
simpler approaches.

This study introduces a multi-variate nudging (MVN)
method, which is an improvement of the simple 1D-
nudging method (Wang and others, 2013). The improve-
ments consist of a multivariate and spatially updating mode.

In the next section, the assimilation systems for MVN and
EnKF based on the state-of-the-art sea-ice model CICE
version 5.1 are introduced. In the results section, the MVN
method is compared with the more advanced EnKF in
terms of spatial and multivariate update associated with
assimilation of SIC and SIT.

2. ASSIMILATION SYSTEM

2.1. The CICE model

The Los Alamos CICE model version 5.1 (Hunke and
Dukowicz, 2002) is a state-of-the-art sea-ice model using
the elastic-plastic-viscous rheology (Hunke and Dukowicz,
1997). The model has components for thermodynamics,
dynamics, transport and ridging. The model uses five SIT cat-
egories, with seven ice layers and one snow layer. CICE is a
computationally efficient model and is used in fully coupled
models, for example Community Earth System Model
(CESM; Hurrell and others, 2013). The CICE model is used
in the present study for modelling the sea ice.

2.2. Forcing data

In our study, the CICE model is forced by atmospheric data
and SST from the ERA-Interim dataset of the European
Centre for Medium Ranged Weather Forecast ECMWF; Dee
and others, 2011). Sea-surface salinity (SSS) is taken from
the Regional Ocean Modelling System, Arctic-20 km
(ROMS; Shchepetkin and McWilliams, 2005). Data from
ROMS were only available from 2010 to 2013, these data
have been applied in a perpetual way in order to spin-up
the model. The atmospheric forcing used is precipitation,
cloud cover, moisture content and 2 m air temperature
from the ERA-Interim dataset. The SST forcing has been
modified to be consistent with the observations: every grid
point where the observations indicate SIC larger than 0.1
has been set to the mushy freezing point defined by the
CICE model. This model freezing point, T [°C], is a function
of the salinity, S, defined by,

S

Ty = .
F~ Z18.48 + (18.48 x0.0015)

(M

2.3. Observations

In the present study, the re-analyzed SIC product from the
European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application
Facility (OSISAF, www.osi-saf.org) is used for assimilation
(Tonboe and others, 2016). The OSISAF dataset is based
on SSM/I observations of antenna temperatures converted
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into brightness temperatures, and then corrected for atmos-
pheric contamination by the ECMWF NWP model
(Andersen and others, 2006). The brightness temperatures
are then converted into SIC by a combination of the
Bootstrap algorithm (low concentration) and the Bristol
Algorithm (high concentration; Tonboe and others, 2016).
The OSISAF dataset includes an observation confidence, C,
given on a scale between zero and five, where five indicates
a high confidence and zero indicates no confidence. Based
on estimates of representativeness uncertainty, observation
operator uncertainty and measurement uncertainty, we
have chosen a minimum observation uncertainty of 0.1 for
the OSISAF SIC observations. Additionally, we chose a
linear increase of uncertainty with decreasing confidence
of the observation. The observation uncertainty, o,s based
on these assumptions is defined as,

Gops = 0.1(6 — C). (2)

For the open ocean and the ice interior the observation con-
fidence is high (five), while in/around the marginal ice zone
the confidence varies between one and four. The OSISAF
dataset is structured on a 10 km stereographic grid, using a
Gaussian weighting with 75 km radius of influence for each
observation. Coastal regions and fjords are masked out in
the OSISAF dataset (Tonboe and others, 2016).

In the present study, the observations of SIT are the SMOS
daily SIT (Tian-Kunze and others, 2014) version 3.1. The SMOS
dataset consists of microwave measurements (L-band) of bright-
ness temperatures converted into SIT by applying a radiation
model and a thermodynamic model, the full algorithm
used for the conversion is described by Tian-Kunze and
others (2014). Following Xie and others (2016), only ice
thinner than 0.4m has been used in the analysis.
Therefore, the observations are sparse and they vary in loca-
tion and on a daily basis. All observations include an uncer-
tainty estimation which is used to define the observation
impact during assimilation. Due to wet snow conditions
and melt ponds on the sea ice in summer, it is currently not
possible to accurately calculate the SIT in this season. Thus
the SMOS dataset is only available in the cold season from
mid-October to mid-April from 2010 to present. The SMOS
observations are structured on a stereographic grid with
12.5 km resolution.

2.4. Ensemble Kalman Filter

The EnKF is a sequential data assimilation method used in a
wide variety of geophysical systems (Evensen, 1994, 2009;
Houtekamer and Zhang, 2016). The key property of the
EnKF is that the model uncertainty is calculated from an
ensemble of model states, generated by perturbing the
forcing, the model parameters, the observations or a combin-
ation of the three. The Kalman filter equation can be written
as (Jazwinski, 1970; Evensen, 2003),

F =P (APAT+R) (d-AF). @)

In this equation, ¢ e RN and ¢* € R™N are the model first
guess and analysis state vector, respectively. In the state
vector, all information about the current state of the model
is stored. Here n is the number of variables multiplicated
by the number of grid points, and N is the number of

ensemble members. The co-variance of observations is

Rmxm

given by R € , where m is the number of observations,

H € R™" is the transformation matrix operator used to trans-

form the model to observation state space, d e R™N repre-

sents the observations. The estimated model co-variance,
Pf € R™", is given by,

P (& - )& - ). 4)

In (4) the overbars indicate ensemble average. The covari-
ance between the different model variables is used to
update also non-observed variables. Thus the full state
space ¢', including all model variables, can be updated
based on observations of a single variable.

The EnKF analysis may lead to spurious co-variances
caused by distant state vector elements and insufficient
model rank when small ensemble sizes are used. These arte-
facts can be reduced by using a method for localization
(Evensen, 2003; Sakov and Bertino, 2011). With localization,
the analysis is limited to local areas. In our study, the polyno-
mial taper function by Gaspari and Cohn (1999) was used to
create a smooth localization where nearby grid points are
more important than distant grid points in the analysis.

In the present study, the deterministic EnKF (DEnKF) was
used. This method has been shown to perform better for
ensemble prediction systems with few ensemble members
(Sakov and Oke, 2008). The code used for assimilation is
the EnKF-c algorithm version 1.60.3 (https://github.com/
sakov/enkf-c).

An example of the EnKF assimilation is given in Fig. 1. In
this figure, an average of all ensemble members is given
before and after EnKF assimilation for the difference
between modelled (CICE) and observed (OSISAF) SIC on
23 October 2011. The largest differences after assimilation
are located in the marginal ice zone, where the ensemble
spread is largest, and therefore, the observations have the
largest impact on the EnKF assimilation. Note that since con-
centration is a bounded value, no errors are expected in the
ice interior where both observations and model have a con-
centration of 1. Thus, it is clear that the effect of assimilation
varies throughout the Arctic, some locations show large
impacts of assimilation, while others have little impact. This
reflects the robustness of the EnKF and demonstrates how
ensemble spread is used in the EnKF to update the model.

2.5. Multivariate nudging

The COIN is a basic data assimilation method where model
variables are nudged towards observed values based on an
optimal interpolation between model and observations.
The model uncertainty in the COIN scheme is dependent
on the difference between model and observation. The
basic formulation of the MVN method used in the present
study is similar to the COIN method applied by Wang and
others (2013). We use a slightly altered nudging weight,
and assimilation is done at 10-day intervals. The assimilation
time step is chosen to be similar to that applied in the EnKF.
For the EnKF assimilation, the build-up of ensemble spread
requires a sufficient time period between assimilation steps.
We used 10 days to compensate for a stand-alone model
with decreased model drift caused by a prescribed ocean
component. The major difference between the methods of
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Fig. 1. Difference between modelled (CICE) and observed (OSISAF) SIC on 23 October 2011, before (left) and after (right) assimilation using

EnKF.

MVN and COIN is that multivariate and spatial properties
have been included for MVN. The assimilation process for
the MVN and COIN is given by

¢ = ¢ +Gi(d - ¢)) (5)

In this equation all variables are scalars, ¢ and ¢' are the
analysis and model first guess, respectively, d; represents
the observed value, and G,; is the nudging weight. The sub-
script i indicates a specific grid point, which from here on
will be omitted. In order to make the results from the analysis
comparable with those of the EnKF, the observed value d is
perturbed using a normal distribution with a mean of zero
and a standard deviation equal to the observation uncertainty
Oobs. The nudging weight is defined as

G =K/z, (6)
where,
2
O-m
=55, (7)
Gﬁ1 + o-gbs

and o, and o, represent the model and observation uncer-
tainty, respectively. The 7 parameter is a delay timescale of
the nudging towards observations. 7 is defined such that
large uncertainties have less delay,

7 =expa(omax — Om)- (8)

In Eqn (8) the parameter a is a nudging delay parameter defin-
ing the strength of the nudging, and o,y is the largest pos-
sible uncertainty, for example unity for SIC, in the present
study we used a equal to one. The model uncertainty is
defined as the difference between the observation and the
model first guess:

Om = |d - ¢f| (9)

The observation uncertainty, ogps, is taken from the confi-
dence levels of the observations, given by Eqn (2).

In the study by Wang and others (2013) the modelled SIT
was preserved during assimilation. When new ice was added

as a result of the assimilation, the ice thickness was enforced
to be 0.5m. In the present study, we use an alternative
approach where a statistical relationship between ice
volume and SIC is used for the multivariate update. This
approach is based on observation statistics from the marginal
ice zone. The CICE model does not use SIT directly but cal-
culates SIT as the sea-ice volume divided by the SIC. Thus the
sea-ice volume must change when the SIC changes to pre-
serve model physics after assimilation. For example, if the
SIC is reduced during assimilation and the modelled ice
volume is unchanged, the resulting ice would be thicker.
Thick ice is more resistant to melt and will cause a build-
up of ice at the ice edge. Similarly, increased SIC will result
in thin ice which requires less energy to melt. We used a rela-
tionship between ice volume (V) and SIC (C) based on regres-
sion of observed SIC (OSISAF) and SIT (SMOS) values (see
Fig. 2),

12.3V, V <0.03,
1 v

CV)={ — _In[———), 003<V<034, (10

V) =1 3867 n(o.oo72>’ 0.03 034, (10)
1, V> 0.34.

Similarly, when assimilating concentration, (Fig. 3),

0.02Cexp(2.8767C),

0<C<0.8,
vi©) = {o.sc

C<0.8, Vi, <0.1.
(1)

The expressions in (10) and (11) are only valid for the
marginal ice zone where thickness data are available for
regression. When the SIC is close to one, it is not possible
to define a relationship between SIC and SIT since SIC is
bounded. The model uncertainty in the marginal ice zone
is large due to small perturbations inducing transitions
between ice and water. These transitions are strongly affected
by the forcing, while in the interior of the ice the model is
more stable. The second expression in Eqn (11) uses the
first guess volume Vy,, this ensures that new ice witha high
concentration (C > 0.8) resulting from assimilation is
coupled to an updated volume, even though this new ice is
not located in the marginal ice zone. The two expressions
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Fig. 2. Observations of thickness (SMOS) and concentration
(OSISAF) spanning the period 2010—12, are used to obtain a
relationship between volume and concentration by regression. A
random selection of 5000 observations from all available
observations is shown. The figure shows concentration as a
function of volume. The red dots represent observations and the
blue line is the regression line.

in Egns (10) and (11) are not the inverse of each other, this is
related to minor mathematical simplifications in order to
keep the relationships simple.

We used an extrapolation method to improve the spatial
properties of the MVN. The extrapolation is performed using
a simple digital inpainting approach based on elliptic partial dif-
ferential equations (http://se.mathworks.com/matlabcentral/
fileexchange/4551-inpaint-nans). In the present study, a
method using the fourth partial derivatives was used.

An example of the MVN assimilation is given in Fig. 4. The
figure shows the difference between modelled (CICE) and
observed (OSISAF) SIC on 23 October 2011. After assimila-
tion (right panel), the model has been nudged towards obser-
vations, by decreasing the difference between model and
observations. There are several negative differences in the
central Arctic after assimilation. This is due to modelled
grid points with lower concentration compared with the
observations. These negative values are an artefact of the
observation perturbation, which causes small errors at
random grid points in the interior of the sea ice. There are
only negative differences because the observations are
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Fig. 3. As Fig. 2, but volume as a function of concentration.

close to the one in the central Arctic and concentrations
have an upper bound of 1. Similar errors are not found in
the open ocean because the open ocean observations with
maximum confidence are not perturbed which avoids ice
residuals in known ice-free areas.

3. SETUP

The model simulation was initialized without Arctic sea ice
and spun-up without assimilation from 1 January 1979 until
1 January 2010. Both assimilation schemes were then run
for 3 years from 1 January 2010 to 31 December 2012 with
the assimilation of OSISAF SIC every 10 days. In addition,
the assimilation was run for two cold seasons from 15
October 2010 to 15 April 2011, and 15 October 2011 to
15 April 2012 for SMOS SIT assimilation. The number of
ensemble members for the EnKF was 20, and a localization
radius of 300 km was used. The initial ensemble was gener-
ated by using ice states from 1 January from 20 different
years. The ensemble members were perturbed in a similar
way as used in the TOPAZ system (Sakov and others,
2012), using a smooth pseudo-random field (Evensen,
2003) with zero mean to perturb the input forcing. The stand-
ard deviation of temperature used to perturb the 2 m tem-
perature was 10 K. We chose 10 K to compensate for the
lack of perturbation in the ocean forcing. The standard devi-
ation for cloud cover was 20%, for the per-area precipitation
flux it was 4 x 10°ms™", and for wind, it was Tms™". In the
CICE model, the shear strength relative to the compressive
strength is scaled by the dimensionless parameter e. Since
the value of the e parameter is not well known (Dumont
and others, 2009), we perturbed e to increase the ensemble
spread. Following Sakov and others (2012) we used the par-
ameter e as a normal distributed stochastic variable with a
mean equal to two, which is the default model setting and
a standard deviation of one.

After assimilation, the state space was post-processed.
During the post-processing the variables were checked for
physical consistency, to avoid for example hotspots, zero
or negative ice volume, snow on water, ice in hot water
and similar non-physical situations. For the EnKF assimila-
tion, bounded values such as SIC can create erroneous cov-
ariances, which make post-processing important in order to
check that variables are within their realistic bounds. For
the MVN assimilation, the multivariate update based on the
statistical relationship between SIC and SIT was done
during the post-processing. When the assimilation resulted
in decreased sea-ice extent, the SST were updated to avoid
immediate refreezing. This was done by using a predefined
gradient of SST based on the distance to the sea-ice edge.
The average gradient was estimated from the ECMWF ERA-
Interim dataset (Dee and others, 2011) to 0.007 Kkm™".
Similarly, when the assimilation provided more sea ice
than in the first guess, both the SST and SIT was updated to
avoid immediate remelting of the ice.

In the CICE model, the ice is distributed in five thickness
categories, while observations only have one category. For
the EnKF, this is not a problem, since the individual categor-
ies are updated based on the correlation. For the MVN we
used the model thickness distributions of the initial first
guess to redistribute the assimilation result into the five ice
thickness categories. Thus the fraction of the total SIC in a
given category was the same before and after assimilation,
but the total SIC could have changed. If thickness categories
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Fig. 4. Difference between modelled (CICE) and observed (OSISAF) SIC on 23 October 2011, before (left) and after (right) assimilation using

MVN.

proved to be overfull in the model after assimilation, the
surplus volume was transferred to the next thickness cat-
egory. This method avoids discontinuities in the sea-ice
cover.

To analyze the strength of assimilation the RMSE between
model and observations were used,

m 232
RMSE — 12zt (di = &7)"
m

(12)
This statistic provides the total deviation between the model
and observations but does not provide information on over or
under extension of sea ice.

4. RESULTS

A verification of the multivariate properties of the MVN and
EnKF assimilation systems has been conducted by two cross-
validation experiments. In the two experiments either SIT or
SIC observations were assimilated, and the non-assimilated
SIC or SIT observations were used for verification. For the
assimilation systems shown in Fig. 5, SIC observations were
assimilated and SIT observations were used for verification.
In this figure, the monthly averaged SIT RMSEs over three
cold seasons are plotted. Only observations from the mar-
ginal ice zone were used. In the marginal ice zone, the
ensemble has the largest spread and the EnKF has the
largest effect. For MVN, the multivariate relationship
between sea-ice volume and SIC is undefined outside the
marginal ice zone, see Eqn (11). In the present study, we
defined the marginal ice zone as grid cells with SIC <0.8.
The marginal ice-zone location differs between the MVN
and EnKF model system, therefore two different marginal
ice zone definitions were used for the calculations. In
Fig. 5 the solid lines indicate a marginal ice zone as
defined for the EnKF assimilation model system, and the
dashed lines from the marginal ice zone as defined by the
MVN model system. All model results indicate an increase
of SIT RMSE from October to April. This is a consequence
of modelled ice growth being larger than observed ice
growth, which is due to a bias in the background forcing,
leading to an overestimation of the sea-ice extent. As a

consequence of the sea-ice overestimation, the marginal
ice zone as defined by the observations is mostly located in
the interior of the modelled ice pack. Since the SIT in the
interior increases throughout the cold season, the differences
between the modelled and the observed SIT are increasing
during this season. The temporal increase of SIT RMSE is
most apparent in the control run, blue lines in Fig. 5. When
assimilation is applied, the temporal effect is significantly
reduced, both for the EnKF and the MVN. However, a
small increase of SIT RMSE during the cold season is still
evident after assimilation, which is related to the prescribed
model forcing not affected by the assimilation.

The SIT RMSE of the EnKF results calculated for the mar-
ginal ice zone defined by the MVN model system are signifi-
cantly higher than the MVN SIT RMSE values. These high SIT
RMSE values are caused by an error in the ensemble spread,
due to model bias: For the EnKF, the model bias leads to a
skewed ensemble spread towards larger ice extent which
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Fig. 5. Monthly mean of RMSE of SIT with and without SIC
assimilation. Blue lines are control runs without assimilation,
while red and black lines are EnKF- and MVN-assimilated runs,
respectively. For the SIT RMSE calculations, only grid points in the
marginal ice zone were used, defined as ice concentration <0.8
based on EnKF (solid line) and on MVN (dashed line). The SIT
RMSE values were based on 3 years of assimilation.
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causes low ensemble spread in the observed marginal ice
zone. The marginal ice zone defined by the EnKF assimila-
tion system is then displaced from the observed marginal
ice zone. For the MVN assimilation, the one model realiza-
tion is pushed towards the observations, independent of the
model bias. Thus the MVN method has a large effect in the
marginal ice zone defined by the observations.

A check for statistical significance of the assimilation skills
in Fig. 5 was conducted using a student’s t-test with a zero
hypothesis of equal values. The result shows that all lines
are statistically different on a 95% level, showing that both
assimilation methods are better than the control run, and
the MVN assimilation shows better skills than does the
EnKF assimilation.

A second model experiment was performed where the
same method as described above was used, but where SIT
was assimilated and SIC was validated against observations.
Only grid points where SIT observations exist were used in
the validation. The results are shown in Fig. 6. The results
describe a similar situation as for the SIC assimilation in
Fig. 5. The MVN and EnKF results with both marginal ice
zone definitions are significant improvements of the back-
ground model. For the marginal ice zone defined by the
MVN assimilation, the MVN method showed better skills
than the EnKF, Fig. 6. As for the SIC assimilation shown in
Fig. 5, this is related to model bias and the way the two
assimilation systems update the model parameters: Due to
model bias, the EnKF has low ensemble spread in the
observed marginal ice zone, while the MVN has a large
effect here. This is because the differences between model
and observations are large in the marginal ice zone.

The difference between the two methods was larger for SIT
assimilation (Fig. 6) than for SIC assimilation (5). This is due to
few SIT observations available for assimilation, and that the
number of observations varies on a daily basis. The daily var-
iations in observation location will lead to an assimilation
system which gives comparable results to those of an assimi-
lation system with time steps longer than 10 days. This virtu-
ally increased time step is because some locations might only
have a local observation every 20 days or more seldom.
Since the model has excessive ice during winter, the ice
extent will be increased as a consequence of the model
bias and variations in observation locations. Increased ice
coverage will create an increased biased ensemble spread,

Assimilation SIT

0.35¢
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Fig. 6. As Fig. 5, but SIT assimilation and SIC RMSE over two cold
seasons.

and this explains the higher SIC RMSE values for the EnKF
compared with the MVN for SIT assimilation. There is no
clear temporal tendency for the result in Fig. 6, this is
because SIC does not increase as does the SIT (see Fig. 5):
SIC is bounded with a maximum value of 1 while SIT is
unbounded upwards.

A check for statistical significance of the assimilation skills
in Fig. 6 was conducted using a student’s t-test with a zero
hypothesis of equal values. All lines in Fig. 6 were found to
be statistically different on a 95% level, confirming that
the MVN method shows better multivariate update than the
EnKF and that both methods are an improvement of the
control case.

4.1. Spatial correlation

In this section, the spatial properties of the EnKF and MVN
were compared by assimilating 25% of all SIC observations.
The RMSE values for the SIC in the control model are shown
by the blue solid line in Fig. 7. The control model has a large
increase of SIC RMSE from April to June, caused by excessive
ice growth in the model compared with the observations. In
June the ice melting starts and the SIC RMSE of the control
model is reduced. In September there is an increase of SIC
RMSE due to excessive ice melting which declines in
October due to ice growth. Fig. 7 shows that the current
model forced by ERA-Interim and ROMS has a too large
annual cycle of SIC with excessive ice melting during
summer and excessive ice growth during winter. The solid
red line in Fig. 7 represents the MVN assimilation where all
available SIC observations were used. The MVN assimilation
shows large improvements compared with the control model
for SIC RMSE values. In summer the MVN assimilation shows
a clear weakness with large SIC RMSE values caused by an
underestimation of sea-ice extent. During the extended
summer period (June-October), a large portion of the ice
cover has a SIC <0.8, which in the present study was consid-
ered as the marginal ice zone. In the marginal ice zone, the
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Fig. 7. RMSE of SIC after assimilation of SIC for 2010. For the dotted
lines, only25% of the SIC observations were used for the
assimilation. The red and black dots are the MVN- and EnKF-
assimilated runs, respectively. For the dashed, red line, the MVN
assimilation without spatial extrapolation was used for assimilation
of 25% of the SIC observations. The solid lines show assimilation
using all observations, the blue line is the control model, the red
line is the MVN model, and the black line is the EnKF model.
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SIT is updated based on the relation given in Eqn (11) for
MVN. This relation is based on available winter observations
and the applicability in summer is not known, which may be
the reason for the large errors in summer. A second reason for
the large SIC differences between model and observations in
summer is the excessive model ice melting; the assimilated
ice is thin and sensitive to the model forcing.

The dashed red line (MVN p25 wo) in Fig. 7 shows the
result of MVN assimilation without the extrapolation
method when 25% of all SIC observations are assimilated.
The SIC RMSE values for this model system are close to
those of the control run, dominated by the background
forcing. The MVN assimilation without extrapolation, limits
the build-up of ice in late spring (April-June). The reduced
ice pack in summer leads to an almost ice-free Arctic, due
to excessive summer ice melt in the model, which in turn
leads to increased SIC RMSE values. This shows that
without extrapolation of the observations, the MVN method
is not applicable in a situation where the model has large
biases, as in this study. The red dots (MVN p25) in Fig. 7
represents the full MVN method with extrapolation when
25% of the observations are used. We found that although
the MVN p25 model system has slightly higher SIC RMSE
values compared with using all observations, the difference
is relatively small.

The black solid line in Fig. 7 represent the EnKF where all
observations are used and the black dots (EnKF p25)
represent a case using 25% of the SIC observations. The
results show small differences between the two cases, indi-
cating that fewer observations are not a problem for the
EnKF assimilation. For EnKF there are large initial errors
when the assimilation starts, followed by a decrease as the
ensemble becomes more heterogeneous around the true
state. In summer the EnKF has much lower SIC RMSE
values than the MVN, since the EnKF has a large ensemble
spread during summer caused by thin ice being more sensi-
tive to the perturbation of the background forcing. The
large ensemble spread leads to more weight on the observa-
tions during assimilation and low SIC RMSE values. The SIC
RMSE values of the EnKF increases slightly in October due to
less ensemble spread in the cold season (October-April) as a
consequence of thicker ice which requires more energy to
melt. This causes biases in the ensemble spread towards
larger ice extent as mentioned previously.

A summary of the statistical significance of the results in
Fig. 7 is provided in Table 1. The table shows that for MVN
there is a statistical difference on a 95% level between the
p25 result and the all observations result, all p25 SIC RMSE
values are larger than the SIC RMSE values for the all obser-
vations case. For EnKF there was no statistical difference
between the p25 and the all observations case.

Table 1. Student’s t-test to check whether the curves in Fig. 7 are
significantly different. Bold values represent statistical difference
on a 95% level

Ctrl  EnKF MVN EnKF p25 MVN p25 wo MVN p25

Ctrl 1.00 0.00 0.00 0.00 0.01 0.00
EnKF 0.00 1.00 0.00 0.17 0.00 0.00
MVN 0.00 0.00 1.00 0.00 0.00 0.00
EnKF p25 0.00 0.17 0.00 1.00 0.00 0.00
MVN p25 wo 0.01 0.00 0.00 0.00 1.00 0.00
MVN p25 0.00 0.00 0.00 0.00 0.00 1.00

5. CONCLUSION

In this study, the EnKF and MVN assimilation methods were
used to assimilate SIC and SIT into the state-of-the-art sea-ice
model CICE. Compared with the traditional nudging
methods, the EnKF has many advantages, for example multi-
variate update and spatial correlation. The MVN method
aims to provide a simple low-cost alternative to the EnKF
comparable in quality for sea-ice assimilation. Multivariate
update of variables is an important part of the EnKF, where
non-observed variables are updated during the assimilation
based on correlation with observed variables. This advanta-
geous property of the EnKF has been shown in several
earlier works on sea-ice assimilation (Liseeter and others,
2003, 2007; Massonnet and others, 2015; Xie and others,
2016). For the Nudging scheme, the multivariate update of
variables is not part of the original method. In the present
study, we propose a nudging method with multivariate prop-
erties by using a pre-defined relationship between sea-ice
volume and SIC as given by Eqns (10) and (11).

In our study, we conducted a cross-validation experiment
where SIT or SIC observations were assimilated. The non-
assimilated variables were used for validation of the multi-
variate properties. We show that multivariate update of
sea-ice thickness and concentration is more skilful for
MVN than for EnKF. However, the model has biases
towards increased sea-ice extent in winter which affect the
EnKF ensemble spread.

We show that the spatial properties of the EnKF can to
some extent be mimicked by an extrapolation algorithm for
the MVN. The extrapolation introduces some extra errors in
the assimilation but still lead to a significant improvement
as compared with the non-extrapolation method. There are
uncertainties regarding the MVN in summer. The relationship
between SIC and sea-ice volume for the MVN method is only
based on observations from the cold season. In addition, the
CICE model in the standalone mode used with ERA/ROMS
forcing has excessive ice melting during summer.

The MVN method is not limited to linear correlations as
the EnKF. This is an advantage since linear correlation may
not be appropriate for bounded values as those of SIC.
However, it is important to emphasize the skilful properties
of the EnKF for sea-ice assimilation. We show here that the
EnKF has excellent out-of-the-box properties when it comes
to sea-ice modelling. Without any modifications, the EnKF
has similar multivariate skills and better spatial skills than
the MVN assimilation. In addition, the EnKF has several
useful properties compared with the MVN assimilation.
Assimilation of other observations can easily be implemen-
ted in the EnKF. The multivariate properties span all vari-
ables, not just SIT and SIC, and the relationship between
variables change in time and space dependent on the
model state. In conclusion, when observations are limited
to SIT and SIC, the MVN method performs similarly to the
advanced EnKF for sea-ice assimilation. There are still
issues regarding the validity of the MVN method in
summer, but could likely be solved when summer observa-
tions become available.
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