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Abstract: Ocean Color remote sensing has a great importance in monitoring of aquatic environments.
The number of optical imaging sensors onboard satellites has been increasing in the past decades,
allowing to retrieve information about various water quality parameters of the world’s oceans
and inland waters. This is done by using various regression algorithms to retrieve water quality
parameters from remotely sensed multi-spectral data for the given sensor and environment.
There is a great number of such algorithms for estimating water quality parameters with different
performances. Hence, choosing the most suitable model for a given purpose can be challenging.
This is especially the fact for optically complex aquatic environments. In this paper, we present
a concept to an Automatic Model Selection Algorithm (AMSA) aiming at determining the best model
for a given matchup dataset. AMSA automatically chooses between regression models to estimate the
parameter in interest. AMSA also determines the number and combination of features to use in order
to obtain the best model. We show how AMSA can be built for a certain application. The example
AMSA we present here is designed to estimate oceanic Chlorophyll-a for global and optically complex
waters by using four Machine Learning (ML) feature ranking methods and three ML regression
models. We use a synthetic and two real matchup datasets to find the best models. Finally, we use
two images from optically complex waters to illustrate the predictive power of the best models.
Our results indicate that AMSA has a great potential to be used for operational purposes. It can be
a useful objective tool for finding the most suitable model for a given sensor, water quality parameter
and environment.
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1. Introduction

Ocean Color (OC) monitoring from spaceborne and airborne platforms using remote sensing
techniques has been receiving an increased focus in the past decades [1,2]. This is due to the fact that
an ever-increasing amount of remote sensing data is getting available, but also, because of increased
anthropogenic activity and climate change have resulted in changes in the water quality [3]. Coastal
waters are one of the most sensitive areas due to their vulnerable ecosystems. Worsened water
quality might endanger these ecosystems (such as fish’s habitats [4]), which has both economical
and ecological importance [3]. It is well-known that the eutrophication of coastal waters and inland
waters has been increasing lately, leading to decreased water-quality [5,6]. Continuously monitoring
of the water-bodies, with special focus to coastal waters is therefore important for various reasons.
It can also contribute to improved understanding of the ongoing changes, and the impact of increased
anthropogenic activities on the ecosystems [7].

The quality of water bodies, both globally and regionally, is most efficiently inferred from color
using multi-spectral or hyper-spectral remote sensing. The color of the oceans is determined by the
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different type, amount and distribution of water constituents. Being able to monitor these water
constituents allows to retrieve information about the environmental state of the water [8]. The most
common parameters used for monitoring water quality are Chlorophyll-a (Chl-a), Colored Dissolved
Organic Matter (CDOM), Total Suspended Matter (TSM), Secchi Disk Depth (SDD), turbidity,
Total Phosphorus (TP), to name some [3].

However, the retrieval of water quality contents from remote sensing data is not always strait
forward. Algorithms are generally dependent on the sensors’ characteristics, geographical location,
and environmental conditions of the water body. The objective of this paper is to present and demonstrate
a strategy for an Automatic Model Selection Algorithm (AMSA), for retrieval of water quality
parameters from remote sensing data, given an appropriate matchup dataset. Since Chl-a is one of the
most important and most studied of these water quality parameters [5], we will use Chl-a as an example
parameter throughout the paper. Besides, estimating aquatic Chl-a concentration has several important
applications, in addition to providing information about water-quality. Chl-a occurs in phytoplankton
in aquatic environments. Phytoplankton uses photosynthesis in order to live and grow. Capturing of
light, which is the driving of photosynthesis [9], takes place in the Chl-a molecule. Estimating Chl-a
content allows to retrieve information about the aquatic biomass and several biophysical processes.
During photosynthesis, phytoplankton takes up Carbon-Dioxid (CO2) [10]. Therefore, monitoring
phytoplankton through Chl-a might also contribute to the understanding of climate change [11–13].

Using Chl-a as an example, we will in the following give some rational and motivation for AMSA.
Remote sensing of Chl-a content (and other water quality parameters) is done by optical imaging
sensors onboard satellites, which have different spectral and spatial resolutions. Chl-a content is
usually retrieved by relating the measured signal at the sensor, the remote sensing reflectance (Rrs),
to coincident in-water Chl-a measurements (see for instance the National Aeronautics and Space
Administration’s (NASA) OC products [14–18]). This dataset is denoted a so-called matchup dataset,
and forms the basis for most of the algorithms used for Chl-a content estimation from remotely
sensed data. Since the various sensors have different number of bands at different central wavelengths
(see Table 2), the matchup data has to be calibrated for each given sensor.

Furthermore, there are a manifold of retrieval algorithms available to the user [19–21]. Some of
them are designed to estimate Chl-a globally, whereas others are region specific. These algorithms
are in general sensor specific, this means they require a new or adjusted model for each sensor.
For an untrained user, it is often challenging to establish or choose the most suitable Chl-a
retrieval model. This is especially the fact for optically challenging aquatic environments, such as
coastal waters [22]. Coastal waters are often dominated by other water constituents than Chl-a, such as
CDOM, and CDOM and Chl-a are known to have their absorption peak in the same spectral region.
This results in difficulties in distinguishing between the signals originating from Chl-a and CDOM,
especially, when Chl-a content is estimated by algorithms that use the absorption peak of the
Chl-a molecule.

As more datasets are collected, and computer processing power gets unlimited, machine learning
(ML) algorithms have become more feasible in OC applications. ML models are not based on
assumption about the Chl-a absorption spectrum. They learn the relationship between the in-situ
Chl-a content and the available Rrs values, and use this learned functional relationship for prediction.
These models use all the available spectral bands for learning and prediction, which results that
the importance of the spectral bands in the regression process is kept hidden. It can be questioned
whether all the bands are needed to obtain the best regression for a given model and region. Artificial
Neural Networks (ANN) models have been lately successfully applied for Chl-a estimation [23–25],
and to various other applications, such as for predicting the amount of generated electricity [26],
suspendid sediment load in rivers [27] and rainfall and runoff predictions ahead in time [28]. For OC
applications, satellite derived Chl-a in optically complex waters is also often estimated by using other
ML algorithms [29–32].
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Furthermore, complex waters show great regional variations, which leads to erroneous Chl-a
estimates, when algorithms tuned on global datasets, are applied to a local region [19]. Therefore, it is
often required to design local algorithms, which are trained on datasets from the given region [33,34].
However, choosing the most suitable model for a given region can still be challenging.

The above arguments suggest that an automatic model selection approach could be an important
tool in choosing the optimum model to monitor a given aquatic environment. Comparisons of models
for various OC applications have been carried out in [35–37], but to the best of our knowledge, a flexible
and automatized model selection tool for OC application has not yet been proposed in the literature.
Being able to objectively compare models and determine the most suitable one for the given data and
purpose might be beneficial for the users.

The contribution of this paper is to present a strategy for an Automatic Model Selection
Algorithm (AMSA), which outputs the most suitable water quality retrieval model, given the matchup
dataset. The current AMSA model uses three ML models as input options. ML models usually rely
on feature selection in prior to regression [38]. This is due to the fact that dimensionality reduction is
often required to increase accuracy, robustness and computational time [39]. Using feature selection
also helps to correctly interpret the data. The method for choosing the most optimal number and
combination of features for the given model is model dependent, and needs to be developed in
each case. AMSA uses feature ranking methods to assign relevance to the features, then it evaluates
the number and combination of these ranked features in regression models using some quantitative
regression performance measures.

Hence, AMSA is not only using feature selection prior to regression, but also feature ranking
methods derived from regression models based on different principles. This means that the importance
of the features is first determined by using several feature ranking approaches, one tailored to each
regression model, then sequential forward selection is applied for comparison. Then the regression
models are compared by computing regression performance measures. Finally, AMSA returns the best
model for the given matchup dataset. Hence, AMSA is neither limited to a given water quality
parameter nor to a feature ranking method/regression model/regression performance measure.
The only input that it requires, is the matchup dataset.

For demonstration of the performance of AMSA, we use three sophisticated ML models for feature
ranking and regression. These regression models are the Gaussian Process Regression (GPR), Support
Vector Regression (SVR) and Partial Least Square Regression (PLSR) models. GPR has been shown
to outperform empirical [31,40] and ML regression models [41] for biophysical parameter retrieval
from remotely sensed data. GPR has several advantageous properties besides its excellent regression
performance, for instance the certainty level of the estimates and the possibility to access feature
relevance. Feature relevance for the GPR model can be accessed by the Sensitivity Analysis (SA) [31,32]
and the Automatic Relevance Determination (ARD) [40,42] feature ranking methods.

The SVR model has also been shown to perform well for OC applications [29,43,44]. In this work,
we applied the SA to the SVR model in order to access feature relevance. For classification in
neuroimage applications, this has been done in [45]. Here, we introduced the methodology for
regression in Chl-a content estimation.

The PLSR model was included in AMSA, because of the Variable Importance in Projection (VIP)
feature ranking methods associated with it. PLSR is a strong regression model, which can handle high
dimensional inputs, reduce noise and co-linearity in the data [46]. The PLSR model has been applied
for OC applications in optically complex aquatic environments [47].

We have previously studied the SA of the GPR model, ARD and VIP feature ranking methods and
the GPR and PLSR regression models for Chl-a content estimation in [32]. In [32], we used a MERIS
matchup dataset and two additional matchups for the MODIS-Aqua and SeaWiFS sensors to evaluate
the methodologies, and concluded that these feature ranking methods can be used to reduce the
number of features, while still obtaining comparable estimates for Chl-a content, compared to the
state-of-art algorithms.
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In the current demonstration of AMSA, we show how the proposed strategy can be used to
determine automatically a model for oceanic Chl-a content estimation for both global waters and
optically complex waters. The matchup datasets we have used here include a synthetic dataset
produced by the International Ocean-Colour Coordinating Group (IOCCG dataset) [48], plus two
additional matchups, one for the MERIS sensor (MEdium Resolution Imaging Spectrometer) and
one for the MODIS-Aqua (MODerate-resolution Imaging Spectroradiometer) sensor. The IOCCG
dataset provides the possibility to threshold the data based on the absorption of the CDOM, and the
amount of Chl-a concentrations. Hence, observations which are more likely to occur in complex aquatic
environments, can be selected. Furthermore, we resample the IOCCG dataset to match the spectral
resolution of the MERIS and MODIS-Aqua matchups.

An additional contribution of this work, is to further extend the feature ranking methods by
the sensitivity analysis of the SVR model, which allows us to include the SVR regression model
in the AMSA model library. We choose to use the IOCCG dataset to have better control over the
optical properties of observations, and include the two matchups for the MERIS and MODIS-Aqua
sensors to show that the approach work well on different data sets and for different environmental
situations. We highlight that the goal here is to show how the AMSA approach can be used to perform
an objective comparison and selection of an optimal model for the given dataset, according to the
regression criteria used. AMSA automatically performs feature ranking and training and testing of the
regression models. Hence, the output model is already validated. Finally, the demonstration includes
two images acquired by MERIS over optically complex aquatic areas to visualize the predictions given
by the selected optimal AMSA model.

The rest of this work is organized as follows. Section 2 introduces the general concept of the AMSA
and explains the ML AMSA for oceanic Chl-a content estimation in details. Furthermore, the datasets
used in this study are described. Section 3 presents the results. Section 4 discusses the results
and approach, and highlights advantages and disadvantages of the methodology. Finally, Section 5
concludes this paper and outlines future work.

2. Materials and Methods

2.1. The Automatic Model Selection Algorithm

2.1.1. The Concept of the AMSA

The AMSA has two stages. In the first stage, relevance is assigned to all the available features
by using feature ranking methods. The second stage is to perform regression by using the ranked
features as inputs. The best regression model is determined by selecting the most optimal number
and combination of features based on the selected goodness of fit criteria. Examples of goodness
of fit measures are: Normalized Root Mean Squared Errors (NRMSE) and the Pearson’s correlation
coefficient (R2).

Feature ranking: Assume a matchup dataset D = {xn; yn}N
n=1, where xn is the D dimensional

input, D is the number of features, yn is the corresponding output (ground-truth) and N is the number
of measurements. This matchup dataset is used for ranking the D features in x by using feature
ranking methods. Figure 1 shows the feature ranking stage of the algorithm.

The process starts by using all data in the matchup dataset to perform feature ranking.
Assume, there are i feature ranking methods. Then the output of this step is i sets of ranked features,
each ordered by decreasing relevance (i.e., the first feature in Ranked feature set is the most important,
and the last is the least relevant).
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Figure 1. The feature ranking stage of the AMSA.

Regression and feature selection: Figures 2 and 3 show the flowcharts of the regression stage.
In the regression stage, the dataset is split into two parts, 50% is used for training and 50% is used
for testing. This partitioning ensures that both training and testing sets contain representative data.
Assume j number of Regression models are available. Then an iterative process starts by training and
testing Regression model 1, ..., j with the features in the Ranked feature set 1, ..., i by using a sequential
forward selection approach.

For simplicity, let us assume using Regression model 1 and Ranked feature set 1, containing D ranked
features. Regression model 1 starts the training on the training data by taking the most important
feature in the Ranked feature set 1. When this model is trained, testing is performed on the test data
by computing k Regression performance measures. The results of the computed Regression performance
measures are saved (Figure 3).

Then Regression model 1 adds the second most relevant feature of the Ranked feature set 1, in addition
to the first one. The system trains and tests the model by computing k Regression performance measures,
and saves the results. This procedure continues until the least important feature of the Ranked feature
set 1 has been included.

Regression model 1 repeats the same process with all the Ranked feature sets (1, ..., i). The same
procedure is done with all the Regression models (1, ..., j). The k Regression performance measures are saved
for all j Regression models, and for all i Ranked feature sets with all D number of ranked features.

Figure 2. Regression stage of the AMSA (A).
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Figure 3. Regression stage of the AMSA (B).

Finally, AMSA searches in the stored Regression performance measures for the model, which resulted
in the best performance. AMSA outputs: the best regression model based on the computed regression
performance measures; the feature ranking method that resulted the best combination of features
associated with the regression model; the number of features, which were needed to obtain the best
model; the actual input-features of the best model and also the values of the regression performance
measures. Table 1 shows the output of the algorithm.

Table 1. The output of the AMSA.

Regression model Feature ranking method The features # of features Value of the regression performance measures

There are obviously no limitations in the number of feature ranking methods, regression models
and regression performance measures to be used in AMSA. Note, if feature ranking is not of interest,
this stage can be turned off. In that case, only the most desirable regression model for the given dataset
and predefined feature set is returned.

2.2. Demonstration of an AMSA Implementation

The AMSA concept can be used by the users to build an optimal model for her or his application.
Any model can be selected, and it can be used for any water quality parameter estimation, as long as
matchup data is available. Furthermore, user defined feature ranking methods, regression models and
regression performance measures can be included. In this section we present the AMSA we designed
for Chl-a estimation. It is based on the work and results presented in [32].

2.2.1. The Matchup Data

We focused on oceanic Chl-a content estimation from Rrs. Hence, the matchup data consists of
Rrs measured on the wavelengths of the given sensor and corresponding in-situ Chl-a measurements.

For feature ranking, the complete available dataset was used, while for regression, the dataset was
split up in 50% for training and 50% for testing. We chose to split up the data as it follows. The Chl-a
values were sorted in an increasing order. The corresponding Rrs values were assigned to the sorted
Chl-a values. Then we draw the even numbered observations for forming the training data, and the
odd numbered measurements for testing purposes. Hence, both the training and test data was as
representative as possible. Note, the way of splitting the data in AMSA can be defined differently.
The dataset can be divided randomly and in a different proportion for training and testing, as well.



Remote Sens. 2018, 10, 775 7 of 21

2.2.2. Regression Models

Assume a dataset consisting of in situ Chl-a values yN
n=1 and corresponding input Rrs values

{xn ∈ RD}N
n=1, where n = 1, ..., N is the number of measurements and d = 1, ..., D is the number

of features (spectral bands) for all the regression models. We will use here regression models,
namely Gaussian Process Regression, Support Vector Regression and Partial Least Squares Regression.
These are briefly summarized below.

Gaussian Process Regression model: The Gaussian Process Regression (GPR) model assumes
that the output (Chl-a) is a function of the input (Rrs) and some noise εn, which can be written by
yn = f (xn) + εn for n = 1, ..., N, where the noise term is assumed to be additive, independently,
identically Gaussian distributed with zero mean and constant variance, i.e., εn ∼ N(0, σ2). The model
learns this function by fitting a multivariate joint Gaussian distribution over the function values,
f (x1), ..., f (xN) ∼ N(0, K), with zero mean and covariance matrix K. Then this can be used for
predicting the unseen output Chl-a y∗ for a new input Rrs x∗ by defining a joint prior distribution
between the available Chl-a y ≡ {yn}N

n=1 and y∗. This can be mathematically expressed by[
y
y∗

]
∼ N

(
0,

[
K + σ2In k∗

k>∗ k∗∗ + σ2

])
, (1)

where k∗ is the covariance between the training vector and the test point, k∗∗ is the covariance between
the test point with itself, and K + σ2In is the N × N noisy covariance matrix of the training inputs.
The posterior distribution over the output y∗ can be analytically computed by using Bayes’ formula:
p(y∗|x∗, D) = N(y∗|µGP∗, σ2

GP∗), where µGP∗ is the predicted Chl-a and σ2
GP∗ is the certainty level

of the estimated Chl-a content (predictive variance). The predicted Chl-a content can be expressed
by µGP∗ = k>∗ (K + σ2In)−1y. Note, the predicted Chl-a content can also be written by µGP∗ = k>∗ α,
where α = (K + σ2In)−1y is the weight vector of the mean function of the GPR model. This allowed
the application of the SA (Equation (11)). For further details on the GPR model we refer to [49].

Support Vector Regression model: The Support Vector Regression (SVR) model ([41,50–53])
estimates Chl-a value from Rrs values by yn = wTxn + b, where wT is the transposed weight vector
and b is the bias term. The SVR model uses the so-called ε-intensitive loss function to obtain estimates
by penalizing errors exceeding an ε limit and at the same time obtaining a regression function as flat
as possible. Hence the weights are estimated in the SVR model by minimizing the objective function
J = 1

β ∑N
n=1 (ζ

+
n + ζ−n ) + 1

2 ||w||2 with respect to w, ζ+n , ζ−n and constrained to

yn −−wTxn −−b ≤ ε + ζ+n for n = 1, ..., N (2)

wTxn + b− yn ≤ ε + ζ−n for n = 1, ..., N (3)

ζ+n , ζ−n ≥ 0 for n = 1, ..., N. (4)

ζ+n and ζ−n are called slack variables, and allow measurements to be larger than ε, and β > 0 is
a constant controlling the trade-off between the flatness of the regression function and the magnitude
of the deviations from ε.

Constructing a Lagrange function from the objective function allows to obtain the optimal solution
for the weights: ŵ = ∑N

n=1 (α
+
n −−α−n ) xn, where α+n and α−n are the Lagrange multipliers, also referred

to as support vectors. Define an = α+n − −α−n , and collecting the estimated Chl-a values ŷn into
a vector ŷ, the estimates can be written by

ŷ = ŵTx + b̂ =
N

∑
n=1

anxT
nx + b̂. (5)
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Note, that an vanishes, when measurements do not exceed ε, which results that the solution for ŵ
is sparse. Finally, applying the kernel function defined in Equation (13) to xT

nx, the estimated Chl-a
value vector can be expressed by

ŷ =
N

∑
n=1

ank(xn, x) + b̂. (6)

Partial Least Square Regression model: Assume once again the in-situ Chl-a (X) and Rrs (y)
training dataset D ≡ {X, y}, where now the observations are collected in matrices, such that X is
an N × D input data-matrix consisting of d = 1, ..., D features (spectral bands) and n = 1, ..., N
observations, and let y be the corresponding N × 1 output-vector (Chl-a measurements), holding
n = 1, ..., N observations.

The Partial Least Square Regression (PLSR) model [46,54] relates the input Rrs X and the output
Chl-a y through a latent-space. This is done by introducing so-called latent variables T (N × H),
which are representing both X and y in the latent-space, such that the covariance between the projection
of X and y in this latent- space is maximized. The PLSR model can be written by

X = TPT + E

y = Tc + f (7)

T = XW?

W? = W(PTW)−1,

where P (D × H) is a matrix of the X-loadings and c (H × 1) is the y-loadings, and they are good
representations of X and y, respectively. The term W? (D× H) holds the weights of X, and defines the
common latent-space. The error terms, E (N × D) and f (N × 1), are assumed to be iid. ∼ N(0, σ2).
Then we estimate the output Chl-a y by

y = XW?c + f = Xb + f, (8)

where b = W?c and W (D × H) is the weight matrix consisting of the eigenvectors of the
variance-covariance matrix XTYYTX. Minimizing the error term f in the PLSR model results the
most optimal regression. For further details on the PLSR model and algorithms we refer to [55–60].

2.2.3. Feature Ranking Methods

We chose four feature ranking methods to assign relevance to the features (in our case spectral
bands). The four feature ranking methods are tailored to the regression models, and are the Sensitivity
Analysis (SA) of the GPR model, Sensitivity Analysis (SA) of the SVR model, Automatic Relevance
Determination (ARD) and Variable Importance in Projection (VIP).

SA of Kernel Machines (GPR and SVR): The SA feature ranking method for the SVR and GPR
models are based on the same concept, but for different regression models. Although both the SVR and
GPR are non-linear kernel machines, their underlying principles differ. The SA of the GPR model was
introduced by [31,61], while the SA of the Support Vector Machine (SVM) for classification purposes
was described in [45]. In this work, we extend the SA of the SVM to regression.

Let us define the sensitivity of feature j as

sj =
∫ (

∂φ(x)
∂xj

)2

p(x)dx, (9)
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where p(x) is the probability density function of the D-dimensional input vector x = [x1, . . . , xD]
>,

and φ(x) represents either the predictive mean function of the GPR model, µGP∗ or the estimated
output ŷ of the SVR model. The empirical estimate of the sensitivity for the jth feature can be written as

sj =
1
N

N

∑
n=1

(
∂φ(xn)

∂xj
n

)2

, (10)

where N denotes the number of training samples.
Applying the SA (Equation (10)) to the GPR model yields:

sj
µGP? =

1
N

N

∑
q=1

(
∂φ(xq)

∂xj
q

)2

=
1
N

N

∑
q=1

(
∂ ∑N

p=1 αpk(xp, xq)

∂xj
q

)2

(11)

=
1
N

N

∑
q=1

( N

∑
p=1

αp(xj
p − xj

q)

λ2
j

k(xp, xq)

)2

,

and to the SVR model gives

sj
SVR =

1
N

N

∑
q=1

( N

∑
p=1

ap(xj
p − xj

q)

λ2
j

k(xp, xq)

)2

, (12)

where the difference between Equations (11) and (12) is in the computation of αp and ap (Note that the
calculation of the empirical sensitivity is computed in closed-form using the training data points and
the inferred α and a).

ARD: Kernel Machines (GPR and SVR) use kernel functions to perform regression. The Squared
Exponential (SE) kernel function is a widely used kernel function due to its advantageous properties,
such as it has infinite derivatives and it is a universal kernel [62]. The SE kernel function can be
written by

k(xp, xq) = ν2 exp
(
− 1

2

D

∑
d=1

( xd
p − xd

q

λd

)2)
, (13)

where λd is the length-scale for feature d, ν is the positive scale factor and σ2 is the noise variance.
The SE kernel also provides the possibility to access feature relevance. This can be achieved though
the optimized length-scale hyperparameters in Equation (13) [40]. Small values of the length-scales
indicate greater relevance, while larger values suggest less important features. Hence, the inverses
of the optimized length-scale parameters allow the ranking of the features used in the SVR and
GPR model.

VIP: The VIP feature ranking method is derived from the Partial Least Squares Regression (PLSR)
model. VIP measures the contribution to the total variance of the jth input feature (j = 1, ..., D) [63,64].
The VIP can be written by [65]

VIPj =

√√√√D
H

∑
h=1

SSh(whj/ ‖ wj ‖2)/
H

∑
h=1

SSh, (14)

where SSh is the percentage of the output (Chl-a) explained by the so-called hth latent variable and wj
are the weights of the PLSR model.
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2.2.4. Regression Performance Measures

We chose the Normalized Root Mean Squared Errors (NRMSE) and the Squared Correlation
Coefficient (R2) to evaluate regression strength. These measures are frequently used for model
evaluation in remote sensing [66,67]. Using these measures might be appropriate, when comparison is
in interest. These regression performance measures can be expressed by

NRMSE =
1

ymax −−ymin

√√√√ 1
N

N

∑
i=1

(yi −−ŷi)2 (15)

R2 =
∑N

i=1(ŷi −−y)2

∑N
i=1(yi −−yi)

2
, (16)

where N is the number of observations in the test set, y is the true Chl-a content, ŷ is the predicted
Chl-a, ymax is the maximum observed value, ymin is the minimum observed value, and y is the mean
of the observed Chl-a contents in the test set.

2.2.5. Summary of the AMSA Approach

Figure 4 shows the summary of the ML AMSA for oceanic Chl-a content estimation.
The ML AMSA uses in Stage 1 the Chl-a/Rrs matchup dataset to rank the features by using the
SA GPR, SA SVR, ARD and VIP feature ranking methods. Then in the Stage 2, the dataset is split
to perform regression by the GPR, SVR and PLSR models. Finally, the model with lowest NRMSE
and highest R2 is returned. This is the best model between the available possibilities. Figure 5 shows
an illustrative example, how AMSA can be used for applications.

GPR SVR PLSR

Compute	NRMSE	and	R2

Return	model	with	lowest	NRMSE	and	highest	R2

Matchup	data:	{Rrs;	Chl-a}

Feature	ranking

Ranked	features

SA	GPR SA	SVR ARD VIP

Splitting	data	to	50	%	for	training	and	50	%	for	testing	

Regression

SA	GPR SA	SVR ARD VIP

St
ag
e	
1:
	F
ea
tu
re
	ra
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Figure 4. The ML AMSA for oceanic Chl-a content estiamtion.
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Figure 5. Illustration of the AMSA for application.

2.3. Data

We evaluated the AMSA algorithm on the IOCCG synthesized dataset [48] and a MERIS
(MEdium Resolution Imaging Spectrometer) and MODIS-Aqua (MODerate-resolution Imaging
Spectroradiometer) dataset obtained from SeaBASS database [68,69]. Table 2 summarizes the datasets
we used for demonstrating the AMSA algorithm.

2.3.1. Training Data

The synthetic IOCCG dataset has a spectral region ranging from 400 to 800 nm on a 10 nm
bandwidth, and containing both inherent (IOPs) and apparent optical properties (AOPs). We resampled
the dataset to match the positions and bandwidths of the spectral bands of MERIS and MODIS-Aqua
used for OC applications.

The summary of the synthetic resampled dataset can be seen in Table 2. We used the Rrs values
with the corresponding Chl-a values. This dataset allows to mimic eutrophic conditions by defining
a threshold based on the absorption coefficient for CDOM(aCDOM) and Chl-a value. We partitioned
the resampled data to eutrophic oceanic waters, for aCDOM > 0.06 m−1 and Chl-a > 0.7 mgm−3.

The MERIS dataset consists of 567 measurements, measured between April 2002 and March 2012.
It can be seen that the Chl-a content spans a wide range of concentration with values in the range
between 0.017 and 40.23 mgm−3. The bandwidth is here 10 nm for bands 1–7, and 7.5 nm for band 8.

The MODIS-Aqua dataset has seven channels ranging from 405 nm to 683 nm. The spectral
resolution is 10 nm, except for the first band, which has a bandwidth of 15 nm. The data we used
here has 579 measurements between July 2002 and November 2012, and the Chl-a concentrations are
between 0.0153 and 25.4985 mgm−3.

In case of the MERIS and MODIS-Aqua datasets, only the Rrs and the corresponding Chl-a values
were available, thus the division of the data was based on the Chl-a content only. The geographic
locations of the measurements can be seen in Figure 6. The red dots indicate measurements for
Chl-a value below 0.7 mgm−3, and the black ones for Chl-a above 0.7 mgm−3. It can be seen that
measurements corresponding to eutrophic conditions are usually located in the coastal regions.



Remote Sens. 2018, 10, 775 12 of 21

Table 2. Summary of the training datasets we used for model selection.

Synthetic resampled MERIS global (MS 1a)

Bands (λc (nm)) 413 443 490 510 560 620 665 681

Band width 10 nm and 7.5 nm

Spatial resolution 300 m

Chl-a range (mgm−3) 0.03–30

aCDOM (m−1) 0.0025–2.3677

Nr. of samples 478

Synthetic resampled MERIS eutrophic (MS 1b)

Chl-a range (mgm−3) 0.7–30

aCDOM (m−1) 0.06–2.3677

Nr. of samples 300

MERIS global (MS 2a)

Chl-a range (mgm−3) 0.017–40.23

Nr. of samples 557

MERIS eutrophic (MS 2b)

Chl-a range (mgm−3) 0.7076–40.23

Nr. of samples 247

Synthetic resampled MODIS-Aqua global (MS 3a)

Bands (λc (nm)) 412 443 488 531 551 667 678

Band width 10 nm, 15 nm

Spatial resolution 1000 m

Chl-a range (mgm−3) 0.03–30

aCDOM (m−1) 0.0025–2.3677

Nr. of samples 478

Synthetic resampled MODIS-Aqua eutrophic (MS 3b)

Chl-a range (mgm−3) 0.03–30

aCDOM (m−1) 0.06–2.3677

Nr. of samples 300

MODIS-Aqua global (MS 4a)

Bands (λc (nm)) 412 443 488 531 551 667 678

Band width 10 nm, 15 nm

Spatial resolution 1000 m

Chl-a range (mgm−3) 0.0153–25.4985

Nr. of samples 579

MODIS-Aqua eutrophic (MS 4b)

Chl-a range (mgm−3) 0.703–25.4985

Nr. of samples 392
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Figure 6. Position of the data for the MERIS (left) and MODIS-Aqua (right) global dataset. The red
and black markers indicate oligotrophic and eutrophic conditions, respectively.

2.3.2. Test Data

We illustrate the results of the AMSA algorithm for eutrophic conditions on
two full resolution images acquired by MERIS (We obtained the Rrs data from
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am). The chosen areas are assumed to
represent optically complex aquatic environments. One of the images is taken over the eastern coast
of USA, and the other image is from the southern part of the Baltic sea. For better visualization
purposes, we enlarged a part of the image.

3. Results

We applied AMSA to the eight datasets. For each dataset the total combination of models being
evaluated by AMSA is (feature ranking) · (number of spectral bands) · (regression models). The total
number of model evaluation are 84 and 96 for the MODIS-Aqua (7 bands) and MERIS (8 bands) datasets,
respectively. This means that by using feature ranking methods, the total number of model evaluations
are reduced, which speeds up the computational time required to return the most optimal model.
Feature ranking reduces the total number of possible model-combinations by assigning relevance
to the features. After the spectral bands were ranked, the sequential forward selection approach
automatically trained and tested all the possible model combinations, and output the best model based
on the computed regression performance measures. Table 3 shows the results of the AMSA algorithm
for all the datasets. Note that the NMRSE and R2 values in Table 3 are calculated from the test data.

Table 3. Selected models for the datasets.

Data Label Model Spectral Bands # of Bands NRMSE R2

MS 1a GPR by VIP 1,...,7 7 0.0983 0.9463

MS 1b GPR by VIP 4, 5 and 6 3 0.1363 0.9157

MS 2a GPR by SA GP 1, 2, 5, 6 and 7 5 0.0764 0.9159

MS 2b SVR by VIP 4, 5 and 6 3 0.1305 0.8332

MS 3a GPR by ARD 1, 3 and 7 3 0.1082 0.9353

MS 3b GPR by ARD 1, 3, 5 and 7 4 0.144 0.9068

MS 4a SVR by VIP 1, 2, 3, 4, 5 and 7 6 0.1094 0.8402

MS 4b SVR by ARD 1, 2, 3 and 7 4 0.1180 0.7540

In case of all the synthetic datasets (MS 1a, MS 1b, MS 3a and MS 3b) the best regression model
was found to be the GPR, while for most of the real datasets (MS 2b, MS 4a and MS 4b) the strongest
regression was obtained by the SVR model. This can be due to the fact, that the synthetic dataset
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has low noise level in comparison to the real dataset (The parameter that handles noise in the GPR
model, should have been tuned for the real datasets. However, in order to make the AMSA as robust
as possible, we chose to compute the initial noise parameter by following the same formula).

For the MERIS datasets the best regression was achieved by using the spectral bands ranked by
the VIP ranking method for most of the cases (MS 1a, MS 1b and MS 2b). In case of the MODIS-Aqua
datasets, the ARD ranking method seemed to result in the best ranking (MS 3a, MS 3b and MS 4b).

For global monitoring, the best model was obtained by using most of the available spectral bands
for almost all cases (MS 1a, MS 2a and MS 4a). The only exception was the synthetic MODIS-Aqua
dataset, where the best model was already achieved by using only 3 spectral bands.

For eutrophic conditions AMSA resulted in the best regression, when only three or four bands
were used. In case of the MERIS datasets (MS 1b and MS 2b), these bands are centered at 510, 560
and 620 nm. For the MODIS-Aqua datasets bands centered at 412, 488 and 678 nm were included in
the regression models for both the synthetic (MS 3b) and real (MS 4b) dataset to achieve the strongest
regression model.

The regression performance measures show, that the lowest NRMSE and highest R2 were achieved
for the synthetic global datasets (MS 1a and MS 3a), while the models resulting in highest NRMSE
and lowest R2 were for the eutrophic real datasets (MS 2b and MS 4b). These results also confirm the
challenges of Chl-a content estimation from optically complex waters.

3.1. Chlorophyll-a Maps

In order to illustrate the performance of the best models for eutrophic conditions, we chose two full
resolution MERIS images acquired over areas, which are assumed to be optically complex waters.

3.2. Cross Validation

The outputs of AMSA for the MERIS datasets (MS1b and MS2b), were the GPR and SVR models
with bands centered at 510, 560 and 620 nm. We used cross validation to assess the robustness of the
models. This was done by randomly dividing the datasets (MS1b and MS2b) into 80% for training and
20% for testing. Then training and testing of the models was performed by computing the NRMSE
and R2 measures. This was done in 500 iterations. The mean values of the computed measures for the
cross validations can be seen in Table 4.

Table 4. Results of the cross validation.

MS1b

NRMSE R2

GPR 0.1497 0.8973

SVR 0.1527 0.836

MS2b

NRMSE R2

GPR 0.1464 0.824

SVR 0.1438 0.831

The cross validation resulted in very similar computed measures for both models. In case of
the MS1b dataset, the GPR model resulted in slightly better values, while for the MS2b data the SVR
model showed some improvements. This is in good agreement with the measures output by AMSA
(Table 3). The cross validation results also indicate, that in case of the MS1b dataset the difference
between the computed regression performance measures for the two models is larger, than is case of
the MS2b dataset.
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3.3. Visual Illustrations

We applied the AMSA selected GPR and SVR models to the test images. Figures 7 and 8 show the
estimated Chl-a content. Figure 7 shows the estimated Chl-a content for the coastal water of East USA
by using the GPR (left-column) and SVR (right-column) model with bands centered at 510, 560 and
620 nm. The overall Chl-a maps show that the GPR model predicts higher Chl-a content than the SVR
model (top-row). It can be seen in the enlarged area (bottom-row), that there are regions where the
SVR model assigns higher values to the Chl-a contents.

Figure 8 shows the estimated Chl-a content maps for the southern part of the Baltic sea. In this
case, the overall predicted Chl-a content values (top-row) seem to be more similar for the GPR and
SVR models. There are some regional variations in this case as well. The bottom-row in Figure 8 shows
the enlarged area. Both models seem to capture the eddies in fine details.
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Figure 7. Estimated Chl-a map for the coast of East USA by using the GPR (left-column) and SVR
(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
area indicated by the red squares.

Figure 7. Estimated Chl-a map for the coast of East USA by using the GPR (left-column) and SVR
(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
area indicated by the red squares.
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Figure 8. Estimated Chl-a map for the southern Baltic sea by using the GPR (left-column) and SVR
(right-column) model with bands centered at 510, 560 and 620 nm. The bottom row shows the enlarged
area indicated by the red squares.

4. Discussion

In this work, we presented a strategy to automatically determine the most suitable model for
a given dataset for OC applications. The AMSA approach chooses the best model to estimate any
water quality parameter from remotely sensed data. AMSA can determine the most suitable model for
any regions and sensors. The input to AMSA is the matchup data, and the output is the best model.
AMSA also outputs the number and combination of features needed to obtain the output model,
and the regression performance measures for the best model.

We presented the AMSA for oceanic Chl-a content estimation by using ML methods. The AMSA
we built here, has four feature ranking methods, the SA GPR, SA SVR, ARD and VIP methods,
three regression models, the GPR, SVR and PLSR models, and two regression performance measures,
the NRMSE and R2 to evaluate the regression models. The four feature ranking methods are associated
with the three sophisticated regression models, therefore it was a natural choice to include them in the
AMSA we chose here.

Both the GPR and SVR models have been shown to be strong regression models for OC
applications. They are flexible non-linear kernel methods, using kernel functions in the regression stage.
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The choice of the kernel function is strongly dependent on the nature of the data. Here we used the most
common kernel, the squared exponential kernel function, which has several advantageous properties.
It is a universal kernel [62], and infinitely differentiable. This is a very important property with regard
to the SA feature ranking methods, which uses the partial derivatives of the mean function in the GPR
and SVR models. The squared exponential kernel function also allows to assess feature relevance
by using the length-scale parameter in the function. The ARD feature ranking method uses the
inverse of the optimized length-scale parameter to assign relevance. Optimization is done numerically
through the maximum likelihood function, which in some cases can be trapped in a local minimum.
This might result in erroneous ranking. Furthermore, the initialization of the parameters in the kernel
function also have an impact on the optimization, and hence on the regression as well. Therefore,
developing the robustness of initializing these parameters from the data should be prioritized in future
methodological development.

Despite the PLSR model differs from the kernel machines in its underlying fundamental principles,
it also provides the possibility to assess feature relevance through the VIP method. In this work,
the AMSA has not output the PLSR model as the most suitable algorithm for Chl-a content estimation.
However, in many cases (see Table 3) the VIP method seemed to rank the spectral bands such that
the strongest regression was achieved by using the kernel machines. Thus, using the VIP method for
feature ranking and kernel machines for regression might be a good combination of methods.

In this work we showed how these ML methods can be used to build an AMSA to estimate Chl-a
content in different water conditions and for different sensors. The chosen matchup datasets (MERIS,
MODIS-Aqua and the synthesized IOCCG dataset) allowed us to simulate water conditions with
increased complexity. Note, although the Chl-a threshold we set here to 0.7 mgm−3 might be low for
optically complex waters, the observations in the real eutrophic datasets above this value, still seem to
originate from coastal environments (Figure 6).

AMSA gave as result that for the synthetic datasets the GPR performed best, but for most of the
real dataset the best model was obtained with the SVR model. However, the cross validation results
suggest that the SVR model might only have slightly better performance than the GPR model for
these datasets.

Generally, for global Chl-a content estimation most of the spectral bands were needed to achieve
the best regression with the chosen models. This might be due to the larger variety in the data.
This result was in contrast to water conditions of increased complexity, where using only three or four
of the available spectral bands as inputs resulted the strongest regression. In case of MERIS, these bands
were centered at 510, 560 and 620 nm for both the synthetic and real datasets. The spectral band at
510 nm is used to estimate Chl-a content in CDOM rich waters [70]. This is due to the fact that both
CDOM and Chl-a has absorption in the blue region of the visible part of the electromagnetic spectrum.
The spectral band at 510 nm is mostly representative for the accessory pigments. However, since these
pigments are strongly correlated with Chl-a, this band has been widely used to estimate Chl-a content
from optically complex waters [16,17,70]. Furthermore, the green spectral band, centered at 560 nm is
commonly used for Chl-a estimation, since there is little or no absorption due to phytoplankton in this
region. Therefore, this is an important band to use as a reference wavelength in many Chl-a content
retrieval algorithms [70]. Using red bands, included the band centered at 620 nm, to estimate Chl-a
content has also been commonly used for optically complex waters due to the second absorption peak
of the Chl-a [16].

For the eutrophic MODIS-Aqua datasets, the spectral bands centered at 412, 488 and 678 nm
were found to have importance in the estimation of Chl-a for both the synthesized and real datasets.
The bands centered at 488 and 678 nm are in good correspondence with the results for the MERIS
datasets. The spectral band centered at 412 nm has also been suggested for Chl-a estimation in complex
waters due to the deviation in the absorption between CDOM and Chl-a in this spectral region [71].

Since we used a synthetic resampled dataset to present the performance of AMSA, the model
outputs differed from the real datasets. Therefore, we chose to illustrate the best models for both the
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synthetic and real datasets for eutrophic conditions for the MERIS sensor for applications. In case of the
coastal part of eastern USA, the GPR assigned in general higher values to the Chl-a content than the
SVR model. However, enlarging a region close to shore revealed that the SVR model estimated higher
Chl-a than the GPR model. This was also observable for the southern part of the Baltic sea, with less
pronounced differences. The illustrative example also showed that both models could capture the
same patterns and reveal fine details. Most probably there is a systematic bias occurring in the models.
This can be adjusted by tuning the initial parameters in the kernel function, once the model for a given
purpose is determined.

5. Conclusions

We conclude, based on this illustrative study, that the AMSA can be a helpful tool for water quality
analysis from remote sensing data. It may also be useful in further development of new algorithms.
AMSA can be used to objectively compare models with newly introduced algorithms. Furthermore,
AMSA might also contribute to improved understanding of the underlying physical processes for
various water conditions due to the inclusion of the feature ranking methods.

We have shown that combining ML feature ranking and regression methods in AMSA can reduce
computational time and result in improved regression. Furthermore, kernel machines, such as the
GPR and SVR models are confirmed to show strong regression power.

For future work, we plan to generalize AMSA by extending the methodology and applying it to
different complex aquatic environments and sensors. We also plan to design a flexible AMSA so that
user defined models can be added.
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