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The present study investigated whether there is a critical length of photoperiod needed to 

stimulate a completed parr–smolt transformation (PST) in Atlantic salmon Salmo salar. In two 

experiments, S. salar parr of the Norwegian aquaculture strain held on continuous light were 

exposed to a short photoperiod (6L:18D) followed by exposure to 8L:16D, 12L:12D, 16L:8D, 

20L:4D and 24L:0D in experiment 1 or to 6L:18D followed by maintenance 6L:18D or exposure 

to 12L:12D and 24L:0D photoperiods in experiment 2. All groups, irrespective of photoperiod 
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treatment, developed improved hypo-osmoregulatory ability. However, the development was 

greatest in the groups exposed to 20L:4D and 24L:0D in experiment 1 and 24L:0D in experiment 

2. In experiment 2, gill Na
+
– K

+
-ATPase activity increased in the group exposed to 24L:0D, but 

not in the groups exposed to 12L:12D and 6L:18D. The groups exposed to 20L:4D and 24L:0D 

in experiment 1 and 24L:0D in experiment 2 also grew better than fish exposed to shorter 

photoperiods. In experiment 2 only the group exposed to  24L:0D showed a decrease in condition 

factor and increases in plasma growth hormone and brain type 2 deiodinase mRNA abundance. 

Hence, only the groups exposed to photoperiods above 16L:8D developed classical smolt indices 

in the present experiment, leading us to conclude that the photoperiod increase needs to exceed 

16 h daylight for stimulating a complete PST in the S. salar used in the present study.   
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1 | INTRODUCTION 

 

A multitude of developmental changes constitute parr–smolt transformation (PST) in Atlantic 

salmon Salmo salar L. 1758 , including increased salinity tolerance, silvering, increased growth 

in length and a slimmer body shape, metabolic preparations and migratory behaviour 

(McCormick, 2013). These are regulated by systemic and paracrine hormone actions and, in 

natural systems, the timing of PST is commonly accepted to be controlled by increasing 

photoperiod in spring. In captivity, PST is achieved by mimicking the natural photoperiodic cue, 

either by exposing pre-smolts to a simulated, natural increase in photoperiod or by exposure to a 

summer–winter–summer photoperiod sequence, effectively compressing the duration of the 
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winter phase (Duston & Saunders, 1990; Thrush et al., 1999). Previous studies have shown that a 

minimum period of exposure to a short (winter) photoperiod (i.e. 6 weeks), followed by an 

increase in photoperiod, is necessary for the pre-smolt Atlantic salmon to achieve a completed 

PST (Handeland & Stefansson, 2001; Berge et al., 1995; Ebbesson et al., 2007). Whereas little or 

nothing is known about the mechanisms initiated by the short photoperiod, the responses to the 

increase in photoperiod are well described. This phase (hereafter termed final smolting) is 

characterized by a decrease in condition factor and an increase in salinity tolerance, growth rate, 

gill Na
+
–K

+
-ATPase (NKA) activity and plasma growth hormone (GH) concentration 

(McCormick, 2013). Recently, it was shown that the increase in photoperiod stimulates 

expression of type 2 thyroid hormone deiodinase (dio2b) in smolting salmon (Lorgen et al., 

2015), suggesting that increased brain levels of tri-iodothyronine (T3) contribute to final 

smolting.  

 PST includes development of migratory behaviour and, in natural systems, completion of 

PST is considered to coincide with the time of seawater (SW) entry (McCormick, 2013). PST 

completion and SW entry must be timed to take place during spring–summer when conditions in 

the sea are favourable (the “ecological smolt window”; McCormick et al., 1998). In S. salar 

populations living at high latitudes in Norway, SW entry occurs in late June–mid July (Orell et 

al., 2007) (i.e. after 6 months of increasing photoperiod following the winter solstice). Based on 

the 350 degree-days (cumulative, average daily temperature; D
o 
C) needed for completing the 

final smolting in Norwegian aquaculture strains of S. salar (Handeland et al., 2004), it is unlikely 

that the final smolting starts at winter solstice in pre-smolts at high latitudes. Rather, triggering 

must occur sometime in late winter. This led us to wonder whether final smolting is triggered 

when the increase in photoperiod exceeds a threshold, or critical photoperiod and if so, what the 

value of a critical photoperiod might be.   
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To this address these questions, we performed two PST experiments in groups of S. salar 

pre-smolts that were transferred from a winter photoperiod of 6 or 8 h photoperiod to increased 

photoperiods up to 24 h. We assessed smoltification through a range of parameters reflecting 

osmoregulatory ability (SW tolerance and gill NKA activity), morphology (condition factor 

based on length and mass) and endocrine status (plasma growth hormone (GH) concentration and 

brain expression of thyroid hormone deiodinase dio2b).  

 

2 | MATERIALS AND METHODS 

 

2.1 | Fish material and experimental set-up 

 

The experiments were carried out at the Aquaculture Research Station in Tromsø, northern 

Norway (69° N) using S. salar, of the AquaGen strain (AquaGen; www.aquagen.no) derived 

from eggs hatched in January 2015. After start-feeding in May, the fish used in experiment 1 

were held at continuous light (24L:0D; L = light and D = darkness) and a water temperature of 

10° C until August 11, when the photoperiod was altered to 6L:18D in order to give the fish a 

winter signal. After 50 days of the winter regime, the fish were transferred to 5 different light 

regimes (Figure 1), at which they were held for 15 weeks. For each light regime, there were 

duplicate tanks of fish. Before transfer, all fish were individually tagged with Floy FFT-69 

fingerling tags (www.floytag.com). The tags had one colour for each light regime and for 

monitoring individual growth rate another 10 fish in each tank was marked with white Floy tags. 

After start-feeding, the fish to be used in experiment 2 were held at 8° C and 24L:0D until 

August. From August to January, water temperature was gradually decreased from 8 to 4° C. In 

January the photoperiod and temperature were altered to 6L:18D and 7
o 
C, respectively. After 50 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
days (on March 15), the fish were transferred to three different, duplicated light regimes and a 

water temperature of 10
o 

C (Figure 1) for 9 weeks. Before transfer, 50% of the fish had been 

individually tagged with Floy tags of different colours, one colour for each light regime and 

distributed to replicate tanks. Throughout both experiments, the fish were fed commercial feed 

(Skretting; www.skretting.com) according to manufacturer’s recommendations. The duration of 

feeding was the same for all treatment groups; 8 hours during the light period of the short-day 

group in experiment 1 and 6 h during the light period of the short-day group in experiment 2 

(Figure 1).   

The experiments were performed in accordance with the ethical guidelines included in the 

block permission for smolt experiments obtained by the Aquaculture Research Station from the 

Norwegian Food Safety Authority.  

  

2.2 | Sampling from freshwater 

 

At all sampling dates during the photoperiodic treatment of experiment 1 (30 September, 26 

October, 16 November, 16 December and 16 January, i.e. at day 1, 26, 47, 78 and 109 after the 

end of the winter period), the fish tagged with white Floy tags in all treatment groups were 

anesthetized in benzocaine (60 mg l
–1

) and body mass (M, 0.1 g) and fork length (LF, 0.1 cm) 

measured for calculating development of condition factor and specific growth rate. In experiment 

2, 10 (2 x 5) fish without Floy tags from each treatment group were sampled on 16 March, 30 

March, 13 April, 3 May and 18 May (i.e. on day 1, 15, 29, 49, 64 after the end of the winter 

period) and killed in a lethal dose of benzocaine (160 mg l
–1

). M and LF were measured and a 

small biopsy of gill tissue was sampled from the second gill arch on the left side of the fish by 

fine-tip forceps. The biopsy was placed in a plastic tube containing 100 µl SEI solution (0.3 M 
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sucrose, 0.02 M Na2-EDTA and 0.1 M imidazole) and subsequently frozen at –80° C until 

analysis of NKA activity. Blood samples were drawn from the caudal vessels with 1 ml Li-

heparinized vacutainers, centrifuged at 2780 g and 1° C for 8 min. Plasma was then removed and 

stored at –18° C until analysed. Finally, the whole brain (pituitary removed) was dissected out 

and stored in 1 ml RNAlater (Thermo Fisher Scientific; www.thermofisher.com) at 4
o 
C for 24 h 

and then at –20
o
C until analysed for dio2b messenger (m)RNA abundance.  

 

2.3 | Seawater-challenge 

 

A standardized SW challenge test (Blackburn & Clarke, 1987) was initiated on each of the 

sampling dates in fresh water in both experiments. At the start of each test, 16 (2 x 8) fish 

(experiment 1) and 10 (2 x 5) fish (experiment 2) from each light regime were randomly netted 

(only fish tagged with coloured Floy tags) from each tank and transferred directly to a common 

test tank supplied with SW (7° C, salinity33). After 24 h, the fish were killed with a lethal dose of 

benzocaine. Blood samples were drawn from the caudal vessels with 1 ml Li-heparinized 

vacutainers, centrifuged at 2780 g and 1° C for 8 min. Plasma was then removed and stored at 

−18° C until analysed.   

 

2.4 | Analyses 

 

The hypo-osmoregulatory ability of the sampled fish was assessed by measuring plasma chloride 

concentration (Corning 925 chloride titrator, CIBA Corning Diagnostics, Essex, England) and 

plasma osmolality (FiskeOne-Ten Osmometer, Fiske Associates, MA, USA). Gill NKA activity 
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was measured as μmol ADP mg protein

–1
 hour

–1
, using the enzyme assay described by 

McCormick (1993).  To determine GH concentrations in the plasma samples we used a S. salar 

somatotropin ELISA Kit (Catalog no MBS288370_DATA; MyBioSource; 

www.mybioscience.com). Briefly, plasma samples were diluted 1:5 to bring GH levels within the 

standard-curve range. Further analyses were done in accordance with the manufacturer’s 

instructions. Concentrations determined in the diluted samples were corrected for the diluted 

factor.  

For analysing brain dio2b mRNA abundance, brains (around 30 mg) were first 

homogenized using a Qiagen TissueLyser II (Qiagen; www.qiagen.com). Total RNA was then 

extracted using the RNeasy Plus Universal Mini Kit (Qiagen). This kit included an initial step of 

genomic (g)DNA removal and a reverse-transcription (RT) test on a selection of samples to 

ensure that the removal was effective. Total RNA was subjected to additional DNase treatment 

(Turbo DNase; Ambion Inc.; www.thermofisher.com) and reverse transcription of total RNA 

(0.5µg) was performed using iScriptTM advanced cDNA synthesis kit for quantitative (q)RT-

PCR (Bio-Rad Laboratories; www.biorad.com) per 20 µl cDNA reaction according to the 

manufacturer’s instructions. CDNA was then diluted ten-fold. The mRNA abundance of dio2b 

(forward, GGATGTGAGGCAGTATCTGGAACAG; reverse, GCCTGTCATTTGTGGTCAGA; 

Lorgen et al., 2015) and EF-1 (forward, GAGAACCATTGAGAAGTTCGAGAAG; reverse, 

CACCCAGGCATACTTGAAAG; Murashita et al.      ) were anal sed     erforming  T-

   . The am lification ste s were as follows         for 1  min         for   min          for 1  s  

       for    s)            C for 10 s followed by melt-curve analysis. Standard curves were 

generated with two-fold dilutions to check the efficiency of the primers. All qPCR analyses were 

run with CFX96 real-time (rt)-PCR detection system (Bio-Rad) and the software CFXManager 

3.0 (Bio-Rad).  Relative-fold change of gene ex ression was calculated using the ΔΔ t method 
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(Livak & Schmittgen, 2011) with Elongation factor 1α (ef1α), a stable reference gene in S. salar 

(Olsvik et al., 2001) was used to normalize the Ct values of the target gene. 

 

2.5 | Data treatment and statistics 

 

Condition factor (K) was calculated by the formula (MLF
–3

)100, where M is body mass in g and 

LF is fork length in cm. Specific growth rate (RSG) was calculated by the formula [(lnMF – 

InMt)100](t1 – t0)
–1

, where MF and Mt are body mass at the start and the end of the sampling 

period, respectively and t1 – t0 is the number of days between measurements. With very few 

exceptions, the data were normally distributed (Lilliefors test, Systat 13.1; 

www.systatsoftware.com) and reported values are arithmetic means and S.E. For each light-

regime dataset on M, K, plasma osmolality, plasma chloride,  gill NKA activity, plasma GH  and 

normalized brain Dio2b mRNA abundance were analysed using a nested general linear model 

analysis  of variance  to investigate the effects of time,  light regime and tank (replicate). A 

Tukey honest significant difference (HSD) post hoc test was used to identify when significant 

differences occurred. No significant effect of tank (replicate) was found and duplicates were 

therefore pooled in the results presented here. Possible differences in specific growth rates were 

analysed using a one-way ANOVA. A probability level of P ≤ 0.05 was considered significant. 

All statistical computations were performed with Systat 13.1. 

 

3 | Results 

 

3.1 | Hypoosmoregulation and gill NKA activity 
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All groups displayed plasma chloride concentrations above 165 mmol l

−1
 after the SWT at the 

two first sampling dates, except for fish that had been held at 24L:0D in experiment 1. In this 

group plasma chloride concentration had decreased to an average of 160 mmol l
−1

 at the second 

sampling date, when the concentration was significantly lower than in the other groups (Fig 2(a)). 

Later in the sampling period, all groups showed significant decreases in plasma chloride 

concentrations after SWTs. The fish held at 24L:0D and 20L:4D in experiment 1 reached levels 

lower than 150 mmol l
−1

 faster than those held at shorter photoperiods. Also in experiment 2 all 

groups showed significant decreases in plasma chloride concentrations after SWTs test, but in 

April and May the fish from the 24L:0D group had significantly lower plasma chloride levels 

than the those held on shorter photoperiods and at the last sampling in mid-May plasma chloride 

level in the 24L:0D group was still significantly lower than that in the 6L:18D group.  

  Plasma osmolality changed in a similar pattern as the plasma chloride concentrations. All 

groups displayed high concentrations at the end of the winter treatment (> 395 mOsm kg
−1

) in 

October (experiment 1) and in March (experiment 2). Following transfer to the treatment 

photoperiods, plasma osmolality decreased significantly in all groups within the first 6 weeks, but 

to significantly lower levels in the group held at 24L:0D than in the groups held at 12L:12D and 

8L:16D in experiment 1 (Figure 3(a)). In experiment 2, plasma osmolality decreased significantly 

in all groups until the end of the experiment but at a significantly faster rate and to a lower level 

in the 24L:0D group than in the other two groups (Figure 3(b)). 

  Only fish in the 24L:0D group had a significant increase in gill NKA activity during the 

course of the study and in May the level in the 24L:0D groups was significantly higher than in 

the 6L:18D and 12L:12D groups (Figure 4). 

  

3.2 | Growth, specific growth rate and condition factor  
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In both experiment, there was a significant and positive, effect of photoperiod on growth (Figure 

5(a),(b)). More specifically, this effect was manifest as a significantly higher growth rates of fish 

held at 20L:4D and 24:0D in experiment 1, compared with fish held at other photoperiods (Figure 

6(a)).  Specific growth rate data in experiment 2 was obtained without individually tagged fish, 

rendering statistical analyses impossible, but the result confirmed that in experiment 1; a 

markedly higher RSG in the 24L:0D group than in the other groups (Figure 6(b)).  

  In experiment 1 there was a significant decrease in condition factor only for the fish in the 

20L:4D and 24L:0D groups during the course of the experiment. Condition factor was 

significantly lower in these groups than in the other groups on the sampling in December (Figure 

7(a)). In experiment 2, K decreased significantly in the 24L:0D group, but not in the two other 

groups and was significantly lower in the 24L:0D group than in the 6L:16D and 12L:12D groups 

throughout (Figure 7(b)).  

  Plasma GH concentration and brain dio2b mRNA abundance in experiment 2. 

The abundances of brain dio2b mRNA were not measured at the first sampling date (15 March), 

but for the rest of the sampling dates there was a significantly higher abundance in the 24L:0D 

group than in the other groups throughout the experiment (Figure 8).  Only fish in the 24L:0D 

group had a significant increase in plasma GH concentration, which in May were significantly 

higher in the 24L:0D group than in the fish held at 6L:18D and 12L:12D (Figure 9) 

  

4 | DISCUSSION 

 

It is generally accepted that S. salar smolting is stimulated by the increase in photoperiod in 

spring. However, photoperiod increases continuously from the winter solstice to the summer 
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solstice and more specific information about when during this period smolting is triggered is 

lacking. A previous study in S. salar reported that progressively increasing photoperiod, 

culminating in exposure to constant light only induces expression of smolt characteristics in pre-

smolts that had previously been exposed to a photoperiod of 13 h or less (Berge et al., 1995). 

This suggests that a period of exposure to photoperiods short enough to be perceived as a winter 

regime is necessary for longer photoperiods to trigger smolting. Correspondingly, the present 

study showed that the amplitude of photoperiodic change clearly affected smolt development and 

that, for a winter (short-day) acclimated, high-latitude S. salar parr, an increase in photoperiod to 

above 16 h is necessary for triggering PST. 

 In the present study salinity tolerance increased in all treatment groups, irrespective of 

photoperiodic treatment (Figures 2 and 3). This was also the case in the group maintained at 6 h 

photoperiod in experiment 2. Increases in salinity tolerance, independent of a photoperiodic cue, 

have been seen in many previous studies (Duston & Saunders, 1990; Sigholt et al., 1995; 

Handeland et al., 2013). Very little is known about the triggering mechanism, but there is 

evidence for the presence of a size-dependent smolting window during which the pre-smolt may 

develop smolt characters without apparent external cues (Handeland et al., 2013; Imsland et al., 

2014). The temporal synchrony in the increase in salinity tolerance between groups in the present 

study indicates that there may have been a triggering cue. This may have been the 2 h increase in 

photoperiod in the short-day group in experiment 1 and the increase in water temperature (Figure 

1) preceding the increase in salinity tolerance in the fish in experiment 2 that did not experience 

an increase in photoperiod (Figure 1). Although temperature per se is not considered to be a 

zeitgeber of smolting, temperature has been shown before to trigger an increase in salinity 

tolerance in winter-acclimated S. salar parr ready to smoltify (McCormick et al., 2002). Whether 
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temperature may be a trigger for a complete PST is, however, disputed (McCormick et al., 2002; 

Stefansson et al., 2007; Handeland et al., 2013).   

Although salinity tolerance increased in all groups in the present study (Figures 2 and 3), 

the increase was stronger in the groups exposed to the longest photoperiods. This is best 

illustrated by the results in experiment 2; plasma chloride concentration and osmolality following 

SWTs were significantly lower in the fish exposed to 24 h daylight compared with those that 

were maintained at 6 or transferred to 12 h daylight (Figures 2(b) and 3(b)). Importantly, there 

was no difference between the 6 and 12 h daylight groups in plasma chloride concentration and 

osmolality following SWTs, indicating that the increase in salinity tolerance in these groups did 

not reflect a completed PST. This assumption is further supported by the fact that only the group 

transferred to 24 h light in experiment 2 showed an increase in gill NKA activity concomitant 

with the increase in salinity tolerance (Figure 4). It is generally accepted that an elevated gill 

NKA activity is necessary for the ability of salmonids to maintain ion and water balance in SW 

(Evans et al., 2005) and it is a paradox that the 6 and 12 h photoperiod groups in experiment 2 

developed a markedly better hypo-osmoregulatory ability without any changes in gill NKA 

activity (Figures 2(b), 3(b) and 4). This could, however, be related to the increase in size and a 

more favourable surface-area-to-volume ratio in these fish, as shown previously (Duston & 

Saunders, 1990; Arnesen et al., 1992). The increase in gill NKA activity in the fish exposed to 

constant light in experiment 2 concurred with an increase in plasma GH levels, confirming the 

stimulatory role of GH (partly via insulin-like growth factor) on gill NKA activity in euryhaline 

fish species (Takei & McCormick, 2013). The lack of increases in plasma GH levels in the 6 and 

12 h photoperiod groups is in correspondence with the lack of increases in gill NKA activity in 

these groups and a further evidence of an incomplete PST in these groups. A similar difference 

between the groups in experiment 2 was seen for brain expression of dio2b, which was only 
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upregulated in the group exposed to constant light. This gene has recently been shown to be 

responsive to increasing photoperiods in smolting S. salar (Lorgen et al., 2015) and has also been 

implicated in the timing of seasonal life-history transitions in mammals and birds (Hazlerigg & 

Simonneaux, 2014). 

The increase in growth rate with increasing photoperiod seen in the present study (Figure 

6(a),(b) correspond to the findings in numerous previous studies with S. salar (Boeuf & Bail, 

1999). It is believed that the increase in growth rate is caused by an increasing level of circulating 

GH, in turn caused by the extended photoperiod (Björnsson et al., 1997). The results in the 

present study support this, since in experiment 2 the fish in the group transferred to 24 h 

photoperiod had higher plasma GH levels and higher growth rates than the fish in the other two 

groups (Figure 9). Furthermore, this group was also the only group in experiment 2 showing a 

decrease in K (Figure 7), which was to be expected due to the stimulatory effect of GH on 

skeletal (length) growth (Björnsson et al., 1997). The increase in growth rate in the groups that 

were exposed to long days occurred even though all groups were fed only during the 8 or 6 h of 

daylight experienced by the short-day groups in experiment 1 and 2, respectively. This finding 

must be interpreted as a stimulation of appetite by the long day and associated neuroendocrine 

responses, rather than by length of the period during which feed is available. The latter has been 

considered important for food intake and growth since the S. salar is a visual feeder and 

consequentl   that it’s feeding o  ortunit  de ends on photoperiod (Ali, 1959; Thorpe et al., 

1990).     

 It is commonly said that the role of photoperiod in the stimulation and timing of smolting 

is through entrainment of a circannual rhythm of smolting. However, a complete PST is 

considered a “once in a life-time” life-history transition (Björnsson & Bradley, 2007), which 

then, by definition, is not a circannual rhythm per se but a transition that is governed by a 
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circannual timer. It is possible that components of the PST follow a circannual rhythm in S. salar 

juveniles deprived from photoperiodic cues, since Eriksson & Lundquist (1982) showed repeated 

circannual (10 months) changes in silvering and K in juveniles held on a 12L:12D photoperiod 

regime. Timing and completion of a true PST seems, on the other hand, to rely on exposure to a 

winter-summer photoperiodic cue soon after the parr has reached a stage by which they are ready 

to smoltify. Within this context and all data taken together, the results from the present study 

show that the photoperiod increase needs to exceed 16 h for stimulating a complete PST in the S. 

salar parr used in the present study.  This finding translates to S. salar living at high latitudes has, 

however, not been shown.  Triggering of smolting under a gradually increasing daylength in 

natural system is not necessarily like that evoked under the experimental, photoperiod regime 

used here.  

Surprisingly, no information seems to exist on photoperiod conditions needed for S. salar 

smolting in relation to latitude. Salmo salar smolts in the sub-arctic River Tana (70
o 
N) in 

northern Norway enter sea during late June and early July (Orell et al., 2007). Based on data from 

the present experiment, it took between 330 and 380 D
o 
C from the abrupt change from short to 

long days until gill NKA activity and salinity tolerance reached peak levels, i.e. comparable with 

the 350 D
o 
C reported by Handeland et al. (2004). Assuming that the S. salar in River Tana have 

completed PST at the time of sea entry and that the river temperature is on the average 4
o 
C 

during the smolting period, it can be calculated that the start of the development of gill NKA 

activity and salinity tolerance must have been in April, i.e. at a time when photoperiod is longer 

than 16 h. In contrast, an increase from 10 to 15 h photoperiod increased plasma GH levels and 

gill NKA activity and decreased K, in a more southern distributed (43
o 
N) S. salar in the U.S.A. 

(McCormick et al., 1995). Further studies on the chronobiology of S. salar smolting in relation to 

latitude is warranted. 
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In a very interesting, early study, Thorarensen & Clarke (1989) demonstrated that coho or 

Chinook salmon Oncorhynchus tshawytscha (Walbaum 1792) parr maintained on short day (6 h) 

and a 1 h light pulse in the middle of the night developed a significantly greater growth rate and 

SW adaptability than those moved from 6 to 10 h photoperiod and a similar increase in growth 

rate and SW adaptability as those moved from 6 to 16 h photoperiod. Likewise, it was shown that 

a skeleton photoperiod treatment also governed spawning time in rainbow trout Oncorhynchus 

mykiss (Walbaum 1792) (Duston & Bromage, 1986). Surprisingly, no later reports from 

experiments with salmonids using such skeleton photoperiod regimes can be found. The finding 

tempted the authors to conclude that the timing of the day when light is experienced, rather than 

the accumulated number of hours of exposure to light, initiate PST in S. salar. This points further 

to an “external coincidence” mechanism  sensu Bünning, 1936) underpinning the photoperiodic 

stimulation of PST. The mechanism implies that the prevailing photoperiod entrains an 

endogenous, circadian rhythm of photosensitivity and that the initiation of long day phenotype 

relies upon the occurrence of daylight during the photosensitive period. Further studies are 

needed to test this hypothesis. 

In summary the present study revealed development of hypo-osmoregulatory ability in all 

treatment groups, irrespective of photoperiodic treatment. However, this development does not 

indicate a completed PST, since only the groups exposed to photoperiods exceeding 16 h daylight 

developed a full suite of smolt indices, including increases in gill NKA activity, plasma GH 

concentration and brain dio2b mRNA abundance and decreased K. It is concluded that the 

photoperiod increase needs to exceed 16 h for stimulating a complete PST in S. salar parr living 

in northern habitats.   
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Figure captions 

Typesetter: change all superscript hyhens to superscript en dashes throughout. 

 

FIGURE 1 Light- and temperature regimes experienced by fish used in experiment 1 and 2. □, 

The length of day; █, the length of night. 

 

FIGURE 2  Plasma chloride concentrations (mean ± S.E.) following seawater treatment of fish 

ke t at 8L 18D  ●)   1 L 1 D  ○)  1 L 8D  ▼)    L  D   ∆) and   L  D  ■) in ex eriment 1 and 

6L:16D(X)   1 L 1 D  ○)  and   L  D  ■) in ex eriment  . *,Significantly different plasma 

chloride concentration in the 24L:0D compared with other groups (P < 0.05). 

Typesetter:  

1 Change a), b) to (a), (b) 

2 Change Chloride to chloride and delete repeat label and numerals from RH y-axis 

 

FIGURE3.  Plasma osmolality (mean ± S.E.) following seawater treatment of fish kept at 8L:16D 

 ●)  1 L 1 D  ○)  1 L 8D  ▼)    L  D  ∆) and   L  D  ■) in ex eriment 1 and  L 18D  X),  

1 L 1 D  ○)  and   L  D  ■) in ex eriment  .* 1), Significantly lower levels in the 24L:0D 

group than in the 8L:16D, 12L:12D and 16L:8D groups. *(2), Significantly lower level in the 

20L:4D group than in the 8L:16D and 12L:12D groups. *(3), Significantly higher level in the 

8L:16D group than in the rest of the groups  and *(4) , Significantly lower level in the 24L:0D 

group than in the 6L:18D and 12L:12D groups (P < 0.05). 

Typesetter:  

1 Change a), b) to (a), (b) 
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2 Change Osmolality to osmolality and delete repeat label and numerals from RH y-axis 

 

FIGURE 4. Gill Na
+
–K

+
-ATPase activity (mean ± S.E.) in the 6L:16D (X)  1 L 1 D  ○) and 

  L  D  ■) grou s. * Significantly higher gill Na
+
–K

+
-ATPase activity in the 24L:0D group than 

in the other groups at the same sampling date (P < 0.05). 

Typesetter:  

1 Change Gill Na
+,

K
+
-ATPase activity to read Gill Na

+
–K

+
-ATPase activity  

 

FIGURE 5. Changes in body mass (M, mean ± S.E.) of fish ke t at 8L 1 D  ●)  1 L 1 D  ○)  

1 L 8D  ▼)    L  D  ∆) and   L  D  ■) in experiment 1 and 6L:18D (X)  1 L 1 D  ○)  and 

  L  D  ■) in ex eriment  . 1 *), Significant higher body weight of the fish held at 24L:0D at 

the last sampling date in experiment 1 compared to the body weight of the group held at 8L:16D; 

2(*), significantly higher body weight of the fish held at 24L:0D than of those held at 6L:18D 

and 12L:12D (P < 0.05). 

Typesetter:  

1 Change a), b) to (a), (b) 

2 Change Body mass to M and delete repeat label and numerals from RH y-axis 

 

FIGURE 6. Specific growth rate (RSG; mean ± S.E.) of fish kept at different light regimes during 

the photoperiodic treatment period.  *, Significantly higher RSG than groups without asterix in 

experiment 1 (P < 0.05). 

Typesetter:  

1 Change a), b) to (a), (b) 
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2 X-axis change L to L: throughout. 

3 Change SGR mass to RSG and delete repeat label and numerals from RH y-axis 

 

FIGURE 7.  Condition factor (K; mean ± S.E.) of fish kept at 8L:16D (X)  1 L 1 D  ○)  1 L 8D 

 ▼)    L  D  ∆) and   L  D  ■) in ex eriment 1 and  L 1 D  ●)  1 L 1 D  ○)  and   L  D  ■) 

in experiment 2. 1(*), Significantly lower condition factor in the 24L:0D and 20L:4D groups than 

in the 8L:16D, 12L:12D and 16D:8L groups; 2(*), significantly lower condition factor in the 

20L:4D group than in the 8L:16D and 12L:12D groups in experiment 1; 3(*), significantly lower 

condition factor in the 24L:0D group than in the 6L:18D and 12L:12D groups; 4(*), significantly 

lower condition factor in the 24L:0D groups than in the 6L:18D groups (P < 0.05). 

Typesetter:  

1 Change a), b) to (a), (b) 

2 Change Condition factor  to K and delete repeat label and numerals from RH y-axis 

 

FIGURE 8. Normalized brain dio2b mRNA abundance (mean ± S.E.) in the 6L:18D (X), 

1 L 1 D  ○) and   L  D  ■) grou s. Significantly higher abundance in the 24L:0D group than in 

the: *(1), 6L:18D and 12L:12D groups in March; *(2), 6L:18D group in April; *(3) 12L:12D 

group in May (P < 0.05). 

Typesetter:  

1 Change brain Dio2b to brain dio2b 
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FIGURE 9. Changes in plasma GH concentration (mean ± S.E.) in the 6L:18D (X)  1 L 1 D  ○) 

and   L  D  ■) grou s. *, Significantly higher plasma GH concentration in the 24L:0D group 

than in the other groups at the same sampling date (P < 0.05). 
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Fig. 5   
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Fig. 6  
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