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Abstract. A simple magnetized plasma torus is modeled by using a “top hat” density

variation. The benefit of this simplification is an exactly solvable model, allowing for

a few additions, such as an externally maintained parabolic steady state potential

variation imposed on the plasma. The combined effects of the resulting plasma

rotation and the plasma polarization due to magnetic field gradient particle drifts can

be described. The stabilizing and confining effects of plasma rotation are explicitly

demonstrated. In a special high plasma density limit the results are confirmed by

a more general model, indicating that the results of the top-hat model can be used

with confidence in more general cases. A small vertical magnetic field component

can be included for a plasma with neutral collisions and its influence on the electron

dynamics studied. The effects of ion - neutral collisions are also included. The rotation

and polarization of the plasma has different effects on the time variations of the plasma

density and potential. As a reference we use data from the Blaamann device at the

University of Tromsø obtained by a movable multi-probe, measuring variations in

density, floating potential and an electric field component. The fluctuations in the

plasma are characterized by auto-correlations and by cross-correlations between the

signal from a fixed reference probe and data. The model accounts adequately for the

phase variations of the signals for varying spatial multi-probe positions.
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1. Introduction

It is well known that a simple magnetized plasma torus has no equilibrium, and a

perturbation analysis in the classical sense is thus meaningless; there is no equilibrium

solution to perturb. A key problem in previous studies of the confinement of hot fusion

plasmas addressed modifications of such simple torii in order to obtain stable or semi-

stable equilibria. It was found, however, that in spite of their basic shortcomings,

continuously generated cold plasmas in simple torii had interesting properties and

several such devices [1, 2, 3, 4, 5] have been built and operated. The plasma losses

are here continuously compensated by a plasma discharge, for instance [6, 7]. There

are differences in the details of the set-up, for instance concerning the positioning

of discharge filaments, etc. Unless an RF-discharge is used, the discharge bias often

has a value larger than needed for ionizing the background filling gas. In a discharge

plasma as in the magnetized Blaamann device this large negative bias gave a significant

enhancement of the plasma density. The analysis presented in the following indicates

that plasma rotation in a steady state parabolic potential well has a stabilizing effect.

We present analytical results for a scaling law explaining this result.

Some experiments found an advantage in imposing a small vertical magnetic field

component, giving more stable plasma conditions. Although many devices are operated,

there is thus seemingly no consensus on details in the operations and the role of

the externally imposed parameters. Due to the basic toroidal magnetic field, the

perturbations in plasma density and the fluctuating electrostatic field are not directly

related, as would be the case when the electrons can flow freely to achieve a local

isothermal Boltzmann equilibrium. The phase variations of the fluctuations in plasma

density and the plasma potential are consequently different.

Analytical models for the plasma discharge have been suggested [1] to account for

the plasma production, the transport of plasma as it is confined by the toroidal magnetic

field and influenced by a steady state as well as a time varying electric field, and the

ultimate plasma losses to the walls of the confining metal vessel. The present study

considers elements of this process, namely the polarization of the magnetized plasma

column and the resulting transport. The relative phase of fluctuations in density and

potential is also accounted for. The advantage of this approach is that it allows a simple

description in the form of an initial value problem. The shortcoming is the missing

account of the continuous plasma production. We will find nonetheless that our model

gives a satisfactory description of the polarization and the basic parameter dependence

of the dynamics of the plasma column.

For reference we summarize a set of data from fluctuation measurements obtained

in the Blaamann device at the University of Tromsø [1]. The plasma was maintained

by a discharge from a vertical, hot, electron emitting filament, placed centrally in the

cross-section of the vessel. The plasma column was terminated radially by a grounded

limiter extending 2.5 cm into the plasma from the wall of the toroidal vessel. The ratio of

the minor to major radius of the toroidal stainless steel chamber was r0/R0 ≈ 0.2. The
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limiter reduces the effective minor radius of the plasma column. The dominant magnetic

field had a toroidal symmetry with the option of adding a small vertical magnetic field

component, for instance for compensating the Earth’s magnetic field which is nearly

vertical in Tromsø. A summary of the basic steady state plasma parameters is given

in Appendix A. Fluctuations in the local plasma density and floating potentials are

analyzed by high-pass filtering the signal from the probes at 300 Hz. The fluctuation

measurements are summarized in terms of auto-correlation functions for the signals as

well as by cross-correlations with the potential obtained by a fixed reference probe,

see Sections 2 and 3. The data are included to illustrate the relative phase variations

for varying spatial positions for the fluctuations in electrostatic potential and plasma

density.

We suggest, in Section 4, a simple analytical model that follows a plasma cross-

section as it moves by the E × B/B2 drifts. The electric field is given in part by

an imposed nearly parabolic stationary potential well, and in part caused by the

polarization of the plasma. At first, the general model is presented, and its features

then discussed by a step-by-step illustration by including first the parabolic potential in

addition to the basic polarization drift (with supporting material placed in Appendix

B), and then the short circuiting effect of the small vertical magnetic field component.

Also ion collision effects are considered. For most realistic cases we find that the plasma

will eventually be lost to the walls due to these plasma drifts, although a significant

stabilizing effect is found by the externally imposed parabolic potential. A steady state

model assumes that plasma cross-sections are continuously maintained to compensate

for the losses [6, 7].

Our model also serves to illustrate some inherent problems associated with the usual

AC coupling of the circuit detecting temporal potential variations. The contribution to

the anomalous plasma flux due to steady-state and low frequency plasma variations

with ω ≪ Ωci can be written as (n(r) + ñ(r, t)) (E(r) + Ẽ(r, t))×B/B2, with overlines

denoting time averages. In our case we have E including an externally imposed radial

electric field E0 giving a rotation of the plasma, and an electric field component caused

by polarization of the plasma column. Due to the AC couplings of the potential probes

the contributions to the average losses induced by the part containing E can not be

determined. These can be dominant in many cases.

2. Probes for data acquisition

Temporal variations are analyzed by correlations based on data obtained by a fixed

reference probe detecting potential variations and a movable multi-probe, later referred

to as the signal probe, see Fig. 1. The circle at a position (x, y) = (0, 5) cm indicates the

position of the fixed reference probe. The multi-probe contains two probes, “CH1” and

“CH2”, detecting floating potentials. Their difference potential divided by the probe

separation gives an estimate for the vertical y-component, Ey(t), of the fluctuating

electric field. The probe labeled ñ measures density variations. The probes are
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cylindrical, with an exposed length 5 mm and diameter 0.25 mm. The separation of the

centers of the two outermost probes is 7 mm. The probes detecting potential fluctuations

were AC coupled, while the probe for density was DC coupled. The probe connections

were ceramically insulated, and placed in a grounded 10 mm diameter stainless steel

tube for support.

Filled circles along the x-axis in Fig. 1 indicate positions where data were sampled

by the movable signal probe. The position (x, y) = (0, 0) is placed at the center of the

circular cross-section of the vessel. As it turns out, the local minimum of the potential

well is approximately at a position (x, y) = (0,−2.5) cm.

Potential measurements give the floating potential φf of the probe, where an

approximate relation to the plasma potential φp is found as

φp − φf ≈ Te

e
log

(√
TeM

Tim

)
, (1)

giving the relation between variations in parameters

∆φp −∆φf ≈ ∆Te

2e

(
1 + log

(
Te0M

Tim

))
, (2)

for a plasma with Maxwellian velocity distributions [8]. The potential difference φp−φf

varies with position since the electron temperature depends on position, see Fig. A1. We

prefer to show the raw data for floating potential fluctuations, where the corrections due

to Te = Te(r) that relate the measurements to the plasma potential can be estimated by

(1). The ion temperature Ti can be assumed constant for a discharge plasma like that

in Blaamann. Within the range of positions for the movable multi-probe (see Fig. 1) we

have the electron temperature to vary approximately with a factor of 2, if we ignore the

noisy central part containing the discharge filament. The change in the logarithm in (1)

will be small. The floating potential measurements will be used for obtaining an electric

field component through a potential difference between the two signals from “CH1”

and “CH2”. It is implicitly assumed that the two probes are located at the same DC

equi-potential curve at all times. A correction due to the spatial electron temperature

variation will be negligible here.

The density measurements are affected by the spatial variation of Te. We use the

electron saturation current where the electron thermal velocity enters. In case the ion

saturation is used, the electron temperature enters through the sound speed in the Bohm

condition. In either case the effect will vary as ∼
√
Te, which here introduces a factor

of
√
2, at most.

The plasma discharge changed slightly when the grounded multi-probe support (or

probe shaft) crosses the magnetic flux tube that contains the hot discharge filament. We

noted this by a change in the basic frequency detected by the movable as well as the fixed

probe. The root mean square (RMS) value of the reference probe signal remains almost

constant, only the frequency changes. The basic frequency Ω0 is given by the rotation of

the plasma column, as induced by a steady radial electric field E0. The corresponding

steady potential variation changes slightly due to the multi-probe motion. In effect,
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Figure 1. Schematic illustration of the probe set-up for correlation measurements.

The fixed reference probe is marked by an open circle. The insert in the lower right

corner shows a front view of the movable probe.

the data thus contain results from two sets of experimental conditions. Data from the

noisy region near the discharge filament are not used, and are here masked by a white

zone. This removes data from two probe positions near the plasma center and the

interpolating spatial interval to the adjacent two probe positions.

In Fig. 2 we show the root mean square (RMS) variations of the various quantities

detected by the movable probe. Together with the normalized auto-correlation functions

this information accounts for the lowest order statistical information of the signals.

Figure 2. Variation with x-position of the RMS-variations of floating potential φ for

channel CH1 and CH2 with symbols ∗ and ∆, the y-component of the electric field, and

the local relative density ñ/n. The noisy region in the vicinity of the discharge filament

at x ≈ 0 is omitted in all cases. Concerning the floating potential measurements we

recall the expression (1) for the relation to the plasma potential.

We found a slight difference between the root-mean-square (RMS) value of the

potential fluctuations in the signal from the two probes, “CH1” and “CH2”. This

difference in RMS value varied with position, being ∼ 15% for x > 0 and slightly larger

for x < 0, i.e. ∼ 25%. The observed difference in the detected fluctuation level for

x < 0 and x > 0 is most likely caused by probe shaft disturbance mentioned before. We

compensated for this difference. Previous studies with this set-up [9, 10] did not use
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this compensation. A plausible explanation for the difference in the detected fluctuation

levels between CH1 and CH2 is found in Section 5.

3. Experimentally obtained correlations

Some of the features of the model can be analyzed by studying fluctuations in the

toroidal plasma. A data-set is obtained or this purpose. Using these data, cross-

correlations between the fluctuations in floating potential φr(t) detected by the fixed

reference probe and signals from the moving probe are computed. We find for

instance Rr,nj
(τ) = 〈φr(t)nj(t + τ)〉, and similarly for the other correlations, with

j ∈ {−9,−8, . . . , 0, . . . , 8, 9} indicating the position number, measuring the x-coordinate

of the movable probe. The correlation results are robust: they were tested by using a

simple method removing the average in each sample, and more detailed analysis where

the data were high-pass filtered first by Fourier transform at 300 Hz as an alternative

to removing trends [11].

3.1. Floating potential and electric field measurements

The basic fluctuation characteristics are illustrated by the normalized auto-correlation

of the signals. In Fig. 3 we show 〈φj(t)φj(t+τ)〉/〈φ2

j〉 for varying j. At x > 0 we readily

note a dominant frequency Ω0 ≈ 57×103 s−1 with period 0.11×10−3 s. A slight change

is detected at positions x < 0 for reasons already mentioned. The auto-correlation for

the electric field signal Eyj(t) is shown in Fig. 4. The auto-correlation has a significant

contribution for small time delays τ ≪ 2π/Ω0. The large time-scale contribution to the

correlation is due to the bulk plasma rotation in the nearly parabolic potential well,

while the fluctuations with short temporal correlations are due to turbulent motions

excited in the plasma. The auto-correlations have a dominant peak at small τ , relative

to what is found for the potential. This indicates the presence of short-time, small-scale

variations in addition to what is associated with the bulk plasma motions giving the

distinct spectral peak.

Figure 3. Normalized auto-correlation for the potential fluctuations shown as a

function of time separation τ for varying positions.
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Figure 4. Normalized auto-correlation for the fluctuations in Ey/B as a function of

time separation τ for varying positions.

In Fig. 5 we show the cross-correlation between the reference probe signal and the

floating potential measured by the signal probe. We find that the fluctuating potential

signals are to a good approximation in phase along the entire x-axis, in agreement with

the suggested model where the polarization of the plasma column is close to vertical at

all times, i.e. along the y-axis. The normalized correlation is significant: in the range

{−0.8 : 0.5}, see color bar to the right of the figure. The correlation is largest for large

positive x. We note that it takes approximately 0.03 ms to reach maximum correlation.

We take this as an indication of the time it takes a perturbation to propagate the distance

of 5 cm from the reference probe to the y = 0 axis, corresponding to a downward vertical

velocity component of approximately 1.5×103 ±102 ms−1. We find the most noticeable

feature of Fig. 5 to be that at any given time the potential seems to be nearly in phase

for all x-positions in spite of the plasma rotation. Closer inspection of the phase angle

variation shows a small tilt of 5° − 10° in the anti-clockwise direction.

Figure 5. Cross-correlation between the floating potential from the fixed probe (see

Fig. 1) and the floating potential detected by the moving probe CH1.

If the plasma column was displaced by a steady velocity U in the vertical direction,

we would expect that the vertical electric field component could be determined by a

time derivative of Fig. 5, assuming ∂/∂t ≈ −U∂/∂y, where U will vary with radial

position, in general. This suggestion can be tested in the experiment since we have two



Basic features of magnetized plasma torii 8

probes available. In particular, for large radial positions (large x values), i.e. at the low

magnetic field side, we find this approximation to be reasonably well satisfied. In Fig. 6

we show for completeness also the cross-correlation of Ey/B corresponding to Fig. 5. A

small phase difference between the variations at x > 0 and x < 0 is caused by the probe

shaft disturbance mentioned before.

Figure 6. Normalized cross-correlation for the fluctuations in Ey and the reference

potential signal as a function of time separation τ for varying positions.

3.2. Plasma density measurements

Fluctuations in plasma density, ñ(r, t) = n(r, t) − n(r), are detected by the electron

saturation current to the probe marked ñ in Fig. 1. In Fig. 7 we show 〈ñj(t)ñj(t +

τ)〉/〈ñ2

j〉 for varying j. The auto-correlation of the plasma density has the same basic

temporal variation as those for the potential, but we note some differences in the

numerical magnitudes of the correlation coefficients.

Figure 7. Normalized auto-correlation for the density fluctuations shown as a function

of time separation τ for varying positions.

In Fig. 8 we show cross-correlations between potential fluctuations detected by

the reference probe and variations in the plasma density measured by the multi-probe.

The normalized correlation is here in the range {−0.6 : 0.4}. Near the position of the

discharge filament at x ≈ 0 we find spurious correlations originating from the discharge
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noise. The conspicuous feature, as compared to the potential correlations in Fig. 5, is

the pronounced time delays in the cross-correlation for large |x|. Note that the density

perturbations at x > 0 are in counter phase with the variations at x < 0. The basic

feature of the density cross-correlations can be explained by taking the basic features to

be a rotation of a compact density distribution in the parabolic potential well. When

the center of mass of the plasma column is at some spatial position r′, there is a density

enhancement there with respect to the time averaged density n(r), and a corresponding

density depletion at the position −r′. With n(r) having an approximate Gaussian form,

see Fig. A1, the fluctuating part ñ(r, t) will at any time t have an elongated form and

its rotation in the parabolic potential well gives rise to time delays that increase with

radial position as in Fig. 8.

The basic differences between the space-time varying correlations of potential and

density in Figs. 5 and 8 are explained by our simple model summarized in Section 4.

By inspection of the correlations in Figs. 5 and 8 it seems evident that an assumption

of the electrons being in local isothermal Boltzmann distribution, ñ/n ≈ eφ/Te, is in

error.

Figure 8. Cross-correlation between the floating potential from the fixed probe and

the fluctuating plasma density detected by the moving probe (see Fig. 1).

The previous results for cross-correlations between the reference signal and density,

potential and an electric field component should be considered with some caution:

correlations between φr and ñ and between φr and Ey do not contain information

concerning correlations between ñ and Ey. This information, which is important for

quantifying turbulent transport, has to be found by independent means.

Conspicuous features found by the correlation measurements can be summarized

as: the auto-correlations (see Figs. 3, 4 and 7) demonstrate that the plasma fluctuations

contain a significant harmonic component at a frequency corresponding the basic plasma

rotation frequency. In addition there is a noise component with a short correlation

time dominating the auto correlations at small time delays. Potential variations are

nearly in phase for all x-positions at y = 0. The variations in the potential signal are

thus dominated by seemingly vertical motions. From the potential cross-correlations

(see Fig. 5) we find that when the potential signal is maximum at the vicinity of the



Basic features of magnetized plasma torii 10

reference probe it is near zero along the line y = 0. Density fluctuations are in counter-

phase for x > 0 and x < 0. The temporal variations in density shows clear effects of

the plasma rotation by an x-varying time delay, which is not found in the potential

variations. We suggest a simple model that can account for most of these observations.

When comparing analytical results with observations we bear in mind that the plasma

center (i.e. the DC potential minimum) is slightly below y = 0, see Fig. A1.

The product of the signals for density and E × B/B2-velocities gives the lowest

order approximation to the plasma losses. Due to the different spatial phase relations

of density and electric field the phase variation of their product, i.e. the plasma flux,

will have a correspondingly complicated spatial variation.

4. A simple analytical model

The plasma in Blaamann and similar devices is complicated by being strongly

fluctuating, inhomogeneous and anisotropic. Analytical models have been discussed

[1, 6], giving insight into many of the basic plasma properties. Here we emphasize some

of the features that we believe are important for the analysis to be discussed in the

following. Two elements are given special attention, the average plasma rotation and

the inhomogeneous magnetic field that gives rise to a polarization due to the ∇B ×B

and curvature drifts. The distinction between the electron and ion dynamics enters as

a part of the analysis. Our model is thus based on two separate fluids, but rotation has

interest also in single fluid, MHD, modeling of plasmas [12].

4.1. Plasma polarization by ∇B ×B and curvature drifts

A parabolic DC potential variation in Blaamann was found for several parameter sets

[1, 6, 13, 14] as also in other devices [15], except for cases with the discharge filaments

placed near the wall of confining vessel. It may be worthwhile to estimate the relative

importance of the rotation velocity and the bulk plasma drift induced by the plasma

polarization due to the ∇B ×B and curvature drifts.

To obtain a simple solvable model we assume that a parabolic approximation for

the DC-potential with circular equi-potential lines is sufficiently accurate, giving

E0(r)

B
= −E0(r0)

B

r

r0
. (3)

With little additional effort it is possible to generalize the model to elliptical equi-

potential lines, but this gives only limited additional physical information at the expense

of lengthy mathematical expressions. By this parabolic potential approximation we have

a nearly solid body E0 ×B/B2-rotation of the plasma if we assume the magnetic field

to be nearly constant in the plasma cross-section.

We also take the plasma column to have a circular cross-section with a uniform

density n0 inside the circular column and vanishing outside. A basic advantage of the

suggested model is that the circular density cross-section retains its shape as it rotates
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with the angular velocity induced by (3). The radius of the circle turns out to be of

minor importance for details in the analysis. We assume the space-time varying plasma

density column to be strictly toroidally aligned at all times, an assumption supported

by observations [13]. The ∇B×B-velocity caused by the inhomogeneous magnetic field

is assumed to be locally constant and in the y-direction. This will be appropriate for

a long thin toroidal plasma column, as relevant also for the Blaamann plasma where

the inner radius of the magnetic field coil is 18 cm, see also an illustration presented

elsewhere [1].

The basic equation of motion for the center-of-mass Ri(t) of the plasma ion

component is then

d

dt
Ri(t) =

E(Ri(t), t)×B

B2

+
1

Ωci

d

dt

E(Ri(t), t)

B
+ Ui ŷ, (4)

including E×B and polarization drifts together with the gradient drift

Ui =
Wi

eB(x)

B×∇B

B2(x)

=
Wi

eB0R0

ŷ = constant, (5)

with Wi ≡ 1

2
Mu2

thi being the average ion kinetic energy and e > 0 is the ion charge.

With B0 being a reference magnetic field at the the major radius R0, we have for the

simple torus B = B0(1 + x/R0)
−1b̂, with B0 > 0. The unit vector b̂ gives the direction

of the magnetic field. The electron velocity Ue is found similarly by using the charge

−e and energy We. A curvature drift contributes to both Ui and Ue with a term like

(5) apart from a numerical factor [16, 17]. We take Ui > 0 and Ue > 0 in the following

and give the direction of the bulk electron motion through the proper sign.

B

EeR ∆

+ +++

−−−−

x

y

+

−

∆

|B|

Ri

Figure 9. Schematic illustration of the polarization of a simple model for the

Blaamann plasma, here with a circular cross-section and uniform density, ignoring

the stationary parabolic potential well. The basic reference toroidal magnetic field

points in the negative z-direction in the figure, as indicated by ⊗, so that b̂ = −ẑ.



Basic features of magnetized plasma torii 12

The electric field originates from two parts: one from E0(r) given by (3), being

imposed via the filament and therefore assumed constant in time, and another time

varying part induced by polarization of the plasma. We find by an elementary calculation

using a locally cylindrical approximation

E(r, t) = −E0(r0)

r0
r− 1

2

en0

ε0
∆(t), (6)

where ∆(t) ≡ Ri(t)−Re(t) and e > 0. Surface charges are created when the electrons

are displaced slightly with respect to the ions. It is well known that these charges give

rise to a constant electric field between the two lens-shaped parts of the cross-section,

see Fig. 9, with the field direction being along −∆. The factor 1/2 originates from

the local cylindrical geometry applicable when r0/R0 ≪ 1. The polarity of E0(r) is

given by the experimental conditions to point into the plasma. The electric fields and

equi-potential lines are illustrated in Fig. 10. Since we have infinite density gradients on

the edges of the electron and ion plasma columns, we can not impose any assumption

of quasi neutrality. It is natural to assign a reference potential φ0 = 0 to the line y = 0

in Fig. 10. This reference line will be moving as the plasma column moves.

The model implied by (4)-(5), with corresponding equations for the electrons and

(6) can be analyzed as an initial value problem. It will remain valid until ∆ becomes

noticeably larger than λDe. We find that for relevant plasma parameters this will take

several rotation periods 2π/Ω0. At larger times the two lens shaped regions in Fig. 9

become distorted, and this limit is not included in the analysis.

The results of the present section with a “top hat” plasma density variation can

be generalized, as illustrated in the following, to include a small vertical magnetic field

component as well as ion-neutral collisions. As long as we retain the strictly toroidal

magnetic field it is, however, possible to give a numerical solution for an arbitrary

density profile, and also to take into account the magnetic field more accurately in the

analysis. When this feature is retained, the plasma flow becomes compressible with

∇ · [E(r, t)×B(r)/B2(r)] 6= 0. This analysis is presented in Appendix B.

4.2. Consequences of a vertical magnetic field and electron collisions

When operating the Blaamann device it was often found to be an advantage to impose a

small vertical magnetic field component By. This gave a stable and less noisy discharge.

Following [18] we can suggest a phenomenological model accounting for some basic

features of the vertical B-component. When By is small compared to the axial or

toroidal magnetic field component, we can retain the two-dimensional model for the ion

dynamics used before, using the argument that ui‖ ≪ ui⊥ in terms of the B-parallel

and perpendicular ion velocities. For the electron motion, it is often found that the

electron mobility along magnetic field lines is so large that Ue‖ ≫ Ue⊥ in terms of the

B-parallel and perpendicular electron velocities. In this limit the electron motion will

be controlled by collisions between electrons and ions or neutrals. To describe the effect
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Figure 10. Illustration of electric fields and equi-potential lines for a polarized

model “top-hat” density distribution. Analytical expressions for the electric fields

and potential are given elsewhere [18].

of collisions on the electron motion we use

−Te

∂n

∂s
− neEs − nmν ues ≈ 0, (7)

where we introduced s as the coordinate along the tilted magnetic field lines. The

subscript s specifies electric field and electron fluid velocity components along the tilted

magnetic field lines. We introduced ν as an electron collision frequency and Te is a

constant electron temperature. Electron inertia has been ignored due to the smallness

of the electron mass m. This limit explicitly assumes a constant electron mobility, and

therefore ν 6= 0.

The case where the electron mobility is very large, it is often assumed the electron

component can be taken to be Boltzmann distributed at all times. We find this limit to

be marginally relevant and take instead a constant mobility to give ues ≈ −eEs/(νm)

since ∂n/∂s = 0 for the present top-hat plasma density distribution (except at the

edges). The vertical component of the electron velocity is found to be uey ≈ ues sin θ ≈
−(e/νm)Es sin θ ≈ −(e/νm)E · ŷ θ2. One θ-contribution arises from the field aligned

electric field that also has a vertical component Ey. The electron drift in the ŷ-direction

is a combination of the ∇B × B-velocity and uey. Although the present “top-hat”

model ignores the contribution from ∂n/∂s, we note that by relaxing the condition of a

constant plasma density and for a given E (i.e. a given ∆), the short-circuiting electron

velocity uey will be enhanced when ∂n/∂y has the same sign as Ey and reduced for

the opposite sign. The consequences of this effect will vary with position in the x − y

plane. As a result, the plasma density column will in general lose the local cylindrical

symmetry in actual experiments.

Using the expression for E(r, t) given by (6) we find

dRe

dt
= −Re(t)×B

E0

B2r0
− 1

2

en0

ε0B2
∆(t)×B

+

(
1

2

e2n0

ε0mν
θ2∆(t) · ŷ − Ue

)
ŷ. (8)
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The limit ν → 0 is not applicable here. We take Ue > 0 and give the direction of the

bulk electron motion through the − sign.

In general we have Ui 6= Ue because of different ion and electron temperatures.

Note that the electric fields determining the motion of the electron and ion components,

respectively, are to be obtained atRi(t) andRe(t), respectively, so the two contributions

need not cancel by subtraction of the two expressions for Ri(t) and Re(t). The spatial

variation of the magnetic field is included via the last terms in (4) and (8) so B is

taken constant in the remaining terms for simplicity. The vertical magnetic field is

approximately constant, while the toroidal magnetic field varies with x in a more detailed

representation. A complete model that takes into account the entire spatial variation of

the magnetic field will have θ = θ(x).

The parabolic potential well gives rise a rotation with frequency Ω0 ≡ |E0/(Br0)|,
introducing a natural reference time for the variations. In terms of the normalized time

τ ≡ tΩ0, the resulting expression for the ions becomes
(
1 +

Ω0

Ωci

)
dRi(τ)

dτ
= −Ri(τ)× b̂

− 1

2
(εr − 1)

Ωci

Ω0

∆(τ)× b̂

− 1

2
(εr − 1)

d∆(τ)

dτ
+

Ui

Ω0

ŷ, (9)

and for the electrons

dRe(τ)

dτ
= −Re(τ)× b̂

− 1

2
(εr − 1)

Ωci

Ω0

∆(τ)× b̂

+

(
1

2

ω2

pe

ν
θ2∆(τ) · ŷ − Ue

)
1

Ω0

ŷ. (10)

The vectors Ri, Re and ∆ are explained in Fig. 9. We introduced [19] the relative

dielectric constant εr ≡ 1+n0M/ε0B
2 = 1+(Ωpi/Ωci)

2. The ion mass appears explicitly

through the ion cyclotron frequency due to the inclusion of the ion polarization drift.

We have Ue ≈ |W/(eB0R0)| ≈ 55 m s−1 for 5 eV electrons, while for the colder ions

we estimate Ui ≈ 0.6 m s−1, i.e. Ue ≫ Ui. For typical plasma densities near the center

in Blaamann we find ǫr ≈ 3 × 103. The coefficient (1 + Ω0/Ωci) on the left side of (9)

accounts for a polarization due to a difference in rotation frequency for the ion and

electron components found when the finite ion inertia is included [9, 15, 20]. The first

terms on the right hand sides of (9) and (10) originate from the externally imposed

potential well, so these terms are ignored for the case with E0 = 0.

The analysis summarized here does not specify the nature of the collisions

(electrons-ions or electrons-neutrals). As far as the electron momentum relaxation

is concerned, the difference enters through the cross-sections which are needed for

calculating ν. The distinction between the two collision processes mentioned is found

in 1) momentum exchange with the ions, and 2) build-up of an electric field. By
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assuming that the dominant ion velocity is in the direction perpendicular to B with

a magnitude E/B we ignore effect 1). A similar assumption is found in the so-called

Hasegawa-Wakatani model for weakly collisional electrostatic drift waves [21], where

only viscosity due to ion-ion collisions is retained. The effect 2) originates from the

distinction between collisional diffusion caused by electron-ion collisions as compared

to the case with collisions between charged particles and neutrals. In the former case

the plasma remains neutral since electron-ion collisions will not cause charge separation.

In the latter case a steady state electric field will build up [22], with a magnitude of

approximately Te+Ti measured in eV divided by the scale length of the density gradient

in the direction perpendicular to B. Since the magnitude of this electric field will be

much smaller than E0, its inclusion will be of little consequence. We therefore argue

that ν can denote the collision frequency between electrons-ions or electrons-neutrals

with no need for distinction.

5. Solutions of the basic equations

In the present section we present results derived from the expressions summarized

in Section 4. For illustration we include some limiting cases, i.e. also one without a

stationary potential well.

5.1. Simple case with E0 = 0 and θ = 0

First we can make a simple reference analysis, ignoring the parabolic potential by

setting E0 = 0 and assuming a simple toroidal magnetic field without vertical magnetic

field component. By subtracting (4) and (8) with the terms originating from E0

on the right hand sides discarded, an ordinary differential equation is obtained for

∆(t) = Ri(t)−Re(t)

d

dt
∆(t) = 2

Ui + Ue

1 + εr
ŷ . (11)

Since the present problem has no bulk rotation, and thus no normalizing Ω0, we use

physical time here.

The vector d∆/dt in (11) is constant. With the present simplified assumptions,

the relative displacement of electrons and ions therefore increases monotonically. The

electric field produced by the separation accelerates the plasma in the radial direction,

until the increase in ∆ is arrested when the plasma reaches the walls of the confining

toroidal vessel.

To find the acceleration of the bulk plasma we use the average position Rp(t) ≡
(Ri(t) +Re(t))/2. By adding and then differentiating (4) and (8) we have by the given

assumptions [18]

d2Rp

dt2
=

en0

ε0B

Ui + Ue

1 + εr
x̂

= Ωci

εr − 1

εr + 1
(Ui + Ue) x̂
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≈ Ωci(Ui + Ue) x̂ = const (12)

since d2∆/dt2 = 0. In the limiting case for large n0 as given in (12), appropriate for

the central parts of the Blaamann plasma [9], we find d2Rp/dt
2 to be independent of

plasma density. The induced polarization electric field is E ≈ eB2(Ui + Ue)t/M in the

limit of large εr. Without any potential well, i.e., without plasma rotation, the plasma

is lost through a constant acceleration in the direction of the major radius. This result

accounts for the well known lack of equilibrium for a simple magnetized toroidal plasma

[1, 6]. For low density plasmas we find d2Rp/dt
2 ≈ Ω2

pi(Ui + Ue)/Ωci x̂, indicating that

a low density plasma is better confined than one with high density. The difference can

be explained by noting that εr increases monotonically with plasma density from the

vacuum value εr = 1, while the surface charge density at the boundary of the “top-hat”

profile is directly proportional to the plasma density. As the plasma density vanishes

we have εr → 1 and d2Rp/dt
2 → 0.

A qualitative argument gives that the cross-section of a plasma with inhomogeneous

density, with density large in the center and decreasing outwards, will be deformed to

a cross-section with a horse-shoe shape [19] as it expands by being accelerated in the

direction of the major radius of the torus. For the present helium discharge in the given

magnetic field we find εr ≫ 1 in most of the plasma column, except for the edges close

to the walls. The density dependence of εr is important for applications of the model

[18].

5.2. General case with E0 6= 0 but θ = 0

To account for the basic plasma rotation induced by the externally imposed parabolic

well we now take E0 6= 0. The basic equation in its general form has surprisingly

complicated analytical solutions. We therefore consider the simple limit where the

rotation frequency of the plasma is much smaller than Ωci. Introducing the normalized

time τ ≡ tΩ0 we have
1

2
(1 + εr)

d

dτ
∆(τ) = −∆(τ)× b̂+

Ui + Ue

Ω0

ŷ , (13)

with solution ∆x(τ) = 2 sin2(τ/(1+εr)))(Ui+Ue)/Ω0 and ∆y(τ) = sin(2τ/(1+εr))(Ui+

Ue)/Ω0 fulfilling (∆x(0),∆y(0)) = (0, 0). The problem now has two time scales: a fast

scale Ω−1

0
and a slow scale (1 + εr)Ω

−1

0
.

With E0 6= 0 it is seen that now |∆(tτ)| is finite for all times, implying that a

uniform plasma rotation has a stabilizing effect on the plasma polarization. For plasma

conditions relevant in the Blaamann experiment we find a length scale (Ui + Ue)/Ω0 <

10−3 m, which is small, albeit larger than the Debye length.

Inserting ∆x(τ) and ∆y(τ) in the expression for Rp(τ) found by adding (9) and

(10), the result is

d

dτ
Rp(τ) = −Rp(τ)× b̂

− 1

2
(εr − 1)

Ωci

Ω0

∆(τ)× b̂
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− 1

4
(εr − 1)

d∆(τ)

dτ
+

Ui − Ue

Ω0

ŷ. (14)

For short times where the plasma polarization is small, the two terms containing ∆(τ)

on the right hand side can be ignored. With (Rpx(0), Rpy(0)) = (0, A) the solution is

Rpx(τ) ≈ 2 sin2(τ/2)(Ui − Ue)/Ω0+A sin(τ) andRpy(τ) ≈ sin(τ)(Ui − Ue)/Ω0+A cos(τ),

corresponding to a rotation and a displacement of the plasma column in the parabolic

well. For large times where∆(τ) contributes substantially we also have analytical results

for Rp(τ), but they are very lengthy and will not be reproduced here.

To the present approximation both |∆(τ)| and |Rp(τ)| will be bounded. In order for

the result to have practical applicability we need, however, more restrictive conditions

satisfied, namely that the plasma is positioned inside the confining vessel with radius

∼ r0, giving |∆(τ)| ≪ r0 and |Rp(τ)| ≪ r0 for all times. The first condition is trivially

satisfied. We find that for large plasma densities, i.e., εr ≫ 1 the maximum displacement

of the plasma column as given by |Rp(τ)| scales approximately as∼ (Ui+Ue)εr/Ω0 which

can be 1− 10 m for Blaamann conditions, i.e. much larger than the minor radius of the

confining vessel. Although the solution is mathematically bounded, the plasma will

be lost to the wall, but it takes a few rotations in the parabolic plasma potential well

before this happens. Numerical solutions for realistic Blaamann parameters are shown

in Fig. 11. The model has no a priori assumption of quasi-neutrality, but the separation

between the electron and the ion component remains within the electron Debye length

scale nonetheless. Figure 11 indicates a vertical motion of approximately 35 cm within

a time 2π/Ω0 ≈ 0.11 × 10−3 s. This corresponds to a vertical velocity component of

3.1×103 ms−1. This is within a factor 2 with the results for a downward vertical velocity

of 1.5× 103 ms−1 found in Section 3.1. Given the approximations made in the analysis,

we consider this agreement to be satisfactory.

Information supporting the results in Fig. 11 is presented in Appendix B for the

limit of εr ≫ 1. These results have no constraints on the spatial variation of the

instantaneous plasma density. We find good qualitative agreement between the results

concerning the rotation and slow downward drift of the plasma column. Although the

simple top-hat model is restrictive, we find that this agreement with a more general

model gives confidence for the use of the simplified model for other problems.

The present conditions can be stabilized within a realistic plasma cross-section when

Ω0 ≥ Ωci and thus the coefficient for dRi/dτ in (9) becomes significantly enhanced. This

can be achieved by heavy ions and large E0, but this limit has not been studied in any

detail in Blaamann. Such conditions have been realized in linear devices [23].

We observe a net downward drift of the plasma due to the combined effects of

rotation and polarization electric field. Due to this break in up-down symmetry,

probe CH2 is partially shadowed by probe CH1, explaining the observed difference

in fluctuation level described in Section 2.
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Figure 11. Illustration of the time evolutions of ∆(τ) and Rp(τ) in a plane

perpendicular to B for the case where θ = 0. The time interval shown is τ ∈
{0, 17}2π/Ω0. The plasma parameters are taken from Table A1. Due to the short

time interval shown it appears as if the average trajectory is nearly vertical, where in

reality it is a circle with large radius as seen when extending the time duration of the

calculation.

5.3. Consequences of a small vertical magnetic field component, θ 6= 0

A small vertical magnetic field component is now included. This will only affect the

electron motion: the ion dynamics can still be considered in a plane perpendicular to

the torus axis. We again ignore the small Ω0/Ωci correction on the left side of (9). By

(9) and (10) the separation ∆ we find

1

2
(εr + 1)

d∆(τ)

dτ
= −∆(τ)× b̂

− 1

2

ω2

pe

Ω0ν
θ2 ∆(τ) · ŷ ŷ +

Ui + Ue

Ω0

ŷ, (15)

and the average position Rp

dRp

dτ
= −Rp(τ)× b̂

− 1

2
(εr − 1)

Ωci

Ω0

∆(τ)× b̂

+
1

4

ω2

pe

Ω0ν
θ2 ∆(τ) · ŷ ŷ

− 1

4
(εr − 1)

d∆(τ)

dτ
+

Ui − Ue

Ω0

ŷ. (16)

The last term accounts for the ∇B ×B-drifts in the y-direction. For increasing ∆

these terms are counteracted by the terms containing θ2. This reduction is due to the

short-circuiting effect of the electrons as they move along the slightly tilted magnetic

field lines. Numerical solutions for realistic Blaamann parameters are shown in Fig. 12.

By comparing with Fig. 11 we find it interesting to see how strong an effect even a

small vertical magnetic field component can have. The explanation is found in the high
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electron mobility along magnetic field lines, which gives a significant vertical electron

velocity component even for small By.
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Figure 12. Illustration of the time evolutions of ∆(τ) and Rp(τ) in a plane

perpendicular to B, here for the case where θ 6= 0. The time interval shown is

τ ∈ {0, 6}2π/Ω0. The parameters are taken from Table A1. Compare with Fig. 11.

Equations for ∆x(τ) and ∆y(τ) are readily found from (15). We find a limiting

value for τ → ∞ as ∆y = 2(Ui + Ue)ν/(θωpe)
2, while ∆x increases slowly with τ .

By Fig. 12 we note that a quasi-stationary condition is reached within 5 - 6 rotation

periods 2π/Ω0. Within this time limit we have ∆x ≪ ∆y, implying that ∆ is nearly

vertical, so that all equi-potential lines are nearly horizontal and ‖ x̂. This result is in

qualitative agreement with the observations summarized in Fig. 5.

5.4. Effects of ion-neutral collisions

To account for ion collisions we modify the ion dynamics by including a collisional

friction with frequency νi entering in the analytical form
(
1 +

1

Ωci

E0(r0)

Br0

)
d2Ri

dt2
=

− dRi

dt
×B

E0(r0)

B2r0
− 1

2

en0

ε0B2

d∆

dt
×B

− 1

2

en0

ε0BΩci

d2∆

dt2
− νi

dRi

dt
. (17)

At first sight it seems that Ui = constant has vanished from the expressions, but it

contributes through the initial conditions. The last term in (17) enters as a standard

friction term. The equation can be integrated once with respect to t. The electron

equation (10) is unchanged.

In terms of normalized time the ion equation takes the form

dRi

dτ
= −Ri × b̂− 1

2
(εr − 1)

Ωci

Ω0

∆× b̂

− 1

2
(εr − 1)

d∆

dτ
− νi

Ω0

Ri +
Ui

Ω0

ŷ, (18)
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where a small correction Ω0/Ωci is ignored. The polarization equation, accounting for

the time evolution of ∆, becomes

1

2
(εr + 1)

d∆(τ)

dτ
= −∆(τ)× b̂

− 1

2

ω2

pe

Ω0ν
θ2 ∆y(τ) ŷ +

Ui + Ue

Ω0

ŷ − νi
Ω0

Ri. (19)

Illustrative short time numerical solutions for the coupled equations (18) and (19) are

shown in Fig. 13. The model summarized here assumes that the electron collisions are

only important by controlling the electron flow along magnetic field lines. We note

that for increasing times, the ∆ vector is “tilting” and ∆y is reduced. At these times,

collisions will be important also for the electron dynamics in the x − y plane, and the

electron collision model has to be generalized. This can not be done properly within

the given top-hat model.

The ion collision model assumes that all ions are affected exactly the same way by

the collisions. The statistical or random nature of the collisions will give rise to a slow

diffusion of the plasma column. At late times the original top-hat model will be eroded

by collisions to take a near Gaussian density distribution. This asymptotic limit is not

covered by the analysis as our results are only valid for short times.
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Figure 13. Illustration of the short time evolutions of ∆(τ) and Rp(τ) = Ri(τ)−∆/2

in a plane ⊥ B, here for the case where θ 6= 0 and including ion-neutral collisions. For

illustration we use here a small collision frequency of νi = 100 s−1. The other data are

taken from Table A1. The time interval shown is τ ∈ {0, 4}2π/Ω0.

Going into more detail we note that the collision frequencies listed in Table A1

refer to momentum losses. Taking an electron starting with U⊥ ≫ U‖ we will find the

∇B × B drift to be dominating. After a collision it may be so that now U‖ ≫ U⊥

and in this case it will be the curvature drift dominating. The average drift velocity

remains, however, to be in the same direction and within a factor 2 the same magnitude

as before the collision [16]. It will take approximately M/m collisions to change the

electron energy significantly.

Some robust results emerge from the analysis summarized in the present section:
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1) The plasma column rotates in the DC-potential well with a frequency close to Ω0.

2) The polarization vector of the plasma is nearly vertical at all times, implying

that to lowest approximation the electrostatic equi-potential curves are parallel

to the x-axis at all times. These contours will move in the y-direction. This

observation refers to the top-hat model, but will remain a good approximation also

for more realistic cases. A fixed probe will thus detect a dominant frequency Ω0

for fluctuations in both potential and density. For the idealized top-hat model the

polarization electric field will be the same at any position inside the plasma. Ion

collisions will tend to tilt the direction of the polarization vector ∆ so that ∆x

becomes slightly negative, while it is positive when ion collisions are ignored. The

experimental results summarized in Fig. 5 indicate that the potential contours are

tilted slightly in the predicted direction, at least for x > 0.

3) During its motion, the plasma column will spend more time for x > 0 than for x < 0,

i.e. the plasma column will on average be displaced towards the low magnetic field

side of the cross-section.

6. Discussions and Conclusion

We presented results related to the performance of a toroidally magnetized plasma. In

its basic configuration, the plasma has no equilibrium and will be lost to the chamber

wall by the E×B/B2-drift due to the polarization electric field induced by the ∇B×B-

particle motion. The basic configuration can be modified by externally imposed steady

state electric and magnetic fields. We considered the effects of a parabolic potential well

and the resulting electric field E = rE0/r0 where r0 is the minor radius of the torus.

Also a small vertical magnetic field component are investigated in a plasma with neutral

collisions.

Analytical results based on a simple top-hat model for the plasma density

demonstrates that for the simple toroidal magnetic field, the bulk plasma rotation

induced by the steady state radial electric field has a stabilizing effect by confining the

plasma within a finite radius that scales approximately as (Ui + Ue)εr/Ω0. In terms of

basic plasma and device parameters the scaling of the confining radius is proportional

to (r0/R0)TnM/(B2

0
E0), indicating that cold plasmas with light ions in devices with

large aspect ratios, R0 ≫ r0, are most easily confined by rotation. The basic features

of the top-hat model were confirmed by a more general model presented in Appendix B

for the limit of εr ≫ 1. Although the simple top-hat model is restrictive, we find that

this agreement with a more general model gives confidence for the use of the model for

other and more general problems.

For realistic plasma parameters it turns out that the plasma rotation is not sufficient

for a complete stabilization. The conditions are improved by a weak vertical magnetic

field that gives a partial short circuiting of the polarization electric field in a plasma

with neutral collisions. Also these effects were discussed and illustrated by solutions of

the analytical expressions.
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While an improved confinement (or rather reduction of losses) by the plasma

rotation can be difficult to quantify, there are other aspects of the model that can

be analysed. The plasma rotation and polarization by the ∇B × B-particle drifts

have different consequences for the perturbations in plasma density and potential. For

reference, we obtained data for the time variations of the fluctuations of the plasma

density and the potential as detected by a movable multi-probe, see Fig. 1. The

fluctuations represent the difference between the instantaneous variations on the plasma

and the time averaged values shown in Fig. A1. The results are presented in terms

of auto-correlations for the signal, as well as cross-correlations with respect to a fixed

reference probe, see Fig. 1. The analysis demonstrates that the fluctuating equi-potential

lines are nearly horizontal, i.e., nearly parallel to the x-axis in Figs. 1 and 9. This is in

good agreement with observations summarized in Fig. 5. The perturbation of the plasma

density with respect to the time average shown in Fig. A1 has an elongated “banana”

shaped spatial variation. The rotation of this form gives a pronounced increase in time

delays in the density variation for increasing radial positions, see Fig. 8, to be compared

with the potential signal in Fig. 5. The spatial variations of the potential and density

perturbations are significantly different at any given time. The analysis was extended to

cover qualitatively also the corresponding variations of the fluctuating vertical electric

field component and the resulting time varying low frequency plasma flux in the x-

direction. This plasma transport has also a high frequency component originating from

small-scale fluctuations induced by instabilities on the edge of the plasma. Many studies

emphasize the plasma losses due to these effects.

When modeling the combined ∇B × B and curvature drifts we used expressions

where the particle energies were associated with their thermal energies. An accurate

model will retain the explicit particle energy dependence of for instance the ∇B × B-

drifts as e.g. Ue ≈ 1

2
mU2

⊥/(eR0B). This means that there will be a tendency for the

most energetic particles to drift faster than the slower ones for the present moderately

collisional plasma, see Table A1. As a consequence, we will be likely to find an uneven

particle energy distribution across the plasma column in the vertical direction, the

most energetic ions at the top and for electrons near the bottom, with the spatial

energy distribution following at least approximately the potential variation, see Fig. 9

and also Fig. 12. Since the ion drift velocities are moderate compared to the electron

velocities due to the small average ion energy, see Table A1, the effect will in our case

be pronounced for the electron energy distribution only. The spatial distribution of the

electron energy density will be discussed in more detail in an accompanying paper.

As well known, the plasma boundary of the simple model used here is not stable

[2, 24]. If the plasma boundary is perturbed by a “bulge” on the low magnetic

field side, this perturbation will increase in magnitude for both convex and concave

perturbations. The high magnetic field side is stable in this respect. Consequently we

expect that the simple plasma density models discussed in Section 4 will be disturbed

by randomly varying density and potential perturbations. The foregoing analytical

discussions, supported by experimentally obtained correlations, demonstrated that the
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space-time variation of density, temperature and electric fields in Blaamann and similar

discharge plasmas develop differently with different relative spatial phase relations.

As a consequence we expect fluxes of plasma density and energy density losses to be

significantly different.

One important “bi-product” of the analytical model presented here is the

illustration of problems arising by use of an AC coupling of the detecting systems as done

in many experiments. Concerning the potential we can prescribe any reference level in

space, φ → 0 at |r| → ∞ for instance. The AC coupling will, however, be equivalent

to prescribing 〈φ〉 = 0 for all positions. Consequently, we will find also 〈E〉 = 0 at any

position, since this electric field is found by a potential difference divided by a probe

separation. As our model (illustrated in e.g. Fig. 10) demonstrates, this constraint on

the electric field can be overly restrictive, and the results should be interpreted with

care. One basic feature of the model is its prediction of a generally positive plasma

potential for y > 0 and generally negative potential for y < 0, resulting in a vertical

polarization electric field component with a non vanishing average. Plasma losses due

to this large-scale electric field are likely to dominate turbulence induced losses caused

by plasma instabilities.

We see the possibility of interesting experiments to be carried out in plasma devices

like ours [2, 3, 4, 5]: mounting the discharge filament on a radially movable support,

it will be possible to study the effects of plasma rotation. The parabolic potential

well becomes distorted when moving the filament, and the rotation inhibited when the

filament gets close to the wall of the confining vessel. The resulting decrease in plasma

confinement should be observable as a decrease in overall plasma density. A related

analysis can be carried out by using a segmented limiter. An outer section of this can

be moved in the direction of the filament, thereby distorting the steady state potential

variation.
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Appendix A. Basic parameter summary

In Table A1 we give some basic physical parameters for the experiment. The variation

of basic parameters as the steady state plasma density n, electron temperature Te,

and plasma potential φp are shown in Fig. A1. The electron temperature and plasma

potential are found by Langmuir probe characteristics obtained at each spatial position

over the entire cross-section with 1.4 cm separation in the two directions. The plasma

density is monitored by the electron saturation current to the Langmuir probe. The

results in Fig. A1 refer to time averaged values, while the discussion in Section 3 deals

with the fluctuations with respect to these averaged values.

Figure A1. Experimentally obtained variations of the steady state electron density

ne, electron temperature Te, and plasma potential φp as measured by Langmuir probes

in a cross-section of the plasma torus. The narrow nearly vertical region of elevated

electron temperatures indicate the location of the electron emitting discharge filament.

Appendix B. Generalizations of the results for the simple toroidal device

To the accuracy of the basic model outlined in Section 4, the “top hat” could be solved

analytically. The magnetic field inhomogeneity was included through the ∇B × B-

drift, while we took B to be a constant elsewhere. For the limit where Ω2

pi ≫ Ω2

ci

is assumed at all spatial positions, it turns out that the “top hat” restriction is of

minor importance as far as the induced polarization electric field is concerned. In the
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Table A1. Summary of basic plasma parameters, assuming singly charged Helium

ions.

Blaamann major radius R0 0.67 m

Blaamann minor radius r0 0.135 m

Toroidal magnetic field at R0 0.154 T

Vertical magnetic field 55× 10−6 T

Neutral He-pressure 10−3 mbar

Maximum plasma density, n0 1.6× 1017 m−3

Reference electron temperature, Te 5 eV

Ion temperature, Ti 0.05 eV

Electron plasma frequency, ωpe 1.8× 1010 s−1

Ion plasma frequency, Ωpi 2.1× 108 s−1

Electron Debye length, λDe 50× 10−6 m

Sound speed, Cs 11× 103 ms−1

Electron thermal velocity, uthe 0.94× 106 ms−1

Ion thermal velocity, uthi 103 ms−1

Electron ∇B ×B and curvature 60 m s−1

drift velocity

Ion∇B×B and curvature drift velocity 0.6 m s−1

Electron cyclotron frequency, ωce 27× 109 s−1

Ion cyclotron frequency, Ωci 3.7× 106 s−1

Average electron Larmor radius 35× 10−6 m

Average ion Larmor radius 0.27× 10−3 m

Ion-electron collision frequency, νe,i 80× 103 s−1

Electron-neutral He cross-section, σe,n 6× 10−20 m2

Ion-neutral He cross-section, σi,n 65× 10−20 m2

Electron-neutral mean free path, ℓe,n 0.7 m

Ion-neutral mean free path, ℓi,n 64× 10−3 m

Electron-He collision frequency, νe,n 1.4× 106 s−1

Ion-He collision frequency, νi,n 16× 103 s−1

εr ≡ 1 + n0M/ε0B
2 = 1 + (Ωpi/Ωci)

2 3100

at plasma center

large plasma density limit we have the relative permittivity to be εr ≈ nM/ε0B
2. The

polarization of the plasma is P = en∆r with ∆r = (Ue + Ui)t being the relative

displacement between electrons and ions due to the ∇B×B-drifts. Here we have ∆r to

be linearly increasing with time [19]. The electric field is found by ∇ · ε0εrE = −∇ ·P,

giving E = eB2(Ue+Ui)t/M . Consequently, we can use a spatially constant polarization

electric field E ≈ eB2(Ue + Ui)t/M , which can then be applied for any density profile.

This electric field is then added to E0 that gives the plasma rotation. The effect of

a small vertical magnetic field is not included here since the simple relation between
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plasma density and electric field will no longer apply in that case. The assumption

Ω2

pi ≫ Ω2

ci is not fulfilled at the outer edges of the plasma, but we consider this limitation

to be of minor consequence here.

The local plasma drift velocity is given now by U(r, t) = (E0(r) + E(r, t)) ×
B(r)/B2(r). One consequence of this variation is that the flow field U(r, t) is no longer

incompressible. The rotation velocity E0(r)×B(r)/B2(r) is reduced on the high field side

and enhanced on the low field side as compared to the case with a constant magnetic

field. The plasma density is then slightly larger at the high magnetic field side as

compared to the low magnetic field side as caused by the angular variation of the flow

velocity in the x− y plane.

Guided by the results from the previous sections we assume that the plasma

polarization is at all times vertical in the y-direction. The continuity equation for

the plasma density becomes

∂n(r, t)

∂t
=

∇⊥ ·
[
n(r, t)

B2

(
E0

r0
r+

eB2(Ue + Ui)t

M
ŷ

)
×B

]
. (B.1)

Due to the magnetic field dependence of εr, the electric field induced by the plasma

polarization is largest where the magnetic field is largest: we have polarization electric

field E ∼ B2 implying that the local E(r, t))×B/B2-drift velocity scales linearly with

B. An initially cylindrically symmetric density distribution will be deformed, becoming

elliptical and tilted. The polarization vector remains vertical in the present model, so

the potential variations along the x-axis will remain in phase, but the density variations

will not be so when the distorted density profile rotates due to the E0(r)×B(r)/B2(r)

rotation.

With B = B0(1 + x/R0)
−1b̂, the plasma continuity equation becomes

∂n(r, t)

∂t
=

∇⊥ ·
[
n(r, t)

((
1 +

x

R0

)
E0

B0r0
r− eB0(Ue + Ui)t

M(1 + x/R0)
ŷ

)
× ẑ

]
. (B.2)

The first term in the parenthesis of (B.2) originates from the parabolic potential well,

the second from the polarization of the plasma by the ∇B ×B-drift.

The analysis summarized in the present subsection corresponds to the discussion

in Section 5.2, i.e. without the effects of vertical magnetic field components, nor ion

collisions. Numerical solutions of (B.2) are shown in Fig. B1. The most convenient

normalization of positions for the present problem is by the major radius R0 of the

torus, as seen from (B.2). We find a rotation and a slow average downward drift of

the plasma column consistent with features found in Fig. 11. Since (B.2) consistently

includes also the effects of the inhomogeneous magnetic field, we find additional features

in the form of a deformation of the plasma cross-section together with a concentration

of the plasma due to the compressibility of the flow. The calculations based on (B.2)

assume high plasma densities, so the results are inaccurate at the outer limits of the
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Figure B1. Illustrative numerical solutions of (B.2) for a time interval t ∈ {0, 6πΩ−1

0
}

with a Gaussian density distribution as initial condition. The time interval between two

figures is 1

2
πΩ−1

0
. Times increase from left to right. Each column corresponds to the

same phase in terms of the rotation frequency Ω0. We used Ωci,0(Ue + Ui)(Ω
2

0
R0)

−1 =

6 × 10−3. Positions are normalized by the major radius R0 of the torus. The

consequences of the compressible flow are noticeable.

plasma. While it was a relatively simple matter to include the effects of a small vertical

magnetic field component as well as ion collisions into the “top hat” model, it is not

evident how to modify (B.2) to include similar effects.
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