Metabarcoding of shrimp stomach content: harnessing a natural sampler for fish biodiversity monitoring

Andjin Siegenthaler ${ }^{1,3}$, Owen S. Wangensteen ${ }^{1,4}$, Ana Z. Soto ${ }^{1}$, Chiara Benvenuto ${ }^{1}$, Laura Corrigan ${ }^{2}$ \& Stefano Mariani ${ }^{1,}{ }^{\text {* }}$
${ }^{1}$ Ecosystems and Environment Research Centre, School of Environment \& Life Sciences University of Salford, UK
${ }^{2}$ Environment Agency, Tyneside House, Skinnerburn Road, Newcastle upon Tyne, NE4 7AR
${ }^{3}$ Current address: Department of Integrative Biology, University of Guelph, Guelph, Canada
${ }^{4}$ Current address: Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway

* Corresponding author:

Stefano Mariani
School of Environment and Life Sciences
Room 316, Peel Building, University of Salford,
Salford M5 4WT, UK
t: +44 (0)161-295-6913
s.mariani@salford.ac.uk

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1755-0998.12956
This article is protected by copyright. All rights reserved.

Abstract

Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services, and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time are one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective.

Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high through-put DNA-based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon.

Sediment and shrimp samples were collected from eight European estuaries and DNA metabarcoding (using both 12 S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12 S and COI respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey-based techniques, we show that the DNA-assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost-effective tool for large scale, routine estuarine biodiversity monitoring.

Keywords: DNA; Crangon crangon; environmental assessment; biodiversity monitoring; fish communities; trophic metabarcoding

This article is protected by copyright. All rights reserved.

Introduction

Accurate and reliable estimates of biodiversity and species distributions are essential for successful ecosystem management and environmental policy (Hooper et al. 2005; Rees et al. 2014). Understanding biodiversity changes in coastal systems, such as estuaries, is of special interest since these provide essential ecosystem functions and services and are heavily affected by anthropogenic pressures (Halpern et al. 2008; Sheaves et al. 2015). Estuaries are highly productive systems, providing food and shelter for a large range of fish and invertebrates (Beck et al. 2001; Heip et al. 1995). These habitats act as important nurseries for many fish species, resulting in a greater density, survival rate and growth of juveniles than surrounding habitats (Beck et al. 2001; Kraus \& Secor 2005), which explains the adaptations and energy required for fish larvae to migrate from the open sea to estuaries (Huijbers et al. 2012; Norcross \& Shaw 1984). Alongside their importance as nursery areas, estuaries also support a wide range of adult fish species including estuarine residents, marine and fresh water "stragglers" (taxa normally occurring in marine habitats), and migratory species (Elliott \& Dewailly 1995; Elliott et al. 2007). Many of these are important targets for fisheries or keystone elements for coastal food webs and of relevance for global economy and food security (Jovanovic et al. 2007; Pauly et al. 2005; Scheffer et al. 2005; Wilson 2002). An understanding of the community structure, spatial distribution, population connectivity and prey selection of bony fish is important for ecosystem characterisation and management (Genner et al. 2004; Jovanovic et al. 2007; Kraus \& Secor 2005; Mariani et al. 2011). This is becoming crucial since ichthyofaunal communities are under pressure from a range of anthropogenic impacts such as overfishing, pollution and climate change (Courrat et al. 2009; Genner et al. 2004; Wilson 2002). Due to these pressures, fish communities are generally considered to be suitable biological indicators for the environmental quality of estuarine systems, as monitoring fish communities integrates the direct and indirect effects of stressors on the entire aquatic ecosystem (Fausch et al. 1990; Whitfield 2002). Fish surveys are regularly conducted for the management of oceanic and transitional waters, fisheries stock assessments, detection of invasive species, monitoring of environmental changes,
water quality assessments, etc. (Pyšek \& Richardson 2010), and are required to comply with environmental policy such as the EU Water Framework Directive for Transitional Waters (Ferreira et al. 2007).

Traditional estimates of fish diversity largely depend on fish captures, which are usually invasive, costly, labour intensive and selective (Cotter et al. 2004; Lapointe et al. 2011; Thomsen et al. 2012). Recent molecular biodiversity assessment methods, such as environmental metabarcoding, focus on detecting animals' presence by collecting the DNA they have left behind in the environment (Taberlet et al. 2012a; Thomsen et al. 2012) and applying high-throughput sequencing (HTS) to identify multiple taxa based on bulk DNA extracted from a community (DNA derived from many individual organisms, representing several species) or environmental sample (i.e. water, soil, faeces; Barnes \& Turner 2016). Metabarcoding can successfully identify small, cryptic or decomposed specimens with reduced cost and effort compared to traditional methods, and is independent of the species' developmental stage (Chariton et al. 2015; Hajibabaei et al. 2011; Lejzerowicz et al. 2015; Leray \& Knowlton 2015), though this may also represent a limitation, when that type of information is required (Valentini et al. 2016).

A recent metabarcoding development is the use of DNA detected in the gut contents of parasitic/predatory organisms to estimate the diversity and distribution of their prey items. Molecular trophic tools have advantages over traditional taxonomic methods since the stomachs of animals often contain a high proportion of material that is very difficult to identify with traditional microscopic identification, such as small, soft bodied, and highly digested prey (McClenaghan et al. 2015; Symondson 2002). The application of leeches and carrion flies as biodiversity sampling tools has been proposed for the rapid assessment of mammals in several terrestrial habitats (CalvignacSpencer et al. 2013b; Schnell et al. 2015; Schnell et al. 2012). Although the concept of examining species distribution based on their detection as prey items in the stomach contents of predators has been applied using traditional morphological methods (e.g. Boucek \& Rehage 2014; Fahrig et al.

1993; Lasley-Rasher et al. 2015; Stevens et al. 2010), trophic DNA-based methods for biodiversity assessment have not yet been employed in marine systems (though suggested by Boyer et al. 2015; Deiner et al. 2017), and much still needs to be done in order to identify the most appropriate sample types and markers to detect specific biodiversity components, such as, for instance, teleost species (Shaw et al. 2016).

Here, we focus on the applicability of metabarcoding of DNA extracted from the stomach contents of an opportunistic scavenger/predator, the brown shrimp, Crangon crangon L., as a sampling tool for fish diversity in European coastal waters. The brown shrimp is a widespread and abundant decapod crustacean and vital component of the benthic food web in European soft bottom habitats (Bamber \& Henderson 1994; Campos \& van der Veer 2008), and represent an important target for fisheries, with catches up to 35,000 tons in 2011 (Aviat et al. 2011; Campos \& van der Veer 2008). Showing a highly opportunistic diet, the brown shrimp consumes a wide variety of food items, ranging from meiofauna to fish (Evans 1983; Oh et al. 2001). Though being a generalist, it prefers larger motile prey items, including commercially important teleost species (van der Veer \& Bergman 1987; Siegenthaler et al. 2018). Its opportunistic diet, in combination with its high abundance (van der Veer et al. 1998) and ease of catch (e.g. by push-net or bycatch; Gamito \& Cabral 2003), makes the brown shrimp a very suitable candidate as an estuarine biodiversity sampling tool. Besides the main general objective, to evaluate the suitability of shrimp stomach content to assess fish diversity, two secondary objectives were addressed, namely i) to compare the efficacy of different DNA sample media to detect fish taxa, and iii) to compare fish communities identified via metabarcoding surveys with those identified from concurrent net surveys.

Methods

This study comprised two independent and complementary efforts. First, DNA extracts from C. crangon stomach and sediment samples collected from six European estuaries were amplified with two different markers (COI and 12S) and the detected fish taxa were evaluated and compared in relation to sample type, marker and location. Sample collection and COI amplification was conducted as part of a larger study focusing on the use of metabarcoding to assess the trophic ecology of C. crangon (Siegenthaler et al. 2018). No water samples were collected, and no ichthyofaunal surveys were conducted during this study. Therefore, a second complementary, but smaller, study was conducted focussing on two British estuaries to compare the detection of fish environmental DNA (eDNA) extracted from shrimp stomachs, water and sediment substrates, with morphological identification of fish caught in concurrent seine net surveys.

Sample collection and processing

To evaluate the suitability of trophic contents to assess fish diversity, adult brown shrimp (20-50 mm total length) and sediment samples were collected from the intertidal zone ($0-1 \mathrm{~m}$ depth) at 21 sites distributed over six estuaries in the Netherlands, Portugal and the United Kingdom (Fig. 1), between May and July 2016. Shrimp were collected by push-net at low tide ($\pm 3 \mathrm{~h})$. Sediment samples were collected with a PVC corer ($3.2 \mathrm{~mm} \emptyset$) from the upper two cm surface layer (which represent the most recent DNA deposits; Limburg \& Weider 2002; Turner et al. 2015) and three subsamples were pooled per site to reduce the influence of local heterogeneity (Taberlet et al. 2012b). See Siegenthaler et al. (2018) for more details on the sampling protocol. To compare metabarcoding results and seine net surveys, additional shrimp, sediment and water samples (2 L) were collected, in triplicates, from two sites in the Tweed and Tees estuaries in the UK, in May-June 2017 (Fig. 1A). In these two sites, seine net surveys were carried out at low tide ($\pm 3 \mathrm{~h}$) to assess fish catch data and for the collection of shrimp for stomach extractions. Surface water samples (0-1 m depth) were
collected in sterile 2 L bottles provided with a $200 \mu \mathrm{~m}$ nylon mesh. All samples were packed in individual plastic bags and placed on ice for transport and stored at $-20^{\circ} \mathrm{C}$. Prior to transport, sediment samples were conserved in 96% ethanol.

DNA extraction

In total, 483 stomachs (Supplementary table S1) were dissected using flame-sterilised tools from shrimp that had a visually full stomach. Single shrimp stomachs likely contain only DNA from a limited number of fish due to their small size and fast gut-passage time (Feller 2006; Pihl \& Rosenberg 1984). Up to eight full stomachs were, therefore, pooled prior to DNA extraction, (Deagle et al. 2005; Ray et al. 2016), resulting in three extractions per site. Three sites (Av3, Me4 and Ke2) contained only two samples due to low number of shrimp caught with full stomachs at these locations (see Siegenthaler et al. 2018). Water samples (0.9 L) were filtered using Sterivex filter units ($0.22 \mu \mathrm{~m}$ pore size; Merck Millipore) upon arrival to the laboratory (within four hours after collection). Pooled stomach (0.25 g) and sediment (10 g) samples were homogenised and DNA extracted using the PowerSoil® DNA isolation Kit (Qiagen) and the PowerMax ${ }^{\circledR}$ DNA Soil Kit (Qiagen) respectively. For the water samples, DNA was extracted from the filters and isolated using the DNeasy PowerWater® DNA isolation Kit (Qiagen). A Qubit fluorometer (Thermo-Fisher Scientific) was used to assess the DNA concentrations of the purified extracts. DNA extraction and pre-PCR preparations were performed in separate labs from post-PCR procedures to avoid contaminations.

DNA amplification and high-throughput sequencing

For the evaluation of C. crangon stomach contents to assess fish diversity on a European scale, stomach and sediment sample extracts from the Dutch, Portuguese and UK (except Tweed and Tees) estuaries were amplified using two primer sets: one targeting the mitochondrial cytochrome c .
oxidase subunit I (COI) region (henceforth referred to as Leray-XT; Leray et al. 2013; Wangensteen et al. 2018) and another one targeting a hypervariable region in the mitochondrial 12S rRNA gene (henceforth referred to as MiFish; Miya et al. 2015).

The Leray-XT primer set amplifies a 313-bp fragment of the COI (Leray et al. 2013) in a broad range of taxa including most metazoan and other eukaryotic groups (Wangensteen et al. 2018). It uses mICOlintF-XT (5'-GGWACWRGWTGRACWITITAYCCYCC-3') as forward primer (Leray et al. 2013; Wangensteen et al. 2018) and jgHCO2198 (5'-TAIACYTCIGGRTGICCRAARAAYCA-3'; Geller et al. 2013) as reverse primer. The PCR amplification and subsequent HT-sequencing of this amplicon was conducted as part of a larger project describing the diet of C. crangon (Siegenthaler et al. 2018).

The MiFish primer set (Miya et al. 2015) has been developed to target a hypervariable region in the mitochondrial 12S rRNA gene (163-185 bp) and specifically amplifies fish and other vertebrate DNA. For the specific comparison of sample type efficacy, stomach, sediment and water sample extracts from the Tweed and Tees estuaries were amplified using the 12 S primer set only, as universal COI primers are known to yield negligible amounts of fish reads when used with extracts from filtered water samples (Grey et al. 2018; Bakker et al., unpublished results).

The PCR mix recipe for the Leray-XT primer set included $10 \mu \mathrm{I}$ AmpliTaq gold 360Master mix (Applied Biosystems), $3.2 \mu \mathrm{~g}$ Bovine Serum Albumin (Thermo Scientific), $1 \mu \mathrm{l}$ of each of the $5 \mu \mathrm{M}$ forward and reverse tagged-primers (including 2-4 leading Ns and 8-bp sample tags), $5.84 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ and $2 \mu \mathrm{l}$ extracted DNA template (standardised to $5 \mathrm{ng} \mu^{-1}$). Twin tagging was used to reduce tag jumping and different tags were used for sediment and stomach samples from the same site. The PCR profile included an initial denaturing step of $95^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 35$ cycles of $94^{\circ} \mathrm{C}$ for $1 \mathrm{~min}, 45^{\circ} \mathrm{C}$ for 1 min and $72^{\circ} \mathrm{C}$ for 1 min and a final extension step of $72^{\circ} \mathrm{C}$ for 5 min . PCR products (including two negative controls) with sample tags attached were pooled at equimolar concentration into two multiplex sample pools (sediment sample pool and stomach sample pool) and purified using MinElute columns (Qiagen). Library preparation was performed using the NextFlex PCR-free library
preparation kit (BIOO Scientific) and library quantification was done using the NEBNext qPCR quantification kit (New England Biolabs). Libraries were pooled (along with 0.7 \% PhiX v3, Illumina, serving as a positive sequencing quality control) in a 1:4 sediment:stomach molar concentration ratio (reflecting the sediment:stomach sample ratio) and sequenced (final molarity of 8 pM) on an Illumina MiSeq platform using v2 chemistry (2×250 bp paired-ends).

Prior to the 12 S PCR amplification, DNA from the three stomach extractions per site was pooled, resulting in final pools of 16-24 stomachs per sample (with the exception of the Tweed and Tees samples; see supplementary table S1) and standardised to $5 \mathrm{ng} \mathrm{Hl}^{-1}$. Amplification of the 12 S fragment (for the sediment, water and pooled stomach samples) was achieved using a two-step PCR protocol by first amplifying the amplicon using untagged primers and sequentially amplifying the product of the first PCR with tagged primers to attach a 7-bp index to each sample (Andruszkiewicz et al. 2017; Miya et al. 2015). Different tags were used for sediment and stomach samples from the same site. Between the two PCR steps, a 5-times dilution and size selection were performed using MultiScreen ${ }^{\circledR}{ }^{P C R} R_{\mu 96}$ plates (Millipore) to remove any leftover primers. The MiFish primer pair was used for both PCR steps (forward: 5'-GTCGGTAAAACTCGTGCCAGC-3'; reverse: 5'-

CATAGTGGGGTATCTAATCCCAGTTTG-3'; Miya et al. 2015) and the PCR mix recipe was the same as the one mentioned above for the COI amplification. The PCR profile (for both steps) included an initial denaturing step of $95^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 40$ cycles of $95^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 30 sec and $72{ }^{\circ} \mathrm{C}$ for 30 sec and a final extension step of $72^{\circ} \mathrm{C}$ for 5 min . Two technical PCR replicates were produced per sample and two negative controls were included. PCR products were pooled into two multiplex sample pools (one pool per PCR replicate) and the pools were sequenced in equimolar concentrations (final molarity of 9 pM) along with 0.8 \% PhiX on Illumina MiSeq platform using v2 chemistry ($2 \times 150 \mathrm{bp}$ paired-ends) in accordance to the protocol described above for the COI fragment.

This article is protected by copyright. All rights reserved.

Bioinformatic and data analyses

Bioinformatic analyses were performed using the OBITools metabarcoding software suite (Boyer et al. 2016). Assessment of read quality was done with FastQC, paired-end read alignment with illuminapairedend, and reads with alignment quality score >40 were retained. Demultiplexing and primer removal was achieved using ngsfilter. Aligned reads with a length of 303-323 bp (for COI) or 140-190 (for 12S) and free of ambiguous bases, were selected using obigrep and dereplicated with obiuniq. Chimeras were removed using the uchime-denovo algorithm (implemented in VSEARCH; Edgar et al. 2011; Rognes et al. 2016). Amplicon clustering was performed using the SWARM 2.0 algorithm (Mahé et al. 2014, 2015) with a d value of 13 for the COI pipeline, and with a d value of 3 for the 12 S pipeline. Taxonomic assignment was achieved using the ecotag algorithm (Boyer et al. 2016) on representative sequences for each MOTU to taxa in relation to local reference databases (Wangensteen et al. 2018). The COI database (db COI Sep2017) contained 191,295 filtered COI sequences of eukaryota retrieved from the BOLD database (Ratnasingham \& Hebert 2007) and the EMBL repository (Kulikova et al. 2004). The 12 database (db Miya Sep2017) contained 6,868 sequences from vertebrates retrieved from Genbank. Further refinement of the data was achieved by clustering MOTUs assigned to the same species, the application of abundance renormalization to remove false positives arising from tag switching (Wangensteen \& Turon 2017), and the removal of singletons. Reads not belonging to bony fish taxa (class: Actinopterygii) were removed. To avoid false positives and remove low frequency noise, a minimum copy threshold of five reads per sample was applied to the COI dataset on a sample by sample basis (Alberdi et al. 2018). False positives were removed from the 12 S dataset by means of a restrictive approach in which only MOTUs that occurred in both PCR replicates were considered (Alberdi et al. 2018). Remaining reads of the two PCR-replicates were merged per sample after filtering. Both the minimum copy threshold of 5 copies and the restrictive PCR-replicate approach can be considered conservative and may have had a negative effect on the detected diversity (Alberdi et al. 2018). Stomach reads were merged per site
for the COI dataset to obtain comparable datasets between the two markers, based on the same stomachs pools. An overview of the pipelines is reported in supplementary table S2.

Statistical analyses were performed in R v3.1.3 (https://www.R-project.org/) with the packages vegan (v2.3-5; Oksanen et al. 2016) and BiodiversityR (v2.5-3; Kindt \& Coe 2005). Multivariate analyses were conducted based on presence-absence data using the PERMANOVA functions adonis and nested.npmanova (Jaccard dissimilarities and 1000 permutations). MOTU richness was represented as MOTU/species accumulation curves, while differences in the mean number of MOTU detected between samples, countries and estuaries within countries were tested using generalised linear models and Wilcoxon signed rank tests.

Results

Molecular biodiversity assessment

Total numbers of $2,060,514$ and $4,997,391$ reads were obtained from 12 S and COI amplifications respectively after demultiplexing, quality and sequence-length filtering (reads obtained by HTS: 12S: $9,139,215$; COI: $8,895,448$). The 12 S primers only amplified chordates (Actinopterygii, Agnatha, Aves, Mammalia) while the COI primer pair amplified 40 phyla, including some chordates (Siegenthaler et al. 2018). Percentage of fish (Actinopterygii) reads was high for the 12 S primers ($75-89 \%$) and low for the COI primers (sediment: <0.01 \%, stomach: 7%; table 1). Taxonomic assignment resulted in a total of 219 Actinopterygii MOTUs identified using the 12S marker, of which 62 were identified to the species or genus level (using the ecotag algorithm; Boyer et al. 2016). Of the 27 Actinopterygii MOTUs detected in the samples using the COI marker, 25 were assigned to the species or genus level. Using the COI marker, only one fish MOTU (Dicentrarchus labrax; 15 reads) could be detected in the sediment (and only at one site: Minho 1), therefore it was not considered for further analyses.

Figure 2 shows a heat map of all MOTUs identified to the species or genus level with the different
markers, sample locations and sample media. Large variation is visible in the species detected across sample. For stomach samples, the number of fish species detected was not correlated with the number of stomachs pooled per sample (Spearman correlation; COI: $r=0.32, P=0.16 ; 12 S: r=0.15$, $P=0.52$). Notable observations are: the wide occurrence and relatively high abundances of Pleuronectes sp., Salmo trutta, Scomber scombrus and Trachurus trachurus in the amplifications with $12 S$ but not with COI; the wide presence of D. Iabrax, which is more effectively detected by the COI marker; and the detection, via 12S, of the river lamprey Lampetra fluviatilis in the Eastern Scheldt. The two markers can complement each other in the identification of some taxa to the species level (e.g. the Atherina sp. detected via 12 S in Aveiro 1 is most likely A. presbyter, as inferred by COI). No clear geographical patterns were detected (Supplementary figures 1 and 2). Nested PERMANOVA analyses (1000 permutations) did not show any differences between countries (12S stomach: $\mathrm{F}=$ 2.28, $\mathrm{P}=0.08 ; 12 \mathrm{~S}$ sediment: $\mathrm{F}=0.34, \mathrm{P}=0.39 ; \mathrm{COI}$ stomach: $\mathrm{F}=1.35, \mathrm{P}=0.22$) and estuaries nested in countries (12S stomach: $\mathrm{F}=2.50, \mathrm{P}=0.54 ; 12 \mathrm{~S}$ sediment: $\mathrm{F}=0.46, \mathrm{P}=0.84 ; \mathrm{COI}$ stomach: $\mathrm{F}=1.62$, $P=0.63)$. COI sediment samples were not tested since fish DNA was only detected in the sediment of one estuary.

Comparison of molecular markers and sample types

MOTU accumulation curves showed no differences in the total number of MOTUs identified at the species or genus level between markers (12S/COI) and sample types (sediment/stomach; Fig. 3), except for the COI sediment samples (only one MOTU detected). Venn diagrams showed large overlap between markers in the fish families detected, but differences were noted in the species identified (Fig. 4A). The total number of fish MOTUs per stomach sample was significantly higher in samples amplified with 12 S compared to COI when identified at the family or genus level, but did not differ significantly when only MOTUs identified at the species level were considered (Table 2). Almost half of the fish taxa identified with the 12 S marker were observed in both sample types and this proportion of taxa remained fairly constant among the different taxonomic levels considered
(Fig 4B). The total number of taxa identified per 12S-amplified sample did not differ significantly between sediment and stomach, independently of the taxonomic level of interest (Table 3).

More fish species were detected with metabarcoding using 12S than by traditional seine net surveys in the Tees and Tweed estuaries (Table 4). In the Tees estuary, 18 fish taxa (nine of which assigned at the species level) were detected using molecular methods while only five taxa (all identified at the species level) during the seine net survey. Although no MOTUs were detected by metabarcoding that could be assigned to these species, taxa were assigned to the same family or genus level as four of these species (with the exception of Ammodytes tobianus). Nine species and four higher taxa (family or genus) were exclusively detected by metabarcoding. In the Tweed estuary, 23 fish taxa (of which 14 assigned to the species level) were detected using molecular methods and only six taxa (all identified at the species level) during the seine net survey. Three species were detected by both methods. Another three species were detected exclusively by netting, but these matched taxa that were assigned to the same family or genus by metabarcoding. Eleven species and six higher taxa (family or genus) were exclusively detected by metabarcoding, including the lamprey L. fluviatilis, in the Tweed.

Water, sediment and C. crangon stomach samples collected from the Tees and Tweed estuaries showed extensive overlap in the species, genera and families detected (Fig. 4C). Although some genera were exclusively detected in either sediment (Gobio, Gobius and Lampetra) or stomach (Ammodytes) samples, no species, genera or families were solely detected in water samples.

Discussion

Estuaries are under substantial anthropogenic pressures, including fisheries, pollution, shipping and the spread of invasive species, thus the monitoring of their ecological status and variation is essential to safeguard ecosystem functioning and the services provided (Martínez et al. 2007;

Sheaves et al. 2015). To improve fish diversity assessment, recent studies have employed molecular

This article is protected by copyright. All rights reserved.
tools such as eDNA metabarcoding (Evans \& Lamberti 2017; Thomsen et al. 2012). The present study introduces a novel approach, which benefits from the "natural sampling" properties of a generalist predator/scavenger and the power and speed provided by metabarcoding.

Results show that metabarcoding of environmental and trophic samples was much more effective in determining the local fish community structure than traditional seine net surveys, in line with a growing body of work on the use of eDNA in fish surveys (e.g. Boussarie et al. 2018; Thomsen et al. 2012; Valentini et al. 2016). Twice the number of species and more than three times the number of taxa (assigned to the genus of family level) were detected using 12S-metabarcoding on a combination of sediment, shrimp stomach and water samples compared to concordant seine net surveys. Furthermore, fish taxa detected by metabarcoding, but not by traditional netting, included some important taxa for conservation such as Anguilla and Lampetra. Although it was not possible to identify all species caught during the seine net surveys at the species level using molecular assignment only, the family/genus-level identification indicates that the DNA of these species was indeed amplified, hence allowing in most cases indirect inference on species presence. Improvements of the reference database or marker's taxonomic resolution will be required to attain unambiguous, direct molecular identification of these taxa at the species level (Alberdi et al. 2018; Shaw et al. 2016).

The fish diversity detected during this study, by using a combination of sediment and C. crangon stomach samples, reflects a typical European estuarine community, including estuarine residents (e.g. A. tobianus and Pomatoschistus microps) and species that use estuaries as a nurseries and/or feeding grounds (e.g. D. labrax and Pleuronectes platessa), migrate through them (e.g. Anguilla sp. and Salmo trutta) or behave as marine or freshwater stragglers (e.g. Scomber scombrus, Trachurus trachurus and Gobio gobio) (Elliott \& Dewailly 1995; Elliott et al. 2007; Maes et al. 2005). Several species detected, such as eel (Anguilla sp.), European plaice (P. platessa), sea bass (D. Iabrax) and Atlantic mackerel (S. scombrus) are important commercial targets. Considering the small size of C.
crangon caught (20-50 mm total length; Siegenthaler et al. 2018), it is surprising to see that such a small shrimp feed on a large range of fish species including several known and potential own predators (e.g. P. microps and D. Iabrax; Cattrijsse et al. 1997). Consumption of fish tissue is, therefore, likely a combination of scavenging on adults and direct predation on juveniles/larvae (Ansell et al. 1999; van der Veer \& Bergman 1987; Siegenthaler at al. 2018). Although soft bottom habitats were sampled, several hard-bottom associated species were detected (e.g. Lipophrys pholis and Labrus bergylta) which could have been occasional visitors from nearby rocky shores (e.g. rocky outcrops located near the mouth of the Minho estuary) or were captured/scavenged by shrimp migrating in and out the estuaries (Al-Adhub \& Naylor 1975). In addition to DNA originated from the biota present in the estuaries, DNA detected in the sediment and water samples might also have been transported post mortem from other adjacent areas by river runoff or during tidal movements (Barnes \& Turner 2016).

Besides site-specific variation, no geographical patterns were detected during this study. The focus of the present study is the assessment of a trophic metabarcoding approach to evaluate fish diversity, and does not aim to provide a detailed geographical comparison, for which a higher sample density would be required. Also, European estuaries show high similarities in fish assemblages, especially for common/abundant species (Elliott \& Dewailly 1995). Differences in rare species may also have been masked by pooling of the samples, though pooling is still considered suitable for among-site comparison of representative fish communities (Sato et al. 2017). Taking these considerations into account, further studies with expanded geographical range and seasonal samplings are likely to yield the full breadth of European estuarine ichthyofaunal complexity.

This article is protected by copyright. All rights reserved.

Marker and DNA medium choice

The results of this study add to the growing body of evidence underpinning the efficacy of molecular tools to effectively detect biodiversity (Andruszkiewicz et al. 2017; Evans \& Lamberti 2017; Taberlet et al. 2012a), but also show that a combination of multiple markers and different sample types are required to gain a comprehensive understanding of the study system (Alberdi et al. 2018; Deagle et al. 2014; Shaw et al. 2016). Environmental DNA is generally only present in trace amounts in the environment and the concentration of DNA can differ between media, influencing the detectability of taxa (Shaw et al. 2016; Taberlet et al. 2012b; Turner et al. 2015). No major differences were detected in the number of fish species identified with the 12 S primer pair between the sediment samples and C. crangon stomach contents. In the samples from the Tees and Tweed estuaries, more fish species were detected in the eDNA extracted from the sediment than from the water and no species, genera or families were exclusively detected in the water samples. Differences in fish detectability between these sample types could be due to the generally higher concentration and temporal persistence of DNA in sediment samples compared to the water column (Turner et al. 2015) or caused by differences in the volumes of substrates used (Shaw et al. 2016). It should be noted, however, that only a limited number of water samples was taken due to the reliance of this study on previously collected samples (Siegenthaler et al. 2018). Since water sampling has been the main technique for eDNA-based fish surveys (e.g., Shaw et al. 2016; Valentini et al. 2016), further research comparing eDNA extracted from trophic and water samples might be required for a more in-depth comparison.

The differences in species detection between the 12 S and COI markers is likely due to a combination of primer bias, differences in reference database completeness, and the taxonomic resolution of the markers (Alberdi et al. 2018; Taberlet et al. 2012a). The COI data was collected as part of a larger study on the diet of the brown shrimp (Siegenthaler et al. 2018) while the 12 S data was specifically collected for the detection of fish DNA in shrimp stomach samples. Furthermore, due to slight
variations in laboratory procedures (e.g. the requirement of two-step PCR protocol for the 12 S primer), two different strategies were used to compensate for PCR-sequencing errors, contaminants and false-positives: a high copy number threshold (>5 reads on a sample-by-sample basis) for the COI marker and a restrictive PCR-replicate strategy for the 12 S marker (Alberdi et al. 2018). These differences could have had an influence on the differences in species richness, due to chimaeras, PCR stochasticity and contaminations, detected between the two different markers. Comparisons between the two markers should, therefore, be considered with caution. Yet, taking this into consideration, it can be argued that of the markers used during this study, COI was more accurate for species-level detection than 12S, due to its better taxonomic resolution, which ensures high discrimination power at the species level, and the availability of an exhaustive and well-curated reference database (BOLD; Ratnasingham \& Hebert 2007). Its use was, however, severely limited in samples where the relative amount of fish DNA was low (e.g. sediment samples) due to the nearly universal taxonomic breadth of the COI primers used (Wangensteen et al. 2018). Interestingly, more teleost DNA was amplified using COI primers from the stomachs samples than from the sediment samples, even though no blocking primers were used to block C. crangon DNA (Ray et al. 2016). The sediment samples were, however, dominated by reads of a wide range of protist and invertebrate meiofaunal taxa (Siegenthaler at al. 2018). While the Leray-XT primer pair (COI) has been developed for universality (Wangensteen et al. 2018), the MiFish primer pair (12S) has been developed to specifically detect eDNA from fishes (Miya et al. 2015). The main limitations of 12S-based markers are, however, that 12 S rDNA teleost coverage is relatively poor in the NCBI nucleotide database (Andruszkiewicz et al. 2017) and the fact that 12S-based markers have lower taxonomic resolution for fish species than other markers (Pesole et al. 1999; Shaw et al. 2016). An appropriate choice of marker and sample medium are, therefore, intertwined and depend on the research question (e.g. rarity of the taxa of interest), the taxonomic resolution required, and the availability of resources to improve reference databases.

This article is protected by copyright. All rights reserved.

Applications in fisheries and environmental sciences

Fisheries science requires tools that provide reproducible data on species diversity, stock size and demographic information of the area under study, preferably for minimal cost and labour. Traditional methods are not always able to provide this, as results vary highly with the sampling technique used, including type of gear and depth of fishing. They are, furthermore, often expensive and labour intensive (Cotter et al. 2004; Courrat et al. 2009; Lapointe et al. 2011; Thomsen et al. 2012). Presently, eDNA metabarcoding techniques also show limitations for several of these requirements since they are not able to assess population structure and fish condition, quantitative data on biomass or number of individuals, nor they provide real-time and fine-scale information (Evans \& Lamberti 2017; Shaw et al. 2016). Standardisation of the molecular and analytical methods used for metabarcoding is also required for reproducibility and to allow for combination of data from different studies (Gilbert et al. 2014; Lear et al. 2018; Leese et al. 2016). On the positive side, eDNA samples are easier to collect, require lower sampling effort and are less labour intensive than traditional fishing methods (Boyer et al. 2015; Evans et al. 2017; Smart et al. 2016). In addition, molecular monitoring of fish populations (either from environmental or stomach samples) does not require taxonomic expertise, is more objective than traditional methods and, in general, results in more species detected than conventional methods (Boussarie et al. 2018; Thomsen et al. 2012; Valentini et al. 2016; this study). Besides species distribution assessments, the use of eDNA is especially useful for the detection and monitoring of rare (e.g. Anguilla and Agnatha) and invasive species (Evans \& Lamberti 2017), as required for compliance with environmental policy, such as the EU Habitat Directive. Since the costs of molecular consumables continues to decline and the speed of sequencing analyses and bioinformatic pipelines increases, molecular techniques (either based on environmental or stomach samples) have the potential to become a valuable complement to traditional sampling methods (Evans et al. 2017; Smart et al. 2016).

This article is protected by copyright. All rights reserved.

One of the appealing aspects of using a variety of media for environmental and community DNA collection is that, while these can easily be collected simultaneously, they can reveal different levels of information about the community under investigation. Environmental DNA extracted from water samples usually integrates information over large spatial scales but has a low temporal resolution due to the high dispersion and low persistence of DNA in sea water (Barnes \& Turner 2016; Thomsen et al. 2012). Sediment samples, on the other hand, can store and conserve DNA for months to years and their high spatial heterogeneity, as often detected between samples, might provide information on small spatial scales (Taberlet et al. 2012b; Turner et al. 2015). Nevertheless, estuaries act as river catchment areas and sediments store organic matter from upstream fresh-water habitats. Resuspension and horizontal transport of eDNA could thus influence interferences made from both sediment and aqueous eDNA (Barnes \& Turner 2016; Turner et al. 2015), especially in dynamic systems such as estuaries.

This study is the first to bring into the scene another promising medium: the gut contents of generalist predators or scavengers. In the case of C. crangon, DNA extracted from its stomach contents will likely provide recent information since shrimp have a relatively fast gut passage time (4-20h; Feller 2006; Pihl \& Rosenberg 1984; van der Veer \& Bergman 1987) and digested DNA degrades rapidly (Deagle et al. 2006; Moran et al. 2016). The area "sampled" by a pool of C. crangon will likely provide information on a larger spatial scale than acquired by a sediment sample since the shrimp actively moves around during night-time and shows tidal and seasonal migrations (Al-Adhub \& Naylor 1975; Donk \& Wilde 1981; Henderson \& Holmes 1987). Furthermore, the effect of resuspension and horizontal transport of upstream eDNA is less influential than in other DNA media since, as a scavenger, C. crangon mainly consumes solid tissues which should show a lower dispersion than extracellular eDNA. Compared to DNA extracted from other environmental sources, community DNA extracted from guts will mainly represent the live community present in the system (or recently deceased in the case of scavenging) instead of the mix of cellular and extracellular DNA from different origins, which generally constitute eDNA (Barnes \& Turner 2016). Finally, the fact

This article is protected by copyright. All rights reserved.
that the "'sampled biodiversity"' is naturally encapsulated in the guts of a shrimp, from field sampling all the way to DNA extraction in the lab, represents a significant way to streamline and bypass many of the fastidious steps required to reduce degradation and contamination when sampling water; a fact that is often underemphasized in eDNA research.

The application of gut metabarcoding has the potential of becoming a powerful tool in biodiversity assessment applications, such as in the case of bioindicators and commercially important taxa (e.g. teleosts). Shrimp can be collected in large numbers without extra effort or costs as by-catch during existing fish surveys (Gamito \& Cabral 2003). Also, the application of fish-specific markers (e.g. MiFish; Miya et al. 2015) or blocking primers (Vestheim \& Jarman 2008) can greatly reduce the labour required (stomachs do not need to be dissected with precision since shrimp DNA will not be amplified), making the costs of trophic eDNA comparable to other eDNA media. Pooling individual stomachs prior to DNA extraction might also reduce the cost and effort required. Nevertheless, this approach should be most advisable when using primers that are more specific to the taxon of interest (such as the 12 S primers used here), in order to avoid the risk of missing the detection of rare prey species (Sato et al. 2017).

The initial results of this and other studies, using molecular or traditional techniques (Boucek \& Rehage 2014; Lasley-Rasher et al. 2015; Schnell et al. 2012), show that diet-based fish diversity techniques are very promising. Certainly, their application remains dependent on the availability of a suitable, ubiquitous and accessible, "sampling species", which requires expanded knowledge of ecological interactions, such as predator-prey dynamics, secondary predation, and the ecology and physiology of both the predator and prey species to assess predator/prey related biases (CalvignacSpencer et al. 2013a; Schnell et al. 2015; Siegenthaler et al. 2018). Nevertheless, it is clear that eDNA can be used as a bio-assessment tool for fisheries sciences to complement traditional sampling schemes, to improve species distribution assessment, and to monitor invasive and rare species, at competitive costs. The implementation of an approach that interweaves high through-put

This article is protected by copyright. All rights reserved.
metabarcoding with the "natural sampling capacity" derived from feeding activities of
opportunistic/scavenging species may in the near future offer the right blend of power, speed and cost-effectiveness for large scale, routine applications.

Acknowledgements

We would like to express our thanks to J. Campos for her support during the sampling in Portugal; C. Adiele, A. Bio, T. Ferraz, R. Fraser, A. Goossens, P. Oldfield and E. Siegenthaler for their help collecting shrimp under all weather conditions; C. Hide and M. Patel for their assistance in the lab and I. Goodhead for his advice on Illumina sequencing. Sampling and net surveys in the Tees and Tweed estuaries would not have been possible without the kind help of T. Gray, M. Heddell-Cowie and other staff members of the Environment Agency. Funding for this project was provided by the University of Salford, Mersey Gateway Environmental Trust, the Santander Advantage fund, and the Natural Environment Research Council grant NE/N005759/1.

References

Al-Adhub AHY, Naylor E (1975) Emergence rhythms and tidal migrations in the brown shrimp Crangon crangon (L.). Journal of the Marine Biological Association of the United Kingdom 55, 801-810.
Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K, Mahon A (2018) Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134-147.
Andruszkiewicz EA, Starks HA, Chavez FP, et al. (2017) Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One 12, e0176343.
Ansell AD, Comely CA, Robb L (1999) Distribution, movements and diet of macrocrustaceans on a Scottish sandy beach with particular reference to predation on juvenile fishes. Marine Ecology Progress Series 176, 115-130.
Aviat D, Diamantis C, Neudecker T, Berkenhagen J, Müller M (2011) The north sea brown shrimp fisheries, pp. 5-103. European Parliament, Policy Department B: Structural and Cohesion Policies, Brussels.
Bamber RN, Henderson Pa (1994) Seasonality of caridean decapod and mysid distribution and movements within the Severn Estuary and Bristol Channel. Biological Journal of the Linnean Society, 83-91.
Barnes MA, Turner CR (2016) The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17, 1-17.
Beck MW, Heck KL, Able KW, et al. (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51, 633-641.
Boucek RE, Rehage JS (2014) Examining the effectiveness of consumer diet sampling as a nonnative detection tool in a subtropical estuary. Transactions of the American Fisheries Society 143, 489-494.
Boussarie G, Bakker J, Wangensteen OS, et al. (2018) Environmental DNA illuminates the dark diversity of sharks. Science advances 4, eaap9661.
Boyer F, Mercier C, Bonin A, et al. (2016) OBITOOLS: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources 16, 176-182.

This article is protected by copyright. All rights reserved.

Boyer S, Cruickshank RH, Wratten SD (2015) Faeces of generalist predators as 'biodiversity capsules': A new tool for biodiversity assessment in remote and inaccessible habitats. Food Webs 3, 16.

Calvignac-Spencer S, Leendertz FH, Gilbert MT, Schubert G (2013a) An invertebrate stomach's view on vertebrate ecology: certain invertebrates could be used as "vertebrate samplers" and deliver DNA-based information on many aspects of vertebrate ecology. Bioessays 35, 10041013.

Calvignac-Spencer S, Merkel K, Kutzner N, et al. (2013b) Carrion fly-derived DNA as a tool for comprehensive and cost-effective assessment of mammalian biodiversity. Molecular Ecology 22, 915-924.
Campos J, van der Veer HW (2008) Autecology of Crangon crangon (L.) with an emphasis on latitudinal trends. Oceanography and Marine Biology: An Annual Review 46, 65-104.
Cattrijsse A, Dankwa HR, Mees J (1997) Nursery function of an estuarine tidal marsh for the brown shrimp Crangon crangon. Journal of Sea Research 38, 109-121.
Chariton AA, Stephenson S, Morgan MJ, et al. (2015) Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries. Environmental Pollution 203, 165-174.
Cotter AJR, Burt L, Paxton CGM, et al. (2004) Are stock assessment methods too complicated? Fish and Fisheries 5, 235-254.
Courrat A, Lobry J, Nicolas D, et al. (2009) Anthropogenic disturbance on nursery function of estuarine areas for marine species. Estuarine, Coastal and Shelf Science 81, 179-190.
Deagle BE, Eveson JP, Jarman SN (2006) Quantification of damage in DNA recovered from highly degraded samples - a case study on DNA in faeces. Frontiers in Zoology 3, 11.
Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters 10.
Deagle BE, Tollit DJ, Jarman SN, et al. (2005) Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions. Molecular Ecology 14, 1831-1842.
Deiner K, Bik HM, Machler E, et al. (2017) Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology 26, 5872-5895.
Donk EV, Wilde PD (1981) Oxygen consumption and motile activity of the brown shrimp Crangon crangon related to temperature and body size. Netherlands Journal of Sea Research 15, 5464.

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27.
Elliott M, Dewailly F (1995) The structure and components of European estuarine fish assemblages. Netherlands Journal of Aquatic Ecology 29, 397-417.
Elliott M, Whitfield AK, Potter IC, et al. (2007) The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8, 241-268.
Evans NT, Lamberti GA (2017) Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research 197: 60-66.
Evans NT, Shirey PD, Wieringa JG, Mahon AR, Lamberti GA (2017) Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries 42, 90-99.
Evans S (1983) Production, predation and food niche segregation in a marine shallow soft-bottom community. Marine Ecology Progress Series 10, 147-157.
Fahrig L, Lilly GR, Miller DS (1993) Predator stomachs as sampling tools for prey distribution: Atlantic cod (Gadus morhua) and capelin (Mallotus villosus). Canadian Journal of Fisheries and Aquatic Sciences 50, 1541-1547.
Fausch KD, Lyons j, Karr jR, Angermeier PL (1990) Fish communities as indicators of environmental degradation. American fisheries society symposium 8, 123-144.
Feller RJ (2006) Weak meiofaunal trophic linkages in Crangon crangon and Carcinus maenus. Journal of Experimental Marine Biology and Ecology 330, 274-283.

This article is protected by copyright. All rights reserved.

Ferreira JG, Vale C, Soares CV, et al. (2007) Monitoring of coastal and transitional waters under the E.U. Water Framework Directive. Environmental Monitoring and Assessment 135, 195-216.

Gamito R, Cabral H (2003) Mortality of brown-shrimp discards from the beam trawl fishery in the Tagus estuary, Portugal. Fisheries Research 63, 423-427.
Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13, 851-861.
Genner MJ, Sims DW, Wearmouth VJ, et al. (2004) Regional climatic warming drives long-term community changes of British marine fish. Proceedings of the Royal Society of London. Series B 271, 655-661.
Gilbert JA, Jansson JK, Knight R (2014) The Earth Microbiome project: successes and aspirations. BMC Biology 12, 69.
Grey EK, Bernatchez L, Cassey P, et al. (2018) Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys. Scientific Reports 8, 8843.
Hajibabaei M, Shokralla S, Zhou X, Singer GAC, Baird DJ (2011) Environmental barcoding: A nextgeneration sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497.
Halpern BS, Walbridge S, Selkoe KA, et al. (2008) A global map of human impact on marine ecosystems. Science 319, 948.
Heip, Goosen NK, Herman, et al. (1995) Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology: An Annual Review 33, 1-149.
Henderson PA, Holmes RHA (1987) On the population biology of the common shrimp Crangon crangon (L.) (Crustacea: Caridea) in the Severn Estuary and Bristol Channel. Journal of the Marine Biological Association of the United Kingdom 67, 825-847.
Hooper DU, Chapin FS, Ewel JJ, et al. (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75, 3-35.
Huijbers CM, Nagelkerken I, Lossbroek PA, et al. (2012) A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93, 46-55.
Jovanovic B, Longmore C, O'Leary Á, Mariani S (2007) Fish community structure and distribution in a macro-tidal inshore habitat in the Irish Sea. Estuarine, Coastal and Shelf Science 75, 135-142.
Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies World Agroforestry Centre, Nairobi (Kenya).
Kraus RT, Secor DH (2005) Application of the nursery-role hypothesis to an estuarine fish. Marine Ecology Progress Series 291, 301-305.
Kulikova T, Aldebert P, Althorpe N, et al. (2004) The EMBL nucleotide sequence database. Nucleic Acids Research 32, D27-D30.
Lapointe NWR, Corkum LD, Mandrak NE (2011) A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. North American Journal of Fisheries Management 26, 503-513.
Lasley-Rasher RS, Brady DC, Smith BE, Jumars PA (2015) It takes guts to locate elusive crustacean prey. Marine Ecology Progress Series 538, 1-12.
Lear G, Dickie I, Banks J, et al. (2018) Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. New Zealand Journal of Ecology 42, 10-.
Leese F, Altermatt F, Bouchez A, et al. (2016) DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes 2, e11321.
Lejzerowicz F, Esling P, Pillet L, et al. (2015) High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Scientific Reports 5, 13932.
Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proceedings of the National Academy of Sciences 112, 2076-2081.

This article is protected by copyright. All rights reserved.

Leray M, Yang JY, Meyer CP, et al. (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10, 1-14.
Limburg PA, Weider LJ (2002) 'Ancient' DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proceedings of the Royal Society of London. Series B 269, 281-287.
Maes J, Stevens M, Ollevier F (2005) The composition and community structure of the ichthyofauna of the upper Scheldt estuary: synthesis of a 10-year data collection (1991-2001). Journal of Applied Ichthyology 21, 86-93.
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2014) Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593.
Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2015) Swarm v2: highly-scalable and highresolution amplicon clustering. PeerJ 3, e1420.
Mariani S, Boggan C, Balata D (2011) Food resource use in sympatric juvenile plaice and flounder in estuarine habitats. Marine Ecology 32, 96-101.
Martínez ML, Intralawan A, Vázquez G, et al. (2007) The coasts of our world: Ecological, economic and social importance. Ecological Economics 63, 254-272.
McClenaghan B, Gibson JF, Shokralla S, Hajibabaei M (2015) Discrimination of grasshopper (Orthoptera: Acrididae) diet and niche overlap using next-generation sequencing of gut contents. Ecology and evolution 5, 3046-3055.
Miya M, Sato Y, Fukunaga T, et al. (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. Royal Society Open Science 2, 150088.
Moran Z, Orth DJ, Schmitt JD, Hallerman EM, Aguilar R (2016) Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes. Environmental Biology of Fishes 99, 161-167.
Norcross BL, Shaw RF (1984) Oceanic and estuarine transport of fish eggs and larvae: A review. Transactions of the American Fisheries Society 113, 153-165.
Oh CW, Richard GH, Richard DMN (2001) Feeding ecology of the common shrimp Crangon crangon in Port Erin Bay, Isle of Man, Irish Sea. Marine Ecology Progress Series 214, 211-223.
Oksanen J, Guillaume Blanchet F, Kindt R, et al. (2016) Vegan: Community Ecology Package, pp. 631637.

Pauly D, Watson R, Alder J (2005) Global trends in world fisheries: impacts on marine ecosystems and food security. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 5.

Pesole G, Gissi C, De Chirico A, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. Journal of Molecular Evolution 48, 427-434.
Pihl L, Rosenberg R (1984) Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Marine Ecology Progress Series 15, 159-168.
Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35, 25-55.
Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355-364.
Ray JL, Althammer J, Skaar KS, et al. (2016) Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Molecular Ecology 25, 5585-5602.
Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC (2014) The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51, 1450-1459.
Rognes T, Flouri T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584.

This article is protected by copyright. All rights reserved.

Sato H, Sogo Y, Doi H, Yamanaka H (2017) Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sci Rep 7, 14860.
Scheffer M, Carpenter S, Young B (2005) Cascading effects of over-fishing marine systems. Trends in Ecology \& Evolution 20, 579-581.
Schnell IB, Sollmann R, Calvignac-Spencer S, et al. (2015) iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool - prospects, pitfalls and avenues to be developed. Frontiers in Zoology 12, 24.
Schnell IB, Thomsen PF, Wilkinson N, et al. (2012) Screening mammal biodiversity using DNA from leeches. Current Biology 22, R262-R263.
Shaw JLA, Clarke LJ, Wedderburn SD, et al. (2016) Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation 197, 131138.

Sheaves M, Baker R, Nagelkerken I, Connolly RM (2015) True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries and Coasts 38, 401-414.
Siegenthaler A, Wangensteen OS, Benvenuto C, Campos J, Mariani S (2018) DNA metabarcoding unveils multi-scale trophic variation in a widespread coastal opportunist. Molecular Ecology, doi: 10.1111/mec. 14886.
Smart AS, Weeks AR, van Rooyen AR, et al. (2016) Assessing the cost-efficiency of environmental DNA sampling. Methods in Ecology and Evolution 7, 1291-1298.
Stevens PW, Blewett DA, Champeau TR, Stafford CJ (2010) Posthurricane recovery of riverine fauna reflected in the diet of an apex predator. Estuaries and Coasts 33, 59-66.
Symondson WOC (2002) Molecular identification of prey in predator diets. Molecular Ecology 11.
Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012a) Towards next-generation biodiversity assessment using DNA metabarcoding. Molecular Ecology 21, 2045-2050.
Taberlet P, Prud'Homme SM, Campione E, et al. (2012b) Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Molecular Ecology 21, 1816-1820.
Thomsen PF, Kielgast J, Iversen LL, et al. (2012) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7, e41732.
Turner CR, Uy KL, Everhart RC (2015) Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation 183, 93-102.
Valentini A, Taberlet P, Miaud C, et al. (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology 25, 929-942.
van der Veer HW, Bergman MJ (1987) Predation by crustaceans on a newly settled 0-group plaice Pleuronectes platessa population in the western Wadden Sea. Marine Ecology Progress Series 35, 203-215.
van der Veer HW, Feller RJ, Weber A, Witte J (1998) Importance of predation by crustaceans upon bivalve spat in the intertidal zone of the Dutch Wadden Sea as revealed by immunological assays of gut contents. Journal of Experimental Marine Biology and Ecology 231, 139-157.
Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples - a case study on prey DNA in Antarctic krill stomachs. In: Frontiers Zool.
Wangensteen O, Turon X (2017) Metabarcoding techniques for assessing biodiversity of marine animal forests. In: Marine animal forests. The ecology of benthic biodiversity hotspots (eds. Rossi S, Bramanti L, Gori A, Orejas C), pp. 445-473. Springer International Publishing. (Print ISBN: 978-3-319-21011-7).
Wangensteen OS, Palacín C, Guardiola M, Turon X (2018) DNA metabarcoding of littoral hardbottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705.
Whitfield A (2002) Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future. Journal of Fish Biology 61, 229-250.

This article is protected by copyright. All rights reserved.

Wilson JG (2002) Productivity, fisheries and aquaculture in temperate estuaries. Estuarine, Coastal and Shelf Science 55, 953-967.

Data Accessibility

The dataset, including sequences, taxonomic assignment and abundances for all MOTUs in every sample, have been deposited in Dryad (doi:10.5061/dryad.7498b88). Custom R scripts are publicly available from https://github.com/Andjin/Crangon-diet-analysis and https://github.com/metabarpark for scripts related to the bioinformatics pipeline.

Author Contributions

A.S. participated in the study design, carried out the field, laboratory and molecular work, data and statistical analyses, and wrote the manuscript; O.S.W. participated in the molecular work, designed the bioinformatics pipeline and assisted in the statistical analyses; A.Z.S participated in the sampling and molecular work; C.B. participated in the study design; L.C. coordinated the net surveys. S.M conceived and designed the study and contributed to writing. All authors provided critical comments on the manuscript and gave final approval for publication.

Figure and table captions (in the order in which items should appear in the paper)

Figure 1. Overview of sample locations, illustrating (A) the overall western European scale, including the location of the Tweed (Tw) and Tees (Te) estuaries, marked by stars (where the study comparing fish detection performance of stomach, sediment, water DNA and traditional netting took place); (B) the Dutch estuaries, Western Scheldt (WS) and Eastern Scheldt (ES); the British estuaries (C), Mersey (Me), Kent (Ke) (Tees and Tweed only present in inset A); the Aveiro (D) and Minho (E) estuaries in Portugal. Small numbered dots within estuaries represent individual collection points for shrimp and sediment samples. Source map: OpenStreetMap.

Table 1. Total number of bony fish (class Actinopterygii), lamprey (class Agnatha) and non-fish reads detected in samples sequenced using COI and 12 S markers. Fish reads are given after quality filtering and removal of false positives.

Figure 2. Heatmap of fish species and genera detected in samples taken from Dutch (E. Sch: Eastern Scheldt \& W.Sch: Western Scheldt), UK (Mersey \& Kent) and Portuguese (Minho \& Aveiro) estuaries. The heatmap only shows taxa that are identified at the genus or species level. Fish taxa detected in Crangon crangon pooled stomach samples (St) is shown after DNA amplification with two markers: 12 S and COI. Sediment samples (Se) are only shown after DNA amplification with the 12 S primers since COI amplification resulted in the detection of only 1 MOTU (D. labrax) in 1 sample (Minho 1). Colours represent differences in relative read abundances and the numbers below the columns shows the total number of fish reads per sample that could be assigned to the species or genus level.

Figure 3. MOTU accumulation curves (\pm SE; 100 permutations) representing the number of bony fish MOTUs identified at the species or genus level detected in sediment and Crangon crangon pooled stomach samples analysed with two different markers. Green: Sediment - 12S; pink: Stomach - 12S;

This article is protected by copyright. All rights reserved.
black: Sediment - COI; blue Stomach - COI. Sediment - COI values are estimated since only 1 MOTU was detected.

Figure 4. Venn diagrams of fish families, genera and species detected in the (A) DNA of Crangon crangon stomach pooled samples amplified with two different markers: 12S and COI; (B) DNA of C. crangon pooled stomach and sediment samples amplified with 12 S primers; (C) DNA of C. crangon pooled stomach, sediment and water samples collected in the Tees and Tweed estuaries in the UK amplified with 12 S primers. * Species for which the family was detected with both markers are indicated in white; 1: Class Agnatha.

Table 2. Differences in mean number of bony fish MOTUs per sample identified at different taxonomic levels in Crangon crangon pooled stomach samples amplified with 12S and COI primer pairs. Higher taxonomic ranks include MOTUs identified at the lower levels.

Table 3. Differences in mean number of bony fish MOTUs per sample, amplified with a 12 S primer pair, and identified at different taxonomic levels between Crangon crangon pooled stomach and sediment samples. Higher taxonomic ranks include MOTUs identified at the lower levels. See supplementary table S3 for rarefied data.

Table 4. Fish species detected by 12 S metabarcoding and concurrent seine net surveys. Metabarcoding results are based on combined data from sediment, water and C. crangon stomach samples amplified with the 12S primer pair (see Fig. 4C). Percentage detected shows the percentage of species identified per estuary and, in brackets, the probable percentage of species detected if MOTUs identified to the family or genus level are included.

Table 1. Total number of bony fish (class Actinopterygii), lamprey (class Agnatha) and non-fish reads detected in samples sequenced using COI and 125 markers. Fish reads are given after quality filtering and removal of false positives.

Reads	COI		12S					Tees \& Tweed (12S)		
	Sediment	Stomach	Sediment	Stomach	Sediment	Stomach	Water			
Bony fish	15	306,997	407,377	799,272	199,254	205,886	119,652			
Lamprey	0	0	0	63	28	0	0			
Non-fish	620,310	$4,070,069$	107,059	95,720	60,574	26,797	38,923			
Total	620,325	$4,377,066$	514,436	895,055	259828	232683	158575			
Fish reads (\%)	0.002%	7.01%	79.19%	89.31%	76.69%	88.44%	75.46%			

This article is protected by copyright. All rights reserved.

Table 2. Differences in mean number of bony fish MOTUs per sample identified at different taxonomic levels in Crangon crangon pooled stomach samples amplified with 12 S and COI primer pairs. Higher taxonomic ranks include MOTUs identified at the lower levels.

	Mean \pm SE number of MOTU per sample		Wilcoxon signed rank test		
	COI stomach	12S stomach	N	V	P
All MOTUs	2.2 ± 0.6	6.6 ± 0.6	21	8.0	$<0.001^{*}$
Family level	2.2 ± 0.6	5.8 ± 0.6	21	13.5	0.001^{*}
Genus level	2.2 ± 0.6	4.9 ± 0.5	21	22.5	0.004^{*}
Species level	2.0 ± 0.5	3.0 ± 0.4	21	76.5	0.177

Table 3. Differences in mean number of bony fish MOTUs per sample, amplified with a 12 S primer pair, and identified at different taxonomic levels between Crangon crangon pooled stomach and sediment samples. Higher taxonomic ranks include MOTUs identified at the lower levels. See supplementary table S3 for rarefied data.

	Mean \pm SE number of MOTU per sample		Wilcoxon signed rank test		
	12S stomach	12S sediment	N	V	P
All MOTUs	6.6 ± 0.6	7.0 ± 0.7	21	82.0	0.61
Family level	5.8 ± 0.6	6.9 ± 0.8	21	68.0	0.17
Genus level	4.9 ± 0.5	5.9 ± 0.7	21	66.0	0.15
Species level	3.0 ± 0.4	4.0 ± 0.5	21	51.5	0.14

This article is protected by copyright. All rights reserved.

Table 4. Fish species detected by 12 S metabarcoding and concurrent seine net surveys. Metabarcoding results are based on combined data from sediment, water and C. crangon stomach samples amplified with the 12S primer pair (see Fig. 4C). Percentage detected shows the percentage of species identified per estuary and, in brackets, the probable percentage of species detected if MOTUs identified to the family or genus level are included.

Family	Tees estuary Species	Metabarcoding	Netting	Tweed estuary Metabarcoding	Netting	
Ammodytidae	Ammodytes tobianus		\checkmark	1		
Anguillidae	Anguilla sp.	1		1		
Carangidae	Trachurus trachurus	\checkmark		\checkmark		
Clupeidae	Clupea harengus		v		V	
	Sprattus sprattus	2				
Cottidae	Taurulus bubalis	,	\checkmark	\checkmark		
Cyprinidae	Gobio gobio			\checkmark		
	Squalius cephalus			\checkmark		
Gadidae	Unassigned			\checkmark		
	Trisopterus minutus			\checkmark		
Gasterosteidae Gobiidae	Gasterosteus aculeatus			\checkmark	V	
	Gobius paganellus	\checkmark		\checkmark	V	
	Pomatoschistus minutus	1		1		
Labridae	Labrus sp.			1		
Moronidae	Dicentrarchus labrax	\checkmark		V		
Mugilidae	Unassigned					
Nemacheilidae	Barbatula barbatula	v		\checkmark		
Petromyzontidae*	Lampetra fluviatilis*	2	\checkmark	$\underset{2}{\text { V }}$,	
Pleuronectidae	Platichthys flesus					
	Pleuronectes platessa	1	\checkmark			
Salmonidae	Salmo salar			\checkmark	\checkmark	
	Salmo trutta	\checkmark		\checkmark	\checkmark	
Scombridae	Scomber scombrus	\checkmark		\checkmark		
Syngnathidae	Syngnathus typhle	\checkmark		\checkmark		
Triglidae	Chelidonichthys sp.					
\% Detected		50 (94)	28	61 (100)	26	

${ }^{1}$ Assigned to genus level; ${ }^{2}$ Assigned to family level; * Class: Agnatha

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

C. 12S: Tees and Tweed estuaries, stomach vs. sediment vs. water samples

This article is protected by copyright. All rights reserved.

