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Abstract—This paper addresses the impact of mixtures be-
tween classes on equivalent number of looks (ENL) estimation.
We propose an unsupervised ENL estimator for polarimetric
synthetic aperture radar (PolSAR) data, which is based on
small sample estimates but incorporates a mixture-eliminating
procedure to automatically assess the uniformity of the estimation
windows. A statistical feature derived from a combination of
linear and logarithmic moments is investigated and adopted in
the procedure, as it has different mean values for samples from
uniform and non-uniform windows. We introduce an approach
to extract the approximated sampling distribution of this test
statistic for uniform windows. Then the detection is conducted by
a hypothesis test with adaptive thresholds determined by a non-
uniformity ratio. Finally the experiments are performed on both
simulated and real SAR data. The capability of the unsupervised
mixture-eliminating procedure is verified with simulated data.
In the real-data experiments, the ENL estimates of Flevoland
and San Francisco PolSAR images are analyzed, which show the
robustness of the proposed ENL estimation for SAR scenes with
different complexities.

Index Terms—Equivalent number of looks (ENL) estimation,
uniform window, automatic processing chain, log-cumulant, po-
larimetric Synthetic Aperture Radar (SAR).

I. INTRODUCTION

THE equivalent number of looks (ENL) is an important
parameter of multilook synthetic aperture radar (SAR)

images. In the multilooking process, the SAR measurements
are averaged to mitigate the noise-like effect of interference,
known as speckle, which is a feature of all coherent imaging
systems. As the averaged measurements are correlated, it is
complicate to statistically model the output data. The ENL is
defined to replace the actual number of correlated samples by
an equivalent number of independent ones, thus the multilook
data can be modeled as an average of a fractional number of
independent measurements.

Being a model parameter, the ENL has influence on the
accuracy of the information extracted by methods based upon
parametric models of multilook SAR data. For instance, the
ENL is a necessary input to important classification [1][2][3]
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and change detection algorithms [4] for multilook polarimetric
SAR (PolSAR) data.

The ENL is commonly estimated by identifying homoge-
neous regions in an image, where speckle is fully developed
and the sources of heterogeneity, like texture or mixtures of
different classes, are assumed ignorable [5]. The selection of
regions of interest is usually done manually. However, as the
creation of fully automatic processing chains is a goal in many
application of SAR data, these chains will obviously benefit
from having a robust and automatic ENL estimation method.

Some attempts have already been made to design a fully
automatic estimation algorithm that avoids manual selection
of a region of interest. In an arbitrary SAR scene, there
are normally a variety of land covers with homogeneous
regions of various sizes scattered across the images. This
motivates an idea, where the ENL estimator is evaluated in
small windows over the whole images. The ENL is then
inferred from the collection of small sample estimates. Based
on this idea, several unsupervised estimation approaches have
been proposed. The method used in [6][7] is to produce a
scatter plot of mean versus standard deviation of the intensity
data in each small window. The idea is that values computed
under fully developed speckle will dominate the population
of estimates and stand out as a linear feature. Then the ENL
can be inferred from the slope. Another approach from [8]
is to compute the ENL itself in the small windows, and then
produce a one-dimensional distribution of small sample ENL
estimates. Necessarily, a large enough proportion of the esti-
mation windows are assumed to be homogeneous. Therefore
the overall distribution of estimates should be dominated by
estimates computed in windows that only contain variation due
to fully developed speckle, and the mode value can be used
as an estimate of the ENL. Papers [9] and [10] both follow
this approach, but with different ENL estimators computed in
the windows.

The estimators adopted in the latter papers are proposed
to use the full sample polarimetric covariance matrix, which
is a common representation of multilook PolSAR data, as
input. In [9], two estimators are given by assuming the sample
covariance matrix is complex Wishart distributed. One is based
on second-order trace moments. Another is obtained from
the log-determinant matrix moment and is also shown to be
the maximum likelihood (ML) estimator under the Wishart
model. The second estimator, or ML estimator for short,
proves to have much lower variance than any other known
ENL estimator [9][10]. But for heterogeneous regions, the
ML method will produce underestimation. The other paper
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[10] introduces an estimator, named Development of Trace
Moments (DTM), which uses trace moments to cancel effects
of textural variation on the ENL estimation. It is claimed to
be texture invariant under the product model.

However, within the framework of small sample ENL
estimation, the presence of multiple classes in the estimation
windows is still left out of consideration. Furthermore, there
could be complex scenes where a majority of the small
estimation windows contain a mixture of different classes.
These windows would contribute low ENL values to the
collection. Then, if we still take the mode value as the
final estimate of the ENL, the unsupervised algorithm would
definitely produce an underestimated global ENL. Therefore,
it is necessary to find a novel and unsupervised estimator
that can be used to estimate the accurate ENL even for
a complicated SAR image containing a high proportion of
fine scale class mixtures. These non-uniform windows, which
contain multiple classes, are difficult to model statistically.
To reduce their effect on the final estimate, it is desirable to
detect these windows first and remove them from the collection
before further analysis. Our former work [11] shows that in
mixture areas, inconsistent ENL estimates will be obtained in
different polarimetric channels. This preliminary observation
gives us clue to a powerful multipolarization SAR descriptor
for uniform windows detection.

This paper is organized as follows. Section II introduces the
basic data formats and commonly used models for multilook
PolSAR data. Section III presents the main characteristics of
the proposed unsupervised ENL estimation chain. Section IV
demonstrates the performance of our method in experiments
with synthetic and real data. Finally, conclusions are given in
Section V.

II. POLARIMETRIC SAR IMAGE MODEL

A. Data Format

A full-polarimetric imaging radar measures the amplitude
and phase of backscattered signals in the four combinations of
the linear receive and transmit polarizations: HH, HV, VH, and
VV. Assuming that the target reciprocity condition is satisfied
[12], the backscattering of a monostatic polarimetric SAR
system is characterized by the complex scattering vector, s,
with dimension d = 3, as given by

s = [SHH ,
√

2SCross, SV V ]T (1)

The elements represent the complex backscattering coefficients
in three polarimetric channels, noting that SCross is a coherent
average of the HV and VH channels measurements. The
superscript T denotes the matrix transpose, and

√
2 arises

from the requirement to conserve the total scattered power,
after coherent averaging of the cross-polarization channels.

The scattering vector s is a single-look complex (SLC)
format representation of PolSAR data. Single and dual-channel
polarimetric data can be treated in a similar way, as subsets
of lesser dimension. The scattering vectors are transformed

into multilook sample covariance matrices in order to reduce
speckle, i.e,

C =
1

L

L∑
i=1

sisi
H

=

[ 〈|SHH |2〉 〈√2SHHS
∗
Cross〉 〈SHHS

∗
V V 〉

〈√2SCrossS
∗
HH〉 〈2|SCross|2〉 〈√2SCrossS

∗
V V 〉

〈SV V S
∗
HH〉 〈√2SV V S

∗
Cross〉 〈|SV V |2〉

]
(2)

Here L is the nominal number of looks used for averaging,
(·)H and (·)∗ mean the Hermitian transposition operator and
complex conjugation, respectively, and 〈·〉 denotes spatial
sample averaging. Hence, after multilooking, each pixel in the
image is a realization of the d × d stochastic matrix variable
denoted C, and the image is referred to as the multi-look
complex covariance image. The dimension d is either 1, 2, or
3, depending on the scattering vector used. As each channel of
the multi-look PolSAR image will be analyzed separately, the
one-dimensional case needs to be specified here. For a single
channel, i.e. d = 1, the scattering vector is reduced to a scalar
complex scattering coefficient S. The data format obtained in
multilook domain is

I =
1

L

L∑
i=1

SiS
∗
i , (3)

where I is commonly defined as the multilook intensity.

B. Product Model

In this work, we are concerned about the uniform regions,
whose radar cross section may not be perfectly homogeneous,
but that are thematically mapped as one class. The well-known
product model, described e.g. in [5][13][14], has shown to
be mathematically tractable and successful for modeling SAR
measurements from single-class regions. In the multilook po-
larimetric version [13], it decomposes C into two independent
stochastic variables as

C = TW (4)

The strictly positive and unit mean scalar random variable T
models texture, which is defined here as spatial variation in the
mean backscatter due to target variability. In the range of this
work, we follow the scalar product model, where the texture
variable is regarded as identical in all polarimetric channels.
The latter contribution, W, represents the fully developed
speckle, which follows the scaled complex Wishart distribution
sWd(L,Σ) [15][16][19]

fW(W;L,Σ) =
LLd

Γd(L)

|W|L−d

|Σ|L
etr(−LΣ−1W) (5)

where Σ = E(W) is the scale matrix, | · | is the determinant,
etr (·) = exp(tr(·)) with tr(·) as the trace operator, Γd(L)
is the multivariate gamma function of the complex kind [13],
and L ≥ d assures that C is nonsingular. For the homogeneous
region characterized by fully developed speckle and no texture,
the probability distribution function (PDF) of T is fT (t) =
δ(t − 1), where δ(·) is the Dirac delta function. This results
in C ∼ sWd(L,Σ).
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For the general textured region, we need a more complicated
distribution for C, which depends on the distribution of T .
For instance, we obtain the matrix-variate K distribution [20]
for gamma-distributed texture, the G0 distribution [13] for
inverse gamma-distributed texture, and the U distribution [21]
for texture that follows a Fisher-Snedecor distribution. The
detailed derivations of distributions are given in the mentioned
literature.

C. Mellin-Kind Statistics

Based on their multiplicative signal model, SAR data have
been analyzed on a logarithmic scale for a long time. The
log-statistics, also named as Mellin-Kind Statistics (MKS), are
used to capture certain characteristics of random variable sam-
ples in this domain. The MKS are defined in [17][18][19][22]
and evaluated for the distributions of PolSAR data. Here, we
repeat the expressions needed in the rest of this paper.

Let C be a random d × d matrix defined on the cone Ω+

of positive definite complex Hermitian matrices, whose PDF
is fC(C). The complex Mellin Transform (MT) of a general
real-valued function g(C) : Ω+ → R is

G(s) =M{g(C)}(s) =

∫
Ω+

|C|s−dg(C)dC (6)

with transform variable s ∈ C. The MT of fC(C) is defined as
the Mellin-kind characteristic function of the random matrix
C

φC(s) = E{|C|(s−d)} =M{fC(C)}(s). (7)

The νth-order log-moment is derived from

µν{C} = E{(ln |C|)ν} =
dν

dsν
φC(s) |s=d (8)

The Mellin-kind cumulant-generating function is defined as

ϕC(s) = lnφC(s) (9)

and then the νth-order log-cumulant is defined as

κν{C} =
dν

dsν
ϕC(s) |s=d (10)

As the Mellin-kind characteristic function of a scaled complex
Wishart matrix W with PDF shown in (5) is [22]

φW(s) =
Γd(L+ s+ d)

Γd(L)

(
|Σ|
Ld

)(s−d)

, (11)

the first-order of log-cumulant of fully developed speckle can
be derived as:

κ1{W} = ln |Σ|+ ψ
(0)
d (L)− d lnL (12)

where the ψ
(0)
d (L) is the 0th-order multivariate polygamma

function as

ψ
(0)
d (L) =

d−1∑
i=0

ψ(0)(L− i), (13)

and ψ(0)(L) is defined as the first logarithmic derivatives of
the gamma function

ψ(0)(L) =
d ln Γ(L)

dL
(14)

Based on the multilook polarimetric product model, the
Mellin-kind characteristic function is expressed as [22]

φC(s) = φT (d(s− d) + 1)φW(s) (15)

where φT (s) is the univariate Mellin-kind characteristic func-
tion of a general texture random variable T . This yields the
population log-cumulants [22]

κν{C} = κν{W}+ dνκν{T} (16)

Thus, the first-order log-cumulant of C evaluate under the
product model to

κ1{C} = ln |Σ|+ (ψ
(0)
d (L)− d lnL) + dκ1{T} (17)

In addition, based on the relation between the log-cumulant
and log-moment of C [22],

κν{C} = µν{C} −
ν−1∑
i=1

(
ν − 1

i− 1

)
κi{C}µν−i{C}, (18)

the first-order log-cumulant follows as

κ1{C} = µ1{C} = E{(ln |C|)}, (19)

Therefore, the expressions leads to

E{(ln |C|)} = ln |E{C}|+ (ψ
(0)
d (L)− d lnL) + dκ1{T}.

(20)
The above property in eq. (20) also applies to one-dimension
case, i.e. d = 1, just replacing the matrix C with the scalar
multilooking intensity I as follows,

E{ln I} = lnE{I}+ (ψ(0)(L)− d lnL) + κ1{T}. (21)

The mentioned ML estimator for ENL is the maximum like-
lihood solution of parameter L in the eq. (12), the first-order
log-cumulant equation of the complex Wishart distribution. In
our former work [11], we use the one-dimensional version
of the ML estimator to obtain ENL in each polarimetric
channel. As we found, in the regions containing mixture of
multiple classes, the estimator will produce strongly deviating
ENL values in different polarimetric channels. It indicates
that the inconsistency of the first-order log-cumulant between
polarimetric channels may reflect the presence of mixture
between classes. Based on this idea, we start the investigation
of a test statistic in the next section.

III. METHODOLOGY

We take U as the set of uniform windows. Then the presence
of non-uniformity in window wi is determined by choosing
between the hypotheses:

H0 : wi ∈ U (22)

H1 : wi 6∈ U. (23)

The null hypothesis H0 corresponds to uniformity and the
alternative hypothesis H1 to non-uniformity.

A. Derivation of Test Statistic

Firstly we investigate a test statistic for the hypothesis test.
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1) Uniform windows: For a uniform region where the
pixels are realization of the same stochastic process, the first-
order log-cumulants of multilook intensities of two different
polarimetric channels, denoted a and b, can be expressed by
the equations:

E{ln Ia} = lnE{Ia}+D(L) + κ1(T ). (24)

E{ln Ib} = lnE{Ib}+D(L) + κ1(T ). (25)

Here Ia and Ib represent the intensities in the two polarimetric
channels, and D(L) = (ψ(0)(L) − lnL) is a constant. In
the scalar texture product model, κ1(T ) is identical for all
polarimetric channels. Therefore, it follows that

[lnE{Ia} − E{ln Ia}]− [lnE{Ib} − E{ln Ib}] = 0. (26)

2) Non-uniform windows: We assume the analyzed non-
uniform regions only to contain mixture of two classes. This
simplification is reasonable, as the windows used for small
sample ENL estimates are usually in a size of 3× 3 or 5× 5
[9][10] and the probability that they will contain more than
two classes is low. Suppose a region contains two classes,
class 1 and class 2. Let I(1)

a represent the intensity of class 1
in polarimetric channel a, for example. Then the intensity ratio
between class 1 and 2 in channel a can be denoted by Rm =

E{I(1)
a }/E{I(2)

a }. The prior probabilities of these two classes
within the region are assumed as p1 and p2, respectively, such
that p1 + p2 = 1. We can deduce that

[lnE{Ia} − E{ln Ia}]− [lnE{Ib} − E{ln Ib}]

= ln
p1R

1−p1
a + (1− p1)R−p1a

p1R
1−p1
b + (1− p1)R−p1b

(27)

It can be verified that only when Ra and Rb happen to be two
distinct roots of the equation

p1r
1−p1 + (1− p1)r−p1 = Const (28)

where r is the unknown in the equation and Const is a con-
stant larger than 1, then eq. (26) could hold for a non-uniform
window. Such a special case exists in a mathematical sense,
but in most real data it will not appear. That is, for non-uniform
windows, [lnE{Ia}−E{ln Ia}]− [lnE{Ib}−E{ln Ib}] will
in practice be unequal to 0. All the details of the proof are
shown in the appendix A.

Based on the above analysis, for the uniform region the
statistic lnE{I} − E{ln I} should be equal in every polari-
metric channel. The statistic Xa is defined as

Xa = ln< Ia >− < ln Ia >, a ∈ {HH,Cross, V V } (29)

where the subscripts a represents the channels of the PolSAR
data, amd < · > represents the sample mean. Then an one-
way ANOVA can be adopted first to determine whether the
XHH , XCross and XV V samples are all from the populations
with equal mean. If the dataset passes the one-way ANOVA,
then it means the whole image is uniform and can be directly
used for ENL estimation. Otherwise, we need to test every
window. The difference of Xa can be taken as test statistic,
which is formulated as

∆Xab = [ln< Ia >− < ln Ia >]− [ln< Ib >− < ln Ib >],

a, b ∈ {HH,Cross, V V }, a 6= b (30)

The possible test statistics can be separated into three pairs
based on the polarimetric channels involved. For example,
∆XHH,V V and ∆XV V,HH are taken as a pair, since both of
them are determined by data in the HH and VV polarimetric
channels.

B. Retrieval of Sampling Distribution

We calculate the test statistics in sliding windows over an
arbitrary image. The realization of ∆Xab in a certain window
wi is defined as ∆Xwi

ab . The overall sampling distribution,
denoted as f(∆Xwi

ab ), can be estimated from the collection
of values calculated over the whole image. This empirical
distribution will depend strongly upon the properties of the
given image, i.e., the extent of the uniform regions. Due to
the unpredictable shape and possible multimodality of the
distribution, we propose to estimate it with a kernel density
estimator (KDE) implemented with the Epanechnikov kernel
function [23][24].

The sampling distribution of ∆Xab from uniform windows
and non-uniform windows can be expressed as f(∆Xwi

ab |wi ∈
U) and f(∆Xwi

ab |wi 6∈ U), respectively. It is difficult to
derive an exact expression for the sampling distribution
f(∆Xwi

ab |wi ∈ U), which is required for uniform window
detection. Here we introduce a general approach to retrieve
the approximate f(∆Xwi

ab |wi ∈ U) from the overall sampling
distribution f(∆Xab) of an arbitrary image.

As the overall distribution is contributed by values from
both uniform and non-uniform windows, it can be formulated
as:

f(∆Xwi

ab ) = πu ·f(∆Xwi

ab |wi ∈ U)+πnu ·f(∆Xwi

ab |wi 6∈ U).
(31)

where the πu and πnu represent the prior probabilities of uni-
form and non-uniform windows, respectively, over a particular
image, and πu+πnu = 1. As derived above, the mathematical
expectation of ∆Xab is zero for the uniform windows. The
corresponding sampling distribution f(∆Xwi

ab |wi ∈ U) should
be symmetric and zero-mean. It satisfies

f(∆Xwi

ab |wi ∈ U) = f(−∆Xwi

ab |wi ∈ U). (32)

In addition, the paired test statistics, ∆Xab and ∆Xba, are the
opposite to each other. For any window wi, it means that

∆Xwi

ab = −∆Xwi

ba . (33)

Therefore, we have

f(∆Xwi

ab |wi ∈ U) = f(∆Xwi

ba |wi ∈ U), (34)

stating that the zero-mean symmetric distributions of sample
values from the uniform windows should be identical for
the paired test statistics. The samples from non-uniform win-
dows have in general distributions with non-zero mean. Thus
f(∆Xwi

ab |wi 6∈ U) is mainly distributed to one side of the
zero value, while f(∆Xwi

ba |wi 6∈ U) is distributed mainly to
the other side. It leads the two overall distributions to present
positive and negative skewness.

As shown in the schematic diagram of Fig. 1, if we
stack up the distributions of ∆Xab (red) and ∆Xba (blue),
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Fig. 1: Schematic diagram which explains how the sampling
distribution for uniform windows is approximated. The distri-
butions in red and blue represent the paired test statistics ∆Xab

and ∆Xba, respectively. Their overlapping part is outlined in
green.

the overlapping part outlined in green is the minimum of
f(∆Xwi

ab ) and f(∆Xwi

ba ). It follows that

min{f(∆Xwi

ab ), f(∆Xwi

ba )}
= min{πuf(∆Xwi

ab |wi ∈ U) + (1− πu)f(∆Xwi

ab |wi 6∈ U),

πuf(∆Xwi

ba |wi ∈ U) + (1− πu)f(∆Xwi

ba |wi 6∈ U)}
= πuf(∆Xwi

ab |wi ∈ U)

+ (1− πu)min{f(∆Xwi

ab |wi 6∈ U), f(∆Xwi

ba |wi 6∈ U)},
(35)

where the min{·, ·} represents the function that takes the min-
imum values between the two inputs. Comparing eq. (31) and
eq. (35), the component contributed by non-uniform windows
is significantly reduced in the min{f(∆Xwi

ab ), f(∆Xwi

ba )} as
the overlapping part of f(∆Xwi

ab |wi 6∈ U) and f(∆Xwi

ba |wi 6∈
U) is relatively small. Therefore min{f(∆Xwi

ab ), f(∆Xwi

ba )}
after rescaled by 1/πu can be used to describe f(∆Xwi

ab |wi ∈
U) approximately, which is denoted as

f̂(∆Xwi

ab |wi ∈ U) = 1/πu ·min{f(∆Xwi

ab ), f(∆Xwi

ba )}.
(36)

However, for an arbitrary image, the prior probability πu for
uniform windows is unknown. Then in practice, we rescale
the min{f(∆Xwi

ab ), f(∆Xwi

ba )} by making the approximated
distribution f̂(∆Xwi

ab |wi ∈ U) integrate to one.

C. Threshold Selection

The two hypotheses in (22) and (23) can be quantitatively
distinguished by selecting thresholds based on the proposed
test statistic ∆Xab. We use the approximated sampling distri-
bution for uniform windows, f̂(∆Xwi

ab |wi ∈ U), to represent
H0, denoted as f(∆Xwi

ab |H0). As the H0 distribution is

symmetrically distributed around 0, a two-sided test should
be given by

Tlo

H1

>
≤
H0

∆Xwi

ab

H1

>
≤
H0

Tup (37)

where the inequalities state the hypothesis decisions. For a de-
sired significance level α, the thresholds Tup and Tlo define the
upper and lower α/2 quantiles of f(∆Xwi

ab |H0), respectively.
Based on the Bonferroni correction, the significance level
adopted for each pairwise test here should equal to 1/3 of the
desired value. As the distributions are exactly symmetric about
zero, Tlo is actually the negative of Tup, that is, Tlo = −Tup.
We can obtain required thresholds Tup by solving

α =

∫ −Tup

−∞
f(t|H0)dt+

∫ ∞
Tup

f(t|H0)dt = 2

∫ ∞
Tup

f(t|H0)dt

(38)
We also propose another criteria to determine the thresholds

by limiting the proportion of the non-uniformity windows in
the whole estimation windows accepted by H0. The overall
distribution of a certain test statistic can be divided into two
parts. One part, which is the overlap between distributions
of the two paired test statistics, min{f(∆Xwi

ab ), f(∆Xwi

ba )},
represents the samples from uniform windows, while the other
part represents the samples from non-uniform windows. Then
the non-uniformity ratio Rnu is expressed as the percentage
of non-overlap area within the whole area of the overall
distribution between thresholds ±Tup, as follows:

Rnu = 1−

∫ Tup

−Tup
min{f(∆Xwi

ab ), f(∆Xwi

ba )}dt∫ Tup

−Tup
f(∆Xwi

ab )dt
, (39)

where t represents the continuous variable in sample space.
Therefore, the threshold can be retrieved from eq. (39) for the
given Rnu, which has more explicit physical meaning than
significance level. In the experiments, we set the Rnu = 10%.

Then the hypothesis test is applied to test statistics from
all windows. If the H0 hypothesis is accepted for each ∆Xab

from a particular window, then this window can be regarded
as uniform. Otherwise it is taken as non-uniform and is not
used towards the final ENL estimate.

A simplification which should be pointed out is that not
every test statistic needs to be hypothesis tested. Accord-
ing to eq. (33), for any sample ∆Xwi

ab which satisfies the
−Tup < ∆Xwi

ab < Tup, its paired value from the same
window, ∆Xwi

ba , will also fall between the desired thresholds.
It means that the test results are exact the same for both
test statistics in a pair. Therefore, we only need to apply the
hypothesis test on one of the paired statistics. In following
experiments based on three-dimensional PolSAR data, the
hypothesis test is just implemented on the three test statistics,
∆XHH,V V , ∆XHH,Cross and ∆XCross,V V . As the windows
containing mixture of different classes are removed through
the hypothesis test, we define it as the mixture-eliminating
(ME) procedure.

D. Complete Estimation Process
After the ME procedure, we apply the full-polarimetric ENL

estimators, like ML and DTM, to the covariance matrices
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within each accepted window. Then the small sample ENL
estimates are collected, producing a one-dimensional empiri-
cal distribution. Now the assumption of dominantly uniform
windows is much more likely to be satisfied. Then we can
take the mode value as the global ENL estimate with a greater
degree of confidence.

The ML and DTM estimators are detailed in [9] and [10],
respectively. The ML estimator is based on a statistical model
for fully developed speckle. It has a superior performance and
achieves low bias and variance ENL estimates for Wishart
distributed regions, but it will produce underestimated results
for heterogeneous regions that contain texture or mixtures of
different classes. The DTM estimator is claimed to be texture-
invariant based on the scalar product model, but its variance is
relatively high. We name the traditional unsupervised small-
sample ENL estimation methods directly after their adopted
estimators as ML or DTM. The modified methods, where the
windows are prescreened by the proposed ME procedure, are
abbreviated as MEML or MEDTM.

In summary, the general block diagram of our unsupervised
mixture-eliminating ENL estimator for multipolarization SAR
data is shown in Fig. 2, which is made up of 8 main steps.

1. Calculate the statistic Xa of each polarimetric channel in
sliding windows over the PolSAR image.

2. Implement the one-way ANOVA on the combination of
samples. If the samples pass the ANOVA test, then the small-
sample ENL estimation can be directly applied on all the
windows. Otherwise the process goes into the step 3.

3. Take the difference of the statistic between channels,
∆Xab, as test statistic. With different channel permutations,
three pairs of ∆Xab will be achieved.

4. Stack up the two distributions of each paired test statistics
and use the rescaled overlapping part to approximate the
sampling distribution of the test statistic for uniform windows.

5. Compute the thresholds based on the desired significance
level or non-uniformity ratio Rnu for each test statistic pair.

6. Implement the hypothesis test on the collections of
test statistic, ∆XHH,V V , ∆XHH,Cross and ∆XCross,V V in
our cases, with corresponding selected thresholds. Keep the
windows for which the H0 hypothesis is accepted by all tests
for further ENL estimation.

7. Apply the full-polarimetric ENL estimator to the remain-
ing windows and produce an empirical distribution of small
sample ENL estimates.

8. Take the mode values as the global ENL estimate.

IV. EXPERIMENT

In this section, we first use simulated data to show the
capability of the proposed approach to distinguish uniform
and non-uniform windows, and then use real data to compare
the performance of the small-sample ENL estimation methods
with and without the mixture-eliminating procedure.

A. Simulated Data

In the first experiment, we generate a four-class test Pol-
SAR image to validate the uniform window detector. The
synthetic data set consists of 120 × 120 three-dimensional

Fig. 2: The general block diagram of the proposed unsu-
pervised mixture-eliminating ENL estimation algorithm for
PolSAR data

Fig. 3: Pauli decomposition composite image with class labels.
The shown simulated data are multi-looked by 25.

covariance matrix samples in total. The samples from each
class are drawn from a U distribution [21]. The four classes
are simulated with the polarimetric properties of a dense urban
area, a rotated building area, a vegetated mountain area and
water, respectively. To be realistic, the class-specific texture
parameters and mean covariance matrices are retrieved from
four corresponding uniform regions in real images. The Pauli
decomposition composite image of the simulated pattern is
shown in Fig. 3 with class labels.

1) Approximated Sampling Distribution: Fig. 4 shows a
label map based on ground truth of the test pattern. The sliding
windows that contain only one class are labeled as uniform
and the transboundary windows are labeled as non-uniform.
We calculate the three pairs of test statistics in every window
across the data set. Taking the collections of ∆XHH,V V values
for example, its overall distribution is displayed in Fig. 5.
Here, we use blue color to represent the contribution of the
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Fig. 4: Predefined label map based on ground truth.

values from the predefined uniform windows and red for
the remaining samples. The overall distribution is outlined
in black. For this simulated data set, the distribution of
∆XHH,V V is of positive skewness, therefore its paired statistic
∆XV V,HH should have a negative skewed distribution. The
distributions of ∆XHH,V V and ∆XV V,HH are stacked up as
shown in the top panel of Fig. 6, and the overlapping part
is outlined in green. The same process is conducted on the
other two pairs. The result for ∆XHH,Cross and ∆XCross,HH

is demonstrated in the middle panel of Fig. 6, and that for
∆XV V,Cross and ∆XCross,V V is displayed in the bottom
panel of Fig. 6. In all cases shown in Fig. 6, the majority
of the overlap regions are occupied by the samples from
uniform windows. Besides, to quantify the approximation, we
calculated the Kolmogorov distance between the empirical
distribution and the approximated one. The results are shown
in Table. I. Note that the distance is rather small (from
0.0081 to 0.0138) in all cases. It indicates the feasibility to
approximate the sampling distribution for uniform windows
by the corresponding overlap.

TABLE I: Kolmogorov distance between the empirical
distribution of different test statistic and the approximated

distribution.

Test Statistic ∆XHH,V V ∆XHH,Cross ∆XCross,V V

Kolmogorov distance 0.0138 0.0081 0.0081

2) Evaluation of Threshold: The fore-mentioned non-
uniformity ratio Rnu is adopted to determine the threshold
for the following hypothesis tests. Based on the simulated
data sets, the changes of Rnu values with the threshold on
the three pairs of test statistics are shown in Fig. 7. The
Rnu increases in general with the selected threshold. The
Rnu rises quickly when the threshold is relatively low, and
then the growth slows down and stabilizes gradually. In the
experiment, the Rnu is set to be 10%, where its sensitivity
to the threshold is moderate. From the changing curve, we
can obtain the threshold for ∆XHH,V V , ∆XHH,Cross and
∆XCross,V V , as 0.55, 0.92 and 1.05, respectively. Then the
hypothesis test is implemented on the sample collections of
the three test statistics. The final acceptance map is shown in

Fig. 8, where the blue parts represent the windows detected
as uniform while the red parts are the non-uniform ones. As
displayed, most windows crossing class boundaries are taken
as non-uniform, as we expected, and within the highly textured
classes, like class 1, the probability of a uniform window to
be taken as non-uniform also increases.

We compare the resulting uniformity map with one other
conventional homogeneity metric, the standard coefficient of
variation (CV). The calculation of CV is usually based on
the single channel data. For the full-polarimetric SAR data,
the sample matrices can be projected to one-dimension by
calculating corresponding SPAN value[12], which is defined
as

SPAN = I2
HH + I2

Cross + I2
V V (40)

Then the CV can be obtained with SPAN data as

CV =
std(SPAN)

mean(SPAN)
(41)

where the std(·) and mean(·) represent the calculation of
the sample standard variation and sample mean, respectively.
When evaluating the homogeneity with CV metric, usually the
regions with relative low CV value are taken as homogeneous
while the regions with high CV value are regarded as hetero-
geneous. To compare the performance of CV-based method
and our proposed strategy in distinguishing the uniform and
non-uniform windows, we can obtain the uniformity maps of
both methods under the same separation ratio and then visually
determine which is closer to the standard uniformity map
shown in Fig. 4. In the uniformity map obtained by proposed
method, the percentage of non-uniform windows is about
14%. Therefore with CV-based method, the windows with
14% largest CV values are taken as non-uniform windows.
Then the corresponding uniformity map of this method can
be obtained and shown in Fig. 9. It is noticeable that under
CV metric, some boundary areas fail to be regarded as non-
uniform windows while massive windows in the regions of
class1 are taken as class mixture. Comparing the Fig. 8 and
Fig. 9, the uniformity map obtained by proposed method is
obviously closer to the standard map in Fig. 4.

Fig. 5: Overall Distribution (outlined in black) of ∆XHH,V V

over the simulated images: the combination of the values
from the predefined uniform windows (blue) and non-uniform
windows (red)
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Fig. 6: The overlapped regions (outlined in green) achieved
by stacking up the two overall distributions of test statistics in
a pair: (a) ∆XHH,V V and ∆XV V,HH , (b) ∆XHH,Cross and
∆XCross,HH , (c) ∆XV V,Cross and ∆XCross,V V . The blue
and red parts correspond to the contribution of uniform and
non-uniform windows as shown in Fig. 5

Fig. 7: The changing curve of non-uniformity ratio with the
threshold value.

Fig. 8: The final acceptance map.

Fig. 9: Uniformity map obtained by CV metric.

3) Effect of Nominal Number of Looks: For various appli-
cation, different degree of multi-looking will be implemented.
It is necessary to investigate the effect of preset looks on the
uniform window detector, in order to assess the potency of
the proposed strategy for different applications. The simulated
data set is multi-looked by 1, 4, 9, 16, 25 and 36, respectively.
We use the precision rate and corresponding false alarm
rate to evaluate the performance of the uniform window
detector. Here, the precision rate Pd refers to the rate of actual
uniform windows in all passing the hypothesis tests, which is
formulated as

Pd =
card({wi|wi ∈ U,∆Xwi

ab ∈ [−Tup, Tup]})
card({wi|∆Xwi

ab ∈ [−Tup, Tup]})
(42)

where card(·) represents the function to calculate the number
of elements in the input set.

Considering the randomness in the simulated data, we carry
out 10 Monte Carlo experiments for each preset number of
looks. The changing curves of averaged precision rate and
false alarm rate are shown in Fig. 10. We notice that the
precision rate increases with the nominal number of looks.
The growth between the case of single look data and 4-look
data is most significant, while the changing between the other
cases is relative slow. This is because that the Mellin statistic
of the single data, which does not follow L ≤ d, can not be
formulated by the (21). Thus the proposed uniform window
detector is not exactly suitable for single look data. But as
shown in Fig. 10, even for the single-look dataset, the precision
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Fig. 10: The changing of averaged precision rate and false
alarm rate with nominal number of looks.

rate has reached almost 91%. Therefore, the detector is capable
to perform on data under different number of looks in general.

4) Effect of Window Size: Based on the precision rate,
we can study the evolution of the detector’s performance as
window size increases from 3 × 3 to 9 × 9. The uniformity
maps obtained in all cases are shown in Fig. 11. Comparing
these maps, with larger size more windows located close to
class boundary are labeled as non-uniform. It accords with
the cognition that the number of windows containing mixture
of classes increases with sliding window size. Based on the
ground truth of the simulated image, the precision rate for each
case can be achieved, which is shown in Fig. 12. The resulting
precision rates vary between cases, but all remain at high
level. It means for different window size, the most detected
uniform windows do contain single class and can be adopted
for further ENL estimation phase. Since the window size do
not have significant effect on the proposed detector, it should
choose the optimal size for the small-sample estimation, which
has been discussed in [9]. Therefore, based on Anfinsen’s
investigation, we adopt window with 5 × 5 in size for the
following experiments.

B. Real Data

After showing the feasibility to distinguish the uniform
and non-uniform windows with synthetic data, we turn to
real data for a realistic comparison between the performance
of the unsupervised ENL estimation approaches before and
after incorporating the mixture-eliminating procedure into the
whole process. Two polarimetric SAR images are used in the
experiments. The chosen data sets are both acquired by the
Radarsat-2 C-band instrument: one is an image of a cross-sea
bridge in Flevoland, Netherlands, and one is an image of the
San Francisco Bay area in California, USA. Both data sets
contain covariance matrices with nominal number of looks
equal to 25. The Pauli decomposition composite images of
these two data sets are shown in Fig. 13 and 14.

Fig. 11: The obtained uniformity map under different window
size

Fig. 12: The precision rate under different window size

The two images are used to demonstrate the robustness
of the unsupervised ENL estimators to different complexity
of the SAR scenes. The first image consists mainly of a
homogeneous ocean area and a bridge crossing it. The San
Francisco Bay image contains mostly sea and urban areas, as
well as some parks and hills covered by vegetation. There
are few homogeneous areas of considerable size, except for
the ocean. Obviously the San Francisco image is a more
complicate scene and therefore provides less uniform windows
for ENL estimation.

Each image was processed with a sliding estimation window
of size 5×5 pixels to cover the whole image. No speckle filter
was applied initially. For the original small-sample estimation
approaches, the ENL estimator, ML or DTM, is directly
applied to every window. In the modified MEML and MEDTM
methods, the windows are prescreened first by the proposed
hypothesis test in a mixture-eliminating procedure. Based
on our self-adjusted strategy to determine the test threshold,
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the final acceptance maps for the two scenes are shown in
Fig. 15 and Fig. 16 when the non-uniformity ratio is set to
be lower than 10%. Only the windows labeled as uniform
here will be used for global ENL estimation. The overall
distributions of ENL estimates obtained with different methods
are shown in different panels of Fig. 17 and Fig. 18, with
dashed lines marking the mode values. The achieved global
ENL estimates are all recorded in Table. II. The reference
values listed there are obtained by estimating the ENL with
the ML algorithm on manually selected homogeneous regions
in the corresponding image. As we notice, all the estimates are
lower than the nominal number of looks. This is because the
averaged samples in multi-looking process that are correlated
and correspond to less independent samples represented by
ENL.

For the first data set, the windows along the bridge and
the coastline are not used towards the final ENL estimate, as
shown in Fig. 15. From the overall distributions in Fig. 17,
we notice that the left tails of the MEML and the MEDTM
distributions have been clearly shrunken comparing with those
of the ML and DTM distributions, respectively. Especially,
the secondary hump located between 3 and 5 in the ML
distribution curve has been completely removed in the MEML
curve. But as the homogeneous areas dominate, the non-
uniform windows do not have a big effect on the mode values
of the overall distributions and the global ENL estimate of the
ML and DTM methods are already closed to the reference
value. In this case the mixture elimination is strictly not
necessary and the final results are only slightly altered with
the MEML and MEDTM methods.

The effect of the proposed mixture-eliminating process
becomes more prominent for the complex San Francisco
image. As shown in Fig. 16, the urban area with man-made
structures and the coastline area are labeled as non-uniform,
as we expect. After discarding the non-uniform windows, the
mode values of MEML and MEDTM estimate distributions
are both shifted to the right, which get much closer to the
reference value than those of ML and DTM.

As noted previously, the ML estimator produces low ENL

Fig. 13: Pauli decomposition composite image of the Flevoland
data set, the region within the white box is used to obtain the
reference ENL value.

estimates in heterogeneous windows. Hence, these underes-
timated values and the estimates from homogeneous win-
dows form different peaks in the overall distributions, which
explains the multimodality of the distribution obtained by
both the ML and MEML methods. As the majority of the
sliding windows in the original image contain a mixture
of different classes or cover textured regions, the estimates
from homogeneous windows are overwhelmed in the ML
distribution. With the MEML method, most non-uniform win-
dows are excluded by the designed hypothesis test. Although
some of the accepted windows still cover textured areas like
vegetated hills, the windows occupied by fully developed
speckle become dominant. Therefore, an accurate global ENL
estimate is obtained with the MEML method. Still we have
to admit that the estimation accuracy of the MEML estimator
depends on the dominance of homogeneous windows among
those detected as uniform.

For the texture-invariant DTM estimator, the mixture-
eliminating process actually removes the windows which con-
tain multiple classes and do not follow the product model that
the invariance property is based on. Therefore, the MEDTM
method addresses both the mixture of different classes and
texture variance within a single-class region, the two main
sources of heterogeneity affecting the ENL estimation. As a
result, the MEDTM estimates form a unimodal distribution,
as shown in the bottom panel in Fig. 18. However, the higher
variance of the DTM estimator causes the mode value to
deviate from the actual ENL value when samples are limited,
as in this case.

There are drawbacks to both adopted estimators. Therefore,
a more reliable estimator, which is both texture-invariant and
low-variance, needs to be further investigated.

V. CONCLUSION

We have proposed an unsupervised ENL estimation method,
which maintains the automaticity of the small-sample esti-
mation strategy by applying ENL estimator to sliding win-
dows over an arbitrary PolSAR image, but adopts a mixture-
eliminating procedure to reduce the effect of non-uniform win-

Fig. 14: Pauli decomposition composite image of the San
Francisco data set, the region within the white box is used
to obtain the reference ENL value.
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Fig. 15: Final acceptance map of the Flevoland data set

Fig. 16: Final acceptance map of the San Francisco data set

dows on the global estimate. The ME procedure distinguishes
the uniform and non-uniform windows by implementing a
hypothesis test with adaptive thresholds based on the empirical
distribution of the derived test statistic.

This paper demonstrates the feasibility of the used test
statistic through the theoretical derivation and the simulation
experiment. Assessment of the statistical properties shows
that the sampling distribution of the derived test statistic for
uniform windows is symmetric and zero-mean, while that for
non-uniform window biases towards one side of zero value.
Then we use the rescaled overlapping region of the overall
distributions of two test statistics with reversed channel order
to approximate the distribution under the hypothesis corre-
sponding to uniformity. The experiment with simulated data,
for which locations of uniform windows are known, indicates
the effectiveness of the mixture-eliminating procedure. The
resulting acceptance map confirms that the proposed approach

TABLE II: The global ENL estimates of different methods
for the two data sets. The NL refers to the nominal number

of looks. The reference values are obtained by applying
ML algorithm to manually selected homogeneous regions.

Method NL ML MEML DTM MEDTM reference
Flevoland 25 12.1 12.3 11.2 11.5 12.4
San Francisco 25 4.9 11.4 5.2 9.9 11.7

Fig. 17: Distribution estimates for the ML, MEML, DTM,
MEDTM method from the Flevoland data set

Fig. 18: Distribution estimates for the ML, MEML, DTM,
MEDTM method from the San Francisco data set

can achieve performance very close to the predefined label
map based on ground truth.

Finally, we examined the robustness of the proposed ENL
estimation strategy with two real PolSAR images of varying
complexities. The new approach has been compared with
the original small-sample estimation method where the ENL
estimator, ML or DTM, is directly applied to every window. It
is shown that the mixture-eliminating procedure is necessary,
especially for complicated scenes, to ensure extraction of a
more reliable ENL estimate from the overall distribution of
small sample estimates. However, as both of the adopted
estimators have drawbacks, a more comprehensive estimator
is still sought.
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APPENDIX A
PROOF OF ANALYTICAL TEST STATISTIC EXPRESSION IN

NON-UNIFORM WINDOWS

Suppose a window contains two different classes, class 1
and class 2, whose texture variable is T1 and T2, respectively.
In given polarimetric channels, a and b, the log-cumulants of
the two classes can be formulated as:

E{ln I(1)
a } = lnE{I(1)

a }+D(L) + f(T1), (43)

E{ln I(1)
b } = lnE{I(1)

b }+D(L) + f(T1), (44)

E{ln I(2)
a } = lnE{I(2)

a }+D(L) + f(T2), (45)

E{ln I(2)
b } = lnE{I(2)

b }+D(L) + f(T2), (46)

Here, we use the I(n)
m to represent the intensity of class n in

channel m. Then the intensity ratio between class 1 and 2 in
channel m can be denoted by Rm = E{I(1)

m }/E{I(2)
m }. The

prior probabilities of these two classes are assumed as p1 and
p2, respectively, which follows

p1 + p2 = 1. (47)

Then the logarithmic mean value of all the samples in the
window can be written in the terms of the logarithmic mean
values of class 1 and class 2, that is,

E{ln Ia} = p1E{ln I(1)
a }+ p2E{ln I(2)

a }, (48)

E{ln Ib} = p1E{ln I(1)
b }+ p2E{ln I(2)

b }. (49)

Therefore,

[lnE{Ia} − E{ln Ia}]− [lnE{Ib} − E{ln Ib}]
= [lnE{Ia} − lnE{Ib}]− [E{ln Ia} − E{ln Ib}]
= [lnE{Ia} − lnE{Ib}]− [p1E{ln I(1)

a }+ p2E{ln I(2)
a }

− p1E{ln I(1)
b } − p2E{ln I(2)

b }]
= [lnE{Ia} − lnE{Ib}]− [p1 lnE{I(1)

a }+ p2 lnE{I(2)
a }

− p1 lnE{I(1)
b } − p2 lnE{I(2)

b }]
= [lnE{Ia} − p1 lnE{I(1)

a } − p2 lnE{I(2)
a }]−

[lnE{Ib} − p1 lnE{I(1)
b } − p2 lnE{I(2)

b }]

= ln
E{Ia}

E{I(1)
a }p1E{I(2)

a }p2
− ln

E{Ib}
E{I(1)

b }p1E{I
(2)
b }p2

= ln
p1E{I(1)

a }+ p2E{I(2)
a }

E{I(1)
a }p1E{I(2)

a }p2
− ln

p1E{I(1)
b }+ p2E{I(2)

b }
E{I(1)

b }p1E{I
(2)
b }p2

= ln
(p1E{I(1)

a }+ p2E{I(2)
a })(E{I(1)

b }p1E{I
(2)
b }p2)

(E{I(1)
a }p1E{I(2)

a }p2)(p1E{I(1)
b }+ p2E{I(2)

b })

= ln
(p1E{I(1)

a }+ p2E{I(2)
a })(E{I(1)

b }p1E{I
(2)
b }p2)

(p1E{I(1)
b }+ p2E{I(2)

b })(E{I
(1)
a }p1E{I(2)

a }p2)

= ln
p1R

p2
a + p2R

−p1
a

p1R
p2
b + p2R

−p1
b

= ln
p1R

1−p1
a + (1− p1)R−p1a

p1R
1−p1
b + (1− p1)R−p1b

= ln
g(Ra)

g(Rb)
(50)

where the function g(·) will be studied shortly. Actually a
uniform window is the special case when p1 = 0 or 1, and
thus

[lnE{Ia} − E{ln Ia}]− [lnE{Ib} − E{ln Ib}] = 0. (51)

For a non-uniform window where 0 < p1 < 1, and where
there exists at least two channels a and b, such that Ra 6= Rb,
then the test statistic can be written in the terms of the function

g(r) = pr1−p + (1− p)r−p, 0 < p < 1, r > 0 (52)

whose derivative is

dg(r)

dr
= p(1− p)−p − p(1− p)r−p−1

= p(1− p)r−p(1− r−1) (53)

When 0 < r < 1, g(r) is monotonically decreasing. When
r > 1, g(r) is monotonically increasing, and g(1) = 1.
Therefore, only when Ra and Rb happen to be two differ-
ent roots of p1r

1−p1 + (1 − p1)r−p1 = Const ( Const
is a constant larger than 1), then eq. (51) could hold for
non-uniform window. However, such a special case just ex-
ists in a mathematical sense. In most real data, it would
not appear,that is, for non-uniform windows, the statistic
[lnE{Ia}−E{ln Ia}]− [lnE{Ib}−E{ln Ib}] will in practice
be unequal to 0 with high probability.
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