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ABSTRACT

We present a new approach for incorporating incidence angle
derived synthetic aperture radar (SAR) brightness variation
directly into SAR image analysis. This approach is unique in
that the incidence angle dependency is modeled explicitly into
the probability density function rather than an image-wide
pre-processing ‘correction’. It can then be used for supervised
and unsupervised image analysis, and is notably able to ac-
count for a different dependency rate for each class. This has
potential benefits for wide-swath SAR imagery over flat areas
and ocean, wide angled airborne and UAV based SAR data,
connecting narrow-beam SAR images at different acquisition
angles, as well as land-based analysis with local topographic
terrain angles. An initial example demonstrates unsupervised
image segmentation applied to sea ice mapping for meteoro-
logical services and climate science, and is compared to the
same algorithm without the incidence angle modeling.

Index Terms— Synthetic Aperture Radar, Incidence
Angle Correction, Wide-swath imagery, Terrain Correction,
Sentinel-1

1. INTRODUCTION

Wide-swath SAR images, such as from Sentinel-1, cover hun-
dreds of kilometers, but this wide coverage, and side-looking
SAR geometry, means that the imaged pixels are viewed over
a large range of incidence angles. The incidence angle (IA)
affects the microwave interaction with the surface properties,
produces varying backscatter brightness from near range to
far range and thus confuses image interpretation. The bright-
ness variations are usually much greater than the class-to-
class differences and will significantly affect image classifica-
tion. This work shall initially explore wide-swath Sentinel-1
imagery for Arctic sea ice monitoring, where the brightness
variation of wide swath SAR imaging has restricted its use for
operational services.

Our research group, at UiT - The Arctic University of
Norway, has developed advanced and automatic algorithms
for analyzing narrow-swath quad-polarization SAR images
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over sea ice, where the IA variation is minimal and can gen-
erally be ignored [1, 2, 3, 4]. However, two distinct problems
were encountered when applying these same algorithms to
wide-swath SAR imagery, in particular from Sentinel-1. The
first relates to the IA dependency already noted, and produced
too many classes, essentially over-segmenting into bands or
zones in the range direction. The second relates to the vari-
able noise-floor patterns in the range direction from stitching
the different acquisition strips into the one image, which was
reduced by using the thermal noise removal method from the
ESA’s SNAP software. Both problems and the ice type de-
pendencies are well described in [5].

This IA effect has strong foundations in the physical in-
teraction of the electro-magnetic microwave signal with the
surface properties such as roughness, and can be described
with Lambert’s cosine law, Minnaert’s law, or approximated
with an exponential relation or log-linear model [5]. Many re-
search papers for ocean surface modeling, particularly sea ice
monitoring, have published the observed decay rates for this
effect, and have demonstrated that it depends on the partic-
ular surface properties, i.e., the terrain type, most likely due
to differing surface roughness. The traditional, and practical,
approach is to apply a mean IA rate to the entire intensity im-
age in a pre-processing stage, and is known as incidence angle
correction or compensation. This means that a single image-
wide rate is applied to all pixels and does not account for the
terrain-type dependent relations, but is all that can be consid-
ered before the terrain type is known. However, in a circular
fashion, the IA variation will affect the ability of classification
algorithms to determine the terrain type, because it broadens
the class probability distributions making image-wide classi-
fication less distinct. The single image-wide IA correction
will at best be correct for only one terrain class and may over
or under-correct other classes.

Our solution to account for this systematic IA dependency
is to incorporate the TA variation directly into our statistical
probability models that are used for supervised classification
and unsupervised segmentation (clustering). This approach is
unique and the first to automatically and simultaneously dis-
tinguish the terrain type and determine the different IA rates
for each class.

The first simplified prototype has shown promising re-
sults for sea ice and ocean surface SAR image segmentation
of wide-swath Sentinel-1 imagery (publication in prep.), and



will be demonstrated here.

Our example focuses on using Sentinel-1 wide-swath im-
ages over sea ice and ocean, since they are freely available,
routinely acquired for operational monitoring, and we have
good cooperation with the Norwegian Meteorological office
and the Norwegian Polar Institute for this topic. We will
demonstrate unsupervised segmentation, as it is more diffi-
cult than supervised classification, but additional knowledge
is needed to label the classes. Comparison will be made be-
tween our previous non-incident-angle algorithm to highlight
the clear effect of incorporating the IA into the modeling.

The method is generic and should also work without mod-
ification on RADARSAT-2 or any other wide-swath satellite
data, and equivalently on wide-angled airborne SAR systems.
We foresee valuable extensions to digital elevation model
(DEM) based local terrain angle analyses, and supervised
classification across multiple images acquired at different
incidence angles.

2. THEORY

The brightness decay observed in wide-swath SAR images
from near-range to far-range is a physical phenomenon re-
lating to illumination and scattering, and probably has sev-
eral contributing factors. Ideal diffuse reflections may follow
Lambert’s law of illumination [6], which describes how the
radiant intensity from an ideal diffuse emitter decreases from
an emission at § = 0° to an emission at # = 90° proportion-
ally to the cosine of the angle 6. Furthermore, the observed
radiance varies as a function of the observed area according
to the same law. For microwave remote sensing, the single
antenna acts both as the emitter and the receiver and therefore
the received intensity is proportional to the squared cosine of
the incidence angle 6; [7].

Lambert’s law was extended by Minnaert [8] to the case
of non-ideal diffuse emitters often observed in the real world:

Ii = IoCOSZk(GZ‘) (1)

where I is the radiance along the normal direction (8 = 0°),
and k is a roughness-dependent exponent called the Minnaert
constant to represent the less than ideally diffuse scattering.
Minnaert’s law gives a simple mechanism to have different
rates for different classes and was used for conducting class-
based IA compensation [9] [10], albeit manually applied, as
opposed to an ideal Lambert law-based global compensation
over the entire image [11].

Experimental observations indicated that a simple ex-
ponential approximation was sufficient in many practical
cases[5] [12]:

I = Tpe™%/% )

where 6 represents the decay rate that could be different per
class like Minnaert’s k parameter. By using the same terms

as in [12], the above relation can be linearized so that the log-
intensity [dB] decays linearly as a function of the IA:

L,[dB] = a + b6 3)

where a relates to I;; and b (although negative) relates to Min-
naert’s rate k. These coefficients depend on the surface scat-
tering properties and are essentially extending the definition
of the associated class.

3. METHODS

We have previously developed automatic segmentation meth-
ods based on the statistics of SAR polarimetry data, from a
simple mixture of Gaussian features model [4] to variations
using more complicated textured models [2]. We now present
the first simplified version incorporating the incidence-angle
dependency directly into the statistical model.

For one specific class, we consider its log-intensity along
constant-incidence angle azimuth lines to follow a Gaussian
distribution with a mean value expressed as a linear function
of the given IA (eq. 3). For two channel data, for example
Sentinel-1 HH and HV images, we allow different decay pa-
rameters for each channel, as well as each class, and thus a
and b are multivariate. The resulting mixture distribution of
M classes for all image pixels, with class priors 7,,, and class
covariance matrix ,,, is thus described by a set of parame-
ters, (7, Qs b, 2iny) for each class m, and modeled by the
d-dimensional distribution:
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The mixture is separated using the Expectation-Maximization

algorithm, which (in this simple case) has closed-form update
expressions, i.e. :
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where z;,, denotes the expected [posterior] probability that
the pixel ¢ belongs to the class m.
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4. RESULTS

Our example is an Extra-Wide swath (EW) Sentinel-1 image
acquired over the Fram Strait during the freeze-up season of
2015 (Fig. 1). The image was selected because of the clearly
visible classes extending along the range direction. Ocean



water along the top quarter of the image, and sea ice else-
where, as seen in the greyscale intensity images of Fig. 1 (a)
and (b). This provides a clear demonstration of the algo-
rithm’s ability to connect near-range and far-range regions
that belong to the same class.

The mixture-of-Gaussians based segmentation algorithm
was applied directly to multi-looked HH and HV intensities
[in decibels], and automatically converged when the model
shows a good fit to all classes. For simpler interpretation, and
in light of the Gaussian approximation, we multi-looked and
additional 5 x 5 (over the 18-look product) and sub-sampled
the image (to 20000 pixels) to reduce the number of distin-
guishable clusters presented. Fig. 1 (c) shows the segmenta-
tion results obtained without incidence-angle correction, and
Fig. 1 (d) shows the proposed incidence-angle modeling re-
sults. The effect of the incidence-angle correcting segmenta-
tion over the non-correcting one is clear, as the division of the
classes into multiple bands according to the decaying intensi-
ties along the range dimension is no longer visible.

Fig. 1 (e) shows the decay rates of the HH Intensity [dB]
for all classes in (d). The high decay rates of the water classes
(red and yellow) are clearly distinguishable from the lower
rates corresponding to the compact sea ice class (green) and
potentially frozen leads class (blue).

5. CONCLUSION

We introduce an automatic segmentation method for wide-
swath PoISAR images that incorporates class-based inci-
dence angle variation, and demonstrate that the algorithm is
functional and delivers good results which hold a physical
meaning, albeit for a simplified case. Improvements may
be achieved using a more flexible incidence-angle relation,
and by changing the statistical model to a more appropriate
one that captures the details of the heavy tails, such as the
Gamma or a compound distribution containing a texture term.
It could also prove worthwhile to test whether the polarimet-
ric features, previously used for segmentation, have decay
rates follow the same law as the intensities.

This modeling approach is quite generic and should work
with all wide incidence-angle ranged data, for supervised
classification across different acquisition ranges, as well as
for DEM based terrain angle compensation.
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Fig. 1. Example of Sea Ice (lower part of image) and Ocean (top part of image) segmentation. Note how the banding due to
incidence angle variation is automatically removed with the new approach, and the log-linear class dependencies from (d) are
shown in (e).



