Ice rafting patterns on the western Svalbard slope 74–0 ka: Interplay between ice-sheet activity, climate and ocean circulation

SIMON P. JESSEN AND TINE L. RASMUSSEN

The distribution of ice rafted detritus (IRD) is studied in three cores from the western Svalbard slope (1130–1880 m water depth, 76–78° N) covering the period 74–0 ka. The aim is to provide new insight in the dynamics of the Svalbard-Barents Sea Ice Sheet during Marine Isotope Stages (MIS) 4–1 to get a better understanding of ice-sheet interactions with changes in ocean circulation and climate on orbital and millennial (Dansgaard-Oeschger events of stadial-interstadial) time scales. The results show that concentration, flux, composition and grain-size of IRD vary with climate and ocean temperature on both orbital and millennial time scales. The IRD consists mainly of fragments of siltstones and monocrystalline transparent quartz (referred to as “quartz”). IRD dominated by siltstones has a local Svalbard-Barents Sea source, while IRD dominated by quartz is from distant sources. Local siltstone-rich IRD predominates in warmer climatic phases (interstadials), while the proportion of allochthonous quartz-rich IRD increases in cold phases (glacials and stadials/Heinrich events). During the Last Glacial Maximum and early deglaciation at 24–16.1 ka, the quartz content reached up to >90%. In warm climate, local iceberg calving apparently increased and the warmer ocean surface caused faster melting. During the glacial maxima
(MIS 4 and MIS 2) and during cold stadials and Heinrich events, the local ice sheets must have been relatively stable with low ablation. During ice retreat phases of the MIS 4/3 and MIS 2/1 transitions, maxima in IRD deposition were dominated by local coarse-grained IRD. These maxima correlate with episodes of climate warming, indicating a rapid, stepwise retreat of the Svalbard-Barents Sea Ice Sheet in phase with millennial-scale climate oscillations.

Simon P. Jessen (simon.jessen@nordkapp.kommune.no), Central administration of North Cape municipality, Rådhusgata 12, PO box 403, N-9751 Honningsvåg, Norway; Tine L. Rasmussen, CAGE – Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, Dramsveien 201, N-9037 Tromsø, Norway
The glacial climate was unstable and oscillated on millennial time scales between cold
(Greenland stadial) and warm (Greenland interstadial (GIS)) climate (Bond et al. 1993;
Dansgaard et al. 1993), the so-called Dansgaard-Oeschger events. Stadial-interstadial cycles
were characterized by rapid changes in the activity of ice sheets, the extent and distribution of
sea ice and ocean circulation in and around the North Atlantic. Icebergs and sea ice are
thought to have played a significant role in modulation of past ocean circulation and climate
on both orbital and suborbital time scales (e.g. Broecker et al. 1990; Alley & MacAyeal 1994;
Gildor & Tziperman 2001; Zhang et al. 2014).

Sand-sized mineral grains deposited in deep-ocean hemipelagic sediments are an
indication of presence of sea-ice and/or icebergs and are labeled Ice Rafted Detritus (IRD).
The IRD is most often used as a proxy for ice-sheet calving activity (e.g. Ruddiman 1977;
Heinrich 1988; Bond et al. 1993). The distribution of IRD in the central and eastern North
Atlantic indicates almost synchronous calving from the Fennoscandian Ice Sheet (Fronval et
al. 1995; Moros et al. 2004), the Icelandic Ice Sheet (Bond et al. 1992; 1993, 1997, 1999;
Bond & Lotti 1995; Lackschewitz et al. 1998; van Kreveld et al. 2000) and probably also the
Greenland Ice Sheet (Lackschewitz et al. 1998; van Kreveld et al. 2000) with increased
calving during cold stadial phases. During the longer lasting Greenland stadials (called
‘Heinrich events’), the Laurentide Ice Sheet launched armadas of icebergs into the North
Atlantic. Heinrich events (H7–H1) occurred at 6–10 ka intervals during MIS 4–MIS 2 (e.g.
Heinrich 1988; Broecker et al. 1992; Bond et al. 1993; Alley & MacAyeal 1994). A
conceptual model based on five detailed records of IRD from the British margin showed high
IRD flux during the cold stadials/Heinrich events and sharp increases in the flux during the
rapid warmings to the interstadials (Scourse et al. 2009).

Here, we present a detailed study of the distribution and composition of IRD from the
western Svalbard slope, northeastern Greenland Sea in the polar North Atlantic in centennial resolution in three core records with detailed age models (piston cores JM03-374PC, JM03-373PC2 and JM04-025PC from 1130 m, 1485 m, and 1880 m water depth, respectively). Together, the cores provide long sequences of undisturbed sediments dating back to 74 ka. We study the concentration, flux, mineral composition and grain-size of the IRD. Combined with previously published data of sedimentation rates (Rasmussen et al. 2007; Jessen et al. 2010), we investigate the calving activity of the western part of the Svalbard-Barents Sea Ice Sheet during the glacial build-up phase in early MIS 2 and during peak glaciations of the shelf in MIS 4 and late MIS 2. Further, we study the impact of changes in surface water temperature on the concentration, grain-size, mineral composition and provenance of the IRD and ice sheet activity in relation to millennial-scale climate changes from warm interstadials to cold stadials and Heinrich events. The aim is to reconstruct the activity of the Svalbard-Barents Sea Ice Sheet on orbital and millennial time scales to improve the understanding of timing and patterns of ice-sheet retreat and advance in relation to both gradual and abrupt oceanographic and climatic changes.

Physical setting

Glacial settings and potential IRD sources

Today, 60% of the Svalbard archipelago is covered by glaciers. In MIS 4 and 2, the Svalbard-Barents Sea region was fully glaciated (e.g. Hebbeln & Wefer 1997; Mangerud et al. 1998; Vogt et al. 2001). The major part of the Svalbard-Barents Sea Ice Sheet was marine-based and located on the present-day seafloor of the Barents Sea and on the shelf off Svalbard (e.g.
The IRD deposited on the western Svalbard slope consists mainly of fragments of siltstones and mono-crystalline quartz (Goldschmidt et al. 1995) (hereafter referred to as “quartz”). The bedrock and most of the sediments on the seafloor of the Barents Sea consist of fine-grained sedimentary rocks (Kelly 1988). The shallow Spitsbergen Bank between Spitsbergen and Bjørnøya (Fig. 1) is a well-known local source of siltstones including black shales dating from the Jurassic (Edwards 1975; Kelly 1988; Goldschmidt et al. 1995; Andersen et al. 1996; Vogt et al. 2001). Thus, dark coloured siltstones including black shales are used as indicators for icebergs coming from Svalbard and the Barents Sea (Spielhagen 1991; Wagner & Henrich 1994; Andersen et al. 1996). Hebbeln & Wefer (1997) distinguished between three main source areas of IRD in the Fram strait: i) the Svalbard-Barents Sea Ice Sheet, ii) the Fennoscandian Ice Sheet and iii) the shelves of the Arctic Ocean.

Oceanographic setting

The western Svalbard continental slope is draped with contouritic sediments deposited by the relatively strong bottom currents flowing along the western Svalbard margin (Eiken & Hinz 1993; Howe et al. 2008; Rebesco et al. 2014). Today, Atlantic surface Water flows northward into the Arctic Ocean together with Greenland Sea Intermediate Water (Fig. 1) (Hopkins 1991). The inflow to the Arctic Ocean through the eastern part of the Fram Strait is counter-balanced by outflow of sea-ice loaded Polar surface water of the East Greenland Current together with return Atlantic water and Arctic Ocean Deep water in the western Fram Strait.
In the northeastern Fram Strait, the Atlantic water submerges and flows into the Arctic Ocean as a warm (>2 °C) subsurface current under a cold, fresh and sea-ice covered layer of Polar surface water (<-1 °C). During the Last Glacial Maximum the circulation pattern of the western Svalbard slope was comparable to the present day, but with colder Atlantic water at the surface (Rasmussen et al. 2007). During the last deglaciation from North Atlantic Heinrich Event 1 and to the Early Holocene, Atlantic water flowed along the slope, but as a subsurface current below cold polar meltwater (Rasmussen et al. 2007; Ślubowska-Woldengen et al. 2007). In the Early Holocene at 10.2±0.2 ka, Atlantic water reappeared at the surface west of Svalbard.

Material and methods

Three high-resolution piston cores were taken from the western Svalbard slope during cruises with RV Jan Mayen (now RV Helmer Hanssen) in 2003 and 2004: JM03-373PC2 (Rasmussen et al. 2007; Jessen et al. 2010), JM03-374PC (Jessen 2005), and JM04-025PC (Jessen et al. 2010; Jessen & Rasmussen 2015) (Fig. 1). Core JM03-373PC was taken from Storfjorden Fan at 1485 m water depth. The core contains a debris flow deposit dated to 24 ka at the bottom (Rasmussen et al. 2007; Jessen et al. 2010). Core JM03-374PC is located north of Storfjorden Fan at 1130 m water depth. This core is the most proximal to the former ice sheet on Svalbard of the three studied cores. Core JM04-025PC is located at 1880 m water depth at the lower part of the Isfjorden Fan. This core is the most ice-distal of the three investigated cores.

Wet bulk density was measured with a GEOTEK Multi Scanner Core Logger before opening of the cores (Jessen et al. 2010). Core JM03-373PC2 has previously been AMS 14C dated and investigated for the distribution of benthic and planktic foraminiferal faunas,
concentration of IRD >150 μm, stable isotope composition of shells of benthic and planktic foraminifera (Rasmussen et al. 2007), and IRD >500 μm (Jessen et al. 2010). The upper part of core JM04-025PC (30–0 ka) has been investigated for AMS 14C dates, magnetic susceptibility and concentration of IRD >500 μm (Jessen et al. 2010). The whole core has been studied for stable isotope values and grain-size of sortable silt (Jessen & Rasmussen 2015). For core JM03-374PC, AMS 14C dates have been published by Jessen et al. (2010) and IRD concentrations in the size fractions >150 μm, >250 μm and >500 μm and proportion of quartz grains were treated in Jessen (2005).

Samples were taken in 2 or 2.5 cm (cores JM04-025PC, JM03-374PC) or 5 cm intervals (core JM03-373PC) in 1-cm thick slices, weighed, dried and weighed again and subsequently wet sieved over mesh-sizes 63 and 100 μm (Jessen 2005; Rasmussen et al. 2007; Jessen et al. 2010). For the present study of core JM04-025PC, the residues >100 μm were dry sieved into grain-size fractions 150–250 μm, 250–500 μm, and >500 μm. The fractions 250–500 μm and >500 μm were counted on a picking tray under a binocular microscope. At least 300 grains were counted in each sample. In samples with less than ~500 grains all grains were counted. Mineral classes were determined in the size-fraction 250–500 μm. Twelve different mineral classes were quantified, but in the present study we only focus on the two dominant mineral classes, quartz and siltstones. The % quartz and % siltstones were calculated relative to total IRD content in a sample. Thereafter, the IRD of the 100–500 μm size fraction was dry sieved over a 150-μm mesh-size sieve and the IRD counted in the fraction 150–500 μm. For IRD in cores JM03-374PC and JM03-373PC2, the same procedures for counting as in core JM04-025PC were followed. IRD concentrations (no. of mineral grains/g) are given relative to dry weight. The IRD flux (no. grains cm⁻² ka⁻¹) is calculated using: IRD counts in no. grains g⁻¹ dry weight x dry bulk density (g cm⁻³) x sedimentation rate
Core JM03-373PC is presented on the age model from Jessen et al. (2010) recalibrated using the calibration program Calib7.02 and the Marine13 database (Stuiver & Reimer 1993; Reimer et al. 2013). Data from JM03-374PC and JM03-373PC are likewise presented with re-calibrated 14C ages (Table 1; see Section ‘Age control’). A reservoir age correction of -405 years inherent in the calibration program was used.

Grain-size of IRD

A grain-size ratio was calculated to perform a first order quantitative measure of changes in the grain-size of the IRD. The ratio between the counts of IRD in two different grain-size fractions, >500 µm and 150–500 µm was calculated for each sample and normalized to the average of the core. The grain-size of 500 µm was chosen as the cut-off size, because IRD coarser than 500 µm is generally considered to be mainly iceberg rafted (e.g. Dowdeswell & Dowdeswell 1989; Pfirman et al. 1989; Hebbeln 2000). Sea ice can transport sediments of any grain-size (e.g. Bischof 2000), however, iceberg-rafted IRD is on average more coarse grained than sea-ice rafted IRD (e.g. Dowdeswell & Dowdeswell 1989):

$$\frac{\text{No.} > 500 \, \mu m \times \text{no.} \, (150–500 \, \mu m)}{\text{No.} > 500 \, \mu m \times \text{no.} \, (150–500 \, \mu m)}$$

A grain-size ratio >1 indicates a relatively coarse-grained sample with a higher proportion of coarse-grained IRD than the normal for the core, while a grain-size ratio <1 indicate a relatively fine-grained sample. A high grain-size ratio should indicate a higher proportion of iceberg-rafted IRD than the normal, and vice versa, a low grain-size ratio should indicate a high proportion of sea-ice rafted grains.

In addition, in core JM04-025PC, the grain-size of IRD is determined from end-
member modelling based on the counts in the two grain-size fractions >500 µm and 150–500
µm. The counts of the two grain-size classes are plotted in a scatter-plot and a coarse-grained
end-member and a fine-grained end-member is determined from the grouping of the data
points (see Section ‘Fine-grained versus coarse-grained IRD’). Only samples with at least 20
grains of IRD >500 µm are used to define end-members.

Results and interpretations

Age control

The age models of cores JM03-373PC and JM04-025PC have been published before in Jessen
et al. (2010) and Jessen & Rasmussen (2015), respectively. The age models for all three cores
are based on calibrated AMS ¹⁴C dates, magnetic susceptibility (MS), lithology and MS tie-
points 1–9 defined by Jessen et al. (2010) (Fig. 2; Table 1). In addition, correlation of the
δ¹⁸O records (Fig. 3) and the location of the Laschamps geomagnetic excursion in cores
JM04-025PC and JM03-374PC is used (Snowball et al. 2007) (Figs 2, 3). One extra MS tie-
point has been defined in all three records, MS tie-point 6.1 (Fig. 2), by a distinct decline in
magnetic susceptibility correlating with a peak in concentration of IRD and a coarsening of
the IRD seen as a grain-size ratio >1 (Fig. 4). The age model of JM03-373PC sets the age of
the tie-point to 20.17±0.170 ka (Fig. 4; Table 1). In general, linear sedimentation rates
between dating points and tie-points were assumed except between tie-points 6 and 7, where
the sedimentation rate changes at c. 20 ka (Jessen et al. 2010) (Fig. 5).

After establishing the initial age model, the part of the age model older than 24 ka in
core JM04-025PC has been tied to the GICC05 ice-core age scale based on the grain-size of
sortable silt and the δ^{18}O record (Jessen & Rasmussen 2015) (Fig. 6). North Atlantic Heinrich
events 6 and 1 (H6 and H1) that occur at isotope stage transitions MIS 2/1 and MIS 4/3,
respectively are particularly well-defined in marine records (e.g. Bond et al. 1993). In core
JM04-025PC, these two events stand out by very low δ^{18}O values in both planktic and benthic
foraminifera (Rasmussen et al. 2007; Rasmussen & Thomsen 2013) (Fig. 3). Heinrich Events
H7, H6, H5.2, H5, H4, H3, H2 and H1, stadials and Dansgard/Oeschger events are identified
mainly based on the correlation between the sortable silt record and the NorthGRIP ice core
δ^{18}O record together with excursions to low planktic δ^{18}O values (Jessen & Rasmussen 2015)
(Figs 3, 6). The tuning was done to account for the possibility of changing sedimentation rates
along with the changing climate on both orbital and millennial time scales. In this study in
core JM04-025PC, we use the GICC05 age scale for the part older than 30 ka, and the re-
calibrated magnetic susceptibility chronology adapted from Jessen et al. (2010) for the part
younger than 30 ka.

Two AMS ^{14}C dates from core JM05-031GC have been transferred to JM03-374PC
based on correlation of the magnetic susceptibility records and the benthic oxygen isotope
records of the two cores (Figs 2, 3). By linear interpolation the age of the bottom of core
JM03-374PC is calculated to c. 45.8 ka. The part of core JM03-374PC older than 30 ka has
been graphically correlated to JM04-025PC based on magnetic susceptibility and the
concentrations and grain-sizes of IRD (Fig. 6). According to this, core JM03-374PC reaches
back to c. 47.5 ka on the GICC05 age scale. The age estimate based on the correlation to the
age model of core JM04-025PC is not significantly different from the initially calculated age
of 45.8 ka. Thus, core JM03-374PC is also tied to the GICC05 ice core chronology.

Distribution of IRD: General trends in concentration, size and composition
In core JM04-025PC, quartz and siltstones constitute 87% of all counted grains (Figs 7B,C, 8A). Siltstones and quartz also dominate the IRD in cores JM03-373PC and JM03-374PC (Jessen 2005). In the two glacial stages (MIS 4 and MIS 2, 74–63 ka and 30–16.1 ka, respectively), the IRD concentration is relatively high (Fig. 7A). In MIS 2 in core JM04-025PC, the IRD mainly consists of quartz, with percentages exceeding 90% (Fig. 7B) (and 70% in JM03-374PC (Jessen 2005)). Increasing IRD concentrations generally coincide with fining of the IRD (Fig. 7A,D), except at c. 24 ka, where IRD is abundant, coarse grained, and rich in siltstones. In MIS 4, the IRD was mainly fine-grained and less rich in quartz compared to MIS 2. Quartz is still more abundant than siltstones with the exception of two short-lived peaks in % siltstones at c. 69 and 64 ka (Fig. 7C,D).

In MIS 3 (60–30 ka BP), the concentration of IRD is very variable. The composition and grain-size of the IRD vary on 1–2 ka time scales (Fig. 8B,C). Between 56 and 46 ka, the IRD concentration is higher, and the IRD coarser grained and richer in siltstone fragments than between 46 and 30 ka, when the IRD is mainly fine grained, of generally lower concentration and rich in quartz (Fig. 7D).

The deglaciations (MIS 4/3 and MIS 2/1 transitions at 56–46 and 16.1-c. 10.2 ka, respectively) are characterized by deposition of relatively coarse-grained, often siltstone-rich IRD (Fig. 7B,D). The IRD concentration during the MIS 2/1 transition was lower than during MIS 2, but because the sedimentation rate was 3.6 to 15 times higher during the deglaciation (MIS 2/1 transition) than during MIS 2, the flux of IRD was in fact on average four times higher (Jessen et al. 2010). One high peak in concentration of siltstone-rich and coarse-grained IRD is seen around 61 ka in the MIS 4/3 transition interval followed by several similar peaks in early MIS 3 (56–46 ka) (Fig. 7A,C,D). Both the MIS 4/3 and MIS 2/1
transitions on the western Svalbard slope are characterized by low flux and concentrations of foraminifera, probably because of the high sedimentation rates creating difficult environmental conditions (see Rasmussen et al. 2007, 2014).

In the earliest Holocene, between 11.7 and 10.2 ka, the concentration and flux of IRD are high similarly to the deglaciation and with a high content of coarse-grained siltstones. A minimum in the concentration of IRD occurs in the Early Holocene (10.2–8.5 ka). Thereafter, the IRD concentration increases steadily towards the Late Holocene (Figs 4E, 7A).

IRD provenance

Evidence from mass-transport deposits. – All three cores contain mass-transport deposits dating to c. 24 ka (Rasmussen et al. 2007; Jessen et al. 2010) (Figs 2–5). These sediments have been in direct or close contact with the local ice sheet (e.g. Vorren et al. 1989; Vorren & Laberg 1997; Elverhøi et al. 1995). The sand grains can thus provide evidence for the composition and grain-size of locally derived material and can serve as a form of ‘ground truthing’ for the distinction between local IRD and IRD from elsewhere.

The mass-transported sediments in core JM04-025PC, the most ice-distal of the cores, contain more than 45% siltstones (Figs 7C, 8A). In core JM03-374PC, the ice-proximal record, the siltstone content reaches up to >80% (Jessen 2005). In JM03-373PC from Storfjorden Fan, the coarse material is dark coloured (Rasmussen et al. 2007; Jessen et al. 2010) and consists mainly of black shales. Andersen et al. (1996) in cores from the western Svalbard margin, found a generally higher content of “dark mudstones” in the upper slope records closer to land than on the lower slope further offshore. The content in the sediments of black shales decreases towards Greenland, which also points to that Svalbard and the Barents
Sea are the main source (Spielhagen 1991).

Local versus allochthonous IRD. – Samples from the mass-transport deposit and samples from the MIS 4/3 and MIS 2/1 transitions have high proportions of siltstones. We use the lowest observed amount of siltstones in samples of mass-transported grains, 45%, as a cut-off value for a local end-member of siltstones (Fig. 8A).

In JM04-025PC, the quartz content occasionally exceeds 90% (Fig. 8A). Even though outcrops of Lower Cretaceous sandstones with local quartz percentages exceeding 90% are found in Svalbard, the average quartz percent for these stratigraphic units is considerably lower, <70% (e.g. Maher et al. 2004). They are mostly located in southeastern Svalbard facing Storfjorden (e.g. Maher et al. 2004; Grundvåg & Olaussen 2017) (Fig. 1B). Triassic sandstones also occur in Svalbard, but with lower quartz percentages than the Cretaceous deposits. Highest quartz content is found in Triassic deposits of northern Norway (Lundschien et al. 2014). Thus, there is no likely large local source from Svalbard for such high quartz content and IRD with a very high content of quartz is considered allochthonous IRD. We note, that the proportion of quartz is lowest in the most ice-proximal core JM03-374PC, which except for a few peaks reaching 70%, generally remains below 50–60% quartz (Jessen 2005; see also Discussion). Quartz-rich IRD may originate from Scandinavia (e.g. Kolla et al. 1979; Leinen et al. 1986) and IRD in cores from the Vøring Plateau off western Norway are reported to consist mainly of quartz (Dahlgren & Vorren 2003). Quartz percentages above 90% in the >250 µm size fraction have been observed in records from the Arctic Ocean, where the shallow shelf of the Kara Sea area is suggested as the main source together with the small Ellef Ringnes Island north of Canada (Bischof & Darby 1997). Thus, ice entering the Fram Strait from the Arctic Ocean is a potential source for very quartz-rich IRD west of
High quartz percentages are accompanied by low siltstone percentages and the allochthonous end-member is calculated from low abundance of siltstones (Fig. 8A). The cut-off value for 100% allochthonous IRD is arbitrarily set at 5% siltstones, because some fragments of siltstones are likely to originate from foreign sources. Thus, samples with ≤5% siltstones are defined as 100% allochthonous. Samples with ≥45% siltstones are defined as 100% local. The amount of allochthonous versus local IRD in samples with siltstone content between 5% and 45% are calculated as a linear mixing product of the two end-members.

Fine-grained versus coarse-grained IRD. – A scatter plot of counts of grains in the two size fractions >500 µm and 150–500 µm show two groups of samples that differ from the majority. One group of samples shows relatively high amount of IRD >500 µm relative to IRD in the size-fraction 150–500 µm, and one group of samples shows a relatively high amount of IRD 150–500 µm relative to IRD >500 µm (Fig. 8B). From these two clusters of samples, we define two end-members, a coarse-grained end-member and a fine-grained end-member. The coarse-grained end-member is calculated from the distribution of grains in samples of the mass-transport deposit, because some of these are among the coarsest material in the cores and group in the upper left part of the diagram (Fig. 8B). The fine-grained end-member is primarily determined from a cluster of data points in the lower right part of the diagram with grain-size ratio <0.5. A sample plotting on or below the fine-grained end-member is treated as 100% fine grained, samples plotting on or above the coarse-grained end-member are treated as 100% coarse grained. Samples plotting between the end-members are described as a linear mixing product of the two end-members.
A four end-member model for IRD. – By combining the two end-member models, the IRD record can be divided into four end-members (Fig. 9A): 1. Local coarse grained, 2. Local fine grained, 3. Allochthonous coarse grained, and 4. Allochthonous fine grained (Fig. 9B–E).

Discussion

Orbital scale variations in IRD deposition and activity of the Svalbard-Barents Sea Ice Sheet

Vogt et al. (2001) noted that the two deglaciations of the Svalbard-Barents Sea Ice Sheet at the MIS 4/3 and MIS 2/1 transitions were very similar. This is also apparent in the record of JM04-025PC with high IRD concentrations during deglaciations and high input of local coarse-grained IRD (Figs 9A,D, 10A,D). As also observed by Vogt et al. (2001), the glacial stages MIS 4 and MIS 2 likewise show clear similarities in the IRD content and are characterized by high input of allochthonous, fine-grained IRD (Figs 9C,D, 10C,D). Based on these and other similarities, we divide the records into three general time intervals: i) Ice-sheet advance and peak glaciations (MIS 4 and MIS 2), ii) Intervals of glacial retreat (MIS 4/3 and MIS 2/1 transitions and early MIS 3), and iii) Intervals with a small-sized ice sheet, when the Barents Sea and most of the Svalbard fjords were free or nearly free of ice (the Holocene and mid-late MIS 3). One extreme event at c. 24 ka with down-slope mass wasting and intense ice rafting occurs within MIS 2 (see Section ‘The 24 ka event’).

Ice-sheet advance and peak glaciation (including H6 and H1), 74–56 ka and c. 30–16.1 ka. – At c. 30 ka, a high peak in local coarse-grained IRD is seen (Fig. 9D). Earlier reconstructions of advance of the Svalbard-Barents Sea Ice Sheet indicate that it reached the coast around this
time (Andersen et al. 1996; Mangerud et al. 1998). After 30 ka, a low percentage of local IRD (Fig. 10D,E) and low sedimentation rates (Jessen et al. 2010) point to low local calving activity or that the locally calved-off icebergs melted elsewhere. Between 24 ka and 16.1 ka local IRD was nearly absent (Figs 9D,E, 10D,E). Generally high δ^{18}O values point to very limited meltwater production from the local ice sheet (cf. Bond et al. 1993) (Fig. 3A,B). The presence of allochthonous, coarse-grained IRD (Fig. 9B) shows that icebergs were present and melted over the slope. Thus, the absence of local, coarse-grained IRD either reflects little local iceberg production during the ice-sheet advance or that icebergs did not reach as far as the site of JM04-025PC. In core JM03-374PC from 1130 m water depth, generally high quartz percentages with peaks of up to 60–70% also point to mainly allochthonous IRD at 24–16.1 ka (Fig. 11B). Between 28.5 and 26 ka low quartz percentages in JM03-374PC point to some deposition of local IRD, but with very low flux (Fig. 11A). In core JM03-373PC, the concentration of IRD >500 μm is continuously low at 24–16.1 ka (Fig. 4A), while the peaks in IRD >150 μm mainly consist of quartz (Jessen 2005). IRD from the three cores together point toward low local iceberg production during MIS 2. Similarly, during MIS 4 at 74–63 ka local, coarse-grained IRD is almost absent (Figs 9E, 10E) and planktic δ^{18}O values are generally high (Fig. 3B) indicating little local iceberg and meltwater production. In a core from north of Svalbard, absence of IRD, low sedimentation rates and high δ^{18}O values at c. 34–24 ka were taken as an indication that minimal ice loss accelerated the final glacial growth of the ice sheet (Knies et al. 1999). Based on numerical modelling, Hughes (1996, 2002) proposed that limited calving of icebergs was a necessity for the build-up of the Svalbard-Barents Sea Ice Sheet. Our observations of very low amounts of local, coarse-grained IRD together with high planktic δ^{18}O similarly indicate minimal ice loss, i.e. low ablation from the western margin of the Svalbard-Barents Sea Ice Sheet during MIS 2 and 4. A coarse-grained
layer in core JM02-460GC/PC from Storfjorden Trough on the shelf dating to between c. 18.8 and 18.1 ka was probably related to a glacier re-advance (Rasmussen et al. 2007). This correlates in time with early H1 and a well-documented event of huge and rapid meltwater discharges from southern Norway (Hjelstuen et al. 2004; Lekens et al. 2005). In JM04-025PC, the local end-members are completely lacking at 18.7–18.1 ka and the IRD is mainly allochthonous and fine-grained (Fig. 10 C–E). In JM03-373PC, IRD in the size-fraction 150–500 μm is abundant, while IRD >500 μm is nearly absent (Fig. 4A). The IRD pattern is consistent with a stable and probably re-advancing local ice sheet not losing mass and a fresher, sea-ice covered surface water over the slope. A recent study based on in-situ 10Be and 14C measurements suggests a significant thinning of the outlet glaciers in Hornsund (south-western Svalbard coast) as early as 18 ka (Young et al. 2018). Core JM04-374PC on the slope off Hornsund shows a clear increase in flux of local coarse IRD at c. 18 ka (Fig. 11A–C). Local coarse IRD is also present in JM04-025PC (Figs 9C, 10D, 11A–C).

MIS 2 is the only interval with abundant allochthonous, coarse-grained IRD constituting 40–75% of the total IRD (Figs 9B, 10B). Large ice sheets were present all around the Nordic Seas and the Arctic Ocean ensuring several potential distant iceberg sources (e.g. Spielhagen 1991; Hebbeln et al. 1994; Svendsen et al. 2004; Scourse et al. 2009; Mangerud et al. 2011).

The 24 ka event (H2/GIS2): ice stream activity and rapid ice-sheet retreat. – Mass-transport deposits are interpreted as monitors for ice-stream activity at the shelf break (e.g. Laberg & Vorren 1995; Vorren & Laberg 1997; Elverhøi et al. 1998; Dimakis et al. 2000). The numerous mass-transport deposits dating to c. 24 ka in cores from the western Svalbard slope show that the shelf must have been fully glaciated at that time (e.g. Jessen et al. 2010) (Figs 2,
3). In all cores, the mass-transport deposits are overlain by a layer of local, coarse-grained IRD (Figs 2, 3, 7). The magnetic susceptibility records show that both the mass-transport deposits and the IRD layer on top have very low magnetic susceptibility values all along the western Svalbard slope (Jessen et al. 2010; Sztybor & Rasmussen 2017) including the Yermak Plateau, northwest Svalbard (Chauhan et al. 2014).

A likely explanation for major iceberg calving events is increase in activity of ice streams seen as well-preserved mega-scale glacial lineations in troughs and fjords of western Svalbard (e.g. Ottesen et al. 2005, 2007). Increased ice-stream flow would lead to ice-sheet thinning and intensified iceberg calving (Benneth 2003). Recent land-based investigations also indicate thinning of the west Svalbard part of the ice sheet between 26±2.3 and 20.1±1.6 ka (Gjermundsen et al. 2013; Hormes et al. 2013). Glacial retreat prior to 20 ka is indicated from core studies of the western Svalbard margin. Hemipelagic sediments in cores from troughs dating to >19 ka show that the outer part of Storfjorden and Bellsund troughs has been ice free since at least c. 20 ka (Cadman 1996; Rasmussen et al. 2007; Ślubowska-Woldengen et al. 2007). IRD originating from the Barents Sea shelf is found in a deep-sea core off Jan Mayen dating to between 25.3 and 23.3 ka (Bauch et al. 2001) (Fig. 1A), which also points to increased activity of the Svalbard-Barents Sea ice streams. Together, the evidence indicate intensified ice-stream activity at c. 24 ka resulting in increased ablation via iceberg calving, thinning of the ice sheet and rapid glacial retreat from the outer shelf.

Remnants of the ice sheet seem to have remained between the troughs for several millennia (e.g. Landvik et al. 2005, 2013, 2014; Alexanderson et al. 2011). The timing apparently correlates with North Atlantic Heinrich Event 2 (H2) or Greenland interstadial 2. The eustatic sea level rise following Heinrich events was 10–15 m (Chappell 2002). Both a sea level rise, ocean warming or a combination of the two are possible triggers of instability of the ice sheet
Intervals of glacial retreat 56–46 ka and 16.1–10.2 ka. – The two intervals of glacial retreat, the MIS 4/3 and MIS 2/1 transitions show very similar patterns in the IRD record, but differ in the duration of the events (Figs 9, 10). Both periods are characterized by episodic deposition of local, coarse-grained IRD indicating local calving and ice-sheet retreat (Figs 9D, 10D). Series of glacigenic bed shapes in the Barents Sea display a very dynamic MIS 2/1 transition with cycles of glacial still-stands and re-advances (Andreassen et al. 2008; Hogan et al. 2010; Winsborrow et al. 2010; Rüther et al. 2011; Bjarnadóttir et al. 2012; Nielsen & Rasmussen 2018). The most conspicuous episode of the deglaciation was probably at c. 14.5 ka, when a thick package of fine-grained laminated sediments was deposited along the western Svalbard and Barents Sea continental slope (e.g. Jessen et al. 2010 and references therein). The southern Barents Sea is a likely source (Lucchi et al. 2013). Contemporaneous glacial re-advances have been suggested for Isfjorden and Kongsfjorden (Svendsen et al. 1996; Landvik et al. 2005).

While the main deglaciation of the MIS 2/1 transition into earliest Holocene lasted c. 6 ka (16.1–10.2 ka), the MIS 4/3 transition lasted longer according to the IRD record (Fig. 9). The deglaciation was apparently much slower and continued into early MIS 3 with pulsed deposition of local coarse-grained IRD for at least 10 ka (56–46 ka). Laminated sediments were also deposited during the MIS 4/3 transition (Vogt et al. 2001; Rasmussen & Thomsen 2013; Jessen & Rasmussen 2015), but were not as prominent as the layers dated to c. 14.5 ka. The slower deglaciation was probably a response to lower insolation and consistent with the less intense eustatic sea level rise of the MIS 4/3 transition (e.g. Martinson et al. 1987; Lambeck & Chappell 2001; Peltier & Fairbanks 2006).
Intervals of reduced ice-sheet size 46–30 ka and 10.2–0 ka. – The total IRD concentration in JM04-025PC was higher during the mid-late MIS 3 at 46–30 ka than during the Holocene (10.2–0 ka) (Fig. 9A). The cause is mainly a much higher abundance of allochthonous, fine-grained IRD in MIS 3, possibly due to higher inflow of sea ice from the Arctic Ocean, and a colder sea surface consistent with reduced ocean circulation and reduced inflow of Atlantic surface water (e.g. Ganopolski & Rahmstorf 2001; Hald et al., 2001; Rasmussen et al. 2003; van Meerbeck et al. 2009; Ezat et al. 2014) (Figs 6B, 9C).

Dates from molluscs from Novaya Zemlja indicate an ice-sheet extent similar to the present at c. 35 ka and probably even earlier (Mangerud et al. 2008). Local coarse-grained IRD was almost absent in core JM04-025PC during late MIS 3 (40–30 ka) indicating a rather passive ice margin and reduced ice-stream activity (Figs 9E, 10E). However, recent results from the upper slope of the northwestern Svalbard margin indicate a dynamic ice sheet with IRD deposition and deposition of laminated sediments from local meltwater plumes during MIS 3 and 4 (Rasmussen & Thomsen 2013). Also, studies of the activity of the Fennoscandian Ice Sheet (Olsen et al. 2002, 2013; Rørvik et al. 2010; Mangerud et al. 2011) and the British Ice Sheet (Scourse et al. 2009) indicate generally more active ice sheets than hitherto acknowledged. Between 39 and 36 ka, core JM03-374PC from the upper slope (1130 m water depth) displays significantly higher flux of IRD, lower percentages of quartz and higher grain-size ratio than at the site of core JM04-025PC indicating more iceberg rafting from local sources on the upper slope than further offshore (Fig. 11A–C). Between 34 and 31 ka the same differences in IRD flux and quartz percentages are seen (Fig. 11A,B). Thus, the reduction in local coarse-grained IRD in JM04-025PC at 40–30 ka could reflect that only a smaller proportion of local icebergs reached the outer slope (Fig. 10D). For example, local
icebergs could have been relatively small and melting rapidly in Atlantic water over the upper part of the slope. Millennial-scale variability is still discernible in the IRD records as well as in the $\delta^{18}O$ records and in the magnetic susceptibility values (Figs 2B,C, 3B, 10B–E, 11A–C) (see also discussion below).

In core JM04-025PC in the Middle Holocene, an IRD pulse at c. 7.5 ka with more than 50% local, coarse-grained IRD is seen (Figs 4E,F, 9A,D, 10A,D). This event coincides with a rise in flux of mainly angular iceberg-rafted IRD in Isfjorden (Forwick & Vorren 2009). The icebergs apparently travelled far out over the slope. The event is not seen in core JM03-373PC further south (Fig. 4A,B), probably reflecting that the event was restricted to western Svalbard fjords and shelf, and that the prevailing surface current direction was south-to-north as today (e.g. Ślubowska et al. 2005; Rasmussen et al. 2007; Ślubowska-Woldengen et al. 2007; Skirbekk et al. 2010). The glaciers continued to grow during the Late Holocene with a culmination during the Little Ice Age (c. AD 1600–1850), when some glaciers were even larger than during the Younger Dryas (Svendsen & Mangerud 1997). The increase in IRD concentration is clearest in the fine-grained IRD composed of 50–60% quartz and 25–35% siltstones (Figs 4A,E, 7B,C, 9C,E, 10C,E). Coarse-grained IRD is almost absent (Figs 9B,D, 10B,D). Increasing IRD concentrations $>150 \mu m$ have previously been interpreted as a sign of glacier growth, the neo-glaciation (Ślubowska et al. 2005; Ślubowska-Woldengen et al. 2007; Werner et al. 2011). However, based on the small grain-size, we suggest that a large proportion of the IRD in the Holocene sediments more likely is sea-ice rafted, and rather reflect the general cooling of the climate leading to the glacier growth.

Millennial-scale rhythm in IRD patterns
Interstadials and stadials. – The composition and grain-size ratio of the IRD show distinct millennial-scale variability (Figs 4B,D,F, 9B–E, 10B–E, 11). Periods of ice advance and peak glaciations (>74–63 ka and 30–16.1 ka) are dominated by allochthonous IRD. The few short-lived pulses of local IRD occur during interstadial warm inceptions GIS19 at c. 69 ka, GIS18 at 64 ka, GIS2 at 24–22 ka and at 18 ka. The latter event probably indicates a warming, which has also been recorded in the NGRIP ice core (Figs 9D, 10D).

During glacial retreat phases (56–46 and 16.1–10.2 ka) allochthonous IRD is rare (Fig. 9B,C). Here we observe a distinct millennial-scale variation in the grain size of local IRD, most likely reflecting a change in the abundance of iceberg versus sea-ice rafted IRD. When the ice sheet was restricted to the Svalbard Archipelago (c. 46–30 and 10.2–0 ka), we observe a rhythmic shift between allochthonous, fine-grained IRD and local IRD (Fig. 10C–E). This millennial-scale pattern can to a large extent be caused by ocean temperature changes as also indicated by the distribution of IRD on orbital timescale (see above). In general, the cold stadial phases are nearly devoid of local, coarse-grained IRD.

According to the correlation to the Greenland ice core δ¹⁸O (Fig. 6A,B), the local IRD peaks occur either during the early phase of the Greenland interstadials (GIS1; the Bølling–Allerød interstadials, GIS2, GIS4, GIS5, GIS10, GIS11, GIS14, GIS16 and GIS17) and/or well within the Greenland interstadials (GIS5, GIS9, GIS12, GIS13, GIS14, GIS15, GIS18, GIS19) (Fig. 10D). During all Greenland interstadials (except GIS6) local, coarse-grained IRD increase relative to local, fine-grained IRD (Fig. 10D,E) showing a coarsening of local IRD during warm intervals. Grain sizes of the IRD should be temperature independent and the coarsening probably signifies an increase in local iceberg calving and ice-sheet activity. The increased proportion and coarsening of local IRD during interstadials in combination with evidence of warm surface water flow over the upper slope (Rasmussen & Thomsen 2013),
suggest increased calving and melting, when climate warmed. In general, the Svalbard-
Barents Sea Ice Sheet was more dynamic under warmer climatic conditions (e.g. Elverhøi et
al. 1995), which is supported by our data (Figs 9, 10, 11).

North Atlantic Heinrich Events. – During some Heinrich events (H5.2, H5, H4, H2 and H1),
the presence of local coarse-grained IRD points to higher local calving activity than during
the non-Heinrich stadials (Fig. 10D). However, the IRD concentration and flux is relatively
low (with one exception of a short-lived spike during H4) and the actual calving rate of local
icebergs was probably small (Figs 10A, 11A). Eventual calving events would have occurred
in cold water (e.g. Bond et al. 1992, 1993; Dokken & Hald 1996) with low melting potential,
and thus the IRD record might underestimate the calving and/or sediment load of icebergs.
Calving of sediment-loaded icebergs into cold water would result in IRD from the Svalbard-
Barents Sea Ice Sheet being deposited further away from Svalbard, which to our knowledge
has only been reported for the above mentioned 24 ka IRD event (Bauch et al. 2001), and
briefly during the last deglaciation at c. 14.5 ka (Bischof 1994). The high percentage of local,
fine-grained IRD in some Heinrich events (H7, H5.2, H5, H4, H3 and H1) indicates extensive
local sea-ice production in the Barents Sea and Svalbard western margin (Fig. 10E).

The distribution patterns of IRD in relation to climate at the western Svalbard margin
is in contrast to most results from the Nordic Seas and North Atlantic. At the British margin,
maxima in IRD occur at the end of stadials at the rapid warmings to interstadial climate
(Scourse et al. 2009). A record from the central North Atlantic also showed maximum IRD
deposition during warmings to the interstadials (Rasmussen et al. 2016), while in the western
Irminger Sea it seems random if the IRD maxima (>150 µm) occur during stadial or
interstadial climate (Elliott et al. 2001). Otherwise, the majority of IRD records from the
North Atlantic and southern Norwegian Sea show intensified ice rafting during the cold stadials (e.g. Heinrich 1988; Bond et al. 1992, 1993, 1999; Fronval et al. 1995; Bond & Lotti 1995; Rasmussen et al. 1996; Lackschewitz et al. 1998; van Kreveld et al. 2000; Moros et al. 2004). Most of these studies are based on cores more distal to iceberg sources than our cores from the western Svalbard slope, and from much lower latitudes. High IRD content recorded in cold climate in cores far away from ice sources and at low latitudes could be a result of the cold surface water allowing more icebergs to travel long distances and reach far (e.g. Bond & Lotti 1995; Bischof 2000). The melting of one iceberg can result in slower melting of the next. The extreme example is the Heinrich events, when IRD from Canada made it all the way to the southern Iberian margin (d’Errico & Sánchez Goñi 2003). A well-dated high-resolution core record from the margin off northern Portugal shows increased meltwater supply and cold surface temperatures a few centuries before the deposition of IRD (Naughton et al. 2009).

Cooling of the surface waters was apparently necessary for icebergs to survive the travel across the North Atlantic. Similarly, the release of meltwater and icebergs from Svalbard, the British Ice sheet (Scourse et al. 2009) and possibly other ice sheets (Lekens et al. 2006) may have assisted in the long-distance transportation of IRD from Scandinavia, Iceland and Greenland to the North Atlantic during stadials by lowering of the surface water temperature in the Nordic seas and northeastern North Atlantic.

Influence of ocean temperature and travel routes for IRD provenance

The regional ocean surface temperature appears to play a significant part in the composition and provenance of the IRD west of Svalbard. In warmer surface water, the IRD melts out nearer its source, which will favour local IRD over allochthonous IRD. In colder surface
water, icebergs and sea ice can transport IRD over long distances favouring the deposition of allochthonous IRD (see discussion above). The melting potential increases by an order or two of magnitude, when the surface water temperature rises from below 0 °C to +1–2 °C (Russel-Head 1980). Even a slight warming of regional surface water temperature can significantly increase the concentration of local IRD, and simultaneously restrict the deposition of allochthonous IRD since the higher melting rate reduces the distance ice can travel. Between 56 and 45 ka allochthonous IRD was absent in core JM04-025PC (Fig. 10B,C). The sea surface temperature in the North Atlantic during early MIS 3 was according to Kandiano et al. (2004), only 2 °C lower than today and probably too high for allochthonous IRD to reach Svalbard. Subsurface warming may trigger instability of outlet glaciers and ice shelves as recently suggested by Marcott et al. (2011), and as also observed in modern studies (e.g. Holland et al. 2008; Jeong et al. 2016). The peak in mainly local IRD and meltwater release during the warming phase would lead to surface water cooling (Rasmussen & Thomsen 2013) and subsequent gradual decrease in IRD concentration together with an increase in relative abundance of IRD from more distant sources due to reduced ice melt. The IRD patterns on the western Svalbard slope we present here during MIS 3 support this scenario. It is most clearly seen between H5 and H4. The Greenland interstadials GIS12–9 show a peak in local, coarse-grained IRD during peak interstadial warmth followed by a lowering of the IRD concentration and a peak in the relative abundance of allochthonous and fine grained IRD during the gradual cooling phase of the interstadials (Figs 9C,D, 10C,D).

Sea surface temperature and stadial-interstadial patterns in deposition of IRD

Even though the higher proportion of local, coarse-grained IRD points to more iceberg rafted
IRD during warm interstadial climate, it is uncertain if the increase is a sign of increased local calving activity or of warming of the ocean. A change in the thermal regime from cold-based to warm-based ice sheet should increase the calving rate and sediment load of icebergs by an order of magnitude (Elverhøi et al. 1995). However, the changing ocean temperature alone is also likely to affect IRD release, provenance and deposition, since a cold ocean surface can restrict the release of sediment-loaded icebergs to the open ocean (Andrews 2000). For example, during the cold stadials/Heinrich events and peak glaciations the fjords and shelf of Svalbard may have been covered with perennial sea ice, which potentially could have blocked the pathway for local icebergs and/or restricted the calving of icebergs (cf. Andrews 2000; Ó Cofaigh & Dowdeswell 2001; Hald & Korsun 2008; Forwick & Vorren 2009; Jongma et al. 2013). Before the icebergs are released, most of the sediment could have dropped out and icebergs would be ‘clean’ (Andrews 2000). Similarly, in a floating ice shelf, bottom melting can lead to a melt-out of most of the sediments prior to iceberg calving (e.g. Dowdeswell & Murray 1990; Domack et al. 1998). Together with the effect of slow ice melt in cold water, these mechanisms could significantly reduce the deposition of local IRD on the slope during cold, stadial climate independent of the iceberg calving rate. During the Greenland interstadial phases with Atlantic water at the surface (e.g. Rasmussen & Thomsen 2013), ice shelves would have retreated (cf. Sutter et al. 2016), fjords would be seasonally ice-free and icebergs could be released into the open ocean every year. The ice would thus melt close to its source with increased deposition of local IRD on the slope as a result.

The combination of high proportion, low concentration, and small grain-size of the allochthonous IRD during stadial climate (Fig. 10A–C) mainly signifies that the sea surface temperature was cold enough for long-transportation of icebergs and sea ice. The high relative
amount of allochthonous IRD during stadial phases is thus probably not directly proportional
to the calving rate in distant places.

The overall IRD pattern on the west Svalbard slope with more local iceberg-IRD
during Greenland interstadials and more allochthonous IRD during cold phases is probably a
result of increased local glacial instability during warm interstadial climate. It is also very
likely a result of regional changes in sea surface temperature affecting the transport and
deposition of ice rafted sediment.

Conclusions

The grain-size and mineral composition of ice rafted detritus (IRD) on the west Svalbard
slope was studied in three marine core records spanning 1130–1880 m water depth, covering
together the last 74 ka (Marine isotope stages (MIS) 4–1). The results show that IRD shifted
consistently on orbital- and millennial scales from allochthonous sources with dominance of
fine and/or coarse quartz to predominantly IRD from local Svalbard-Barents Sea sources
dominated by coarse Jurassic shales and siltstones.

During the glacial maxima of MIS 4 (74–56 ka) and MIS 2 (30–16.1 ka) including
Heinrich events H6 and H1, respectively, the IRD on the western Svalbard margin was
dominated by coarse, allochthonous IRD consisting of up to > 90% quartz and with almost no
contributions from local sources. The Svalbard-Barents Sea Ice Sheet appeared to be stable
with low ablation and we suggest that the modest ice loss during these cold glacial maxima
facilitated the growth and stability of the ice sheet. At c. 24 ka increased ice stream activity
caused a thinning of the Svalbard-Barents Sea Ice Sheet and a following intense calving of
icebergs lead to rapid deglaciation of the outer shelf.
Calving of icebergs from the Svalbard-Barents Sea Ice Sheet and a high degree of instability of the ice sheet mainly occurred in relatively warm climate, for example during deglaciations and warm interstadials. During intervals of rapid deglaciation and ice retreat at the MIS 4/3 (56–46 ka) and MIS 2/1 (16.1–10.2 ka) transitions, ice rafting peaked over the western Svalbard slope and was dominated by deposition of local, coarse IRD, except for short time intervals of deposition of fine, laminated sediments. After these transitions, calving activity was low at 46–30 ka (mid-late MIS 3) and 10.2–0 ka (Holocene) and the IRD mostly consisted of fine-grained quartz deposited from sea ice interrupted by short events of deposition of coarse-grained, local IRD. In general, in MIS 4, MIS 3 and MIS 2 a clear millennial-scale pattern in ice rafting was observed with allochthonous quartz being deposited during cold Greenland stadials and Heinrich events and local shales/siltstones being deposited during the warm Greenland interstadials. The results show that the changes in ocean temperature probably enlarged these shifts in source of the IRD along with the stadial/interstadial climate cycles by prolonging the travel distance for ice and sediments during cold periods (allochthonous IRD) and shortening the distance in warm periods (local IRD).

Acknowledgements. – The investigation was supported in 2009–2012 by the University of Tromsø through the Research School in Arctic Marine Geology and Geophysics (AMGG) and the Mohn Foundation (project ‘Paleo-CIRCUS’). The project also received support from 2013 by the Research Council of Norway (Centre of Excellence funding scheme, grant no. 223259). The crew of RV Jan Mayen and engineer Steinar Iversen (UiT) are warmly thanked for their help in core retrieval, and Anders Solheim (NGI) for choosing the core sites of highest possible time resolution. Antoon Kuipers, Helga (Kikki) Flesche Kleiven and Jan
Sverre Laberg provided helpful comments on earlier versions of the manuscript. We thank the
two reviewers Jens Bischof and James D. Scourse and the editor Jan A. Piotrowski for critical
comments that significantly improved the manuscript.
References

Bond, G. C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G. & Johnsen, S. 1999: The North Atlantic’s 1–2 kyr climate rhythm: Relation to Heinrich Events,

Lekens, W. A. H., Sejrup, H. P., Haflidason, H., Petersen, G. Ø., Hjelstuen, B. & Knorr, G.
2005: Laminated sediments preceding Heinrich Event 1 in Northern North Sea and
Southern Norwegian Sea: Origin, processes and regional linkage. *Marine Geology*
216, 27–50.

Lucchi, R. G., Camerlenghi, A., Rebesco, M., Colmenero-Hidalgo, E., Siero, F. J., Sagnotti,
L., Urgeles, R., Melis, R., Morigi, C., Bárcena, M.-A., Giorgetti, G., Villa, G., Persico,
2013: Postglacial sedimentary processes on the Storfjorden and Kveithola trough
mouth fans: Significance of extreme glacimarine sedimentation. *Global and Planetary
Change* 111, 309–326.

Lundschien, B. A., Høy, T. & Mørk, A. 2014: Triassic hydrocarbon potential in the Northern
Barents Sea; integrating Svalbard and stratigraphic core data. *Norwegian Petroleum

Mangerud, J., Dokken, T., Hebbeln, D., Heggen, B., Ingólfsson, Ó., Landvik, J. Y., Mejdahl,
Sheet during the last 150 000 years. *Quaternary Science Reviews* 17, 11–42.

Mangerud, J., Kaufman, D. & Hansen, J. 2008: Ice-free conditions in Novaya Zemlya
35 000–30 000 cal years B.P., as indicated by radiocarbon ages and amino acid

In Ehlers, J., Gibbard, P. & Hughes, P. (eds.): *Quaternary Glaciations – Extent and

Bliensner, B. L., Carlson, A. E., Ungerer, A., Padman, J., He, F., Cheng J. &
Schmittner, A. 2011: Ice-shelf collapse from subsurface warming as trigger for

Martinson, D. G., Pisias, N., Nicklas, G., Hays, J. D., Imbrie, J. D., Moore, T. C. &
Shackleton, N. J. 1987: Age dating and the orbital theory of the ice ages: development
of a high-resolution 0 to 300,000-year chronostratigraphy. *Quaternary Research* 27,
1–29.

van Meerbeck, C. J., Renssen, H. & Roche, D. M. 2009: How did Marine Isotope Stage 3 and
Last Glacial Maximum climates differ? – Perspectives from equilibrium simulations.
Climate of the Past 5, 33–51.

Moros, M., Eméis, K., Risebrobakken, B., Snowball, I., Kuipers, A., McManus, J. & Jansen,
E. 2004: Sea surface temperature and ice rafting in the Holocene North Atlantic:
climate influences on northern Europe and Greenland. *Quaternary Science Reviews*
23, 2113–2126.

Naugthon, F., Sánchez-Goñi, M. F., Kageyama, M., Bard, E., Duprat, J., Cortijo, E., Desprat,
S., Malaižé, B., Joly, C., Rostek, F. & Turon, J. -L. 2009: Wet to dry climatic trend in

Rasmussen, T. L., Thomsen, E., Ślubowska, M. A., Jessen, S. P., Solheim, A. & Koç, N. 2007: Paleoceanographic evolution of the SW Svalbard margin (76ºN) since 20,000
14C yr BP. Quaternary Research 67, 100–114.
Rasmussen, T. L., Thomsen, E., van Weering, T. C. E. & Labeyrie, L. 1996: Rapid changes in surface and deep water conditions at the Faeroe Margin during the last 58,000 years. Paleoceanography 11, 757–771.
Skirbekk, K., Klitgaard-Kristensen, D., Rasmussen, T. L., Koç, N. & Forwick, M. 2010; Holocene climate variations at the entrance to a warm Arctic fjord: Evidence from

Sztybor, K. & Rasmussen, T. L. 2017: Diagenetic disturbances of marine sedimentary records from methane influenced environments in the Fram Strait as indications for variation in seep intensity during the last 35 000 years. *Boreas* 46, 212–228.

Figure captions

Fig. 1. (A) Map of Nordic seas showing main surface (red) and bottom (blue) currents and locations of investigated cores (black circles). Location of core PS1243 discussed in the text (purple circle) (Bauch *et al.* 2001) is also marked. (B) Location of investigated cores (black circles) and core JM05-031GC used for correlation and age models (blue circle) (Rasmussen *et al.* 2014). Northward flow path of Atlantic Water is indicated (red arrow). Areas of Jurassic shales and siltstones at Spitsbergen Bank (blue-green) and Lower Cretaceous quartz-rich deposits (orange) are indicated (sketched after Edwards (1975), Maher *et al.* (2004) and Grundvåg & Olausson (2017)).

Fig. 2. Magnetic susceptibility records of (A) JM03-373PC, (B) JM04-025PC, (C) JM03-374PC correlated with (D) JM05-031GC from Rasmussen *et al.* (2014). AMS14C dated levels
are marked with red diamonds. Magnetic susceptibility tie-points (tp) 1–9 from Jessen et al. (2010) are marked. Also, a diatom-rich layer, laminated meltwater deposits (light grey bars) and mass-transport deposits (dark grey bar) are shown (Jessen et al. 2010). The location of the Laschamps event (semi-dark grey bar) (Snowball et al. 2007) and North Atlantic Heinrich Event 1 and 6 (H1 and H6) (light blue bars) are indicated. An additional MS correlation point is shown (dotted line). Marine Isotope Stages (MIS) are shown in column to the left.

Fig. 3. Previously published oxygen Isotope records of (A) JM03-373PC (Rasmussen et al. 2007; Jessen et al. 2010), (B) JM04-025PC (Jessen & Rasmussen 2015), (C) JM03-374PC (Jessen & Rasmussen 2015) correlated with JM05-031GC from Rasmussen et al. (2014) (D,E). Records (A,B) and (E) are measured on planktic foraminiferal species Neogloboquadrina pachyderma (NPS), while (C) and (D) are measured on benthic foraminiferal species. AMS\(^{14}C\) dated levels are marked with red diamonds. Additional \(^{18}O\) correlation points are shown with dotted lines. Legend otherwise as in Fig. 2.

Fig. 4. Concentration of Ice Rafted Detritus (IRD) >500 μm and 150–500 μm in number per gram dry weight sediment and normalized grain-size ratio (see text for explanation) on cm scale for (A,B) JM03-373PC, IRD concentration >150 μm from Rasmussen et al. (2007), IRD concentration >500 μm from Jessen et al. (2010), (C,D) JM03-374PC (IRD concentrations from Jessen (2005)) and (E,F) JM04-025PC (IRD concentration >500 μm, 500–0 cm from Jessen et al. (2010)). Tie points (tp, including new tie point tp 6.1; see legend Fig. 2) and selected AMS \(^{14}C\) dates are indicated.

Fig. 5. Age-depth plots of JM03-373PC, JM04-025PC and JM03-374PC with lithologic units
(Jessen et al. 2010) and Laschamps event (Snowball et al. 2007) indicated. See also legend to Fig. 2.

Fig. 6. Correlation between (A) δ¹⁸O record of Greenland NGRIP ice core (data from NGRIP Members 2004) and (B) grain-size of sortable silt in core JM04-025PC with horizontal green bars marking location of laminated clay layers (data from Jessen & Rasmussen 2015). Marine isotope stages (MIS) are indicated (right column).

Fig. 7. IRD data of core JM04-025PC plotted versus age. A. Concentration of IRD in number per gram dry weight sediment. B,C. % quartz and % siltstones of total IRD. D. Normalized grain-size ratio, where 1 is average of the core and >1 is coarser than average and <1 is finer than average. Marine Isotope Stages (MIS) are marked in right column. Location of a mass-transport deposit at 24 ka is marked with grey bar.

Fig. 8. A. Scatter plot of % siltstones versus % quartz in JM04-025PC. B. Scatter plot of concentration of IRD 150–500 μm versus IRD >500 μm in JM04-025PC. For explanation see text in Section ‘Local versus allochthonous IRD’.

Fig. 9. A. Concentration of IRD >250 μm in number per gram dry weight sediment divided into four end-members: (B) allochthonous, coarse grained, (C) allochthonous, fine grained, (D) local, coarse grained, and (E) local, fine grained. Marine isotope stages (MIS) are shown to the right. Periods of increased contribution of local IRD are highlighted to the far right.

Fig. 10. A. Total IRD concentration >250 μm in number per gram dry weight sediment. B–E.
Relative contribution of the four end-members presented in Fig. 9. F. $\delta^{18}O$ record of Greenland NGRIP ice core (NGRIP Members 2004). Greenland interstadials and Heinrich events are numbered. Peak interstadials are marked by pink bars, Heinrich stadials and other selected cold climate intervals are indicated by blue bars. Marine isotope stages (MIS) are shown to the right. LIA=‘Little ice age’; YD=Younger Dryas.

Fig. 11. Zoom-in on the period 50–15 ka for cores JM04-025PC (025PC, red) and JM03-374PC (374PC, blue) of (A) flux of IRD, (B) % quartz (indicating influence of local IRD versus allochthonous IRD), and (C) grain-size ratio (interpreted as indicator for influence of icebergs versus sea ice as transport mechanism). Location of Heinrich Events are marked with blue bars and Greenland interstadial and Heinrich events are numbered.

Table 1. Conventional AMS ^{14}C dates, calibrated ages and magnetic susceptibility (MS) Tie-points (in italics).
H1, 15-17 ka
Mass-transport deposit w. IRD layer on top

Diatoms

30.0 ka
27.5 ka
23.8 ka
MS tp 7
MS tp 9
Laschamps
39-41 ka
H6
61-63 ka

Depth (cm)
Coscinodiscus spp. diatom rich silty mud
IRD layer on top of laminated silty mud
IRD layer on top of mass transport deposit
Laschamps

JM03-373PC
JM03-374PC
JM04-025PC

Depth (cm)
Age (yr BP)

MIS 1
MIS 2
MIS 3 3/4
MIS 4

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000
0 10 000 20 000 30 000 40 000 50 000 60 000 70 000

MIS 1 1/2 MIS 2 MIS 3 MIS 4
Graph A

- **Equation:** \(y = 0.012x + 4.81 \)
- **Correlation:** \(r^2 = 0.901 \)
- **Equation:** \(y = 0.0038x - 0.764 \)
- **Correlation:** \(r^2 = 0.899 \)

Graph B

- **Equation:** \(y = 0.012x + 4.81 \)
 - **Correlation:** \(r^2 = 0.901 \)
- **Equation:** \(y = 0.0038x - 0.764 \)
 - **Correlation:** \(r^2 = 0.899 \)

Legend

- **All data**
- **Mass transport deposit**
- **MIS2/1 transition**
- **MIS4/3 transition**
- **Local**
- **Allochthonous**

Data Classification

- **Fine-grained IRD**
- **Coarse-grained IRD**
Total IRD (no. g⁻¹) 250-500 μm

Age (ka)

Allochthonous and fine grained

Local and coarse grained

Allochthonous and coarse grained

MIS

Local and fine grained
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>AMS14C date</th>
<th>Cal. age (ka)</th>
<th>Lab. Reference</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JM03-373PC</td>
<td>25 1595 ±40 1155 ±50</td>
<td>AAR-8925</td>
<td>Rasmussen et al., 2007</td>
<td></td>
</tr>
<tr>
<td>55 2505 ±40 2175 ±60</td>
<td>AAR-8926</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146 7310 ±45 7775 ±55</td>
<td>AAR-8927</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155 7790 ±60 8255 ±65</td>
<td>AAR-8768</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185 8505 ±60 9134 ±80</td>
<td>AAR-8928</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220 9275 ±65 10,060 ±90</td>
<td>AAR-8796</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>258 9355 ±55 10,215 ±75</td>
<td>AAR-10741</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307 12,020 ±70 13,485 ±90</td>
<td>AAR-13139</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>323 12,210 ±100 13,665 ±120</td>
<td>AAR-13140</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350 13,310 ±180 14,730 ±425</td>
<td>AAR-8769</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365 12,890 ±110 14,650 ±235</td>
<td>AAR-8918</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>461 13,180 ±140 15,200 ±275</td>
<td>Tua-3977</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>499 14,370 ±100 16,930 ±185</td>
<td>AAR-8770</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510 16,920 ±120 19,960 ±170</td>
<td>AAR-8771</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>567 17,110 ±120 20,170 ±170</td>
<td>MS Tie-point 6.1</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625 18,690 ±120 22,135 ±140</td>
<td>AAR-8772</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650 19,310 ±140 22,780 ±170</td>
<td>AAR-8773</td>
<td>Rasmussen et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM03-374PC</td>
<td>142 16,520 ±110 19,440 ±160</td>
<td>AAR-8765</td>
<td>Jessen et al., 2010</td>
<td></td>
</tr>
<tr>
<td>152 17,110 ±120 20,170 ±170</td>
<td>MS Tie-point 6.1</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>220 19,630 ±150 23,165 ±205</td>
<td>AAR-8766</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>311 22,840 ±190 26,900 ±340</td>
<td>AAR-9070</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>361 25,470 ±250 29,140 ±280</td>
<td>AAR-10624</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JM04-025PC</td>
<td>6.3 1125 ±40 680 ±35</td>
<td>AAR-10851</td>
<td>Jessen et al., 2010</td>
<td></td>
</tr>
<tr>
<td>95 5220 ±55 5580 ±65</td>
<td>AAR-10855</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139 7945 ±50 8400 ±50</td>
<td>AAR-10748</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>171 9215 ±60 10,030 ±100</td>
<td>AAR-11989</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>193 9390 ±150 10,270 ±200</td>
<td>AAR-8773</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>277 12,590 ±150 14,110 ±255</td>
<td>MS Tie-point 4</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>289 12,840 ±150 14,550 ±320</td>
<td>MS Tie-point 5</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>319 13,140 ±150 15,130 ±290</td>
<td>MS Tie-point 6</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>341 15,020 ±90 17,790 ±115</td>
<td>AAR-10852</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>360 17,110 ±120 20,170 ±170</td>
<td>MS Tie-point 6.1</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>399 19,670 ±130 23,210 ±135</td>
<td>AAR-10749</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>435 20,570 ±150 24,230 ±180</td>
<td>AAR-10750</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>445 23,340 ±200 27,280 ±190</td>
<td>MS Tie-point 9</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>455 24,790 ±210 28,420 ±240</td>
<td>AAR-10856</td>
<td>Jessen et al., 2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>555 Laschamp 39</td>
<td></td>
<td>Snowball et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>575 Laschamp 41</td>
<td></td>
<td>Snowball et al., 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>609 44,840 ±1900 47,770 ±1590</td>
<td>AAR-10857</td>
<td>Jessen and Rasmussen, 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>861 MIS 4/3 63</td>
<td></td>
<td>Jessen and Rasmussen, 2015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>935 MIS 4 72</td>
<td></td>
<td>Jessen and Rasmussen, 2015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>