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Abstract

Harvest Control Rules are predefined heuristic decision rules to provide quota ad-

vices for managed fisheries. Frequently statistical methods and biological assump-

tions expressed in mathematical models, are used to provide the Harvest Control

Rules with initial information (indicators values). The aim of this paper is to inves-

tigate a possible way forward of replacing these inputs by quantities of measurable

observations, e.g. catch-at-age statistics. The paper presents a method by which

recruitment indexes and stock biomass indicators are obtained by non-parametric

use of annual catch-at-age records, without filtering the raw data (observations)

through mathematical models. Two related methods, applied on three empirical

cases, are provided: First, showing that recruitment strengths of the Northeast

Arctic cod, haddock and saithe stocks, obtained by fuzzy logic methodology, are

satisfactory captures by the use of catch-at-age data. Secondly, stock size indicators

are estimated for the three species by the same catch-at-age data. The second task

turns out to be more challenging than the first, but also in the case of stock size

evaluation, the suggested procedure provides reasonable results when compared to

standard stock assessment methods.

Keywords: Stock assessment; Fuzzy logic; Northeast Arctic fisheries;

and Harvest Control Rules
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Introduction

Following the principles of the 1992 UN Rio Declaration, FAO in 1996 issued guidelines

on precautionary approach to fisheries and species introduction (Anon., 1996; Kvamsdal

et al., 2016). In 2000 the Convention on Biological Diversity led to the identification

of Ecosystem Approach as an overall strategy for the management of natural resources.

Anon. (2006) provides a detailed description on how to implement the principles in

fisheries within the area of the International Council for the Exploration of the Sea

(ICES). A large number of fishing nations and fishery management institutions have

adopted the guidelines (Punt, 2006) and Harvest Control Rules (HCRs) have become a

methodology of precautionary management in many fisheries.

Up to recently there has been a widespread belief among fishery management insti-

tutions that all knowledge necessary for sound management of fisheries could be em-

bedded in biological models, capturing the dynamics of biological systems as well as its

interactions with fishing activities. Management failures, and the broader ecosystem per-

spective, have created scepticism towards the use of mathematical modelling in fisheries

management. Schnute and Richards (2001) ask managers to be sceptical, to expand their

knowledge base, and to apply common sense when using models. In the development of

fisheries management we may have arrived at a point where it is fair to ask: Is it possible

to obtain sufficient scientific insight to build ecosystem models suitable for management?

What will it cost, and can it be done in a transparent way? Reduced faith in the mod-

elling approach, combined with the expenses associated with feeding increasingly data

demanding models (Degnbol, 2001), call for new approaches to management and more

efficient use of existing system knowledge, which not necessarily could be implemented

in the model formulations. Increasingly complex and data demanding models lead to

reduced transparency, reduced legitimacy, and reduced belief in the modelling approach

to management (Dankel et al., 2016; Kelly and Codling, 2006).

Stock assessment methods based on mathematical modelling and statistical techniques

have undoubtedly been crucial for today’s level of understanding of fisheries dynamics

and for the successful management of many fisheries. This achievement makes it is also

easier to express and utilise heuristic HCR procedures in fisheries management. It is

fair to say that HCRs have been introduced as a continuation of previous management

procedures based on mathematical models. This may also turn out to be a problem for a

further utilisation of the capacities of a fully developed heuristic expert system (Clancey,

1983) for fisheries management.

Today HCRs are successfully introduced in a large number of fisheries (Kvamsdal

et al., 2016). In principle HCRs should not limited to only include biological measures

(Garcia et al., 2009). Rule based procedures open for the use non-biological indicators

(such as social and economic measures), possibilities that so far are poorly explored and
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hardly utilised. Heuristic decision rules (expert systems) allow vague knowledge and

unspecified uncertainties to be integrated in the formulation of rules. Hypotheses and/or

vague knowledge believed to be important (from biological, economic or societal points of

view), can be added to existing sets of rules by reformulating existing rules or adding new.

Reservation levels and intervals between ’go’ and ’no’ zones may include uncertainty and

vagueness in the evaluation of tolerance levels. Together it constitutes the precautionary

evaluation of possible short and long term consequences different levels of fish harvest

may have on other parts of the ecosystem, the economy, and the society as a whole.

Heuristic decision rules organised in sets of HCRs, are used to evaluate the state of

fisheries. The goal of the evaluation is not to identify stock size or fishing pressure but to

estimate membership degrees in fuzzy sets, such as for example in the sets of healthy stocks

and overexploited stocks illustrated by Figure 1. Being a fuzzy logic expert system, HCRs

use membership functions, as those indicated in the figure, to identify the sets of highest

membership degrees. This information is then used to decide the corresponding advice on

TAC (Total Allowable Catch), all based on pre-defined rules. Crisp value estimations of

stock size or other stock properties are merely means by which the selection of dominating

fuzzy sets can be made.
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Figure 1: Standard membership functions used in the simplest versions of Harvest Con-
trol Rules. Membership degrees in four fuzzy sets are determined by the value of two
indicators, which are measured along the two horizontal axes. Blim is the limit value
of spawning biomass below which the stock is 100% unhealthy, while the stock is 100%
healthy aboe the precautionary level at Bpa. The corresponding values to the right is the
critically high fishing mortality rate Flim above which 100% overfishing occurs, while a
100% sustainable fishery takes place at and below the precautionary value Fpa.

Up to now HCRs in fisheries management have been implemented as an extension of

previous management models. Indicators have been built on previous reference points

and identified within the modelling framework developed prior to the HCRs. The rules

commonly use model estimates of spawning biomasses and fishing mortality rates as

indicators (inputs to the HCRs), as indicated in Figure 1. Hence, the transition from

a model based to a rule based control system has been made possible, but is not yet

completed. Since model outputs are not the goal, but rather a mean in the management
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procedure, it is fair to ask: Could the parametric modelling part of the procedure be

substituted by more direct use of basic observations and expert knowledge?

There are several reasons why the use of modelled indicator values in HCRs is prob-

lematic. Inclusion of model uncertainty (Dankel et al., 2016) and lack of transparency

(Kelly and Codling, 2006) are often mentioned as the most serious problems. There is

also a tautological problem of model based inputs when targets and limits (illustrated

by pa- and lim-levels in Figure 1) are identified by using similar assumptions as those

embedded in the model. The example in Figure 1 shows how estimated values of spawn-

ing stock biomass and fishing mortality rate – commonly used as indicators in HCRs –

link to membership degrees of different fuzzy sets. Indicator values are often interrelated;

estimated within the same modelling framework and sharing observation and modelling

uncertainties.

Feigenbaum (1977) sets up a road map for heuristic rule-based case studies where the

central organising principle is what he refers to as the Line-of-reasoning, which should be

possible to explain in a language convenient to the user. Feigenbaum claims this to be

necessary for the right use of an expert system (which in his terminology is called knowl-

edge engineering), and for system development (debugging and extending the knowledge

base). It may be questioned if a comprehensible Line-of-reasoning today exists for the

users of management advices.

The aim of this paper is to investigate a possible approach of omitting the use of

parametric models without losing important information hidden in data set structures;

information which today is filtered through model assumptions and non-transparent tun-

ing procedures. The Virtual Population Analysis (VPA; see Gulland, 1965) is an example

of a fairly transparent accounting system based on consistency and fixed natural mortal-

ity rates. The less transparent eXtended Survivor Analysis (XSA) with improved tuning

procedures, employing information from other data sources, clearly provides more reliable

estimates of recent stock history (Shepherd, 1999). For the case studies provided in this

paper – the Northeast Arctic (NEA) cod, haddock and saithe fisheries – existing XSA

estimates are compared with results from suggested alternative methods, acknowledg-

ing XSA as a model within the class of well functioning integrated statistical year class

models.

Data and method

A simple method on how to utilise fuzzy set theory on catch-at-age data for the evaluation

of year class (or recruitment) strength in age structured fish populations is presented be-

low, providing examples from the NEA cod, haddock and saithe stocks. The methodology

builds to some extent on the ideas of Sakuramoto (1995) and Mackinson et al. (1999),

also referred to in Eide (2016) where a number of management performance indicators
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are suggested. Sakuramoto (1995) and Mackinson et al. (1999) show how catch-at-age

data can be used to estimate recruitment strength by the use of fuzzy logic techniques.

Table 1: Registered catch quantities in thousand tons distributed on year classes (year
of birth) and age of capture (from 3 to 13 and above), from tables 3.6 and 3.8 in Anon.
(2016).

Year class 3 4 5 6 7 8 9 10 11 12 13+
1943 1.403 7.388 39.128 166.825 147.686 116.509 123.297 66.906 52.590 21.125 18.946
1944 0.227 2.052 39.088 76.896 95.339 76.285 53.429 57.760 29.808 13.819 8.690
1945 0.048 4.561 37.468 88.110 130.387 62.730 63.671 66.746 31.616 11.285 5.036
1946 0.367 7.011 88.978 141.748 63.905 46.387 67.194 54.345 26.632 10.251 5.961
1947 0.500 64.677 150.560 107.115 123.124 119.977 83.178 46.705 28.516 8.604 7.788
1948 9.875 96.563 143.411 198.479 231.085 217.137 97.431 76.991 26.873 15.297 15.511
1949 10.604 81.821 184.458 279.111 250.806 167.832 74.826 61.071 35.086 16.147 9.858
1950 18.965 119.482 228.072 458.364 251.525 150.659 125.993 99.121 48.261 17.392 9.988
1951 5.048 21.462 138.889 128.678 112.837 76.615 44.309 55.241 24.130 11.593 10.080
1952 1.249 14.020 27.726 78.215 66.408 41.049 35.615 21.006 9.822 1.748 4.624
1953 3.503 20.019 67.498 143.326 78.135 88.791 52.112 30.722 7.313 1.463 2.207
1954 5.716 69.460 217.979 143.615 125.130 110.640 76.597 28.673 9.834 4.296 3.859
1955 10.614 56.118 70.002 112.567 85.740 80.456 39.716 11.061 3.279 3.346 3.564
1956 11.308 49.911 129.631 152.082 107.975 45.535 20.450 10.869 6.204 1.179 2.700
1957 12.880 72.960 155.534 165.212 63.837 29.702 27.213 16.559 5.920 4.434 2.533
1958 14.098 93.811 197.327 108.950 61.320 70.670 55.369 24.319 15.935 2.857 2.797
1959 13.573 65.260 93.052 102.081 91.436 87.484 61.116 32.742 11.051 4.527 6.507
1960 4.223 25.252 80.648 75.719 73.889 69.040 67.584 24.692 6.568 4.268 2.711
1961 1.748 17.679 40.918 45.004 83.841 102.828 49.935 17.354 11.567 2.266 3.919
1962 5.976 41.177 93.467 226.948 230.153 132.468 70.260 34.839 7.136 3.674 3.710
1963 24.612 129.639 396.582 367.915 289.260 219.453 130.096 37.657 20.887 6.791 2.952
1964 9.995 122.210 293.369 275.658 182.020 152.796 125.684 44.071 19.126 5.242 3.664
1965 1.224 19.391 34.589 20.578 25.575 38.392 13.927 13.637 5.736 2.954 11.163
1966 1.015 9.821 16.327 25.629 23.846 19.184 15.022 8.705 6.057 4.839 2.036
1967 2.651 12.090 38.370 46.486 40.542 40.873 23.820 13.126 9.267 1.122 0.838
1968 3.489 34.982 93.940 104.353 87.090 58.920 36.557 9.791 3.937 0.733 0.571
1969 13.504 119.659 238.413 225.277 132.127 106.421 61.528 15.369 5.994 1.174 0.519
1970 111.820 288.669 251.577 237.654 204.009 141.922 72.209 23.203 9.543 2.803 1.413
1971 29.394 38.271 95.192 108.496 77.237 35.495 20.487 12.009 3.317 1.199 0.594
1972 18.566 83.469 194.959 122.169 52.967 31.256 28.034 6.025 2.645 1.311 0.995
1973 29.868 151.748 128.318 68.358 53.345 48.175 18.592 6.001 1.886 0.510 0.916
1974 19.401 36.774 54.159 68.905 64.928 35.595 19.775 5.794 1.617 1.457 1.338
1975 38.623 54.239 83.626 132.575 124.513 102.276 36.048 7.534 5.464 3.114 1.036
1976 3.010 9.568 29.956 55.887 67.846 40.689 11.927 5.583 2.276 0.972 0.461
1977 1.056 9.277 26.116 50.496 59.217 22.632 6.666 4.368 1.204 0.149 0.151
1978 1.669 13.816 42.789 63.070 52.638 23.728 7.826 4.936 0.454 0.253 0.067
1979 3.311 26.844 46.829 62.526 52.582 22.887 9.962 2.645 0.782 0.199 0.186
1980 2.611 27.483 56.168 70.350 47.152 17.676 6.219 1.761 0.566 0.946 1.219
1981 9.858 62.704 147.903 143.078 73.973 25.525 6.044 3.775 2.672 3.811 1.725
1982 23.156 90.161 152.226 121.809 81.612 31.871 23.639 19.650 13.957 9.433 3.252
1983 18.540 120.653 178.658 156.972 97.223 118.659 112.491 90.544 60.299 17.702 9.807
1984 6.688 19.358 42.136 39.576 73.046 70.278 42.514 27.789 10.261 2.392 4.259
1985 5.307 16.620 21.318 58.788 78.359 52.253 41.908 13.886 4.287 2.358 1.699
1986 3.763 9.212 35.404 72.515 60.505 52.099 18.777 7.477 3.212 1.038 1.011
1987 1.548 15.853 60.762 93.808 104.338 36.597 13.635 8.897 2.029 0.555 0.448
1988 5.211 56.544 137.328 172.724 122.057 60.317 33.441 8.975 1.966 0.886 0.566
1989 25.329 70.197 211.249 255.076 208.534 147.638 45.225 12.363 2.574 0.891 0.372
1990 8.176 77.277 205.286 247.252 224.927 128.080 52.968 12.385 3.087 0.984 0.693
1991 5.355 51.104 129.945 184.298 113.893 68.001 27.382 8.769 2.038 1.160 0.897
1992 3.757 31.948 106.538 93.134 50.647 29.913 10.709 4.052 1.521 1.527 0.750
1993 6.047 37.951 79.335 72.865 42.321 25.171 11.166 4.034 2.711 1.150 2.294
1994 8.594 93.318 142.937 110.471 80.007 55.099 18.361 13.933 5.463 1.802 1.229
1995 21.683 78.491 149.801 156.765 148.269 70.570 41.864 19.230 5.675 2.898 1.107
1996 4.726 34.418 100.665 156.285 131.407 85.517 39.156 12.123 4.515 2.317 1.406
1997 2.680 36.770 118.833 177.773 166.240 91.255 39.630 11.158 6.006 8.439 3.107
1998 3.329 35.067 117.938 166.091 145.973 71.128 26.846 13.904 7.560 8.354 5.914
1999 1.691 23.391 81.830 136.280 105.476 56.650 34.229 15.676 25.880 6.432 5.844
2000 4.866 43.195 177.636 186.779 131.377 105.861 57.356 31.659 27.741 13.050 9.104
2001 1.505 21.349 53.800 66.021 53.200 45.031 29.900 37.783 19.934 7.828 8.582
2002 4.012 54.760 115.065 98.903 80.246 85.992 72.355 42.963 26.904 11.515 10.392
2003 6.155 53.019 76.027 112.866 125.110 97.556 77.407 66.835 32.226 22.439
2004 18.850 65.664 146.157 185.081 236.400 212.586 262.952 158.711 117.961
2005 6.513 45.292 93.708 168.123 218.444 314.183 260.995 162.541
2006 3.650 19.432 55.852 94.470 172.997 236.219 132.446
2007 1.387 10.523 28.798 49.607 98.075 100.484
2008 1.106 11.927 37.996 85.721 105.959
2009 1.806 15.981 66.444 111.636
2010 2.061 23.071 63.831
2011 4.135 34.207
2012 3.366

Fuzzy set theory was first introduced by Lotfi Zadeh in the 1960ies (Zadeh, 1983

and 2002) and soon proved to be a practical tool with a wide area of applications, also

related to fisheries management (Sakuramoto, 1995; Silvert, 1997; Mackinson et al., 1999).

The theory extends traditional set theory by introducing the concept of degrees of set
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memberships. A fish stock could for example have partial membership in both the set of

large stocks and the set of small fish stocks at the same time. Furthermore, it may be

partial member in the set of overexploited stocks and the set of well-managed stocks at

the same time (which in the HCR context could be when being between precautionary

and limit values of a given indicator, see Figure 1). The principle provides a method to

include characteristics that gradually change (e.g. age, size, etc.) or genuine vagueness

in set theoretic studies. It is easy to link this to real world problems as for example to

the management of fisheries. Obviously, there is no crisp value identifying the point at

which a stock becomes for example overexploited. Similarly, a single fish – or a person

– could have partial membership both in the set of young individuals and in the set of

old individuals. As observers, however, we do not need to know the age of a person to

have an opinion of in which of the two sets (of young and old individuals) the person

has the highest membership degree. The phenomena is known from ancient time as the

Sorites paradox. It refers to real vagueness of terms often involved in human evaluations

and decisions. Fuzzy set theory aims to operationalise how to make decisions within this

framework.

Table 2: Sixth part quantiles of each data set of catches-at-age from 1946 to 2015,
illustrated graphically as curves in Figure 2

Quantiles Age groups
3 4 5 6 7 8 9 10 11 12 13+

5/6 18.566 83.469 178.660 185.080 173.000 132.470 77.407 55.241 26.904 11.285 8.582
4/6 8.594 56.118 137.330 152.080 124.510 97.556 57.356 28.673 11.567 4.839 3.859
3/6 4.866 36.774 93.467 112.570 95.339 70.570 39.716 15.676 6.204 2.898 2.533
2/6 3.329 21.462 63.831 93.134 73.973 48.175 27.382 11.158 4.287 1.463 1.219
1/6 1.505 13.816 39.088 66.021 53.345 31.871 15.022 6.025 2.276 0.984 0.594

Table 1 shows the NEA cod catch-at-age data for the year classes from 1943 to 2012,

available from the ICES Arctic Fisheries Working Group (AFWG) (Anon., 2016). The

tabled data is presented as a Box-Whisker-plot in Figure 2 where the range of each box

is defined by the 25% and 75% quantiles of catches-at-age over the covered period. These

quantiles split, together with the 50% quantile (the median value), each data set into four

fractions. For the purpose of this study we prefer to split each catch-at-age data set into

six fractions, obtained by employing the five 1/6 quantiles (within the ranges of 16.7%,

33.3%, 50%, 66.7%, and 83.3% of the total catches-at-age).

Table 2 shows the 1/6 quantile values within the catches of each age group. The curves

in Figure 2 connect the 1/6 quantile of each data set, serving as a measure of classifying

each year class by catch-at-age data in sets of very weak, weak, medium, strong and very

strong year class catches. For example, catches of age group 5 less than 39.088 thousand

tons (which is the 1/6 quantile of age 5 years, see Table 2) is assumed to reflect a very

weak year class, while catches above 178.660 thousand tons at the same age is assumed to

reflect a very strong year classes. In the first case the catch is a 100% member of the set
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of very weak year classes, while catches above 178.660 thousand tons are 100% members

in the set of very strong year classes.

Table 3: Year class evaluations by membership degrees of sets of year class classification
(in percent) at the quantile values provided in Table 2.

Catches Year class evaluation in terms of percentage membership
Very weak (set 1) Weak (set 2) Medium (set 3) Strong (set 4) Very strong (set 5)

> 5/6 quantile 0 0 0 0 100
= 4/6 quantile 0 0 0 100 0
= 3/6 quantile 0 0 100 0 0
= 2/6 quantile 0 100 0 0 0
6 1/6 quantile 100 0 0 0 0

Catch values laying between the 1/6 and the 2/6 quantiles within their respective

age groups are also partial members in the set of very weak year classes, but with less

than 100% memberships. The exact membership degree depends on the distances to the

two quantile values. Similarly, these catches also have partial memberships in the set of

weak year classes. Zadeh (1983) refers to sets in which partial membership is possible as

fuzzy sets. In this study any catch-at-age may be partial or full member of one or two

fuzzy sets, according to membership degrees determined by linear relationships between

the quantiles defining 0% and 100% memberships (respectively representing normalised

membership degrees of 0 and 1) in each set (Table 3) as shown in Figure 3.

After the fuzzification of catches, which is to determine the membership degrees of

each catch-at-age observation in the five defined sets, a defuzzification procedure is per-

formed after the principle of Highest Membership Degree, selecting the set in which each

year class’ catch-at-age has its highest membership degree. By this procedure each catch-

at-age is associated with a single set as illustrated in the top eleven rows of Figure 4.

This simplification describes the strength of each year class in terms of eleven evaluations

(except in the recent cases where the year class is still present in the stock). Other simple

defuzzification procedures could be chosen (centre of gravity, centre of set intersections,

centre of largest integrated set, all are possible candidates). Intuitively the highest mem-

bership degree seems to be most appealing in our case, but the choice of defuzzification

method is one factor that should be further analysed and discussed. However, this study

will employ to the principle of Highest Membership Degree.

Assign a numerical value to each of the five sets; Set 1 is the set of very weak year

classes, set 2 the set of weak year classes, set 3 the set of medium year classes, set 4 the

set of strong year classes, and set 5 is the set of very strong year classes. The 1943 year

class, which was three years old while recruited to the fishable NEA cod stock in 1946,

is for example evaluated by catch-at-age data to have the highest membership degrees

in the following sets: {1, 1, 1, 4, 4, 5, 5, 5, 5, 5, 5}, listed from the lowest (3 years) to the

highest age (13 years and older).

The second defuzzification procedure is to convert the age-structured vector of a year

class – characterising year class strength at each catch-at-age value of the year class – to
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Figure 2: The box-whisker plot gives the distribution in NEA cod catches (in thousand
tons) during the period 1946-2015 separated on year classes. The median values are
indicated by white lines through the boxes. The five curves connect the different 1/6-
quantiles of each year class, quantile values (from Table 2) are marked by white squares.
Data sources are table 3.6 and table 3.8 in Anon. (2016), here presented in Table 1.

one single value, being the strength evaluation for the entire year class. As in the previous

defuzzication procedure, where the simple principle of Highest Membership Degree where

chosen, also here numerous possible defuzzification principles are available. Simple and

transparent rule-based methods are preferable, and in this case we employ a successive

pairwise evaluation of the elements in the year class vector following the rules displayed

in Table 4. According to Figure 2, the largest cod catches are represented at ages between

4 and 9 year; hence, it seems reasonable to place more emphasis on these catches. It may

also be reasonable to put a larger emphasis on early catches of a year class because of

the increasing impact previous catches will have on the catches of older fish.

The chosen procedure therefore starts by pairing the set values of the oldest and

youngest age group first (3 and 13+), followed by the pairing of (3 and 4), (4 and 5), (5

and 6), (6 and 7), (7 and 8), (8 and 9), (9 and 10) and (10 and 11). The second last

value (in this case the catches of 12 year old cod) is omitted, systematically emphasising

the catches on younger fish. The pairwise evaluation results in a new vector where

the number of elements is reduced from 11 to 9: {3, 1, 1, 2, 4, 5, 5, 5, 5}. Then the same

procedure is repeated, applying the same rules and the same pairing principle, until the

vector contains only one digit. In our example, the sequence of vectors continues in this
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Figure 3: Membership degrees (vertical axes) for the five sets identified in Figure 2 for
age groups from age 3 years to 13 years and older, as functions of catch-at-age (horizontal
axes).

Table 4: Defuzzification rules employed to single out the fuzzy set of each year class
by the use of sets of highest membership degrees for each age group. The numbers are
referring to the sets presented in Figure 3; 1: very weak, 2: weak, 3: medium, 4: strong
and 5: very strong.

{1, 1} → 1 {1, 2} → 1 {1, 3} → 2 {1, 4} → 2 {1, 5} → 3
{2, 1} → 1 {2, 2} → 2 {2, 3} → 2 {2, 4} → 3 {2, 5} → 3
{3, 1} → 2 {3, 2} → 2 {3, 3} → 3 {3, 4} → 3 {3, 5} → 4
{4, 1} → 2 {4, 2} → 3 {4, 3} → 3 {4, 4} → 4 {4, 5} → 5
{5, 1} → 2 {5, 2} → 3 {5, 3} → 4 {5, 4} → 5 {5, 5} → 5

way: {4, 2, 1, 1, 3, 5, 5}, {5, 3, 1, 1, 2}, {3, 4, 2}, and {2}. The final digit – 2 – is assumed

to represent an overall classification of the year class strength in terms of being a full

member of the corresponding set, in our example this means that the 1943 year class is

found to be a weak year class.

The lower row of Figure 4 displays the result after applying the second defuzzication

method on all the year classes, employing the rules displayed in Table 4. The categorisa-

tion of year class strength of the period from year class 1943 to year class 2012 (recruited

to the exploitable fish stock in 2015) then gives the following list for the NEA cod year

class strength: {2, 2, 1, 1, 3, 5, 5, 5, 3, 1, 2, 4, 2, 2, 3, 4, 4, 2, 1, 3, 5, 5, 1, 1, 1, 1, 3, 5, 1, 3, 2,

1, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 2, 4, 3, 2, 1, 1, 3, 4, 2, 3, 2, 1, 4, 1, 3, 3, 5, 4, 2, 1, 1, 1, 1, 3,

2}. In the graphical representation of this vector in the lower row of Figure 4 each value

(year class strength) is represented by different colours.
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Result
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7
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13

Year class

A
g
e

Figure 4: The top eleven rows display results after the first defuzzification procedure
according to the principle of Highest Membership Degree for each year class (horizontal
axis). The lower line (Result) shows the resulting aggregate after the second defuzzifica-
tion procedure involving the rules displayed in Table 4.

Very weak Weak Medium Strong Very strong

1960 1980 2000

defuzz 3
defuzz 2

3
4
5
6
7
8
9
10
11
12
13

defuzz 3
defuzz 2

3
4
5
6
7
8
9
10
11
12
13

Year

Figure 5: The top eleven rows display results after the first defuzzification procedure
according to the principle of Highest Membership Degree for all year classes present in a
given year (horizontal axis). The two lower lines (defuzz2 and defuzz3) show the resulting
aggregates after the second and third defuzzification procedure, both employing the rules
displayed in Table 4.

Up to now we have focused year class strength (e.g. recruitment strength) of each

year class. Let us shift focus to now look at the assessment of relative stock size for each

year, assuming this to be reflected in an aggregate of the catch-at-age evaluations of all

year classes constituting the stock the given year.

The second defuzzification procedure aimed to minimise the impact from fishing by

emphasising catches of young fish. A third defuzzification procedure is introduced by the

opposite strategy; emphasising the catches of older fish. Previous catches on a year class

will affect later catches of the same year class, and the third defuzzification procedure

takes advantage of this knowledge. The procedure follows these steps: First, omitting the

four youngest year classes before pairing the age groups (catch-at-age values of a given

year) in the following way: (8 and 9), (7 and 8), (6 and 7), (5 and 6), (4, and 5), (3

and 4), (3 and 13+), (12 and 13+) and (11 and 12), employing the rules provided in

Table 4. The procedure is then repeated as in the second defuzzification procedure until

only one digit characterises the strength of the exploited stock that particular year. The

assumption is that the difference between the second and third defuzzification procedures

10



gives a proxy of the fishing intensity. Both procedures utilise the same catch information,

facing the same age composition in the stock. While the impact of fishing is believed to

be low while nesting information from the younger to the older, it is assumed to be high

while nesting information from the older to the younger fish.

Indicator values obtained from age distributed catches 1946 – 2015 by using the two

defuzzification procedures are shown in the two lower rows of Figure 5 (note that the

horizontal axis here refers to year, not year classes as in Figure 4). Since the difference

between the two defuzzification procedures is assumed to reflect a fishing effort measure,

we now make use of the aggregated catch data of each year to estimate a catch per unit

of effort value, commonly considered to reflect stock strength (or stock density measure).

Results

The methodology described above is employing fuzzy set theory in its simplest version.

The suggested defuzzification methods are illustrated by case studies to provide examples

on how the theory could be implemented. Commercial catch-at-age data in the NEA cod

fishery reveals a year class strength or recruitment pattern in striking correspondence

with the recruitment strength estimated by stock assessments. In Figure 6 the two data

sets are displayed in a common axes system. The correlation coefficient of the two data

sets is 86%.
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Figure 6: Results of the second defuzzification procedures as described in this paper
(solid line) compared with corresponding estimates of year class strength (recruitment
numbers) by stock assessments, Table 3.24a in Anon. (2016) (dashed line).

When comparing year class strengths obtained here by stock assessment estimates, a

resolution of five sets (or strength categories) seems to be sufficient to grasp the essential
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Figure 7: The figure shows the most recent (since 1998) year classes displayed in Figure 6
(solid and dashed lines) in addition to the aggregated catches of each year class (dotted
line).
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Figure 8: Results for Northeast Arctic haddock (tables 4.4 and 4.5 in Anon., 2016) and
saithe (tables 5.5.1 and 5.5.2 in Anon., 2016) following the same procedure as for NEA
cod in Figure 6.

fluctuations in recruitment strength over time. In the case of NEA cod, total catch by

year classes correlates even stronger to the stock assessment estimates (Eide, 2016). This

requires, however, a completed catch history of the year class in question; hence, it has

less value for the management of a fishery. This is illustrated in Figure 7, which shows

the most recent NEA cod year classes from Figure 6, in addition to total catches of the

same year classes. The fuzzy logic estimated year class strengths correspond quite well

to the stock assessments.

In addition to the case of the NEA cod stock, the suggested method of year class

strength classification also has been applied on the catches of Northeast Arctic (NEA)

haddock and saithe (Anon., 2016). Following the same procedure as described above
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Figure 9: Total catches divided by the differences between the second and third defuzzifi-
cation procedures (solid line), representing a stock size indicator (catch per unit of effort)
compared with corresponding estimates of stock sizes by stock assessment 1946 – 2015,
Table 3.24a in Anon. (2016) (dashed line).
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Figure 10: Total catches divided by the differences between the second and third de-
fuzzification procedures (solid lines), representing a stock size indicator (catch per unit of
effort) compared with corresponding estimates of stock sizes by stock assessment, Table
4.17 (haddock) and Table 5.5.5 (saithe) in Anon. (2016) (dashed lines).

78% of the stock assessment explained fluctuations in the haddock recruitment and a

corresponding 83% of the saithe recruitment are explained by the methodology suggested

here. The results are displayed in Figure 8.

Figure 9 shows how the sequences of recruitment strength evaluations may be devel-

oped further to a stock size indicator. The figure illustrates how a stock indicator obtained

by dividing total catch with the difference between the second and third defuzzification

procedures performs compared with the corresponding stock assessment estimates. 79%
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of the stock variation found by stock assessments is explained by the fuzzy logic method-

ology in the case of the NEA cod stock. For haddock and saithe corresponding correlation

coefficients are 63% and 24% (Figure 10).

Discussion

Fuzzy logic represents a way to structure data, information and knowledge in a non-

algorithmic manner:

”Fuzzy logic provides a natural framework for the management of uncertainty

in expert systems because – in contrast to traditional logical systems – its main

purpose is to provide a systematic basis for representing and inferring from

imprecise rather than precise knowledge. In effect, in fuzzy logic everything is

allowed to be – but need not be – a matter of degree.” (Zadeh, 1983)

The estimating procedures presented here are not supposed to replace stock assess-

ment methodologies. They rather represent possible ways of developing an alternative

toolbox without the strict constraints in terms mathematical formulations and increasing

demand for data beyond standard catch statistics. The alternative toolbox makes use of

existing knowledge (precise and imprecise) as it develops, in addition to easily available

data such as commercial catch statistics. As stated in the introductory part the cost

associated with data sampling is only one of the issues calling for new methods to be

developed.

In order to operationalise the increased focus on possible ecosystem consequences,

which modern fisheries management is committed to do, rule based methods appear to

be more promising. Combined inputs (indicator values) of direct observations fed into

HCRs, while taking into consideration precautionary levels corresponding to precise and

imprecise knowledge about system resilience and vulnerability, seems to represent a better

approach to increased complexity in the object functions of fisheries management.

Compared with corresponding findings by the use of stock assessment, the results

presented here provide surprisingly consistent year class strength evaluations. The task

of employing fuzzy logic methodology to estimate stock size indicators is more challenging.

The results from the stock size evaluation method suggested here are promising but the

methodology needs to be further developed. Such a development should also include an

investigation of using catch-at-age in terms of number of individuals rather than catch

weights. Using both measures may improve the overall performance of the fuzzy logic

method.

The stock size indicators for the NEA cod and haddock stocks fit quite well the stock

assessments while in the case of the NEA saithe stock the fuzzy logic method fails to obtain

the short-term large fluctuations identified by the traditional stock assessment methods
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(Figures 9 and 10 ). The long-term trend captured by fuzzy logic is however in line with

the stock assessment. A further discussion of the differences found by the two methods in

the case of NEA saithe should also include a closer study of the stock assessment, in this

case how the XSA methodology has been implemented. This is outside the scope of this

paper but it could be noted that according to the relatively stable recruitment dynamics

of the stock (Figure 8) the large fluctuations in stock size at first sight are surprising. The

consistency between the two obviously is linked to the fact that the overall saithe stock

size, according to stock assessments, is far below the levels of NEA cod and haddock.

From Figure 9 it seems to be a slight delay in time between the fuzzy logic method

and the NEA cod stock assessment. This delay may be related to a delay between fishing

effort and the impact it has on the stock. Another – or additional – explanation may be

that while the stock assessment provides an evaluation of all year classes, the indicator

obtained by fuzzy logic only consider the year classes represented in the fishery. A further

refinement with regard of possible time lag issues may also contribute in improving the

method.

This paper illustrates how fuzzy logic techniques could be used to identify stock

properties commonly utilised as HCR indicators, substituting model-based indicators.

Today catch data (observations) are channelled to the HCRs through non-transparent

models. Heuristic expert system procedures similar to those presented in this paper

could in the future be an integral part of sets of HCRs. Use of catch-at-age statistics

as direct inputs to sets of HCRs will provide more explainable Lines-of-reasoning. The

evaluation of the state of the stock could be one step in a rule-based line-of-reasoning in

producing fisheries management decisions (or advices).

A full implementation of a fuzzy logic based heuristic expert system for the manage-

ment of fisheries involves several issues not covered here. Obviously the performance of

any new set of HCRs to be used in a fishery needs to be thoroughly evaluated before

taken into use. Selection of indicators depends on the management objectives and how

these should be embedded into the HCRs. Ideally all indicators should be measurable

in order to reduce the problem of non-transparency and to be organised in the manner

of a comprehensible Line-of-reasoning, containing heuristic rules based on expert knowl-

edge and stated objectives of the fishing activity. Also non-biological indicators, such

as economic performance and other social factors, could be included in the set of rules

constituting the HCRs.

The simple rule-based pattern of the control system also opens for learning and then

the possibility of adjusting the rules according to new knowledge gained by using the

control system. A fully adaptive heuristic control system also includes the possibility

of adding indicators, as long as these could be measured through observations. Such

ideas also open for the possibility of developing HCRs through sets of meta-rules, a

control system which in principle constitute a system of artificial intelligence (AI) with
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the capacity of learning.

The aim of this paper has been to investigate the ability of simple, intuitive rules,

providing fisheries managers with essential information about the state of the stock. The

results are promising even though there may be a long way to go until such ideas can make

their way into the fairly well-functioning management procedures of modern fisheries

today. Perhaps the first practical use of fully developed rule-based expert systems rather

will be in less data-rich fisheries where the management procedures today are poorly

developed.
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